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1 Introduction and summary

We consider an insurance company with insurance risk modeled by a classical Lund-
berg process R0(t) = s + ct − S(t), in which the process S(t) is compound Poisson
with intensity λ and claim size distribution F, and the premium intensity c > 0 has
a positive safety loading:

c > λµ,

where µ is the mean claim size. For initial surplus s ≥ 0 let ψ0(s) be the infinite time
ruin probability

ψ0(s) = P{s + ct < S(t) for some t ≥ 0} .

We investigate how tax influences the qualitative and quantitative behavior of the in-
finite time ruin probability. We assume that tax is paid at a fixed rate γ of the insurers
income (premia) whenever he is in a profitable situation: he is in a profitable situation
at time t if for his risk process Rγ with tax we have

Rγ (t) = max{Rγ (u) : u ≤ t} .

So the insurer will pay a tax rate cγ at profitable times, and zero at times without
profit (loss carried forward system). Our premium income is reduced by tax payment
from c – which is collected at times without profit – to c(1 −γ) at times with profit.
Our model is far from being realistic: carried forward losses are used in real world,
but in addition one can use claims reserves (IBNR and RBNS) as well as equaliza-
tion reserves to reduce tax liability. We have chosen not to include these additional
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specifications here to keep the model simple and tractable. The same is true for
other specifications which are not included: investment returns, dividend payment,
expenses for acquisition, and others.
If γ ≥ 1 in our model then ruin will be certain for the insurer (note that for γ = 1
the resulting risk process is identical to one with horizontal dividend barrier strategy
where the initial capital is at the barrier, see for instance [2, Chap.6.4]). A priori it is
not clear whether ruin is certain for γ < 1 also. We will show in this paper that for
γ < 1 the ruin probability is less than one and, in particular, is changed from ψ0(s) to

ψγ (s) = 1 − (1 −ψ0(s))
1/(1−γ) . (1)

Asymptotically, the ruin probability hence grows by the factor 1/(1 −γ),

ψγ (s) ∼ 1

1 −γ
ψ0(s) . (2)

In a situation with tax, a higher initial surplus is needed to have the same ruin prob-
ability, compared to the case without tax. So, for light-tailed claims admitting the
adjustment coefficient R, the additional capital needed is asymptotically equal to

− 1

R
log(1 −γ) .

As another example, for Pareto claim sizes with tail index α we need an additional
capital which is asymptotically equal to

(
(1 −γ)−1/(α−1) −1

)
s.

With cost of capital ν we obtain a higher premium rate which is the result of tax pay-
ments. If c is the original net premium rate and s is the initial capital, then the gross
premium rate equals c+ νs. For a tax rate γ > 0 we obtain an asymptotic premium
rate of

c+ νs − ν
1

R
log(1 −γ)

and

c+ ν(1 −γ)−1/(α−1)s,

respectively.
The expected accumulated discounted tax for given initial surplus s is given by

v(s) = E

⎡

⎣
τ∫

0

e−δtγ(t)dt

⎤

⎦ , (3)

where τ is the time of ruin, δ > 0 is the discount rate, and γ(t) is the tax rate paid at
time t which equals cγ at profitable times and zero elsewhere. The quantity v(s) al-
lows to evaluate the collected tax in the given tax system. In Sect. 2.2 we shall give
an explicit formula for the function v(s). Moreover, in Sect. 2.3 we discuss how the
optimal surplus level can be determined from which on the tax authority should col-
lect taxes in order to maximize v(s). Finally, in Sect. 3 numerical illustrations of the
results are given for exponential claim amounts.
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2 Results and proofs

The risk process Rγ (t) with tax, under a loss written forward system, evolves as fol-
lows: If s is the initial surplus, then we have a period with profit in which the premium
rate is reduced to c(1 −γ) until the first claim of size X1 at time W1. The gains level
is set to M1 = s + c(1 −γ)W1. Then there is a period without profit in which the pre-
mium rate is c until the risk process reaches M1 again, at time σ1, say. Then we have
a period with profit until the first claim after time σ1, which happens at σ1 + W2 and
has size X2, say. The new gains level is set to M2 = s +c(1−γ)(W1 + W2), and so on
(cf. Fig. 1).

Fig. 1 The risk process Rγ (t)

Let N(t) be the underlying claims arrival process, and assume for the moment that the
process Rγ (t) is not stopped at its time of ruin. We thus obtain a sequence of gains
levels Mn , waiting times Wn , claim sizes Xn and starting times of periods with profit
σn defined formally as

σ0 = 0, M0 = s ,

Wn = inf{t > 0 : N(σn−1 + t) > N(σn−1)} ,

Xn = Rγ (σn−1 + Wn−)− Rγ (σn−1 + Wn) ,

Mn = Mn−1 + c(1 −γ)Wn ,

σn = inf{t > σn−1 + Wn : Rγ (t) = Mn}, n ≥ 1 .

The time intervals with profit are (σn−1, σn−1 + Wn), n ≥ 1. The intervals without
profit are

Cn = (σn−1 + Wn, σn), n ≥ 1.

Ruin happens for the process Rγ (t) only if Rγ (t) < 0 for some t ∈ Cn, n ≥ 1. The
waiting times W1, W2, . . . are independent with distribution Exp(λ) – due to the
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memoryless property of the exponential distribution. So σn → ∞ and Mn → ∞ al-
most surely.

2.1 The ruin probability

Theorem 1. In case of a positive safety loading c > λµ and γ < 1 we have ψγ (s) < 1
for all s ≥ 0. In particular, in this case

1 −ψγ(s) = (1 −ψ0(s))
1/(1−γ).

Proof. Write φ0(s) = 1 −ψ0(s). For 0 ≤ s < M let

g(s, M ) = P{R0(t) reaches M before ruin|R0(0) = s}.
Then φ0(s) = g(s, M )φ0(M ) yields

g(s, M ) = φ0(s)/φ0(M ) . (4)

For φγ (s) = 1 −ψγ(s) we have

φγ (s) = E[1{no ruin in C1}φγ (M1)]
= E[g(M1 − X1, M1)φγ (M1)]
= E[φ0(M1 − X1)/φ0(M1)φγ (M1)] ;

with σn → ∞ we obtain

φγ (s) = E
[ ∞∏

n=1

φ0(Mn − Xn)/φ0(Mn)
]
.

Since X1, X2, . . . and W1, W2, . . . are independent, we have

φγ (s) = E
[ ∞∏

n=1

g0(Mn)/φ0(Mn)
]
,

where g0(x) = E[φ0(x − X)]. From the integro-differential equation for φ0(s)

0 = λE [φ0(s − X)−φ0(s)]+ cφ′
0(s), s ≥ 0 , (5)

we obtain for x ≥ 0

g0(x) = φ0(x)− c

λ
φ′

0(x) ,

and with f(x) = (c/λ)φ′
0(s + x)/φ0(s + x) we arrive at

φγ (s) = E
[ ∞∏

n=1

(1 − f (c (1 −γ ) (W1 + . . .+ Wn)))
]
.
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The variables c(1 −γ)Wn, n = 1, 2, . . . are independent exponential with parameter
λ/(c(1 − γ)), and the function 0 ≤ f(x) ≤ 1 is non-negative and integrable; with
Lemma A.1 below we hence obtain

φγ (s) = exp

(
− λ

c(1 −γ)

∞∫

0

f(x)dx

)
= exp

(
1

(1 −γ)
log φ0(s)

)
= φ0(s)

1/(1−γ) .

�

Remark: At first sight, the following simpler proof of Theorem 1 seems appropriate:
By conditioning on the occurrence of the first claim, we have

φγ (s) =
∞∫

0

λe−λt dt

s+c(1−γ)t∫

0

g(s + c(1 −γ)t − y, s + c(1 −γ)t)

φγ (s + c(1 −γ)t) dF(y) . (6)

Changing variables w = s + c(1 −γ)t gives

φγ (s) = e
λ s

c(1−γ)

∞∫

s

λ

c(1 −γ)
e− λw

c(1−γ) dw

w∫

0

g(w− y, w) φγ (w) dF(y) .

Differentiating with respect to s leads to

φ′
γ (s) = λ

c(1 −γ)
φγ (s)− λ

c(1 −γ)

s∫

0

g(s − y, s) φγ (s) dF(y) .

Now, using (4) and (5) one obtains

c(1 −γ)

λ
φ′

γ (s)−φγ(s)+φγ (s)

(
1 − c

λ

φ′
0(s)

φ0(s)

)
= 0

and hence

(1 −γ)
φ′

γ (s)

φγ(s)
= φ′

0(s)

φ0(s)
,

i. e.

φγ (s) = C φ0(s)
1/(1−γ)

for some constant C. If the limit s → ∞ on both sides equals one, then C = 1 and
hence the result would follow. However, this approach does not rule out the possi-
bility φγ (s) = 0 ∀ s ≥ 0 (which would also represent a solution of (6)), whereas the
proof given above does. But in the next section this conditioning procedure will turn
out to be the appropriate tool for establishing an explicit formula for v(s).
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2.2 The expected discounted total tax payment

Let B(s, b) := E[e−δτ+(s,0,b)] denote the Laplace transform of the upper exit time
τ+(s, 0, b), which is the time until the classical risk process R0(t) (with premium
rate c) starting with initial capital s < b reaches b without leading to ruin before that
event. Clearly τ+(s, 0, b) is a defective random variable. The quantity B(s, b) will
play a crucial role later on. It follows for instance from [4], that B(s, b) can be written
as

B(s, b) = h(s)

h(b)
,

where the function h(s) is the solution of the integro-differential equation

c h′(s)− (λ+ δ) h(s)+λ

s∫

0

h(s − y) dF(y) = 0,

which is uniquely determined up to a constant (in the sequel we assume w.l.o.g. that
h(s) ≥ 0 for all s ≥ 0). For instance, h(s) can be explicitly expressed as

h(s) = eρs −qδ(s) ,

where ρ > 0 is the unique positive solution in R of the Lundberg fundamental equa-
tion

cR−λ− δ+λ

∞∫

0

e−Ry dF(y) = 0 ,

and qδ(s) = E(e−δτ+ρR0(τ) 1{τ<∞}|R0(0) = s), with τ denoting the time of ruin in the
classical risk model (cf. [4]). The quantity qδ(s) can be interpreted as the present
value of a payment of 1 at the time of recovery after the event of ruin or alternatively
as a discounted penalty function with penalty w(x, y) = e−ρy.
Let further V(s, b) denote the expected discounted dividend payments in the classi-
cal Cramér–Lundberg model with premium rate c, horizontal barrier b, discount rate
δ > 0 and initial capital s < b. It follows from [2, p.172] that V(s, b) can be written as

V(s, b) = h(s)

h′(b)
, 0 ≤ s ≤ b , (7)

and hence we obtain the classical identity

B(s, b) = V(s, b)

V(b, b)
. (8)

Although it is not necessary to use representation (8) for B(s, b) in the sequel, it turns
out to make some relations more transparent. Moreover, since for γ = 1 (i. e. all in-
coming premia are paid out as taxes) the risk process with tax payments is identical
to the risk process with horizontal barrier strategy with barrier b = s, it is somewhat
natural to express the results for v(s) in terms of the function V . Note that since
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limu→∞ qδ(u) = 0 and also limu→∞ q′
δ(u) = 0 (cf. [4]), one immediately deduces

from (7) that

lim
s→∞ V(s, s) = 1

ρ

(an alternative derivation of this limiting result goes back to [2, p.176]).
Let us now turn to the derivation of an explicit expression for v(s).

Theorem 2. Using the notation above, the expected discounted tax payments with
initial capital s are given by

v(s) = γ

1 −γ
e
∫ s

0
dξ

V(ξ,ξ) (1−γ)

∞∫

s

e− ∫ t
0

dξ
V(ξ,ξ) (1−γ) dt

or equivalently

v(s) = γ

1 −γ
h(s)

1
1−γ

∞∫

s

h(t)−
1

1−γ dt . (9)

Proof. Let us first derive simple bounds for v(s). Assuming that no claim occurs
at all we get v(s) ≤ ∫ ∞

0 c γ e−δt dt = cγ
δ

. On the other hand, if the first claim leads
to ruin already, tax can only be collected until the time of this claim implying
v(s) ≥ ∫ ∞

0 λ e−λt dt
∫ t

0 cγ e−δξ dξ = cγ
λ+δ

. Hence

cγ

λ+ δ
≤ v(s) ≤ cγ

δ
, ∀s ≥ 0 . (10)

By conditioning on the occurrence time and size of the first claim we get

v(s) =
∞∫

0

λe−λt dt
( t∫

0

c γe−δξ dξ

+ e−δt

s+c(1−γ)t∫

0

B(s + c(1 −γ)t − y, s + c(1 −γ)t) v(s + c(1 −γ)t) dF(y)
)
.

(11)

Changing variables w = s + c(1 −γ)t leads to

v(s) = cγ

λ+ δ
+

∞∫

s

λe− (λ+δ)
c(1−γ)

(w−s) dw

c(1 −γ)

w∫

0

B(w− y, w) v(w) dF(y)

or equivalently

v(s) = cγ

λ+ δ
+ e

(λ+δ) s
c(1−γ)

∞∫

s

λ

c(1 −γ)
e− (λ+δ)

c(1−γ)
w

v(w) dw

w∫

0

B(w− y, w) dF(y) .
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We now substitute the identity (8) into the above equation to get

v(s) = cγ

λ+ δ
+ e

(λ+δ) s
c(1−γ)

∞∫

s

λ

c(1 −γ)
e− (λ+δ)

c(1−γ)
w v(w)

V(w,w)
dw

w∫

0

V(w− y, w) dF(y) .

But from classical risk theory we know that

λ

w∫

0

V(w− y, w) dF(y) = (λ+ δ) V(w,w)− c

and hence

v(s) = cγ

λ+ δ
+ e

(λ+δ) s
c(1−γ)

∞∫

s

e− (λ+δ)
c(1−γ)

w

c(1 −γ)
v(w)

(
λ+ δ− c

V(w,w)

)
dw . (12)

Due to (10), v(s) is bounded for all s ≥ 0 and hence in particular the limit v(∞) is
finite. Taking the limit s → ∞ in (12) we obtain, using de’l Hopital’s rule

v(∞) = cγ

λ+ δ
+v(∞)

(
1 − c

(λ+ δ) lims→∞ V(s, s)

)

or equivalently

v(∞) = γ lim
s→∞ V(s, s) = γ

ρ
. (13)

Now we can differentiate (12) with respect to s, yielding

v′(s) = λ+ δ

c(1 −γ)

(
v(s)− cγ

λ+ δ

)
− v(s)

c(1 −γ)

(
λ+ δ− c

V(s, s)

)

and further

v′(s) = v(s)

(1 −γ)V(s, s)
− γ

1 −γ
(14)

with initial condition (13). The solution of this ordinary differential equation of first
order is given by

v(s) =
(

C − γ

1 −γ
U1(s)

)
e

1
1−γ U(s)

,

where

U(s) =
s∫

0

dξ

V(ξ, ξ)
, U1(s) =

s∫

0

e− U(t)
1−γ dt ,

and C is some constant. The latter can now be determined using condition (13). Since
V(s, s) > 0 for s ≥ 0 and lims→∞ V(s, s) = ρ > 0, the function U(s) is unbounded
in s and correspondingly (13) forces U1(s) to converge to 1−γ

γ
C for s → ∞ (and
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indeed it can easily be checked that lims→∞ U1(s) is finite). After some algebraic
manipulations we hence obtain

v(s) = γ

1 −γ
e
∫ s

0
dξ

V(ξ,ξ) (1−γ)

∞∫

s

e− ∫ t
0

dξ
V(ξ,ξ) (1−γ) dt .

Now, if we evaluate (7) at u = b, we see that V(b, b) = h(b)/h′(b), so that U(s) sim-
plifies to U(s) = log h(s)

h(0)
and we finally arrive at

v(s) = γ

1 −γ
h(s)

1
1−γ

∞∫

s

h(t)−
1

1−γ dt .

�

Remark: In terms of the function h, the differential equation (14) for v(s) is given by

v′(s) = v(s) h′(s)
(1 −γ)h(s)

− γ

1 −γ

with initial condition (13). For numerical purposes, when the evaluation of the ex-
act solution (9) is not feasible, it may be helpful to start directly from the above
differential equation.
On the other hand, in several cases explicit expressions for V(b, b) are known which
by the above theorem translate into explicit formulas for the expected discounted
sum of tax payments. For instance, whenever the claim size distribution has ratio-
nal Laplace transform, the function qδ(s) and subsequently V(b, b) can be expressed
analytically (see Formula (6.54) in [4]). For illustration let us consider the case of ex-
ponential claim sizes.

Example 1: Let F(y) = 1 − e−αy. Then it is well known that

h(s) = (α+ρ) eρ s (1 −η(s)) with η(s) = α+ r2

α+ρ
e(r2−ρ)s ,

where ρ > 0 and r2 < 0 are the two solutions of the Lundberg fundamental equation

c R2 + (c α−λ− δ) R−αδ = 0

(see for instance [2] or [3]). Hence in this case we arrive at

v(s) = γ

1 −γ

(
eρ s (1 −η(s))

) 1
1−γ

∞∫

s

dt
(
eρ t (1 −η(t))

) 1
1−γ

.

The change of variables w = e(r2−ρ) (t−s) allows to translate the latter expression into
a Gauss hypergeometric series yielding

v(s) = γ

ρ

(
1 −η(s)

) 1
1−γ

2 F1 ×
(

1

1 −γ
,

ρ

(ρ − r2)(1 −γ)
,

ρ

(ρ− r2)(1 −γ)
+1; η(s)

)
, (15)
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where

2 F1(a, b; c; z) = Γ(c)

Γ(b) Γ(c−b)

1∫

0

tb−1(1 − t)c−b−1(1 − tz)−a dt

with Re(c) > Re(b) > 0 (cf. for instance [1]).
In Sect. 3, numerical illustrations will be given for a particular set of parameters.

Remark: In fact, (6) can be interpreted as a special homogeneous case of (11), since
for δ = 0 we have B(s, b) = g(s, b). The absence of the inhomogeneous term in (6)
causes the problem not to rule out the solution φγ (s) = 0 (as discussed in the Remark
after Theorem 1).

2.3 Paying tax from surplus M onwards only

It may be better for the tax authority to collect tax only when the surplus has exceeded
a threshold M > s. On the one hand this will decrease the ruin probability:

φγ,M(s) = φ0(s)

φ0(M )
φγ (M ) = φ0(s)

φ0(M )
φ0(M )1/(1−γ) = φ0(s) φ0(M )γ/(1−γ) > φγ (s) .

On the other hand, taxation starts later. So a priori it is not clear which effect will
dominate, and thus one needs to investigate the quantity vM(s), which is defined as
the expected discounted sum of tax payments until ruin, given that tax payments only
start at a surplus level M > s. Clearly,

vM(s) = B(s, M ) v(M ) = V(s, M )

V(M, M )
v(M ) = h(s)

h(M )
v(M ) .

Now let us look for the optimal value M = M∗ that maximizes vM(s):

Theorem 3. If v(0) > c
λ+δ

, then for all s ≥ 0 the optimal height M∗ is the positive
solution of the equation

v′(M ) = 1 (16)

and the corresponding optimal expected discounted tax payment is given by

vM∗(s) =
{

V(s, M∗), if s < M∗ ,

v(s), if s ≥ M∗ .
(17)

If, on the other hand, v(0) ≤ c
λ+δ

, then M∗ = 0 for all s ≥ 0 and the optimal expected
discounted tax payment is given by vM∗(s) = v(s) .

Proof. Due to the regularity of h(s) and consequently of v(s), a necessary condition
for a positive maximal value M = M∗ is

∂vM(s)

∂M
= h(s)

v′(M ) h(M )−v(M ) h′(M )

h2(M )
= 0 ,
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which implies

v′(M∗)
v(M∗)

= h′(M∗)
h(M∗)

= 1

V(M∗, M∗)
.

But using the differential equation (14) this translates into

1

(1 −γ) V(M∗, M∗)
− γ

(1 −γ) v(M∗)
= 1

V(M∗, M∗)

and hence

v(M∗) = V(M∗, M∗) , (18)

which, again in view of (14), is equivalent to v′(M∗) = 1. Recall that

lim
s→∞ v(s) = γ

ρ
<

1

ρ
= lim

s→∞ V(s, s) .

Hence, if v(0) > c
λ+δ

= V(0, 0), the continuity of both v(s) and V(s, s) imply the exis-
tence of a positive solution M∗ of (18) or, equivalently, of (16). In order to ensure that
the extremum M∗ is in fact a maximum for vM(s), we look at the sign of the second
derivative:

sgn

(
∂2vM(s)

∂M2

∣∣∣∣
M=M∗

)
= sgn

(
h2(M∗)

(
v′′(M∗)h(M∗)−v(M∗)h′′(M∗)

)

−2 h(M∗) h′(M∗)
(
v′(M∗)h(M∗)−v(M∗)h′(M∗)

)

︸ ︷︷ ︸
=0

)

= sgn
(
v′′(M∗)h(M∗)−v(M∗)h′′(M∗)

)
.

By virtue of (14) and

V ′(s, s) = 1 − h(s)h′′(s)
h′2(s)

∀s ≥ 0 , (19)

one easily derives

v′′(M∗) = v(M∗) h′′(M∗)
(1 −γ) h(M∗)

,

so that the above can further be simplified to give

sgn

(
∂2vM(s)

∂M2

∣∣∣∣
M=M∗

)
= sgn

( γ

1 −γ
v(M∗) h′′(M∗)

)
= sgn (h′′(M∗)) .

Now, the optimal horizontal barrier b∗ in the classical risk model without tax is de-
fined as the value that minimizes h′(b) (b ≥ 0) and from [4] it follows that if b∗ > 0,
then it is the unique positive solution of h′′(b) = 0. Since h(s) > 0 ∀ s ≥ 0, one can
deduce from (19) that

V ′(b, b) = 1 if and only if b = b∗ > 0 .

1 3
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From v(0) > V(0, 0) it follows that

V ′(M∗, M∗) > v′(M∗) = 1 ,

which together with the observation limb→∞ V ′(b, b) = 0 implies M∗ < b∗. Conse-
quently, from (19) we finally find h′′(M∗) < 0 and M∗ indeed represents a maximum.
For s < M∗ the resulting optimal expected discounted tax payment is thus given by

vM∗(s) = V(s, M∗)
V(M∗, M∗)

v(M∗) = V(s, M∗) .

On the other hand, s ≥ M∗ implies that taxes have to be paid right from the start, so
that the tax payment strategy is equivalent to the case M = 0.
In the second case v(0) < c

λ+δ
= V(0, 0), it is clear that at a possible intersection point

M∗ of (18) we have to have V ′(M∗, M∗) < v′(M∗) = 1, which in view of (19) would
imply h′′(M∗) > 0 so that M∗ can not be a maximum. As vM(s) → 0 for M → ∞,
the absence of a maximal value of vM(s) for 0 < M < ∞ implies that in this case the
maximum is attained at M∗ = 0. �

Remark: Note in particular that the optimal taxation level M∗ does not depend on the
initial capital s. From (9), the criterion (16) translates into finding M∗ such that

1 −γ

γ
h(M∗)−

γ
1−γ = h′(M∗)

∞∫

M∗
h(t)−

1
1−γ dt .

3 Numerical example

Let us consider the case of an exponential claim size distribution with parameter
α = 1 and choose c = 2, λ = 1, δ = 0.04. Let furthermore γ = 0.5. Then we obtain
from (15)

v(s) = 12.019 e−0.077s(−0.481 e−0.519s +1.039 e0.0386s)2

2 F1(2, 0.139; 1.139; 0.464 e−0.557s) ,

Fig. 2 v(s) for Exp(α) claim amounts with λ = 1, α = 1, c = 2, δ = 0.04 and γ = 0.5
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where all numbers are rounded to their last digit. Figure 2 depicts the expected dis-
counted tax payments as a function of initial capital s. Note that the trivial bounds
(10) are in this case 0.9615 ≤ v(s) ≤ 25 ∀s ≥ 0, whereas the exact value at zero is
v(0) = 4.4252 and the limit is given by v(∞) = γ/ρ = 12.9642.

Fig. 3 Exp(α) claim amounts with λ = 1, α = 1, c = 2, δ = 0.04 and γ = 0.5

For the determination of the optimal starting level M∗, Fig. 3(a) plots the functions
V(s, s) and v(s) simultaneously; the intersection point s = M∗ occurs at M∗ = 3.0529.
Figure 3(b) illustrates for s = 0 that M∗ = 3.0529 indeed maximizes the expected
discounted tax payouts vM(s) w.r.t. the choice of M.

Fig. 4 Exp(α) claim amounts with λ = 1, α = 1, c = 2, δ = 0.04 and γ = 0.1

Alternatively, for γ = 0.1 (but otherwise identical parameters), we get v(0) =
1.3640 < c

λ+δ
= 1.9231 and hence, due to Theorem 3 the optimal value for M is given

by M∗ = 0. Indeed, Fig. 4(a) shows that the functions V(s, s) and v(s) do not have
a positive intersection point and Fig. 4(b) illustrates for s = 0 that in this case M∗ = 0
maximizes the expected discounted tax payouts vM(s) w.r.t. the choice of M. Fig-
ure 5(a) depicts the value of v(0) for γ ranging from 0 to 1 together with the value
of V(0, 0) = 1.923, which does not depend on γ . The optimal value M∗ is positive
for γ > 0.1454. For γ → 1, the tax payment strategy converges to the dividend bar-
rier strategy with horizontal dividend barrier and correspondingly M∗ → b∗. Figure
5(b) depicts the value of M∗ as a function of γ for the numerical example given above
(note that b∗ = 7.9487 in this case).
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Fig. 5 Exp(α) claim amounts with λ = 1, α = 1, c = 2, δ = 0.04

Appendix

Here we collect some known results which are reproduced to make the paper more
self contained.

Lemma A.1 Let W1, W2, . . . be exponentially distributed with parameter λ and f(x)

non-negative and integrable. Then

(i) E
[ ∞∑

n=1
f(W1 + . . .+ Wn)

]
= λ

∫ ∞
0 f(x)dx;

(ii) E
[ ∞∏

n=1
(1 − f(W1 + . . .+ Wn))

]
= exp(−λ

∫ ∞
0 f(x)dx).

Both statements can be found, e.g., in [5] (statement (i) on p. 127 and statement (ii)
on p. 130, Prop. 3.6., in the language of Laplace functionals).

Proof. We first consider simple functions f(x) = ∑∞
i=1 αi1Ai (x). Since all terms in the

following finite sums are non-negative, we can interchange the order of summation:

∞∑

n=1

f(W1 + . . .+ Wn) =
∞∑

i=1

αi N(Ai) (A.1)

E
[ ∞∑

n=1

f(W1 + . . .+ Wn)
]

=
∞∑

i=1

αi E[N(Ai)] = λ

∞∫

0

f(x)dx , (A.2)

where in (A.2) we have used that N(Ai) = #{n : W1 + . . .+ Wn ∈ Ai} is Poisson dis-
tributed with parameter λ|Ai| with |A| the Lebesgue measure of the set A. For the
product we want to argue similarly:

∞∏

n=1

(1 − f(W1 + . . .+ Wn)) =
∞∏

i=1

(1 −αi)
N(Ai ) (A.3)
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E
[ ∞∏

n=1

(1 − f(W1 + . . .+ Wn))
]

=
∞∏

i=1

E
[
(1 −αi)

N(Ai )
]

(A.4)

=
∞∏

i=1

exp(−λαi |Ai |) = exp
(

−λ

∞∫

0

f(x)dx
)

, (A.5)

where in (A.4) we used that N(A1), N(A2), . . . are stochastically independent. For
(A.3) some care is needed since we have changed the order in the product which
is allowed only if the product on the left hand side of (A.3) is converging in the
following sense: either one term in the product is zero or the sum of logarithms of
the terms in the product is converging. We may exclude sets of measure zero since
they do not contribute to the expectation. Since the function f(x) is integrable, we
know from our first assertion that f(W1 + . . .+ Wn) → 0 almost surely. Assume that
f(W1 + . . .+ Wn) < 1/2 for all n ≥ k. Then for these n

− log(1 − f(W1 + . . .+ Wn)) ≤ 7

5
f(W1 + . . .+ Wn) .

Furthermore,
∑∞

n=1 f(W1 + . . .+Wn) < ∞ almost surely. This implies that the above
product is converging and thus (A.3) is true.
For general functions f(x) we approximate with simple functions f−(x) ≤ f(x) ≤
f+(x) for which

∫ ∞
0 | f+(x)− f−(x)|dx is small. Then the sum S = ∑∞

n=1 f(W1 +
. . .+ Wn) and the product P = ∏∞

n=1(1− f(W1 + . . .+ Wn)) are bounded by the cor-
responding quantities with f−(x) and f+(x), respectively:

∞∑

n=1

f−(W1 + . . .+ Wn) ≤ S ≤
∞∑

n=1

f+(W1 + . . .+ Wn)

∞∏

n=1

(1 − f−(W1 + . . .+ Wn)) ≥ P ≥
∞∏

n=1

(1 − f+(W1 + . . .+ Wn)) ,

and this proves the assertions for general functions f(x). �
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Abstract In this paper we extend the classical Cramér–Lundberg risk model by in-
cluding tax payments. The considered tax rule is to pay a certain proportion of the
premium income, whenever the portfolio is in a profitable situation. It is shown that
the resulting survival probability is a power of the survival probability without tax.
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Furthermore, an explicit expression for the expected discounted total sum of tax pay-
ments until ruin according to this taxation rule is derived and the optimal starting level
for taxation is determined. Finally, numerical illustrations of the results are given for
the case of exponential claim amounts.

Zusammenfassung Wir betrachten einen festen Steuersatz und Verlustvortrag
und zeigen, dass die Überlebenswahrscheinlichkeit mit Steuern eine Potenz der
Überlebenswahrscheinlichkeit ohne Steuern ist. Ferner wird eine explizite Formel für
die erwartete Gesamtsumme der diskontierten Steuern hergeleitet, und mit dieser For-
mel können optimale Schranken, bei deren Überschreitung Steuern fällig werden,
bestimmt werden. Alle diese Ergebnisse werden am Beispiel exponentialverteilter
Schadenhöhen numerisch illustriert.
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