
ORIGINAL ARTICLE

‘‘Rising to the challenge’’: using generalization in pattern
problems to unearth the algebraic skills of talented
pre-algebra students

Miriam Amit Æ Dorit Neria

Accepted: 24 October 2007 / Published online: 13 November 2007

� FIZ Karlsruhe 2007

Abstract This study focuses on the generalization

methods used by talented pre-algebra students in solving

linear and non-linear pattern problems. A qualitative

analysis of the solutions of three problems revealed two

approaches to generalization: recursive–local and func-

tional–global. The students showed mental flexibility,

shifting smoothly between pictorial, verbal and numerical

representations and abandoning additive solution approa-

ches in favor of more effective multiplicative strategies.

Three forms of reflection aided generalization: reflection

on commonalities in the pattern sequence’s structure,

reflection on the generalization method, and reflection on

the ‘‘tentative generalization’’ through verification of the

pattern sequence. The latter indicates an intuitive grasp of

the mathematical power of generalization. The students’

generalizations evinced algebraic thinking in the discovery

of variables, constants and their mutual relations, and in the

communication of these discoveries using invented alge-

braic notation. This study confirms the centrality of

generalizations in mathematics and their potential as

gateways to the world of algebra.

1 Introduction

The role of generalization in mathematical achievement

and learning cannot be overestimated. Mason termed it

‘‘the heartbeat of mathematics’’ (Mason 1996, p. 65), and

the NCTM standards (2000) call for generalization as one

of the main goals of mathematical instruction. Krutetskii

(1976) classifies generalization as one of the higher cog-

nitive abilities demonstrated by mathematics learners, and

Polya (1957) attributes many scientific discoveries and

mathematical results to what he calls ‘‘lucky generaliza-

tion,’’ claiming that generalization is essential in the

development of mathematical knowledge (p. 117). Because

of the higher ordered thinking involved in generalization,

such as abstraction, holistic thinking, visualization, flexi-

bility and reasoning, the ability to generalize is a feature

that characterizes capable students and differentiates them

from others (Greenes 1981; Sriraman 2003; Sternberg

1979).

As a process and a product of mathematics education,

generalization has merits and importance as an instruc-

tional goal in itself. However, it can also serve as a means

of constructing new knowledge, acting as an initiator for

further learning in algebra (Amit and Klass-Tsirulnikov

2005) and probability (Sriraman 2003).

In the following paper, we will illustrate how capable

students (aged 11–13) generalize pattern problems, and

describe what kind of generalization strategies they use,

how they communicate and justify their generalizations

and what algebraic thinking notations they demonstrate.

We will focus on linear and non-linear (quadratic) pattern

problems, since these problems are accessible to young

students on the one hand, while being loaded with mathe-

matical generalization potential on the other.

After a short literature review, we will describe the three

tasks the students were confronted with. Then, for each

task, we will thoroughly analyze the generalization expe-

riences the students underwent and discuss the results for

each task, emphasizing their unique outcomes. We will

conclude with an overall discussion and recommendations.
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2 Literature review

2.1 Generalization

Due to its centrality in mathematics education and to the

different purposes of generalization, different researchers

and theoreticians define generalization in different ways.

Polya (1957) defines generalization as ‘‘passing from the

consideration of one object to the consideration of a set

containing that object; or passing from the consideration of

a restricted set to that of a more comprehensive set con-

taining the restricted one’’ (p. 108).

Generalization, according to Polya, is a gradual process.

This process starts with ‘‘tentative generalization’’—an

effort to understand the observed facts, to make analogies

and to further test special cases. The initial tentative gen-

eralization (or generalizations) leads to a finer one. No

generalization is final, however, without a solid mathe-

matical proof. At this point, Polya distinguishes between

induction that is related to generalization and mathematical

induction that is related to a rigorous proof. He reconciles

between the two as follows: ‘‘Mathematics presented with

rigor is systematic deductive science, but mathematics in

making is an experimental inductive science’’ (p. 117).

Skemp (1986) perceives mathematical generalization as

a sophisticated and powerful process, which involves

reflection and a skillful reconstruction of one’s existing

schemes. Davis (1986) claims that generalization is a

genuine need in mathematics education, achievable in at

least two ways, either ‘‘by the creation of abbreviated

‘summary’ versions of knowledge items, or, alternatively,

by creating an isomorphism (a mapping) between two

items’’ (p. 360).

Harel and Tall (1991) view generalization as the process

of ‘‘applying a given argument in a broader context’’ (p. 38),

and distinguish between expansive generalization, recon-

structive generalization and disjunctive generalization.

They recommend encouraging expansive generalization

when possible by providing students with ‘‘experiences

which lead to a meaningful understanding’’ of a situation.

Doerfler (1991) defines two types of generalizations:

empirical generalization, which refers to the recognition of

common features (in line with the identification of com-

monalities by Dreyfus 1991); and theoretical generalization,

which has to do with a ‘‘system of action’’ in which invari-

ants are identified, abstracted and inserted into prototypes

comprising relations between objects. Mitchelmore (2002)

labels two terms related to the process of generalization:

abstract apart and abstract general. The first refers to finding

similarities in specific given instances by which instrumental

understanding is exhibited. The second refers to extending to

a large number of instances, far beyond the given one, by

which relational understanding is developed.

Ellis (2007) constructs a generalization taxonomy in

which there are two main generalization levels: actions and

reflection. The generalization action level includes forming

an association between two or more mathematical objects,

searching for similarities and relationships, and extending a

pattern, relationship or rule into a more general structure.

The reflection level refers to the ability to identify or use an

existing generalization.

Krutetskii (1976) offers the following traditional, but

operational, definition of generalization. He claims that

‘‘Any effective generalization in the realm of

numerical and letter symbolism can be regarded from

at least two aspects: one must be able to see a similar

situation (where to apply it), and one must master the

generalized type of solution, the generalized scheme

of a proof or an argument (what to apply). In either

case one must abstract oneself from specific content

and single out what is similar, general, and essential

in the structures of objects, relationships, or opera-

tions.’’ (p. 237).

Kruteskii sees the ability to generalize mathematical

objects, relations and operations as one of the building

blocks of mathematical structure and as a special compo-

nent for the development of mathematical capacity in

gifted students. Sriraman’s (2003) findings on the advan-

tage that gifted students have in solving problems that lead

to generalization are in accord with Kruteskii’s views. The

ability to use generalization is not an exclusively inherent

attribute. On the contrary, it can be developed through ‘‘...

experiences that enable students to monitor and reflect on

their work, [which] will in turn enable them to develop a

capacity for generalization. This implies that the ability to

generalize is the result of certain mathematical experi-

ences’’ Sriraman (2004, p. 205). The developmental

approach to enhance the generalization capacity of young

students, especially high achievers, was a well known

phenomenon in the former Soviet Union (Amit and Burda

2005; Davydov 1990), and parts of this approach were

adapted by one of the authors of this paper in the

Kidumatica program (Amit et al. 2007).

2.2 Algebra, patterns, and generalization

The connection between algebra, patterns and generaliza-

tion has been noted by numerous researchers. Mentioned

below are a few such studies that are directly related to the

study presented in this paper.

Usiskin (1988) offers five different concepts for algebra.

The first is ‘‘Algebra as generalized arithmetic’’ (p. 11). In

line with this concept, variables are thought of as pattern

generalization. This notion of a variable as a pattern
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generalizer is ‘‘fundamental’’ in mathematical modeling.

Moreover, Usiskin sums up the instruction of algebra in

two words ‘‘translate and generalize’’ (p. 12).

Kaput (1999) defines algebra as ‘‘the generalization and

formation of patterns and constraints’’ (p. 136). He suggests

a route to algebra with understanding, which involves gen-

eralization from a very early age and in different domains,

such as arithmetic, geometry and modeling situations:

‘‘Generalization involves deliberately extending the

range of reasoning or communication beyond the case

or cases considered, explicitly identifying and

exposing commonality across cases, or lifting the

reasoning or communication to a level where the

focus is no longer on the cases or situations them-

selves but rather on the patterns, procedures,

structures, and the relations across and among them

(which, in turn, become new, higher level objects of

reasoning or communication). But expressing gener-

alizations means rendering them into some language,

whether in a formal language, or, for young children,

in intonation and gesture’’ (p. 136).

In conclusion, Kaput joins others in recommending that

teaching be conducted through meaningful experiences that

will lead to algebraic understanding.

Experiments with pattern problems have been shown to

be very efficient in revealing the ability to generalize and

symbolize and in promoting the development of algebraic

thinking in particular. These experiments vary in the types

of pattern—numerical, pictorial, computational procedures

or repeating patterns—and differ in different population,

from children to pre-service schoolteachers (Amit and

Neria 2007; Becker and Rivera 2004; English and Warren

1998; Ishida 1997; Radford 2006; Rivera 2007; Rivera

and Becker 2005; Sriraman 2003; Stacy 1989; Zazkis and

Lijendak 2002).

Concerning linear patterns, Stacey (1989) distinguishes

between ‘‘near generalization’’ tasks, which include finding

the next pattern or elements that can be reached by counting,

drawing or forming a table, and ‘‘far generalization’’ tasks, in

which finding a pattern requires an understanding of the

general rule. Three main generalization strategies are

defined in her study: (1) Recursive approach (adding strat-

egy)—drawing a figure and counting or making a table. (2)

Searching for the functional relationship—developing a

mathematical expression from a figure. (3) Making incorrect

proportional reasoning, using the ratio f(x) = nx, when the

relation is f(x) = ax + b (b = 0).

One major result of studies utilizing this division is that

the more competent students attempt to search for a func-

tional relationship, while the less proficient ones turn to the

recursive approach or incorrect proportional reasoning

(English and Warren 1998; Ishida 1997; Lee 1996). The

latter methods may prevent students from identifying the

general structure of the pattern (Orton and Orton 1999).

Radford (2006) suggests that in the process of general-

ization, students go through an experience of decision

making, deciding on such things as what stays the same and

what is changed, what should be emphasized and deem-

phasized, and what should be ignored. He stresses that for a

patterning activity to be an algebraic one, students cannot

rely on guess and test strategies; resourceful algebraic

activities must be based on looking for commonalities and

forming general concepts followed by the formation of

generalizing expressions.

Most studies of patterns focus on the linear. Only a few

address non-linear patterns such as exponential patterns

(De Bock et al. 2002; Ebersbach and Wilkening 2007;

Kerbs 2003). Most common strategies for such problems

were additive, and there was an evident tendency toward

linearity, even when the patterns were non-linear.

A review of the literature reveals the importance and

prominence of the subject of generalization, as well as its

complexity, and the various theories surrounding the ability

to generalize. Moreover, it illustrates the connection

between algebra and generalization, particularly the gen-

eralization of patterns.

In this study, we examined the generalization methods of

capable pre-algebra students when solving linear and non-

linear pattern problems. The analysis included discovering

and defining various stages of generalization, justification

methods (presentation and argumentation), use of repre-

sentations and the students’ algebraic thinking methods.

The aim of this paper is to present an in-depth analysis of

students’ strategies in solving pattern problems that lead to

generalizations. To accomplish this, we elaborate on the

solution strategies that led to successful problem solving, as

well as those that prevented students from obtaining gener-

alizations or led them to generalize incorrectly. For each

task, we will present examples of students’ solutions, fol-

lowed by a discussion relevant to the specific task, with

emphasis on strategies for near and far generalizations, the

transition from local-near generalizations to global ones, and

the representation modes and mathematical symbols pre-

algebra students use in solving generalization evoking tasks.

The paper will conclude with an overall discussion of gen-

eralization tasks for pre-algebra junior high school students

and the study’s implications for teaching and research.

3 Methodology

3.1 Participants

The participants in this research were capable students

aged 11–13 (beginning of grades 6–7), who were members
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of ‘‘Kidumatica’’, an after-school math club. These stu-

dents were club novices, having only just been accepted to

Kidumatica and were in the midst of their first 2 weeks of

club attendance. Like all the other club members (num-

bering a total of 400), these students come to Kidumatica

on their own free will, as club attendance is in no way part

of their regular school program. Students are either rec-

ommended for club membership by their teachers, or

discover and approach Kidumatica on their own. All pro-

spective members go through a series of examinations

devised by the club staff to determine mathematical

promise with as little reliance as possible on previous

mathematical knowledge. The entrance exams are designed

mainly to assess students’ thinking, approach to problems,

perseverance and motivation to succeed (i.e., not their IQ;

these are unofficial intelligence tests). The students

accepted to Kidumatica are highly motivated and certainly

amongst the top students in their class, but not formally

classified as ‘‘gifted.’’ These students, who were beginning

grades 6–7, had no prior extra-curricular studies, just their

school curriculum, which did not include any formal

algebra at this stage.1,2

3.2 Data sources

The main data sources were the students’ solutions to three

pattern tasks leading to generalizations (Figs. 1, 5, 10).

Each task appeared in a different questionnaire that con-

tained six non-routine problems, distributed to three

equivalent groups of students. The questionnaires served as

a pre-test aimed at investigating the abilities of the club’s

new participants, prior to any mathematical activities in the

club, in order to assign the appropriate level of instruction.

No grades were given and the results did not determine

acceptance to the club—all of the participants had already

been accepted. The students were asked to solve tasks and

elaborate and explain their solutions. The questionnaire

was designed accordingly. Each page had three parts. The

tasks appeared in the upper part of the page and the rest of

the page was divided into two columns: the right one was

for the solution and the left one for explanations and

elaborations of the solution (see Figs. 3, 4, 8). To ensure

full justification of the students’ solutions, we asked them

very specific questions:

• What did I do?

• Why did I do it?

• If I changed my mind, why?

• If I did not answer, why?

The questionnaire format was carefully and specifically

designed to ease the tasks of both students and teachers—

first helping the students to clearly and fully explain their

solutions, which later enabled those evaluating the exams

to clearly see the students’ solution paths and thought

processes.3

The students were asked to write down everything in

their questionnaires, but the pilot showed that they tended

to write only the final ‘‘clean’’ solution (a well known

phenomenon, Fried and Amit 2003). Therefore, in addi-

tion to the questionnaires, the researchers provided sketch

pads for drafts to students who requested them. All the

sketch pads were gathered and included in the analysis

and proved an invaluable source of information regarding

the students’ solution methods and the stages of their

generalization.

The following illustration presents the three first patterns in a sequence: 

A. How many white tiles are needed to make the next pattern?   

B. How many white tiles are needed to make pattern 10?  

C. Suggest a method to calculate the number of white tiles needed to make any pattern 
in this sequence. 

D. Suggest a method to calculate the number of white tiles needed to make the nth 

pattern in this sequence 

Fig. 1 The linear pattern task

1 The club, which includes *400 students aged 10–16, was founded

nine years ago by one of the authors of this paper. The project aimed

at addressing the special needs of students (most of whom come from

underdeveloped or struggling areas), who possess mathematical

ability but are not necessarily considered gifted, and who are

interested in and desirous of learning more about mathematics. The

club and its activities are designed to help these children by

developing their mathematical and creative thinking skills.
2 The students participate in weekly mathematics workshops in

specific topics (such as logic, problem-solving, number theory, etc.),

and attend a full day devoted to science and social activity every five

weeks. Classes are taught by teachers rich in mathematical knowledge

and very experienced in working with talented students—most from

the former Soviet Union. The students come from 50 schools in 14

different cities and villages. Some leave the club after one year, but

most remain for several years. In its 9 years of existence, Kidumatica

has won a string of awards in national and international Olympiads,

and its graduates have moved on to prestigious university faculties.

3 In a pilot study, the students were asked to provide ‘‘justifications’’

for their solution paths, a term that proved misleading and problem-

atic. Students were not familiar with the request to justify in

mathematics and associated the instruction only to verbal tasks such

as in history or social studies. Some students were confused by the

origin of the word ‘‘justification,’’ were unsure what it had to do with

mathematics, and did not proceed. As a result, the wording was

altered to ‘‘What did I do; why did I do it; if I changed my mind—why;
if I did not answer—why.’’ These instructions guided the students in

providing justifications without using explicit instructions.
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The students were given ample time to complete the

questionnaires, which were distributed in the afternoon

during club activity hours. The club’s regular instructors

were present throughout the entire time, as were the

researchers, who answered questions for comprehension,

and mainly observed the students and took notes.

3.3 The tool: three pattern tasks

Three generalization evoking tasks were chosen: a pic-

torial linear task; a pictorial non-linear task; and a

verbally presented, non-linear task drawing on everyday

life (Figs. 1, 5, 10).

The three tasks provided the researchers with a spectrum

of patterns (linear, non-linear, etc.) and with a detailed and

thorough view of the students’ generalization capabilities

at the beginning stage. As mentioned above, the ques-

tionnaires were distributed to three separate groups at the

same time, in accordance with the cross-section approach.

This method does not seek to monitor development over

time as in previous studies, such as Krebs (2003), Lanin

et al. (2006), Steele (2005), Warren et al. (2006).

The three chosen tasks were non-routine, requiring

students to develop a strategy since they lacked a prefab-

ricated solution strategy. In addition, of course, no similar

problems were found in school textbooks.

A non-routine problem must demand that students use

their preexisting knowledge in an unfamiliar way, thereby

effectively reconstructing what they know. It must facili-

tate (i.e., provide an opportunity) the use of different

representations. Lastly, the solution process must be fully

documented and justified.

The problems selected were ‘‘mathematically rich’’

(Maher 2002), and held potential for the construction of

new mathematical ideas and concepts—in this case, the

potential for developing algebraic thinking. The three

problems were generalization evoking, presenting different

levels of cognitive demands and complexity (as will be

elaborated).

The three pattern tasks had a similar structure: the

‘‘givens’’ consisted of a small finite set of example patterns.

These were followed by 3–4 ‘‘items,’’ which paced the

required generalization process based on previous research

on generalization (Stacey 1989; English and Warren 1998).

Item A: In accordance with the theoretical ‘‘near gen-

eralization’’ pattern, it served as a ‘‘warm up’’ item that

enabled the solvers to examine and investigate the pattern.

Item B: In accordance with the theoretical ‘‘far gener-

alization’’ pattern, a correct answer could be obtained by

forming a ‘‘tentative generalization’’ (see Polya 1957 for

the theory), or simply by extending the pattern using

numbers or by drawing.

Item C: The ‘‘intuitive generalization’’ (informal gener-

alization) pattern enabled the students to represent the

generalization in any form they felt comfortable with. For the

researchers, this item was an indicator of generalization

abilities. It was based on prior research, which indicated that

students found verbalizing generalizations easier than writ-

ing them symbolically (English and Warren 1998), and on the

fact that the study participants were all pre-algebra students.

Item D: The ‘‘formal generalization’’ pattern contained

an explicit requirement for representing a generalization in

a formal mode, striving toward algebra. The aim of item D

was to investigate how the students symbolize prior to

formal studies in algebra.

Items C and D provided the distinction between those

students who can ‘‘think algebraically’’ and those who can

also ‘‘write algebraically’’ (Steele 2005) (note: in Task III,

items C and D merged into one item). All of the tasks had

been used in previous studies and been validated and

deemed suitable by experts; in addition, they had been used

in a pilot simulation to test the clarity of their translation

and their suitability to the topic at hand.

3.4 Data analysis

Our aim in this paper is to present an in-depth analysis of a

variety of students’ strategies in solving pattern problems

that lead to generalizations. Therefore, we chose a qualita-

tive analysis (over a quantitative one) as the more effective

means of revealing and portraying the ‘‘narrative of the

generalization’’ and the development of algebraic skills.

All of the students’ answers were analyzed qualitatively

according to the following criteria: correctness, general-

ization strategy (including explanations and justifications),

representational modes and symbolic use.

Correctness of answers refers to the final answers in items

A and B only. Given that the students who participated in this

research were pre-algebra students, the categorization of

items C and D (the generalization items) into correct or

incorrect answers by strict mathematical rules may be mis-

leading, since they mostly comprised ‘‘invented’’ symbolism

systems or verbalizations mixed with symbols. In concen-

trating exclusively on the correct final results, important

information about mathematical thinking may be over-

looked. We have noted that ‘‘wrong’’ answers are sometimes

‘‘good’’ answers because they demonstrate mathematical

creativity and sophistication (Neria and Amit 2006).

3.4.1 Generalization (solution) strategy

Based on previous studies (English and Warren 1998;

Ishida 1997; Lee 1996), this category included local and
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global generalizations, additive or recursive strategies

versus functional generalizations. Strategies for generaliz-

ing functional rules were divided into numerical, such as

the use of finite differences in a table, trial-and-error

(random or systematic), visual, or a combination of

numerical and visual strategies (Becker and Rivera 2004;

Kerbs 2003; Rivera 2007).

3.4.2 Mode of representation

Generalizations were sorted according to students’ repre-

sentation modes: verbal, numerical or algebraic. Although

in many cases students ‘‘made up’’ algebraic symbols since

they lacked the knowledge of correct and precise algebraic

symbolism, the analysis was focused on the ‘‘personal

construction’’ of the symbolism.

The findings were validated through a method of revised

and refined analysis with the aid of three experts. The two

researchers went over the students’ questionnaires indi-

vidually, following the pre-assigned criteria. Afterwards,

they met to refine the data and reach a consensus. The

results were then given (in part) to a teacher in the

Kidumatica Club for additional validation where necessary.

The problems in this study met with a high level of con-

sensus as early as the second stage of analysis.

In the following sections, some examples of solutions to

each task will be presented, accompanied by an elaborate

analysis and interpretation. The analysis will not neces-

sarily be separated into different categories and sections,

since these are closely interwoven with each other, but

rather presented in a more holistic manner.

4 The linear pictorial pattern task: task 1

The task (Fig. 1) was adapted from Rivera and Becker

(2005), and contained four graduated questions dealing

with a pictorial linear sequence. In their research, Rivera

and Becker investigated the figural versus numerical gen-

eralization modes of prospective schoolteachers. In the

current study, we used the same task to investigate the

generalization process of junior high school students par-

ticipating in the Kidumatica Club.

4.1 Findings and interpretation: task I

A total of 50 students executed this task. The local and

concrete applications in this linear pattern, such as finding

the next pattern and the tenth pattern, proved to be an

uncomplicated task for most of these mathematically

capable students. As in previous studies (e.g., English and

Warren 1998; Lee 1996), the constant difference property

was usually recognized, enabling most students to find the

fourth element of the pattern by adding 8 to the third one.

The majority of the students who answered items A and B

used additive strategies that usually entailed preparing a

table or list. As for the other items, two types of general-

izations were found, local recursive and global functional.

We will demonstrate three examples of solutions to this

task.

4.1.1 Example 1, task I

The student in Fig. 2 began by identifying the invariant,

meaning the constant difference. In the answer to item A,

he wrote (upper left side of the answer) ‘‘each time the

number of white tiles increases by 8’’, demonstrating an

additive strategy. The answer to item B (lines 4–6 on the

left side) ‘‘the number of white tiles is a series of multi-

plications of 8’’ indicates the transfer from an additive

strategy (increases by) to a global multiplicative strategy in

finding a commonality in the number of white tiles, all are

multiplications of 8.

The flexibility in switching from an additive to a global

multiplicative strategy enabled the student to distinguish,

in item C, between the constants and variants (i.e., eight

tiles between any two consecutive patterns is a constant,

and the number of the pattern varies). Having made this

decisive distinction, he is able to describe verbally a

method to calculate any pattern in the sequence (fifth line

on the right side): ‘‘the method to calculate the squares is

(89 the pattern number) +8’’ and then to express (in item

D) a correct method to calculate the squares for n:

ð8� nÞ þ 8 ¼ number of white tiles:

In fact, this student used an additive strategy only in

item A for finding the next pattern. The solution and

explanations indicate that after answering item A, he

‘‘jumped’’ to item C, found the generalization rule and then

Fig. 2 The solution by a student for example 1, task I
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returned to answering item B, calculating the tenth pattern.

His generalization process was: near generalization, global

generalization and then far generalization.

This student was flexible enough to shift from an additive

local approach to a global one. He invented a symbolic

system describing his generalization method. In item C he

wrote an arithmetic expression using numbers (8) and words

(the pattern number) including unnecessary parentheses, as

if he was not confident that arithmetic rules apply also when

using symbols. In the next item (D), he converted the

method of description into an ‘‘almost algebraic’’ equation.

Instead of the pattern number, he wrote n, but he wrote the

product and the number of tiles in words. In fact, this student

constructed a function that describes the number of tiles in

any chosen pattern as a function of its placement in the

sequence. There is no doubt that this student has revealed a

solid foundation of algebraic thinking.

4.1.2 Example 2, task I

The student in Fig. 3 began her answer by converting the

figurative form into a numerical one (the bottom part of the

answer). She wrote the index number on the upper line and

continued the chart. She linked each index number with the

number of white tiles. She calculated and checked if the

difference of 8 was constant (the sketches and calculations

in the right margins), proceeded to add 8 to the third pattern

and got 40 (circled). She continued the process of adding 8

until she reached the tenth pattern and found the correct

answer, 88.

At this stage, she left the additive strategy for a func-

tional (multiplicative) one and presented a verbal

generalization in item C: ‘‘you can multiply 8 by the pat-

tern number and add 8.’’ To verify her conclusion, she

inserted the number 11 into her method (item C) and cal-

culated the number of tiles in the 11th pattern and got 96.

She then checked if the number 96 fitted into the rule of

constant difference. She found that the difference between

the tenth and eleventh patterns was also 8 and happily

added a ‘‘smiley’’ and wrote ‘‘I did it.’’

In answering item D, the student translated her verbal

rule into mathematical symbols. She ignored the instruction

to use n as the pattern number, and defined three variables,

A for the pattern number, B for the number of tiles and C

for the number of tiles in the previous pattern (lower left

side). She wrote the rule ‘‘(8 9 A) + 8 = C’’ using C

instead of B. As in the first example, the student added

unnecessary parentheses, just to be on ‘‘the safe side,’’

possibly revealing an understandable insecurity in using

algebraic symbols. She also added a method for verifying

the solution, ‘‘If B - C = 8 then the solution is correct.’’

This answer has some unique attributes associated with

generalizations. The detailed solution path demonstrates

transitions between representation modes: from the figu-

rative givens to a numerical representation, from the

numerical to the symbolic, and—in the reflection and

verification—from the symbolic representation to the

numerical and verbal. The flexibility is also demonstrated

in the smooth transition from local recursive approaches to

a global functional approach, and going back to the

recursive one for verification purposes.

Fig. 3 The solution by a

student for example 2, task I
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As in example 1, the student showed algebraic thinking

in defining variables and finding the functional relationship

between them; she also initiated a verification method,

without any explicit or implicit instruction to do so.

4.1.3 Example 3 task I

A similar phenomenon, but acquired in a different way, can

be seen in Fig. 4. Item A is solved using an additive

approach. The student first counted the four white tiles

located in the corners of the black ones, and found the

number of the remaining white tiles by counting. When she

represented this structure numerically, she found that the

numbers ‘‘jump by 8.’’

Since the first pattern had 16 white tiles, she used it as a

starting point to which one must go on adding. She then

abandoned the pictorial givens and concentrated on the

numerical representations looking for a commonality. She

found an arithmetic expression to represent the number of

tiles in the third (given) pattern: 16 + (2 9 8). She was

confident enough in her generalization process to skip the

calculation of the patterns between the fourth and the tenth,

and directly calculated the tenth pattern using the arith-

metic structure she found: 16 + (9 9 8). We cannot be

sure about the sequence of her work, but can confidently

say she found a generalization prior to calculating the tenth

pattern. The global generalization she wrote: ‘‘in order to

calculate the number of white tiles in a pattern situated in a

certain place in the sequence, I have to use the following

formula: 16 + [(x-1)�8],’’ reflects the structure of her

calculations.

In her answer to item C, the student used x, and in

answering item D, when the use of n was defined as the

pattern number, she simply replaced the letters and wrote

the algebraic expression ‘‘16 + [(n-1)�8].’’ Students’

preference in using x and not n was detected in some of the

solutions in this study, as well as by other researchers

(Bardini et al. 2005), possibly reflecting prior knowledge

that novice algebra students have about the discipline as

‘‘something to do with x.’’

Although the researchers provided verbal explanations

regarding the meaning of n, many students found it difficult

to write a symbolic representation. More than half of them

did not answer item D at all; some wrote comments such as

‘‘What is n?’’ or ‘‘I don’t know what number n is.’’ Those

who found the functional rule, but did not know how to

represent it in an algebraic formal mode, wrote verbal

generalizations such as: ‘‘You do the pattern number and

subtract one, and then multiply the result by 8 and add 16.’’

4.2 Sub-discussion for task I

The analysis of the linear task revealed two major phe-

nomena. In solving the task, all of the students began with

the additive approach. Some (as illustrated by the examples

above) moved on to a multiplicative approach and man-

aged to achieve a functional or global generalization with

which they were able to find the number of squares for each

n, without relying on its precursor in the pattern. Others,

however, did not switch from additive strategies to global

ones. After finding the constant difference and answering

the concrete items correctly (A, B), they attempted to

generalize by continuing to apply additive strategies. These

students either did not answer the generalizing items at all

or generalized recursively (i.e., locally). In an example of

such a local generalization, a student wrote for item C ‘‘you

have to add 8 to the existing number of white tiles and

obtain the number in the next pattern,’’ and in representingFig. 4 The solution by a student for example 3, task I
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this generalization in an algebraic form (item D) wrote:

‘‘n + 8 = n.’’

The answers in Figs. 2–4 demonstrate several charac-

teristics of mathematically capable students, such as

generalization and abstraction abilities, flexibility in

applying solution strategies, creativity and reflection,

which are in accord with former research (Dahl 2004;

Koichu and Berman 2005; Krutetskii 1976; Sriraman

2003). The solutions demonstrate a high level of general-

ization and abstraction abilities as well as good foundations

of algebraic thinking. All of the students who found the

generalizations had in fact constructed the function

f(x) = ax + b.

5 The quadratic pictorial pattern task: task II

The quadratic pattern task (adapted from Zareba 2003)

comprised the same four graduated items as the linear task

(Fig. 5).

5.1 Findings and interpretation: task II

A vast majority of the 50 students who answered this task

began solving it by drawing the next patterns. Those who

turned to number sequences adopted a recursive approach

and achieved local generalization (examples 4 and 5,

Table 1, Figs. 6, 7), while those who adopted a figurative

approach achieved global generalization (example 6,

Fig. 8).

5.1.1 Example 4 task II: expansion by drawing

In Fig. 6, the student began his answer by drawing the next

two patterns and counting the number of squares (written

above each pattern). He then calculated the difference

between two consecutive patterns. Some students did not

move beyond this point, as they were unable to find an

immediate constancy in the numbers.

The following illustration presents the three first patterns in a sequence: 

a.   How many tiles are needed to make the next pattern?  

b. How many tiles are needed to make pattern 10?   

c. Suggest a method to calculate the number of tiles needed to make any pattern in  
this sequence. 

d.  Suggest a method to calculate the number of tiles needed to make the nth pattern 
in this sequence 

Fig. 5 The quadric pattern task

Table 1 A student’s method of using a table to understand pattern behavior

Pattern number 1 2 3 4 5 6 7 8 9 10

Number of squares 5 12 21 32 45 60 77 96 117 140

Difference 7 9 11 13 15 17 19 21 23

Fig. 6 The solution by a student for example 4, task II

Fig. 7 The solution by a student for example 5, task II
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5.1.2 Example 5 task II: a numerical approach

to the non-linear problem

Figure 7 illustrates a numerical approach. Once the student

counted the squares in the givens, he abandoned the

pictorial figures and concentrated on the numerical

representation.

He wrote ‘‘1–5 squares,’’ meaning pattern number 1 is

comprised five squares and underneath ‘‘1 x ˜ = 5.’’ He

then repeated the process for the second and the third pattern.

Grasping the regularity, he linked the number of a pattern

(left column) and the number of tiles in this pattern (right

column). The law for this link is: the numbers on the left

column stand for the pattern numbers, which are multiplied

by a sequence of ascending numbers starting with 5 (the

circled numbers); the result of the products are the number of

squares. The two lists, which are absolutely correct, have no

figurative meaning. Extending the list enabled the student to

achieve the local generalizations, but did not bring him

closer to a global generalization. There was no attempt to

generalize globally by giving a rule to calculate the number

of squares for any pattern. These results are in line with

Swaford and Langrall (2000), who found that although

forming tables is useful in helping solvers make sense of a

problem, it may also cause distraction from a more global

view. This phenomenon seems to be more prominent when

Fig. 8 The solution by a

student for example 6, task II
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solving non-linear patterns, since the mathematical rela-

tionship between each pair of numbers is less obvious than in

the case of linear patterns. Discarding the figural patterns and

focusing on the numerical representations might be pro-

ductive when dealing with linear patterns, where the

constant difference can be recognized straight away, but in

non-linear patterns this approach might be misleading.

Another solution path that led to local generalization

was also based on a numerical representation and a

recursive strategy. The student shifted from a figurative

representation to a numerical one and found regularities

that he tried to generalize.

On understanding the behavior of the pattern, he

extended the sequence by one or two patterns, switched to

a numerical representation (making a sequence of num-

bers) and found the following strategy: ‘‘the difference

between patterns 1 and 2 is 7, and between patterns 2 and

3 is 9; between patterns 3 and 4 it’s 11 and so on. The

difference increases by 2 (from 1 to 2, from 2 to 3, etc.),

and then you add the number of squares to the difference

between the next and the previous.’’ Implementing this

strategy (making a list, see Table 1) enabled the student to

answer items A and B, but not to generate a global gen-

eralization. He generalized the method, but not the pattern.

5.1.3 Example 6, task II: visualizing the situation

and verbalizing generalization

Approaches that led to global generalizations were based

heavily on visualization. For example, in Fig. 8 we see that

the student began by counting (he miscounted twice). He

drew the next pattern and sought a global structure that

would assist him in finding the tenth pattern. In his next

drawing, he shifted toward a figurative solution. He dis-

mantled the given figure into a central square surrounded

by four rectangles. In his generalization process, he chose

to use a slightly different structure. He dismantled the

figure into a central rectangle whose sides were n and

n + 2, so that the area was the product of multiplying n by

n + 2, and then he added two additional rectangles whose

sides were 1 and n (Fig. 9). In his words: ‘‘(place num-

ber 9 place number + 2) + place number + place

number.’’ This approach was then implemented to find the

tenth pattern.

The student found a functional generalization and then

used it to find the tenth place. In this problem, it was very

difficult to arrive at the tenth place by merely expanding

the picture (though there were students who did this suc-

cessfully), which necessitated moving to a generalization

before returning to the specific case.

This student demonstrated a high level of algebraic

thinking. He was able to find and translate the visual rule

into an algebraic one, and to find a global functional

relation between the squares of a pattern and the pattern

location in the sequence. He used an algebraic notation for

formal generalization (item D) in the form of:

n� ðnþ 2Þ þ nþ n:

5.2 Sub-discussion for task II

Visualization had a central role in the effective solution of

this non-linear pattern problem. This finding is in line with

Kerbs (2003), who found that using a spatial approach when

generalizing non-linear patterns leads to success, and Rivera

(2007), who confirmed that visualizing both in linear and

non-linear patterns promotes algebraic generalizations. The

students who generalized productively were those who

divided the pattern into parts, whose areas had a constant

relation to the pattern place in the sequence. In this case,

what remained constant throughout the generalization pro-

cess was the manner of division and not the number of added

squares, for example, the division into a square whose side is

n and four rectangles whose sides are 1 and n, or a rectangle

whose sides are n and n + 2 and two rectangles whose sides

are 1 and n (Fig. 9). The students who were able to detect the

variables (pattern number, dimensions) in the figural struc-

ture and differentiate them from the constants (shapes)

achieved a correct global generalization.

Lacking algebraic symbolic tools, some students ver-

balized the generalization and described the method for

finding the number of squares in any place as follows: ‘‘the

number of squares in each of the four exterior rows is the

pattern number, so you have to square the pattern number

and add four times the pattern number.’’ In fact, they

described a global functional generalization.

In their effort to generalize, students were engaged in

‘‘real algebra’’ (Doerfler 1991), and invented ‘‘verbal

algebra’’ using any symbols or icons they already knew.

All the students revealed mathematical thinking, and some

could even materialize this thinking into sophisticated

solutions.
Fig. 9 Examples of division into squares by the students to detect

variables
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6 The candle lighting task, a non-linear pattern task:

task III

The candle lightning task has to do with a well-known

tradition of the Jewish holiday Hanukah4 (Fig. 10). This

pattern problem differs from the previous two pattern

problems in its presentation and context. The givens are

presented verbally in contrast to the pictorial tasks descri-

bed before, and the context is a real-life problem. Instead of

the three figural examples given in the previous problems,

in the Hanukah problem the students create their own

examples based on prior experience. In retrospect, we

found that this approach did not cause any obstacles; on the

contrary, it was even helpful. Although its context is

familiar to all of the students (item A, Fig. 10), the far

generalization and the formal generalizing items (items B

and C) were absolutely ‘‘non-routine’’ and had never before

been shown in a textbook. From a mathematical perspec-

tive, there were two layers of pattern change. One was

linear in nature (e.g., the growth in the number of candles

from day to day, which was almost trivial), and the second

was a quadratic growth (e.g., the sums of candles accu-

mulated for each day).

6.1 Findings and interpretation: task III

A total of 39 students received questionnaires containing

this task. An additive strategy was adapted by the vast

majority of students for solving item A. Many just added

up the sequence of candles: 2 (first day) + 3 (second

day) +_+ 9 (eighth day) = 44.

This method worked well for a sequence of 8. Once

there were 30 terms, this method turned out to be ineffi-

cient. Some students chose another track using the pairing

strategy, which enabled them to extend the method to any

number of patterns. This strategy is illustrated explicitly in

Fig. 11 and elaborated below.

For the far generalization (item B), two different

approaches appear: an additive approach for adding up the

increasing numbers of candles, sometimes in a creative

way; and a functional approach seeking a global rule, as

seen below.

6.1.1 Example 7, task III: a generalized symbolized

method of pairing

In this example, the student drew a candelabrum (the

‘‘menorah’’) and the candles for each day, and discovered

that by pairing the candles from both ends (first and eighth,

second and seventh, etc.) she gets a constant number (11).

She then multiplied the constant number by the number of

pairs (4) and got the sum for 8 days, 44.

She applied the same method to find the sum of the

sequence (item B) and even improved it: instead of

counting the numbers of pairs, she halved the number of

days. We can see that she found that for each ‘‘pair’’ (1st

and 30th, 2nd and 29th, etc.) there is a constant sum of

candles, 33. She multiplied this sum by half of the 30 days

and arrived at the sum of 495 candles, which is the correct

solution.

In short, the sophisticated method for summing up the

number of candles lit in 8 days was generalized for 30 days

and could be generalized for any number of days in item C.

On Hanukah we light candles on each day of the eight-day holiday. Each day we  

light one leading candle and additional candles according to the day of the holiday. 

A. How many candles do we light altogether in all of the eight days of the holiday? 

B. If the holiday was 30 days long, how many candles would we have to light?  

C. If the holiday was n days long, how many candles would we have to light?  

Fig. 10 The candle lighting task

Fig. 11 The solution by a student for example 7, task III

4 Hanukah is a Jewish holiday on which we light candles on each day

of the 8-day holiday. On the first day, two candles are lit (the leading

candle and one additional candle); on the second day, three candles

are lit (the leading candle and two additional candles); on the third

day, four candles are lit (the leading candle and three additional

candles); and so on, until the eighth and last day of celebration.
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However, lacking knowledge of algebraic notation, she

invented her own (Fig. 11, lower part).

The student used x for the number of candles lit on the

first day (and not 2, as would be expected), y stood for

the number of candles lit on the second day, and z for

the number of candles on the last day; the sum is of the

sequence of candles is x + y + _ + z. She then created

the sum of a ‘‘pair’’ by adding the first and last numbers of

the sequence, x + z. This sum was multiplied by half the

number of days (n: 2). It is obvious that this student had

generalized the arithmetic method that she had used before,

and according to Usiskin, algebra is generalizing arith-

metic (Usiskin 1988). There is no doubt that the student,

though lacking in algebraic notation, definitely possessed

solid algebraic thinking.

6.1.2 Example 8, task III: verbalizing a method

by creative notation

The same pairing method was used by another student. This

student wrote a correct verbal generalization: ‘‘The number

of candles to light is the sum of candles to light on the first

and the last days multiplied by half of the days in the

holiday’’.5 The generalizing process was applied immedi-

ately for a sequence of 30. For the global generalization

(item C), she used her previous symbolic knowledge and

formulated a surprising, creative ‘‘invention’’ of an alge-

braic representation (Fig. 12), writing: x\ + x[ 9 (n: 2)

(note: the reader is encouraged to try and interpret the above

expression before reading further). She took x as the num-

ber of candles on any day. However, to distinguish between

the different x’s, she added the mathematical symbols for

smaller and bigger (\,[). Hence, in order to find the sum of

candles for n days, she summed up the ‘‘small’’ x (sym-

bolized as x\, the number of candles on the first day) with

the ‘‘big’’ x (x[), the number of candles on the last day, and

multiplied the sum by n divided by 2 (half of the days). This

is an extraordinary symbolization, which generalizes the

method for finding the sum of the candles and indicates a

perfect ability to use previous knowledge intelligently in a

new situation (even if it is not exact). Again, although

lacking instruction in formal algebra, this student is doing

excellent algebra!

6.1.3 Example 9, task III: a recursive approach

for ‘‘partial sums’’

An altogether different strategy that was found was form-

ing tables of the sums of candles. For calculating S8 and

S30, students simply added the numbers in the sequence

(Table 2). In fact, by making the chart, they developed a

recursive method to calculate the sums on the nth day. We

can identify this method with the formula Sn = sn-1 + An,

in which S is the sum total and An is the number of candles

on the nth day. However, this local recursive method could

not be generalized to a global one. For example, one of the

students tried to adopt a functional approach expressed in

an algebraic formula using only n as a variable (n 9 2;

n 9 2 + 1; n 9 2 + 3; n 9 2 + 6; n 9 2 +10). Although

he knew how to express the relationship between each

individual day number and the total sum, he did not know

how to proceed to generalize the list of algebraic expres-

sions. In this solution, the student demonstrated a high

level of mathematical thinking, although the recursive

strategy led only to a local generalization. Having failed to

find a functional relationship, he was neither able to cal-

culate S30 nor generalize globally. Nevertheless, these

generalization experiences provide excellent foundations

for algebraic development.

6.2 Sub-discussion for task III

Formal generalizations in Figs. 11 and 12 (although not

absolutely correct) illustrate the students’ abilities to gen-

eralize and think abstractly, while lacking the formal

knowledge required for writing the correct answers. Two

students identified the data pattern and figured out how to

apply it to concrete situations, as required in items A and B.

Although they failed to express an abstract generalized

form that relates the sum of candles to the number of days,

they demonstrated deep algebraic thinking and used crea-

tive notations that almost exhausted their previous

mathematical knowledge.

The additive regression approach demonstrated by

students revealed sound mathematical thinking and

sophisticated ideas (e.g., ‘‘partial sums’’), but was ineffi-

cient and did not lead to a global generalization. The

functional approach that related the sum of lighted candles

Fig. 12 The solution by a student for example 8, task III

Table 2 A recursive approach for calculating the sum of candles in

30 days

Day 1 2 3 4 5 6 7 8 9 … 30

Number of candles 2 3 4 5 6 7 8 9 10 … 31

Sum 2 5 9 14 20 27 35 44 54 … 495
5 None of the students were familiar with the formula for the sum of

arithmetic progression.
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to n, the number of days, enabled the students to generalize

the problem for any n using well-elaborated methods that

could be translated into creative algebraic notations

(Figs. 11, 12).

As in non-linear patterns, strategies with the starting

point of forming numerical lists prevented students from

finding the global structure required for generalizations.

Although not all the students generalized correctly, the

process of solving revealed a high level of mathematical

thinking, even in the wrong answers.

7 Discussion

The results of the study are based on the performance of

139 capable pre-algebra students from grades 6–7, who

carried out three pattern tasks: the first was a linear pattern

task that was presented graphically and given to 50 stu-

dents; the second was a non-linear pictorial pattern task,

also given to 50 students; and the third was a non-linear

pattern task that was presented verbally to 39 students, and

which drew its format from everyday life.

The students, all of whom attended the Kidumatica

Mathematics Club, solved the questionnaires individually

(i.e., not in groups) and were required to provide full

descriptions and justifications of their solution process. The

format of the questionnaires allowed and required the

students to answer in full.

In this study, the students exhibited abilities for gener-

alization in linear and non-linear problems. They discovered

constancies based on a few given examples from a series,

generalized the situation and communicated their solution

using various representations and sophisticated methods of

argumentation. Concurrently, these students made intelli-

gent use of their preexisting knowledge and created new

knowledge, indicating solid algebraic thinking, which may

serve them later as a basis for formal education.

Each task was divided into items in such a way as to

allow the students to achieve full generalization gradually,

in accordance with the theories of English and Warren

(1998) and Stacey (1989). The items were arranged so as to

require, in sequence, first near generalization then far

generalization, followed by non-formal generalization and

formal generalization. In retrospect, the study revealed that

the students did not adopt the process suggested by the

questionnaire format, creating a generalization process of

their own, on which we will elaborate further.

Before continuing the discussion of the data, we wish to

draw the reader’s attention to a limitation imposed on this

study by the nature of its participants. The students pre-

sented here have an affinity for mathematics. While they

are not ‘‘gifted’’ in the formal sense and have not under-

gone any tests for giftedness, they have an active interest in

mathematics and had shown enough mathematical aptitude

to pass the entrance examinations for Kidumatica, a pres-

tigious mathematics club for youth. As such, they are

highly motivated to succeed and confident in their abilities

to do so (passing the entrance exams having served as

proof).

Notwithstanding these attributes, which set them apart

from ‘‘the average students,’’ the students on this study

were all in their first 2 weeks of Kidumatica membership

and had not yet had time to learn anything new in the club.

Therefore, to a certain extent, they can be compared to

the other top students in their classes, who may share

their confidence and motivation, though not members of

Kidumatica. This severely limits the ability to generalize

from their performance. Therefore, in this study we make

no assertions that our findings are applicable to the entire

student population. Rather, we offer the study as proof of

the existence of a phenomenon that can lead to further,

more generalized research.

The purpose of this study was to explore the thinking

processes of students and the methods in which they execute

generalization processes. In accordance, the presentation of

the study does not conduct quantitative statistical compari-

sons, but focuses on a narrative description of our analysis.

We chose to confront the students with generalization,

because of its important position in mathematics and of its

unique contribution to the mathematical development of

talented students in particular (Davis 1986; Krutetskii 1976;

Mason 1996; Polya 1957; Skemp 1986; Sriraman 2003).

We chose to use pattern problems because of their great

potential for revealing and creating algebraic knowledge

(Amit and Neria 2007; English and Warren 1998; Kerbs

2003; Stacey 1989; Zazkis and Liljedahl 2002).

7.1 Characterizations of generalization methods

7.1.1 Mental flexibility

The processes of generalization revealed a high level of

‘‘problem solving management’’ and decision making (in

line with Radford 2006). The students exhibited flexible

thinking, which manifested itself at a number of levels. For

instance, we found this flexibility in the transition from one

form of representation to another. Students shifted from

graphical representation to numerical representation, and

later to verbal representation and symbolic ones. In every

case, the transition was done intelligently and led to the

continuation of the solution process.

Another aspect of the students’ mental flexibility was

found in switching from one solution method to another.

Students who began solving a problem using a recursive–

additive approach and reached a dead end, or decided that
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the method was ineffective, usually did not remain fixated

on their first choice but showed flexibility in trying an

alternate approach. The ability of the students in this study

to make use of this mental flexibility can be attributed to

the high motivation of these students (as in Sriraman 2003),

and to their confidence in their ability, which allows them

to make the necessary sophisticated ‘‘detours.’’

7.1.2 Manifold reflections

Reflection is a cornerstone of the generalization process

(Doerfler 1991; Ellis 2007; Harel and Tall 1991; Sriraman

2003). Skemp (1986) even claims that generalization is

‘‘sophisticated’’ because it ‘‘involves reflection on the form

or method while temporarily ignoring the content’’ (p. 58).

Three forms of reflection were evident in this study. The

first type of reflection occurred in the process of compre-

hending the rules that govern the given pattern. In this

stage, the students ‘‘observed’’ the pattern, grasped its

central attributes and usually performed a near general-

ization. Reflection of this kind led to several forms of

results. In some cases, it led to one or two additional pat-

terns (Example 4, Fig. 6). In others, the result of the first

stage of reflection was a series of numbers (Example 2,

Fig. 3; Example 5, Fig. 7).

The second form of reflection was the ‘‘observation’’ of

the method (reflection on the method). Such reflection led

students to the (intelligent) division into separate shapes

(i.e., squares and rectangles) of the graphical pattern in

Task II (Example 6, Fig. 8), and/or to the method of

summing up symmetrical pairs of the lit candles in Task

III (Example 7, Fig. 11). This second stage involved an

abstraction of a method, which is cognitively demanding

and demonstrates a high order of thinking skills. The third

form is reflection on the generalization itself. The student

has achieved a ‘‘generalization,’’ either verbal or in a

symbolic formula, and reflection manifests itself as ‘‘going

backwards.’’ This means implementing the generalization

on a specific level, then checking and comparing it with

the results obtained in an alternate way. For instance, in

Example 2 (Fig. 3), a student found a generalization, used

it to check the 11th pattern in a sequence and compared

the result to a result she had found using an additive

method. Another way of ‘‘going backwards’’ (particularly

on the sketch pads), involved reconstructing the process

either from beginning to end or (mostly) from the end

backwards.

Multiple reflective forms are a prominent phenomenon

in the generalization process in all of the tasks, linear and

non-linear, used in this study. This highlights, once again,

the inseparable connection between generalization and

reflection.

Here, we wish to note that the sketch pads were an

invaluable tool in the students’ reflection. The question-

naires themselves were usually ‘‘clean,’’ when handed

over, with very little scribbling, exhibiting scant explicit

evidence of reflection. Our sources for analyzing the stu-

dents’ thinking processes, including reflection, were the

sketch pads, where the students felt free to express them-

selves—maybe because they did not know, while working

on the problems, that we would be collecting their drafts as

well. For them, the drafts were something private, where

they were allowed to think and express anything, while the

questionnaires were public, to be given to the teacher or

researcher (exactly in line with the findings by Fried and

Amit 2003). The importance of drafts should be taken into

account when researchers wish to learn about the thinking

processes of students preparing written answers.

7.1.3 Stages in the generalization process

Broadly speaking, the generalization process that the stu-

dents underwent is in agreement with the research

literature. If we examine the examples presented in this

paper, we can see that the first stage is always opera-

tional—the students found similarities in the patterns

(Dreyfus 1991) and used them to define a basic set of rules,

which they applied by continuing the pattern sequence.

One could say that all the students, who were confronted

with pattern problems of any kind went through this stage,

which had various names in different sources, such as

‘‘action generalization’’ (Ellis 2007), ‘‘empirical general-

ization’’ (Doerfler 1991), ‘‘abstract apart’’ (Mitchelmore

2002), ‘‘abbreviated summary’’ (Davis 1986), ‘‘expansive

generalization’’ (Harel and Tall 1991), ‘‘factual general-

ization’’ (Radford 2006), etc.

The second generalization stage is conceptual in nature.

In this stage, the students define the underlying structure of

the pattern sequence and the relations between objects,

variants and constants. This stage is defined in the research

literature under different names, such as ‘‘abstract gen-

eral,’’ ‘‘theoretical generalization,’’ ‘‘reflection level,’’ etc.

(Ellis 2007; Doerfler 1991; Mitchelmore 2002).

This study showed that the first stage of generalization

was accessible to a vast majority of the students, and they

managed to obtain results to those parts of the tasks

(namely items A and B) that required an operative level of

generalization. However, the theoretical-conceptual level

of generalization was achieved by only some of the stu-

dents. Those who successfully completed the tasks are

among those who mastered the theoretical-conceptual level

of generalization.

The two generalization methods described above greatly

resemble the following two generalization strategies:
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a. The recursive–operational–local strategy.

b. The functional–conceptual–global strategy.

In the first stage, the students extend the sequence to the

next member based on the one before it. This works both in

linear and non-linear pattern problems. For instance, in a

linear problem (Task I), the next member of the sequence is

found by adding 8 white squares to the previous member

(Examples 1, 2, and 3). In the non-linear graphical problem

(Task II), the next member is found by enlarging the

previous one according to the rules of the sequence

(Example 4) or by continuing a series of numbers

(Example 7). In the Hanukah candle problem, the recursion

manifested itself twofold, first in finding the number of

candles (simple), and secondly, and mainly, in finding the

sum of candles that had been lit up to the given day by

adding the number of candles for that day with the sum

from the day before: Sn = Sn-1 + An (Example 9).

In using the recursive strategy, students certainly show

an ability to generalize. They demonstrate a method for

expanding the sequence in an operational way and exhibit

signs of the generalization of a method. However, this

strategy is severely limited due to its locality. The detection

of each member of the sequence requires finding the one

before it. In order to find the 100th member of a sequence

using this method, the student would first have to find the

preceding 99. The recursive strategy was therefore found

effective in this study for, at most, finding a near gener-

alization or maybe a far one (going even as high as the 30th

member of a sequence), but was found to be inefficient

beyond this limited scope.

The functional strategy was found to be immeasurably

more effective than the recursive one. According to this

strategy, in the first stage, that of observing for com-

monalities, the student recognizes and defines two central

elements in the pattern sequence—the variants (or vari-

ables) and the invariants (or constants). In the second

stage, the student finds a connection between the variables

and the constants, in effect defining dependence between

them. This is the functional connection that is the very

heart of generalization. For instance, in Task I, the stu-

dents defined the number of squares as a variable,

together with the pattern’s place in the sequence. They

defined the expansion rate in the number of white squares

from pattern to pattern as a constant (a constant rate of

change), thus arriving at a functional connection between

the two. In Task II, the variables were also the total

number of squares and the place in the sequence, but the

rate of change was not constant, hence the functional

connection was more complex. In Task III, several stu-

dents found an unexpected but impressive variant in the

form of the sum of candles on the first and last days (or

the second and second to last, etc.), but not all of them

were able to actually compute the number due to the

complexity of the problem.

Students who used the functional strategy arrived at the

correct results using far generalization, even when this

meant finding the 30th member of a sequence. Moreover,

the functional strategy led them to a method for finding a

pattern in an nth position in the sequence.

One cannot compare the two strategies described

above (the recursive–operational–local and the func-

tional–conceptual–global) and the theories of conceptual

understanding set forth by Dubinsky (1991). He saw the

procedural, operational approach as a primary level of

conceptual understanding, a more advanced level being

achieved through reification and the transformation of the

process into an object (a good example of this theory is

the evolution of the concept of functions).

7.2 Algebraic thinking and notation

Pattern tasks have been found to be efficient in providing

students with experiences that promote and reveal the

development of algebraic thinking among students and pre-

service teachers alike (Amit and Neria 2007; Becker and

Rivera 2004; English and Warren 1998; Radford 2006;

Stacy 1989; Zazkis and Lijendak 2002). This idea is

strongly supported by the findings of this study. The par-

ticipating students exhibited algebraic thinking and found

algebraic symbols with which to communicate their ideas (a

note on algebraic symbols: most students, although being

pre-algebra ones, are aware that algebra is something to do

with ‘‘English letters’’ instead of numbers. Indeed, though

their mother tongue is Hebrew, all of the students used Latin

letters as symbols). As seen in the results (see previous

section), most of the symbolism was not correct in the strict

mathematical sense. It was, however, sufficient to clearly

convey the students’ ideas (see Examples 2, 3, 11, 12).

The students in this study (who were, once again,

mathematically capable) conducted their solution processes

with very little trial and error—what little there was

appeared only on the sketchpads. They went very quickly

in search of more systematic ways of moving from the

specific patterns to generalizations. They did, therefore,

make their way toward algebra, in line with the ideas of

Radford (2006).

In discussions held with several mathematicians (per-

sonal communications), it emerged that they see algebra as

mainly symbolic manipulation. According to this view,

what the students in our study did was not algebra. We,

however, embrace other definitions of algebra, under which

our students did indeed ‘‘do algebra.’’ Usiskin (1988) sees

algebra as the generalization of arithmetic. The students in

this study generalized the arithmetical processes with
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which they began using a combination of letters, words and

numbers. For instance, in Examples 2 and 6, the students

calculated first in numbers then expressed the process

leading to the formula in words.

Kaput (1999) defines algebra as the ‘‘generalization and

formation of patterns and constraints’’ (p. 136), and the

results of this study synchronize exactly with this defini-

tion. We have seen that the students defined variables and

constants, found a functional connection between various

elements that are dependent on others and presented this

connection in a verbal or semi-symbolic way, though cer-

tainly not in the accepted form for describing functions.

Doerfler (1991) gives algebraic legitimacy to what the

students in this study did, stating explicitly that any sym-

bolization is to be considered algebra so long as

generalization processes are present. If we examine the

results, we will see that the students, lacking formal algebraic

tools, performed a ‘‘verbalization of algebra.’’ For example,

they wrote such equations as ‘‘number of squares = place

number x n.’’ In another technique, they translated the gen-

eralization into symbols, as in the following case, where

‘‘x\ + [x (n:2)’’ means ‘‘add the smallest 9 (the first in the

sequence in Task III) to the largest 9 (last in the sequence)

and multiply by half the number of days.’’

7.3 Beyond linearity

The purpose of this study was to find how far talented

students could be challenged by generalization problems.

We wished to observe their generalization behavior and

algebraic capacity when they had neither formal education

in algebra nor any experience in completing generalization

tasks. We therefore did not content ourselves with linear

tasks (in themselves rich in generalization potential, we do

not belittle their importance), but challenged the students

with non-linear problems as well (Tasks II and III), which

require a high cognitive level of complex solution paths in

the generalization process.

Previous studies have not shown a uniform approach to

non-linear problems. Some have found that while students

are able to generalize arithmetic situations they are familiar

with, such as proportional or linear relationships, they have

difficulty generalizing less familiar arithmetic situations,

such as non-linear relationships (De Bock et al. 2002;

Swaford and Langrall 2000). Our study, however, agrees

with other studies showing that pre-algebra students have

the intuition to deal with non-linear patterns (Ebersbach

and Wilkening 2007; Lanin et al. 2006; Rivera 2007).

Moreover, the non-linear problems led the students to high

level experiences and ‘‘pulled them’’ to the very limits of

their generalization ability, forcing them to make intelli-

gent use of their existing knowledge and reconstruct it to fit

new situations. For instance, in Task II (Example 6, Fig. 8),

the student performed a visualization of the given figures.

He broke the complex shape down into simpler, more

familiar shapes, the areas of which he knows how to cal-

culate (squares and rectangles). He connected the required

generalization, i.e., the number of squares in each pattern,

to the concept of area, a connection in no way trivial for a

student whose geometric and algebraic concepts are

compartmentalized.

This phenomenon of students being pushed to their

intellectual edge recurred in the candle lighting problem

(see Example 7, Fig. 11). Here, students ‘‘discovered’’

Gauss’s method, or found a recursive strategy for calcu-

lating sums in an arithmetic sequence, then communicated

the results using the ‘‘verbal algebra’’ they invented. True,

they did not reach the perfect and final mathematical

conclusion, but demonstrated powerful mathematical

thinking.

7.4 Inductive-deductive: mathematics in action

or re-sequencing generalization

One unique phenomenon exhibited by the students partic-

ipating in this study was the intuitive, intelligent and

immediate use of generalization. According to the research

literature, the consecutive stages in the generalization

process of a pattern sequence are near and far generaliza-

tion, followed by semi-formal and formal generalization.

The first two generalization types are usually found

inductively (scientific induction, not mathematical) through

the systematic expansion of the sequence toward the

desired final position. This is also possible for far gener-

alization through arithmetical calculations, though these

may be long and exhausting (as seen in several cases in

items B and C of Tasks II and III). The semi-formal gen-

eralization is based on the arithmetic method used in the

two previous ones. The tasks in this study were built

around this theory, and the items (A, B, C, D) in each task

correspond to the stages the theory lays out.

Our study, however, revealed a different generalization

sequence. Some students reached the ‘‘near generalization’’

in item A (adding one or two members to the sequence) in

accordance with the rules they had found. Then, they

immediately ‘‘jumped’’ to the ‘‘semi-formal generaliza-

tion’’ stage required in item C, where they gave verbal or

symbolic explanations of their generalization methods.

Following this, they ‘‘went back’’ to the ‘‘far generaliza-

tion’’ in item B by using the generalization rule to find the

pattern in the required place (in Task II it was the 10th, in

Task III the 30th). These actions describe a process of

induction to find the general case, followed by a deduction

to find specific cases, pointing to a strong intuitive
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understanding of the importance and power of generaliza-

tion. In this study, not only did the students disregard the

order of the items in the given task (thus proving their

strong psychological mettle), they also ‘‘invented’’ an

intelligent use of mathematical deduction.

This procedural sequence for performing generalization

is defined by Polya (1957) as ‘‘mathematics in making’’:

‘‘Mathematics presented with rigor is systematic deductive

science, but mathematics in making is an experimental

inductive science’’ (p. 117). To avoid wronging mathe-

matical rigorousness, it must be made clear (to teachers

and students) that a generalization is not valid until it has

been proven mathematically. Until then, it is a ‘‘tentative

generalization’’ (Ploya 1957) leading up to the final gen-

eralization. The students’ generalization was indeed

mathematics in action.

8 Conclusion

This study has shown that when capable students are faced

with pattern tasks that are generalization evoking, they

display high mathematical abilities. They appear compe-

tent in performing generalizations of complex patterns, and

in finding recursive methods for local generalizations and

functional methods for global generalizations.

The importance of pattern problems—linear, and partic-

ularly non-linear ones—lies in their extensive mathematical

potential. They not only encourage generalization, they also

require students to pool their existing knowledge resources

and build upon them. Thus, they are a gateway to new

knowledge, in this case, algebraic knowledge.

The results of this study suggest that generalization via

pattern problems can be an invaluable means for devel-

oping and revealing the intuitive algebraic skills of pre-

algebra students prior to their formal instruction on the

topic. The cognitive demands of the pattern problems in the

study led the students to ‘‘invent’’ for themselves the tools

and strategies required to solve the tasks they were given

and to communicate their solutions to others. The students

were able to appreciate the importance and utility of

algebra that paved their road to the algebraic culture.

In conclusion, this study confirms the existing idea that

generalizations bear mathematical potential and are effec-

tive in mathematical empowerment.

Furthermore, just as students are exposed to various

problem-solving strategies and provided with appropriate

experience, they must also be exposed to generalization

strategies and gain experience in solving problems that

promote generalization. The importance of such an expe-

rience regarding students’ mathematical empowerment has

been proven beyond all doubt.
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