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Abstract We examine issues that arise in students’

making of generalizations about geometrical figures as they

are introduced to linear functions. We focus on the concepts

of patterns, function, and generalization in mathematics

education in examining how 15 third grade students

(9 years old) come to produce and represent generalizations

during the implementation of two lessons from a longitu-

dinal study of early algebra. Many students scan output

values of f(n) as n increases, conceptualizing the function as

a recursive sequence. If this instructional route is pursued,

educators need to recognize how students’ conceptualiza-

tions of functions depart from the closed form expressions

ultimately aimed for. Even more fundamentally, it is

important to nurture a transition from empirical general-

izations, based on conjectures regarding cases at hand, to

theoretical generalizations that follow from operations on

explicit statements about mathematical relations.

1 Introduction

We examine students’ generalizations about certain linear

functions involving seating arrangements. The setting is

two lessons in a third grade classroom in which the

instructor directs students toward conventional represen-

tations (closed form expressions of mathematical

functions). Our goal is to understand the role empirical

generalization and conjecture play in their thinking. An

underlying question is whether such reasoning can play a

useful role in the trajectory towards mathematical gener-

alization proper and algebraic reasoning or whether it is

antithetical to long-term goals.

1.1 Background

Mathematical generalization involves a claim that some

property or technique holds for a large set of mathematical

objects or conditions. The scope of the claim is always

larger than the set of individually verified cases; typically,

it involves an infinite number of cases (e.g., ‘‘for all inte-

gers’’). To understand how an assertion can be made about

‘‘all x’’ we need to consider the grounds on which the

generalization is made.

The grounds for generalization differ considerably in

mathematics and early mathematics education. In mathe-

matics, it matters not how a person understood the issues,

how insight came about, how learning progressed. The

focus is on the mathematical content and validity of the

claim rather than the psychological world of the learner. A

generalization (often referred to as a theorem) is taken to

be true if and only if it is supported by a valid proof. On the

other hand, in mathematics education, particularly early

mathematics education, we cannot ignore the psychological

world of the learner. We take a broader view regarding

both the forms of reasoning and the grounds for assertions.

We consider not only how students make use of introduced,

conventional notation and techniques but also how they

represent and reason about mathematics in their own ways.

We seek to determine the grounds for their claims, rec-

ognizing that what compels them to draw conclusions and
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make generalizations may not fully conform to the

accepted norms of mathematics. The aim is not to replace

the standard fare of mathematics with the ideas, represen-

tations, and reasoning evinced by students. We need to

understand and promote the transition from a mathematics

grounded largely in empirical observation and particular

cases to one based on logical coherence and, ultimately,

reasoning about mathematical structures that have little or

no footing in the empirical world.

Recent changes in educational policy have provided

special reasons for examining how young students learn to

make mathematical generalizations (National Council of

Teachers of Mathematics, 1989, 2000). Noteworthy among

these is the recommendation that algebra play an important

role from the time students begin to study mathematics.

NCTM’s endorsement of algebra for young learners

reflects a change in thinking among a significant part of the

mathematics education community about what young stu-

dents are capable of and what should be going on in

elementary school classrooms.

NCTM’s characterization of algebra for K-12 students is

instructive:

Algebra encompasses the relationships among quan-

tities, the use of symbols, the modeling of

phenomena, and the mathematical study of change.

The word algebra is not commonly heard in ele-

mentary school classrooms, but the mathematical

investigations and conversations of students in these

grades frequently include elements of algebraic rea-

soning. These experiences present rich contexts for

advancing mathematical understanding and are an

important precursor to the more formalized study of

algebra in the middle and secondary grades (National

Council of Teachers of Mathematics, 2000, p. 37).

The view of algebra proposed by NCTM differs in

significant ways from that encountered in secondary school

and beyond. In particular, there is a heavy emphasis on

students’ learning to make generalizations about patterns.

This is no doubt based on the fact that young children do

not know what algebraic statements mean and hence must

establish their initial meaning on the basis of situations and

activities of an extra-mathematical nature.

We say extra-mathematical for a good reason: a pattern

is not an acknowledged, much less well-defined, concept in

mathematics. Textbook publishers, teachers, and students

take wide ranging and inconsistent approaches to patterns,

their properties, and their operations. Not surprisingly,

many mathematics educators have found that it may be

very challenging to get students from patterns to algebra

(Schliemann, Carraher, & Brizuela, 2001; Lee, 1996;

Mason, 1996; Moss, Beatty, McNab, & Eisenband, 2006;

Orton, 1999). Students may predict the next element (or

state) in an ordered set, yet find it difficult if not impossible

to generalize, to generate a rule for determining the value

of an element at an arbitrary position (Hargreaves, Threl-

fall, Frobisher, & Shorrockes-Taylor, 1999; Orton & Orton,

1999; Bourke & Stacey, 1988; Stacey, 1989). Extending an

ordered set of objects shows some degree of generalization.

But this falls short of an explicit generalization expressed

in language or conventional mathematical forms.

Not all of students’ difficulties in generalizing about

patterns are of their own doing. They are often asked to

reason about cases for which more than one rule might be

reasonably inferred. Consider the ordered set, 1, 2, 4.

Assume that it is extendible ad infinitum. Is the next ele-

ment 6? Or 8? How about any integer greater than 4? Any

integer not less than 4? Any integer at all? Any real

number? Anything at all?

A pattern is not a mathematical object. Even mathe-

maticians who claim that mathematics is the science of

patterns would admit they are using the term in an extra-

mathematical, almost poetic, sense. There is no agreement

among mathematicians about what patterns are, nor about

their properties and operations. This is a definite drawback

if one hopes to move students towards mathematical gen-

eralization based on rigorous inference.

Nonetheless, generalization is not merely about rigorous

inference. There is an important role for conjecture in

mathematical generalization. In our view, the concept of

function, which has a fairly long and established history,

can provide trustworthy footing for the task at hand—much

more so than patterns can. Functions can also be introduced

in situations where students are encouraged to make

conjectures.

Functions are normally introduced through algebraic

expressions, but this option is not viable for young students

who are unfamiliar with algebraic notation. This makes it

imperative that we pay special attention to how functions

are represented to students and by students. How do they

learn to describe functional relationships and gradually

express them according to the conventions of algebra? This

raises issues dating back to Plato’s Meno dialogue. How

can one understand something that relies on advanced ideas

or conceptual structures that one does not already have

(Bereiter, 1985)? How can students make mathematical

generalizations if they do not already possess the requisite

understanding (Duckworth, 1979)? From what does such

understanding arise?

To address these questions, we will first briefly describe

the results of recent early algebra studies in the USA and

Canada and elaborate on the concepts of function and

generalization. We will then examine how third grade

students participating in a longitudinal study on early

algebra come to produce and represent generalizations

during the implementation of two lessons.
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From a mathematical perspective, the problems we will

be considering are about the linear functions g(t) = 4t and

f(t) = 2t + 2. The problems are introduced through a nar-

rative about an imagined social gathering at which guests

are to be seated at dinner tables. We will deal with ques-

tions such as: How do students explain the underlying

‘‘seating capacity’’ functions? What varieties of general-

ization do students produce? How, if at all, does a narrative

about a social event become a general statement about the

functional dependency of one variable on another? What

challenges do students face in their efforts to express

seating capacity for an arbitrary number of tables? What

sorts of intermediary representations serve to help students

shift from a particular event, described in words, to a

generalization expressed succinctly according to conven-

tions of mathematics? What roles might teachers play in

helping students learning to make mathematical general-

izations of this sort?

1.2 Generalization in early algebra studies

1.2.1 Grounding in quantities and their relations

In recent decades the view that algebra should be taught

in elementary school has gained prominence in mathe-

matics education research, practice, and policy (Davis,

1967a, b, 1985, 1989; Davydov, 1991; Kaput, 1995;

Kaput, Carraher, & Blanton, 2007; Kaput, 1998, b;

National Council of Teachers of Mathematics, 1989,

2000; RAND Mathematics Study Panel, 2003; Schoen-

feld, 1995). This so-called early algebra is not quite the

same algebra that many readers recall from their eighth or

ninth year of schooling. Early algebra interweaves with

traditional topics of the elementary school curriculum,

introduces algebraic notation gradually, and relies heavily

on rich background contexts (Carraher, Schliemann, &

Schwartz, 2007).

Such adjustments in mathematical content and

approach are meant to address how young students (and

perhaps older students as well) learn. Young learners

acquire and enrich their understanding of mathematics by

reflecting on situations involving physical quantities as

well as numbers (Fridman, 1991; Inhelder & Piaget, 1958;

Piaget, 1952; Schwartz, 1996; Smith & Thompson, 2007).

This does not mean that mathematical knowledge is of a

purely empirical nature, as Mill (1965/1843) unconvinc-

ingly argued. But with young learners it would be equally

mistaken to suppose that mathematical generalization is a

purely deductive enterprise. Mathematical objects cannot

be displayed directly; they need to be embodied in some

representational form. For young learners, the standard

form of representation, algebraic notation, is initially not

an option. Generalizations need to arise in activities

associated with rich experiential situations. Many mathe-

matical generalizations young students learn to produce

stem from thinking about how physical quantities change

or remain invariant as a result of actions and operations.

Accordingly, one expresses the values of physical quan-

tities through what are often referred to as concrete

numbers (Freudenthal, 1973) of which two sorts are

sometimes distinguished: counts, such as 41 blackbirds,

and measures (scalar additive) such as 3.4 miles (Frid-

man, op. cit.).

1.2.2 Arithmetic as inherently algebraic

A common thread of research about algebra in elementary

school in the USA and Canada is the belief that a deep

understanding of arithmetic requires mathematical gener-

alizations and understanding of basic algebraic principles.

Let’s briefly look at the main findings of these studies (for

detailed reviews on these, see Carraher & Schliemann,

2007; Rivera, 2006).

Bastable and Schifter (2007) and Schifter (1999)

describe examples of implicit algebraic reasoning and

generalizations among elementary school children when

discussions and reasoning about mathematical relations is

the focus of instruction. Carpenter, Franke, and Levi

(2003), Carpenter and Franke (2001) and Carpenter and

Levi (2000) show fairly young children talking meaning-

fully about the truth or falsity of issues such as ‘‘Is it true

that a + b - b = a, for any numbers a and b?’’ and pro-

ducing generalizations about arithmetical principles.

Blanton and Kaput (2000) describe third graders’ robust

generalizations and supporting arguments for general

statements on operations on even and odd numbers, con-

sidering them as placeholders or variables. In The Measure

Up Project, a curriculum inspired by Davydov’s (1991)

ideas on measurement and representation of quantitative

relations (Dougherty, 2007), first grade children learned to

produce generalizations about mathematical relations as

they use part-whole diagrams or line segments to explain,

for example, that, given two magnitudes A and B and the

relationship A [ B, A - B is itself a magnitude that can be

added to the lesser quantity (B) or subtracted from the

greater one (A) to make the two quantities equal.

Issues specifically related to patterns and functions were

explored by Moss et al. (2006) among second and fourth

graders learning about the functional rules governing

visual/geometric and numerical patterns as they partici-

pated in experimental curricula. They found that second

and fourth graders can generate geometric patterns based

on algebraic representations and find functional rules for

patterns, moving towards understanding the relationships
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between the two variables in the problem. However, stu-

dents were not taught to use letters to represent variables

and the algebraic expressions for functions, a focus in the

present study.

Our approach to early algebra and to mathematical

generalization relies heavily on the concept of function

(Schwartz, 1999; Schwartz & Yerushalmy, 1992a, b, c).

We have proposed that arithmetical operations themselves

be conceived as functions (Carraher, Schliemann, & Bri-

zuela, 2000, 2005; Schliemann, Carraher, & Brizuela,

2007). Even though Usiskin (1988) contrasts algebra as

generalized arithmetic and algebra as the study of rela-

tionships among quantities, we have bridged both

approaches by focusing on algebra as a generalized arith-

metic of numbers and quantities and as a move from

computations on particular numbers and measures toward

thinking about relations among sets of numbers, thus

treating arithmetic operations as functions.

Our lessons often involved linear functions, and a few

dealt with non-linear functions. Central to our approach is

the use of problem contexts to situate and deepen the

learning of mathematics and generalizations and the use of

multiple representations, namely, natural language, line

segments, function tables, Cartesian graphs, and algebraic

notation. One has to be aware, however, that while con-

textualized problems and focus on quantities help in

providing meaning for mathematical relations and struc-

tures, algebraic knowledge cannot be fully grounded in

thinking about quantities (see Carraher & Schliemann,

2002a; Schliemann & Carraher, 2002). Moreover, as we

have shown before (Schliemann, Carraher, & Brizuela,

2007), young students benefit from opportunities to begin

with their own intuitive representations and gradually

adopt conventional representations, including the use of

letters to represent variables, as tools for representing and

for understanding mathematical relations.

Our three longitudinal classroom studies, implemented

over the last 10 years in Public schools in the greater

Boston area, have shown that 8–11 year-olds can learn to

(a) represent and grasp the meaning of variables; (b) shift

from thinking about relations among particular numbers

and measures toward thinking about relations among sets

of numbers and measures; (c) shift from computing

numerical answers to describing and representing relations

among variables; (d) build and interpret graphs of linear

and non-linear functions; (e) solve algebraic problems

using multiple representation systems such as tables,

graphs, and written equations; (f) solve equations with

variables on both sides of the equality; and (g) inter-relate

different systems of representations for functions (see

Brizuela & Schliemann, 2004; Carraher & Schliemann,

2007; Carraher, Schliemann, & Schwartz, 2007; Schlie-

mann, Carraher, & Brizuela, 2007; Schliemann et al. 2003).

Before we describe data on children’s generalizations in

our early algebra classrooms, we will broadly define the

concept of function and then mention a subclass of par-

ticular interest for our present purposes.

1.3 Functions, numbers, and quantities

1.3.1 What are functions and how are they related

to generalization?

Most modern definitions of function are consistent with the

Dirichlet-Bourbaki notion:

A function is a relation that uniquely associates

members of one set with members of another set.

More formally, a function from A to B is an object f

such that every a [ A is uniquely associated with an

object b [ B. A function is therefore a many-to-one

(or sometimes one-to-one) relation. (Weisstein, 1999,

viz., Function).

Strangely, this definition is so abstract as not to require

that generalization be involved. It includes, for instance,

functions that cannot be expressed by an algebraic

formula such as a mapping of people’s names to their

shoe size (assuming each person has one and only one

shoe size).

Young learners are commonly introduced to a narrower

yet, for them, more suitable, view of function, according to

which there exists a rule of correspondence for generating

a single value in set B from each element in set A (Vinner

& Dreyfus, 1989). Of paramount interest are those cases

that can be described by an algebraic expression. We will

refer to such functions as formula-based. The values of

formula-based functions can be determined without a

lookup table or extra-mathematical resources (e.g., a

database, yearbook, report, the process of measurement,

etc.). Formula-based functions need not be continuous. For

example, the seating capacity functions we will be con-

sidering are not continuously defined, as they are, over

whole numbers.

Formula-based functions are a special, ‘‘generalizable’’

subset of functions: the formula or algebraic expression

(in this paper we use the expressions formula, algebraic

expression, and algebraic formula somewhat inter-

changeably) is a means for determining the value of the

function for any input (that is, any element of the

domain). An expression of the rule of correspondence—

whether formulated in spoken language, algebraic nota-

tion, graphs, diagrams, or some combination of such

symbolic representations—constitutes a generalization

about the relation between values in the domain and

co-domain.
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1.3.2 The importance of functions in school algebra

In school settings algebra is commonly introduced without

emphasizing functions. The focus falls instead on ‘‘solving

for x’’ in equations, where x is treated as a single unknown

number.

The functional perspective broadens the meaning of

algebraic expressions by treating ‘‘x’’ as a variable, that is,

as an object that may vary in its value. Students are

encouraged to move from thinking about operations on

specific numbers to relations among variables.

A functions-based approach to equations is very dif-

ferent from solving for x. Students are encouraged to

recognize the multitude of values each of two functions

can attain before shifting their attention to the special

conditions under which the functions are constrained to

be equal. Setting two functions as equal does not signify

that they are interchangeable (Carraher & Schliemann,

2007). In an equation such as in 3x = 2x + 7 the equals

sign introduces constraints not inherent to the definition

of either function; that is, the functions 3x and 2x + 7

are not one and the same function. It is important that

students understand how this use of the equals sign

differs from that employed in arithmetical expressions

such as 5 + 3 = 8, where the expressions on each side

are indeed interchangeable, referring to one and the same

number.

In the early going, students learn to make generaliza-

tions in situations involving physical quantities. They learn

to use tables, graphs, algebraic notation, and other mathe-

matical representations to capture general aspects of their

reasoning about such situations. Gradually they become

comfortable using letters to stand for variable quantities

and operating directly on algebraic expressions. Only at

fairly advanced stages do students reason at long stretches

within the syntactical constraints of these symbolic

systems.

1.4 Two expressions of a formula-based function

In mathematics there are two basic ways of using algebra to

express a linear function: through a closed form expression

or through a recursive formula. The more common, closed

form1 expression (Cuoco, 1990) consists of a statement

such as that in Expression 1.

f ðxÞ ¼ 3xþ 7 where x 2 N0: ð1Þ

Recursive2 or iterative expressions of a function, far less

common in K-12 mathematics, consist of two

expressions—one for an initial condition and another for

all other cases (see Expression 2):

f ð0Þ ¼ 7 and f ðnÞ ¼ f ðn� 1Þ þ 3 where x 2 N0: ð2Þ

Expressions 1 and 2 define the same function. However

they reflect different conceptualizations of the function.

The constant of proportionality, 3, appears in Expression 1

as the familiar multiplier, the a in ax + b. In Expression 2

that constant of proportionality appears as an increment in

the repeating condition. Note also that the closed form

expression allows one to compute the value of f(n) in a

single step. The iterative variant requires that we start at

f(0) and build our way up until we have reached the desired

f(n). This is tedious when n is a large number.

Were mathematics education to end with linear func-

tions over the whole numbers, the curriculum might give

equal time to each kind of expression. However closed

form expressions are more efficient, requiring a single

computation whereas recursion requires computations for

f(0) through f(n). Additionally, closed form expressions can

be easily extended for functions in the domain of real

numbers. Much of the drama of early mathematics edu-

cation unfolds against students’ evolving concept of

number, including rational numbers (fractions, decimal

fractions, etc.), integers, and real numbers. The closed form

approach continues to serve for each of these cases. The

iterative approach does not. [The skeptical reader is chal-

lenged to use Expression 2 to find the value of f(p).]

Despite the advantages of close-form expressions, we

cannot ignore the recursive approach. It will later prove

useful to the topic of differential equations. But more

importantly, for the present discussion, the recursive

expression tends to be consistent with many young stu-

dents’ conceptualizations of linear functions.

2 Expressing seating capacity as a function

of the number of dinner tables

Here we report on two lessons regarding the representation

of linear functions in a classroom attended by 15 students

who took part in 3-year longitudinal investigation in two

classrooms from a school in metropolitan Boston. The

children, who lived in the local minority and immigrant

community, participated in the investigation’s early alge-

bra lessons since the beginning of third grade for 3 hours

each week, in addition to their regular mathematics classes.

1 The hypergeometric sense of closed form (Weisstein, 1999, viz.,

Closed form, Generalized hypergeometric function) is not related to

the present usage.

2 Recursion and iteration refer to a process that ‘‘runs again and

again.’’ We are not using recursive in the logic programming sense of

recursion, according to which algorithm execution begins with the

repeating condition.
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The lessons were videotaped and the students’ written work

was collected and analyzed.

2.1 The tasks

The two successive lessons analyzed here were imple-

mented during the latter half of grade three, when the

students were 8 and 9 years of age. The previous 33 lessons

aimed at helping students to note and articulate the general

relations they see among variables. For instance, in one of

the first lessons (see Carraher, Schliemann, & Schwartz,

2007, for a description of this lesson as implemented with

another group of students), the instructor holds a box of

candies in each hand (John’s and Mary’s boxes) and tells

the students that each box has exactly the same number of

candies inside; all of John’s candies are in his box and Mary

has three additional candies resting atop her box. Children

are then asked to write or to draw something to compare

John’s and Mary’s amounts. As expected, most students

include in their representations an exact amount of candies

that would be in each candy box and add to that value the

three extra candies for Mary. We then suggest, sometimes

building on students’ statements that they can’t know for

sure how much is in each box or on their use of question

marks for possible amounts in each box, that we use a letter

to represent any number of candies that could be in a box.

After some discussion, third graders are able to adopt, for

instance, N to represent John’s amount and N + 3 to rep-

resent Mary’s amount. The Candy Boxes lesson was

followed by lessons where children explored relationships

between variables across a variety of representations such

as number lines, function tables, and algebra notation.

The lessons of interest involved the problem of seating

guests at a dinner party. Students were first told the con-

ventions for placing seats around dinner tables (one and

only one guest along each table edge, no seating at corners,

etc.). They were then asked to draw various numbers of

tables and to keep track of how many people can be seated

around them. Eventually they were asked to state and write

a general rule for determining the number of seats based on

the number of tables. Neither the rule of correspondence

nor the rule for adding additional tables was explicitly

stated, but each was implicit in the instructions about how

to seat guests. It was the students’ task to give the func-

tion’s rule of correspondence in clear expression.

Two versions of the problem are discussed. In the

Separated Dinner Tables version, four people can be seated

at each table. In the Joined Dinner Tables version, tables

are set end to end in a line that grows with each additional

table. The reader will recognize the Separated and Joined

Tasks as corresponding to the functions in Expressions 3

and 4, where n refers to the number of tables and f(n), g(n)

refer to the number of people that can be seated at n tables,

respectively. The tasks were introduced to the third grade

students in the form of a word problem. Students were told

how dinner tables are to be arranged, how seats are placed

around the tables, and that each seat would be occupied by

one person. However, the problems were not presented to

the students in algebraic format such as:

f ðnÞ ¼ 4n where n 2 N: ð3Þ

The Separated Dinner Tables lesson served as a warm-

up exercise for the more difficult case of joined tables,

treated in the following lesson. We chose not to emphasize

the notions of domain and co-domain during these lessons.

It was implicitly understood that we were using the set of

whole numbers as domain and co-domain. The underlying

function for joined tables is represented by Expression 4:

gðnÞ ¼ 2nþ 2 where n 2 N: ð4Þ

2.2 The lesson about separated dinner tables

In this first lesson the instructor, Bárbara (who was also a

member of the research team) presented the problem to the

children and described the conditions for seating additional

guests. It was important for students to accept that each

table was to be filled; otherwise there would not be a

unique output value for a input value—a necessary con-

dition for any function. The constraint of filling each dinner

table was clarified during a 10-min discussion about the

terms maximum and minimum. For a separated table,

‘‘zero seats’’ was legitimate minimum; one, two, and three

seats were possible values; a maximum number was 4. The

students task was to determine the maximum number of

people that could be seated at varying numbers of dinner

tables when they were joined together.

Bárbara then distributed the lesson handout for the stu-

dents to complete (Fig. 1). The sequence was for 1, 2, 3,

and 9 (joined) dinner tables. A tabular representation with

regular intervals between input values is known to

encourage a recursive strategy or scalar approach (Verg-

naud, 1983). The gap between 3 and 9 tables was intended

to interrupt such a column-wise, building-up strategy and

to encourage students to consider within-row, input–output,

an approach considered more congenial to closed form

expressions of the function (see Schliemann, Carraher, &

Brizuela, 2001).

After the students completed the handout, Bárbara

reviewed with them the seating capacity for each case,

registering the agreed-upon results in tabular form on the

whiteboard. One student noted that when the rows of the

data table are not arranged in a regularly increasing fashion,

it is difficult to make use of the values in one row to obtain

to values in the next. This is precisely the sort of

8 D. W. Carraher et al.
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interruption mentioned above. But, as we shall see, this

measure in no way ensures that students will re-conceptu-

alize the problem in terms of a mapping of inputs to outputs.

Children proceeded to complete their handouts indi-

vidually or in small groups. They filled in the data table in

the handouts using various methods: by multiplying the

number of dinner tables by 4, by adding 4 plus 4, plus 4

repeatedly (once for each dinner table), and by adding 4 to

the number of people in the prior row to obtain the number

of people in the next row.

The ensuing discussion focused on the meaning of the

written computations within the dinner table context.

Children at first described what we might term ‘number of

people per table’ as ‘number of people’. Bárbara system-

atically rephrased children’s statements or guided them to

do so, insisting on the differentiation between total number

of people and number of people per table. A student

(Aaron), building on previous work on notation for vari-

ables, proposed to use p for the number of tables and stated

that ‘4 times p’ expresses the total number of people.

At one point in the discussion, issues regarding the

inverse function, n ? n/4, arose. To answer the question

‘‘What if we have 20 people total?’’ Brianna said that

4 9 5 is 20 and that you can think of 20 divided by 5 and

the answer is 4. Bobby proposed that one can also think of

20 divided by 4. Marisa viewed the question as: 4 times

what number equals 20? Bárbara asked the children to

consider the operation they were using when they were

given the input to get the output and vice-versa. During

the discussion about inverse functions (inferring the

number of tables from the number of seats) we realized

that, in the last row of the data table in the handout (see

Fig. 1) we had mistakenly introduced a question that

turned out to have no correct answer: The value, 11

people, does not belong in the range of the function and

does not correspond to the maximum number of people

that can sit at three tables nor to the maximum of four

people). Perhaps not surprisingly, students proposed to

have two tables with four people and one table with three

people. But this case leads to an inconsistency about the

domain (and hence about the very function we are talking

about). After the class, we realized it would be in the

interest of consistency to list only maximum seating in

future enactments of the lesson.

At the end of the class, children were given for home-

work a similar problem involving triangular dinner tables.

Later the children would work with hexagonal tables.

These variations were intended to serve several aims. They

Fig. 1 Handout for the first

lesson
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let students have extended practice on similar problems. In

addition they introduced the notion of a family of functions

having the same structure (they were all functions of direct

proportion) but varying in the value of a parameter, the

coefficient of proportionality.

2.3 Reasoning about the seating capacity of joined

dinner tables

In the second lesson the square dinner tables were to be

arranged end to end (see Fig. 2).

Bárbara began by reviewing the previous lesson. Stu-

dents recalled that they were determining the maximum

number of people that could sit at the tables in a restau-

rant and that the maximum number of people per table

was 4. Anthony recalled that one has to ‘‘times the

number by four to get the answer’’ and concluded that, for

11 tables, you can seat a maximum of 44 people. Bárbara

asked how many people would sit at 100 and at 1,000

tables, and Deshawn and Aja answered 400 and 4,000,

respectively.

Five minutes into the lesson Bárbara introduced the new

rule for the arrangement of tables:

Bárbara: … when a lot of people show up together, as a

party, they start putting tables together, this way […]. If

that is a square table like this [pointing to a square] we

can have four people… How many people can sit at two

tables that are together? Eh, Deshawn…
Deshawn: 8?

Bárbara: 8?

Aaron: No…
Bárbara: Well, before, when we didn’t put the tables

together there were 8, right Deshawn?

Deshawn: Equals 6 …
Bárbara: Well, let’s see… (she counts along the outside

edges of the tables in a drawing, arranged side by side) 1,

2, 3, 4, 5, 6… Now, how come that when we had two

tables there were 8 and, now we have two tables and we

have 6… Why Gio?

Gio: Can I show? (he walks to the overhead projector).

Bárbara: Why is it that, on Tuesday, when we have two

tables we had 8 and now 6?

Gio: Because of these two sides, right here… (pointing,

in the drawing, at the two inside edges where the tables

meet and where guests can not sit.)

Bárbara: What is going on with those two sides?

Gio: I don’t know how to say it!

Handout: Attached Tables 

Name: ______________________________  

In your restaurant, square dinner tables have are always arranged together in a single line.   Below, figure out the maximum 

number of people you can seat. 

Dinner

tables

Show how Number of 

People

1 4

2

3

4

5

6

7

Each time you add another table to the line, how many new people can join the party?

[on the back side of this paper]: If I tell you the number of dinner tables lined up, how can you figure out the maximum number 

of people that can sit down?

Fig. 2 Handout for the second

lesson
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2.4 Students’ interpretations and attempts to generalize

2.4.1 Using words to express the underlying function

(n ? 2n + 2)

Gio noted that when the dinner tables are joined, two

seating places disappear but, as with other children, he

cannot verbalize why. Anthony stated that if the tables are

not joined there will be more people because ‘‘somebody

can sit at the middle of the tables’’ probably meaning that

these seats will be lost. Students agreed that two seats

would be lost and discussed how many people would sit at

two and at three joined tables. At this point a student

attempted to generalize how seating capacity increased

according to the number of tables: ‘‘You keep adding

two…’’.

Bárbara then displays a chart (see Fig. 3) with headers

for the number of dinner tables (t), the maximum number

of people that could sit when the tables were separated

(Tuesday column), and the maximum number of people

that could sit when the tables were joined (Thursday col-

umn). Working together with the children, she fills in the

results for two and three dinner tables, first when they are

separate, and then when they are joined. As each row of

data is completed she contrasts the results for the two sit-

uations. Two function tables are represented on the

whiteboard side by side, one for each seating rule.

Anthony predicts that four joined tables will seat ten

people. Bobby explains that it is because ‘‘you are adding

two each time’’. Bárbara draws the dinner tables and,

together with a few students, counts the sides, finding that

ten people can be seated. Some students show surprise that

it was ten. When Bárbara asks how many people can sit at

five tables, Mehrose answers ‘‘12’’. Bárbara reviews the

amounts in the table and a few students claim that two

more people can join the party each time a new table is

added.

Fifteen minutes into the lesson, Bárbara asks how many

people can be seated at 100 tables. This crucial example

(see Balacheff, 1987) was meant to prod students to

abandon the iterative and time-consuming approach and

look for another way to approach the problem. The chil-

dren react with puzzlement. Marisa and other students

predict that 200 people can sit at 100 tables. Gio proposes

101. At this point, it seems that students appear to be

simply voicing guesses. They have not proposed a general

rule or computation routine.

Bárbara reminds them of the previous lesson where the

students had found a formula that works for any and all

cases. She asks them to recall the rule to get from t (the

number of tables) to p (the number of people), when the

tables are separate. Several students mention that they had

to multiply by four. After some discussion, with input

from the children, Bárbara writes the equation t 9 4 = p

and asks the children to state what each of its elements

refer to:

Aja: The four stands for the ‘‘4 people at the table’’

[emphasis added here and below]

Bárbara: At each table, right? Yes… number of people

per table… at each table… What the ‘t’ stands for? What

does this ‘t’ stands for, Hannah?

Hannah: Tables!

Bárbara: Number of tables, right? And, what does the ‘p’

stands for?

Aaron: People.

Bárbara: People where?

Student: People that sit at that table.

Bárbara: The total number of people, right? Because we

already had the four people per table. Now, this is the

total number of people… Now, the hard thing is, now

that you know the formula that worked on Tuesday, you

need to figure out the formula for today (Thursday).

Bobby (pointing to each row in the data table on the board,

shown in Fig. 3) considers how the seating capacity from

joined tables differs from the seating capacity of the joined

tables.

Bobby: … right here (pointing to the number of people

for two joined tables) you take away two (from the

number of people for two separate tables), right here

(pointing to the number of people for three joined tables)

you take away four (from the number of people for three

Fig. 3 Chart relating the number of dinner tables to number of people

that could sit if the tables were separated (Tuesday column) or joined

(Thursday)
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separate tables), then you take away six (from the

number of people for four separate tables), right here you

take away eight (from the number of people for five

separate tables), and right here you take away ten (from

the number of people for six separate tables).

Bobby notices that, as the number of tables increases,

joined tables hold increasing fewer guests than separate

tables. Bárbara acknowledges Bobby’s point, but wants

Bobby to provide a general statement that does not rely

upon the function for separate dinner tables.

Bárbara: Ok, each time you are taking away two more

[from the potential increment of four seats]... Ok, that’s a

good thing you notice. But if there’s any way that we

could figure out… if we don’t know… if we didn’t have

this column [for separate tables], if we cover it up, we

need to figure out a way to get from 1 to 4, from 2 to 6,

from 3 to 8… ok? So, I will give you a chance to think

about that now, for a while… with your handouts… yes?

I want you to figure out if there’s any rule to get from

this column (number of tables) to this column (total

number of people that can sit at joined tables), ok? And

we have a couple of predictions here. Does anyone else

have a prediction? Anthony, do you have a prediction for

100 tables? Anthony…

At this point, Anthony correctly predicts that 202 people

can be seated at 100 tables. Bárbara then proposes that the

children work on their handouts in small groups.

2.4.2 Towards algebraic expressions

Most children completed the first part of the handout by

drawing the dinner tables and counting the number of

outside edges where a person might sit. Drawing the tables

may appear unnecessary, given that they had already

considered the same cases in a data table. Nonetheless, it is

a means of convincing themselves that the data are correct

by visually scanning the cases for change and invariance.

By this point the students appear to understand that, each

time one adds another table, two more people can be

seated. This does not provide a direct answer to the ques-

tion, ‘‘If I tell you the number of dinner tables lined up,

how can you figure out the maximum number of people that

can sit down?’’ However, as we will see next, the drawings

constituted a path to the multiple types of generalizations

the children came to develop as they were guided to find

and represent a general rule corresponding to the closed

form expression of the function.

While working in small groups, Bobby finds a general

rule and describes it as if reading an algebraic notation

aloud (see Fig. 4):

Bobby: … t times 2 plus 2 equals p… [emphasis added]

Analúcia (repeating): t times 2 plus 2… This is very

good. Now, would you explain it to me?

Bobby: Ok, it’s like 2 times 2 equals 4, add 2. It’s 4,

then, 2 times 2 equals 4 plus 2 equals 6; and 3 times 2

equals 6, add 2, you got 8.

In another group, Gio struggled to find a general rule. He

had generated drawings for each case (see Fig. 5) and

successively added 2 for the next total. When Analúcia

asked him to find out the number of people for 100 tables,

he states that 202 people could sit at the tables and

generates a general rule for the function.

Gio later explains the case of 100 tables to the whole

class:

Gio: Coz if you have one table, on that side is 100, 100

over there [along the other long side] and then two over

here [at the heads of the table]… 200 plus 2 equals 202.

Gio has parsed the maximum number of seats as a sum of a

component directly proportional to the number of tables

(2t) and the additive constant, 2, that corresponds to the

ends of the line of tables. He easily computes the number

of people that could be seated at 1,000 and at 200 tables but

says that it is hard to show how to do this in a formula.

Bárbara intervenes:

Bárbara: Gio was able to explain that, whatever number

of tables you have, you have double sides, you have the

side at the top and the side at the bottom and then you

have two more people on the ends… you have to count

the ends. So, can you try Gio? Can you try to make that

up into a formula?

Gio: For 100?

Fig. 4 Bobby’s written work
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Bárbara: For whatever number, no matter how many

tables there are, what do you do if the only thing we

know is the number of tables; t is everything we know.

Everything we know is that we have t tables… what do

we do with the number of tables?

Gio: Times 2 plus 2.

Bárbara: Times 2 plus 2, equals what? If t = 100, it will

be 202 but what if we don’t know? What would the

answer be?

Gio: t times 2 plus 2.

Bárbara: Equals… the number of people, right?

Afterwards Mehrose suggests surrounding t 9 2 by paren-

theses. Bárbara writes the equation (t 9 2) + 2 = p on the

board and proceeds to discuss the meaning of each of its

elements with the class.

The general statement (t 9 2) + 2 = p constitutes a

closed form representation of the function relating the

number of dinner tables to the maximum number of people

that could be seated. It was the target of the lesson, so to

speak; namely, to have students coming up with equations

for the functions f(t) = t + t + 2 or, ideally, f(t) = 2t + 2

(see generalization 3.2.1 below).

In the class handouts eight of the 15 children answered

the question ‘‘If I tell you the number of dinner tables lined

up, how can you figure out the maximum number of people

that can sit down?’’ with a closed formula while the other

seven relied on drawings and counting or didn’t answer the

question. Upon reviewing the videos of the lesson, we have

found that, in their development towards the closed form

representation favored by the instructor, they have pro-

duced representations that fall into the two overarching

classes we have been discussing, that is, a recursive for-

mula versus a closed form expression. As we will see, there

were some variations within each of these two broad cat-

egories that prove to be enlightening.

3 Students’ generalizations

Generalization refers to both the process and product

of reasoning (viz., Radford, 1996). Different ways of

‘‘visualizing’’ a pattern are tantamount to different con-

ceptualizations that may lend themselves to different

algebraic expressions. As we shall see, a student who con-

ceived of the table arrangement as a variation on the

Fig. 5 Gio’s initial work
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separated tables condition produced the expression 4t -

2(t - 1), which is somewhat different from a student who

parsed the problem as the sum of seats along each of the

four sides of the table configuration and expressed it as

t + t + 2. However, both formulas represent the same

function, in the same way as, in the history of mathematics,

we find different ways of writing the ‘‘same equation’’ (see

Filloy & Rojano, 1989).

Our analysis of children’s generalizations takes into

account the following dimensions of their conceptualizations:

form of the underlying mathematical function (closed or

recursive), variables mentioned (number of tables, auxiliary

variable, number of people), types of operations used (addi-

tion, subtraction, multiplication), use (or not) of algebraic

notation. We also consider the structural features (how many

terms, use of parenthesis, etc.), the meaning of the different

components of the written expression [i.e., considering the

expression ‘‘2t + 2’’, the ‘‘+2’’ represents two people but if

we consider the function 2(t + 1) the ‘‘+1’’ represents one

table], on what elements the generalization is built on

(numbers on the function-table, comparison of two function-

tables, diagram of the dinner-tables, etc.), and referent

transforming (i.e.: in the expression ‘‘p(t) = 2t + 2’’, the

number ‘‘2’’ that multiplies t may work as a ratio that

exchanges tables for people, two tables per one person).

We identified several types of generalization regarding

the maximum number of people that can be seated at joined

tables. These solutions are neither exclusive nor exhaustive,

yet they appear to be ordered according to those that (1)

treated the number of seats as a recursive sequence of

numbers versus those that (2) treated the number of seats as

a function of number of tables or as an input–output func-

tion explicitly linking two variables. Within category 1 we

have found (a) recursive generalizations with ‘‘building up’’

in the output column, with a focus on the difference, f(n) -

f(n - 1) and (b) recursive generalizations with ‘‘building

up’’ in an auxiliary column, with a focus on the difference,

f(n) - n. Category 2 generalizations appeared in at least

three different formats, focusing on: (a) Reckoning seats

one table edge at a time, (b) Treating adjoined tables as a

variation on separate tables with obstructed seats, and (c)

inventing a virtual dinner table. In what follows, we

describe students’ generated rules that exemplify each type

of generalization. The mathematical representations of

these rules enlighten each rule’s specific aspects.

3.1 Treating the number of seats as a recursive

sequence of numbers

The focus of this family of approaches rests on the changes

in the dependent variable (number of chairs) over time. The

generalization is reached when one has formulated a

statement that holds true for the initial condition and for

each and every subsequent change.

3.1.1 Focus on the difference, f(n) - f(n - 1)

This approach typically arises when discussion takes place

regarding data in a function table. The student draws

attention to the increment by which the values in column

two of one row can be used to find the value in column two

of the next row. As Bobby expressed it, ‘‘… you are adding

two [people] each time’’.

This increment has a direct counterpart in drawings of

people seated around tables. Figure 6 (top) shows the case

for an arbitrary number, t, of tables. This is the embodi-

ment of information contained in row n. Figure 6 (bottom)

represents the case where one more table has been added.

In other words, it corresponds to the information contained

in row t + 1 of a data table. The additional two people in

Fig. 6 are shown as shaded. The person at the right end of

the table is not a new arrival; presumably she merely

‘‘scoots over’’ each time a new table is added. The draw-

ings in Fig. 6 are consistent with the iterative or recursive

formulation of the function (see Expression 5)

p1 ¼ pð1Þ ¼ 4

pt ¼ pðtÞ ¼ pt�1 þ 2 where t 2 N

)
: ð5Þ

Students using this approach did not produce a formula

expressing the functional relation. Also, they did not

explicitly mention the starting condition. The approach is a

partial recursive approach, whereby only the repeating

condition is given expression. There is no referent trans-

forming (Schwartz, 1996) here, as they do not use the input

Fig. 6 Diagrams of t and t + 1 tables. Together they correspond to

the repeating condition of a recursive expression, namely, Pt + 1 =

Pt + 2 people
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values as a starting point to produce the output values: they

are already working with the number of people. To some

extent, the iterative approach was encouraged by the fact

that the problem was presented as a narrative that unfolds

over time as more and more guests arrive. Students were

also encouraged to add tables, one by one. Furthermore, the

function table Bárbara had drawn on the blackboard was

filled out in an ordered way (although some gaps or jumps

were introduced).

This approach is based on the idea of underlying func-

tion as a recursive sequence. It can be considered as a

sequence3 because students treat the numbers in the output

column as a set in which the order matters. Students

identify recursion (‘‘keep adding two’’) as the principle that

generates successive values in the output column. From

their perspective, the table in the handout sheet has missing

rows. They commonly imagine the values of the ‘‘missing

rows’’ in order to fill in the gaps.

In a sequence, the independent variable corresponds to

the position in the ordered set. If one imagines the data

table with all of its ‘‘missing rows’’ restored, then the

position of each value of the function coincides with its

row number. In the closed form variation, the independent

variable tends to be construed as the number of tables.

‘‘Position in the sequence of values’’ and ‘‘number of

tables’’ are somewhat different ways of thinking about the

independent variable for seating capacity. But this dis-

tinction may be unimportant: when the values of dependent

variable are displayed in ordered fashion, students tend to

downplay or entirely ignore the independent variable, as if

the sequence involved a single variable (number of chairs).

3.1.2 Focus on the difference, f(n) - n

This approach appears to arise in the context of data tables,

where the values of the independent variable and depen-

dent variable are listed as pure numbers, with no explicit

units of measure. The student looks for a complementary

number, such that, when added to the value in column one

(independent variable) produces the known value in col-

umn 2 (the dependent variable). As described in a case

study by Martinez and Brizuela (2006), by observing the

pattern in both columns, the student constructs (mentally or

actually) an auxiliary, intermediate column. The value in

column 1 plus the value in the auxiliary column yields the

value in column 2. This kind of building up fundamentally

differs from recursion in the output column, discussed

above.

Hannah describes this type of generalization as follows:

Hannah: to get from 1 to 4 you have to add 3, then to get

from 2 to 6 you have to add 4; for 8, 5; for 10, 6; ah…for

12, 7.

In the present case the numbers in this auxiliary column

increase by ones (Table 1).

Interestingly, this approach appears to be hybrid of an

input–output approach to the relation and a recursive

approach. The auxiliary column only comes to be after the

student has inspected the function table. After Hannah

considers the function table on the whiteboard (see

Fig. 3), she computes the difference between each output

and its corresponding input, noting that the first difference

is 3 and that each subsequent difference increases by one.

She then proceeds to extend this sequence. In the two last

rows of table 1, we provide our own algebraic represen-

tations of this way of generalizing. In the second to last

row, we show the algebraic expression that captures the

relation between the input and the numbers in the auxil-

iary column. In the last row, we provide an algebraic

representation of this perspective when considering any

linear function [not only the case for f(t) = 2t + 2].

However, students using this approach did not produce a

formula describing the rule.

We want to emphasize that this generalization builds on

the numbers displayed not only in the output column but

also in the input column. In addition to that, a third column

is created (mentally or in writing) to explain how the

numbers in the output column can be created. This was not

the case in generalization 1a, where students mostly

ignored the input column and worked only with the num-

bers in the output column of the function table.

Because the model conceived by students was con-

structed purely by perusing the values of the function-table,

students did not focus on coordinating the referents (tables,

people) for the variables. The emergence of the model may

have benefited from the fact that the semantics of the sit-

uation was suppressed or downplayed in the table of

Table 1 A data table showing the reasoning underlying the differ-

ence f(n) - n

Dinner

tables, t
Increment to get number

of people from the

number of tables

Number of people (p)

seated at t joined

dinner tables

1 +3 4

2 +4 6

3 +5 8

4 +6 10

t +‘‘t + 2’’ 2t + 2

t +‘‘(m - 1)t + b’’ mt + b

3 (Weisstein, 1999, viz., Sequence, Arithmetic progression) defines a

sequence as an ordered set of mathematical objects, {o1, o2, o3, …
on}.
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numbers. If we were to explicitly include the natural units

associated with the numbers, the strategy would appear not

to work. The number sentence associated with the first row

in the function table, 1 + 3 = 4, is a true statement. How-

ever, if we add referents to the numbers we obtain: 1

[table] + 3 [people?] = 4 [people]. This is problematic

since addition is not referent transforming in nature

(Schwartz, 1996).

3.2 Treating the number of seats as a function

of number of tables

A second family of approaches directs the initial attention

not to change but rather to invariance. For example, a

student may notice that, regardless of the number of tables,

the number of seats around the joined tables will be equal

to the sums of seats situated along the four sides of the

composed tables. The student may then try to express the

number of seats along each edge in some general way, that

is, as a function of the number of constituent dinner tables.

3.2.1 Reckoning seats one table edge at a time

This was the case of Gio explaining how to determine the

maximum number of people that can be seated at 100

tables:

Gio: Coz if you have one table, on that side is 100, 100

over there [along the other long side] and then two over

here [at the heads of the table]… 200 plus 2 equals 202.

[In Fig. 7, we propose a diagram that illustrates Gio’s

generalization.]

Mathematically, this generalization corresponds to

Expression 11:

pðtÞ ¼ t þ t þ 2: ð11Þ

For this case, students produced a closed formula rep-

resenting the relation between the number of tables and

the number of people that could be seated. During work in

small groups, Gio used the recursive sequence approach

until he was asked to solve the case for 100 tables. The

question led Gio to look at his drawing of tables (Fig. 5)

as a general diagram, so that it could stand for any number

of tables from four upwards. This helped him to develop a

strategy to determine the output. Differently from the

former two strategies, this generalization builds on the

semantics of the situation, not on relations among

numbers.

Even though the algorithm works numerically, it is

inconsistent with regard to the referents. For three tables,

we might think of Gio’s approach as follows: 3 [the

number of people on one side] + 3 [the number of people

on the other side] + 2 [the people at the ends] = 8 [people

in all]. However, the given 3 is the number of tables. The

algorithm, 3 [tables] + 3 [tables] + 2 [people] = 8 [peo-

ple], is problematic. So, it seems that Gio was implicitly

using a one to one correspondence between tables and

people along a table side. Each table has two sides, so we

can exchange each side for one person. In this way, even

though the formula does not capture the referent trans-

forming, Gio seems to have implicitly transformed the

referent. Drawings such as Gio’s (Fig. 5) contain explict

information about the value of the input and output vari-

able. And there is a one to one correspondence between the

number of tables and the number of people seating along

one side of the line of tables. Hence, Gio can conveniently

undertake a referent transformation by moving from the

number of tables to the number of people along one side.

This exchange function is a subtle yet important feature

that may be peculiar to this particular framing of the

problem.

Later, Gio produced a different version of the formula,

using multiplication. Like Bobby, who had generated the

rule at an earlier point, he expresses it as ‘t times 2 plus 2’.

Here Gio transformed the ‘‘t + t’’ into ‘‘2t’’. The referent

transforming character of this approach can be captured in

the following way: 2 [people/table] 9 t [tables] + 2 [peo-

ple] = (2t + 2) [people] = p [people].

3.2.2 Treating adjoined tables as a variation on separate

tables: obstructed seats

This generalization builds on what is already known about

the seating capacity for separated tables, namely that the

number of people will be four times the number of tables.

Viewed in this manner the value of the Joined Tables

function will be equal to the value of the Separated Tables

function minus the missing places. Bobby describes his

solution as follows (see Table 2 for our rendering of his

approach):
Fig. 7 A general way of counting the number of people seated at t
joined dinner tables
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‘‘all right… right here you take away 2 (total people

on Tuesday - 2 = the total amount of people today

for 2 [dinner] tables), right here you take away 4

(total people on Tuesday - 4 = total today for 3

tables), then you take away 6 (total people on Tues-

day - 6 = total people today for 4 tables.) right here

you take away 8, and right here you take away 10…’’

Figure 8 shows a diagrammatic representation of this type

of generalization.

Mathematically, we can represent each of the steps of

this generalization as follows (Expressions 6–10):

ps ¼ 4t ð6Þ
pm ¼ 2ðt � 1Þ ð7Þ
pðtÞ ¼ psðtÞ � pmðtÞ ð8Þ
p ¼ 4t � 2ðt � 1Þ ð9Þ
p ¼ 2t þ 2: ð10Þ

This type of generalization appears to have been elicited

by the data table on the whiteboard showing the input

(number of dinner tables), the output for separate tables,

and the output for joined tables (Fig. 3). Students

apparently calculated the number of people to be

subtracted from the results from separated dinner tables

to obtain the results for joined tables. No student produced

a written expression for this generalization.

3.2.3 Inventing a virtual dinner table

Tarik proposes to add 1 to the number of tables and simply

multiply by 2, saying: ‘‘Plus 1 and then times 2.’’ Bárbara

writes Tarik’s rule as t + 1 9 2 (thereby explicitly repre-

senting the independent variable) and, after some

discussion about the meaning of each element, asks:

B: Do you think there’s something missing Tariq?

[Looking toward another student…] Mehrose?

Mehrose: Parentheses

B: Parentheses… where should I put them?

Melrose: in t plus 1…

Tarik’s solution represents a re-conceptualization of seat-

ing capacity from 2t + 2 to 2(t + 1). His procedure is not

due to reflecting on the written form (2t + 2) and factoring.

It emerges from acting on the semantics of the situation

rather than on the algebraic expressions. Tarik realizes that

there are always two people at the ends to take into account

and these two people have the same effect on the outcome

as any intermediate table does. To clarify, one might

imagine that an additional table has been added to the

arrangement and that the two guests at the heads move to

the sides of this new table (see Fig. 9). Once this

additional, virtual table is introduced, one no longer has

to take into account the heads of the table. The proposed

formula not only satisfies the numeric relation but also can

be made consistent with the referent transforming. For

instance, 2 [people/table] (t + 1)[tables] = p [people]. This

generalization is congenial to the following closed form

algebraic expression: p = 2(t + 1).

Table 2 Data table showing the reasoning underlying a generaliza-

tion focused on the missing places

Dinner

tables, t
People (ps) at

separate dinner

tables, ps = 4t

People (pm) who

will not sit between

tables pm = 2(t - 1)

People (p)

at t joined tables

p(t) = 4t - 2(t - 1)

1 4 0 4

2 8 2 6

3 12 4 8

4 16 6 10

The data table, including the headers, is the authors’ rendering

Fig. 8 Diagrams showing, top: the number of people seated at

separate tables, corresponding to the algebraic formula pst = 4t, and

bottom: the final state after attaching the tables. The shaded faces
indicate places unavailable after tables are joined

Fig. 9 Initially (top) we have t tables with two people per table in

addition to the two people at the ends who are then placed at an extra

table. This way we can count t + 1 tables with two people per table,

obtaining the formula p = 2 (t + 1)
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4 Conclusion

There are two major issues in getting students to

express mathematical generalizations about formula-based

functions.

4.1 Issue 1: how do you get from recursive

conceptualizations to closed form expressions

of functions?

A recursive or iterative approach draws attention to chan-

ges as f(n) becomes f(n + 1). When the data are ordered the

account takes the character of a narrative happening over

time. If the independent variable always increases by one,

it can be treated as indicator of position in the sequence or

position in the narrative’s time dimension. When one

thinks in such a way, one treats the recursive function

essentially as a recursive sequence. A recursive sequence

may be congenial to students’ thinking, but it is probably

not where the mathematics teacher and textbook should be

heading. And with good reason. When a function is viewed

as nothing more than a sequence, students often fail to

recognize the independent variable as a variable; it may

remain implicit in their thinking.

We want students to use closed-form expressions of

functions, but we often set them to thinking about functions

as if we wanted them to provide us with recursive

expressions. To some extent, data tables themselves, par-

ticularly when they are arranged so that the independent

values increase by one, are at fault. But they permit a visual

scanning of results that can be helpful for students to grasp

how the function ‘‘works’’. The fact that input–output

relations tend to be less salient than ‘‘building-up’’ rela-

tions does not mean that tables are necessarily impediments

to understanding algebra. It does suggest that instructors

need to pay attention to how students are parsing tables and

representing the underlying functions.

It may be too much to hope that students will learn to

express formula-based linear functions straightaway

through closed expressions. So the issue becomes: how do

we start off in one direction (towards recursion) and shift to

another direction (towards input–output)? There are some

activities, such as ‘‘Guess My Rule,’’ that provide useful

contexts for working with input–output expressions of lin-

ear functions (Carraher & Earnest, 2003). However, they

are generally restricted to the domain of whole numbers

(not quantities). Hence, the demands on modeling are sub-

stantially reduced. For example, no referent transforming is

required for multiplication and division of integers.

In our lessons we employed two means to encourage this

shift in conceptualizaton: (a) skipping numerical values in

the independent variable [e.g., the case for 100 dinner tables]

and (b) asking students to state the dependent value for an

arbitrary but un-instantiated case (e.g., for n dinner tables).

As the students move towards generalization and closed

form algebraic expressions they need to explicitly represent

the independent and dependent variables in their statements

and, in the case of linear functions, replace successive

additions with a single multiplication. The latter step is

challenging for students and teachers alike because it goes

far beyond a substitution of computational operations.

Multiplication is not simply repeated addition. It entails,

implicitly or explicitly, transformation of referents (Sch-

wartz, 1996) or an exchange function whereby the input

units are changed into output units.

For students to determine the seating capacity for any

number of dinner tables they need to consider much more

than the last case. Their answer has to serve for all the data

in the table as well as all data that would be generated by

following the rules for seating additional guests. The closed

expression captures the general relation between the

numbers in the domain and the numbers in the image.

4.2 Issue 2: can empirical thinking lead to theoretical

reasoning?

Generalizations are often distinguished according to whe-

ther they are empirical or theoretical. Empirical

generalizations are thought to arise from an examination of

the data for underlying trends and structure. Theoretical

generalization is thought to spring from the ascription of

models to data.

At first glance, these may appear to be variations on the

same theme. However such generalizations have a dra-

matically different status in mathematics itself. A general,

formula-based function over some infinite domain (e.g.,

counting numbers, real numbers) can not be defined

through a finite set of ordered pairs (e.g., a table of data). It

can only be defined through an explicit statement that

captures its generality. To assume otherwise is to make a

serious blunder from the perspective of mathematics.

But as we noted, functions cannot be introduced to

young students through formal notation. The mathematical

objects we want students to eventually be working with—

variables, infinite sets of the domain and co-domain—are

not, strictly speaking, in the problems we give to students.

They must emerge from the activities and discussions

about what, at first blush, are finite sets of mundane objects

(tables, chairs, people) and their relations.

We can point to several moments where the teacher’s

work helped the students to construe the mundane problem

in terms of relation between variables.

Let us recall when the teacher was interacting with Gio

during the whole group discussion:

18 D. W. Carraher et al.
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Bárbara: Yes, I know, it’s hard, I know. But Gio was

able to explain that, whatever number of tables you have

you have double sides, you have the side at the top and

the side at the bottom and then you have two more

people on the ends… you have to count the ends… So,

can you try Gio? Can you try to make that up into a

formula?

Gio: For 100?

Bárbara: For whatever number, no matter how many

tables there are, what do you do if the only thing we

know is the number of tables, t, is everything we know.

Everything we know is that we have t tables. What do

we do with the number of tables?

Gio: Times 2 plus 2.

When Bárbara asks Gio to produce a formula, he seems

lost. She rephrases the question giving him an opportunity

to think. The way she restructures the questions takes into

account the didactical history of the early algebra lessons,

where the children had been introduced to letters, for

example ‘‘t or n’’, to represent ‘‘any number’’ and produce

formulas for the relationship between variables in different

problems. The questioning seems to reach fruition when he

produces a general rule.

The children developed different types of generaliza-

tions that were correct, but were not the ones we were

expecting. The aim of discussing children’s strategies when

they deal with this kind of problem (or any other mathe-

matical problem) is to stress the conceptual shift that some

students need to go through to abandon their own models

and construct something that is closer to the mathematical

relationships and representations we want them to learn.

Gio initially approached the problem iteratively, adding

two to the previous amount of people that could be seated in

order to find out the total number of people for the next case.

This strategy works if one wants to know the number of

people that could be seated if one more table is added,

knowing the number of people seated in n - 1 tables. But

that was not the main question being asked. He was drawn

towards the variation of people when the variation for the

number of tables is one (Dp for Dt = 1). This is a correct

relation for the problem and is also one of the questions in

the task. But it does not lead to a general expression of the

maximum number of people that can be seated at n tables.

The teacher’s question about the number of people that

could seat at 100 tables finally seems to promote a shift in

the way he approaches the problem: he can then produce the

correct answer (202) without having to draw all the tables.

It might be argued that the children did not immediately

arrive at a general formula because they were not paying

enough attention or because they didn’t understand what

they were being asked to do. We think that this might have

happen in some cases, but it does not explain what children

actually do think when they try to answer what they are

being asked. This kind of analysis allows us to intervene in

terms of the mathematical content we want the children to

focus upon. This was the case when Bárbara interacted

with Bobby and told him that the focus should not be on the

number of people seated at n separated tables, but rather on

the n joined tables.

4.3 Mathematical notation and generalizations

Children’s generalizations about the joined tables problem

appear to have originated from acting on (mentally and

physically) and reflecting upon their actions, deriving

mathematical relations in the process. This appears con-

sistent, in many ways, with Piaget’s (1978) account of

generalization. Children need to start from carefully crafted

contexts and situations that may constitute physical ana-

logues for mathematical structures. However, they need to

go beyond the physical models and focus upon the logico-

mathematical structures implicit in the models and even-

tually on the written notations themselves. In many ways

this is similar to how professional mathematicians work,

even though it may be strikingly different from how they

think of their work, or represent it to the mathematical

community in publications:

‘‘It is true that mathematicians also make constant use,

to assist them in the discovery of their theorems and

methods, of models and physical analogues, and they

have recourse to various completely concrete exam-

ples. These examples serve as the actual source of the

theory and as a means of discovering its theorems, but

no theorem definitely belongs to mathematics until it

has been rigorously proved by a logical argument. If a

geometer, reporting a newly discovered theorem,

were to demonstrate it by means of models and to

confine himself to such a demonstration, no mathe-

matician would admit that the theorem had been

proved.’’ (Aleksandrov, 1989, p. 2–3.)

Students also need to gradually appropriate the general

representational tools of mathematics, which cannot be

reduced to any particular experience or embodiment. In

keeping with Davydov’s (1990) and Dorfler’s (1991)

views, we consider the formalization in terms of mathe-

matical notation an important feature in the mathematical

learning process and in the development of generalizations:

‘‘When students meaningfully express ideas in the

formal language(s) of mathematics, they transform

their knowledge, extending its reach and meaning.

Their formal representations can serve as objects of

reflection and inquiry, thereby playing a role in the
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future evolution of their mathematical understand-

ing.’’ (Carraher & Schliemann, 2002b, p. 299).

4.4 Quo Vadis?

Each of the issues raised above is related to a false

dilemma. It appears unnecessary to force a choice between

recursive and input–output approaches. Mathematics edu-

cators, theorists and practitioners alike, face the challenge

of figuring out ways of moving back and forth between

these representations. Students are typically more inclined

to think of linear functions recursively (sometimes even as

recursive sequences). But there are good reasons for

introducing functions as input–output mappings.

We may wish to introduce generalizations to students

through the very forms they are encountered in inside the

field of mathematics. But, once again, this is inconsistent

with how young students learn. They must first learn how

to make mathematical generalizations about problems for

which they are allowed to look for patterns and note rela-

tions and structures. Gradually they learn to formulate

these generalizations using algebraic notation. Even more

gradually, they will learn to derive new information by

reflecting on the algebraic expressions they themselves and

others have produced.
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