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ABSTRACT

Let A be an associative algebra endowed with a superautomorphism ϕ.

In this paper we completely classify the finite-dimensional simple algebras

with superautomorphism of order ≤ 2. Moreover, after generalizing the

Wedderburn–Malcev Theorem in this setting, we prove that the sequence

of ϕ-codimensions of A is polynomially bounded if and only if the variety

generated by A does not contain the group algebra of Z2 and the algebra

of 2× 2 upper triangular matrices with suitable superautomorphisms.

1. Introduction

Let F be a fixed field of characteristic zero and let A = A0⊕A1be an associative

superalgebra over F , that is A is a direct sum of two vector subspaces such

that A0A0 +A1A1 ⊆ A0 and A0A1 +A1A0 ⊆ A1.
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In this paper we assume that A is endowed with a superautomorphism

ϕ : A→ A, that is a graded linear map such that for any homogeneous elements

a, b ∈ A0 ∪A1

(ab)ϕ = (−1)|a||b|aϕbϕ.

In recent years (see [5, 6]), superautomorphisms have been used in order to

prove tight relations between some graded linear maps that can be defined

on superalgebras, namely involutions, superinvolutions and pseudoinvolutions.

These linear maps play a prominent role in the setting of Lie and Jordan su-

peralgebras as can be seen for instance in [7, 12, 14].

One of the main results of this paper is the classification of the finite-dimen-

sional simple superalgebras endowed with a superautomorphism of order ≤ 2.

Such a classification also allows us to refine the Wedderburn–Malcev decompo-

sition, obtained in Section 4.

In the final part of the paper we study this kind of algebras in the setting of

the theory of polynomial identities. The great importance of superalgebras in

such a field was revealed by Kemer (see [10]) who proved that every associative

algebra satisfying a non-trivial polynomial identity over a field of characteristic

zero satisfies the same polynomial identities as the Grassmann envelope of a

finite-dimensional associative superalgebra.

Recall that a polynomial f(x1, . . . , xn) ∈ F 〈X〉, the free algebra on the count-

able set X = {x1, x2, . . .} over F , is a polynomial identity for an F -algebra A

if f(a1, . . . , an) = 0 for any choice of ai ∈ A. The set of all identities satisfied

by A forms a T -ideal of F 〈X〉 (an ideal invariant under all endomorphisms of

the free algebra) and it is denoted by Id(A).

Knowing the polynomial identities satisfied by a given algebra is a very dif-

ficult problem in ring theory that was solved completely just in a few cases.

So, in order to get some information about the polynomial identities satisfied

by an algebra, in 1972, Regev introduced the so-called codimension sequence

of an algebra A, denoted cn(A), n = 1, 2, . . .. Such a sequence gives an actual

quantitative measure of the identities satisfied by an algebra. In [15], Regev

proved the most important feature of cn(A): in case A is a PI-algebra, i.e., it

satisfies a non-trivial polynomial identity, then cn(A) is exponentially bounded.

In [8, 9] Kemer showed that, given any PI-algebra A, cn(A), n = 1, 2, . . . ,

cannot have intermediate growth, i.e., either is polynomially bounded or

grows exponentially. Such a result is a consequence of the following
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theorem: cn(A), n = 1, 2, . . ., is polynomially bounded if and only if the Grass-

mann algebra G and the algebra of 2× 2 upper triangular matrices UT2 do not

satisfy all the identities of A.

In the last part of the paper we obtain an analogous result for superalgebras

with superautomorphism. More precisely, we shall prove that the correspond-

ing ϕ-codimensions of A are polynomially bounded if and only if the variety

generated by A does not contain the group algebra of Z2 and the algebra UT2

with suitable superautomorphisms.

2. Preliminaries

Throughout this paper F will denote a field of characteristic zero andA=A0⊕A1

an associative superalgebra (also called (Z2-)graded algebra) over F. The ele-

ments of A0 and A1 are called homogeneous of degree zero (or even elements)

and of degree one (or odd elements), respectively, and they satisfy the proper-

ties A0A0 +A1A1 ⊆ A0 and A0A1 +A1A0 ⊆ A1.

Now assume that the superalgebra A is endowed with a superautomorphism,

that is a graded linear map ϕ : A −→ A (i.e. a map preserving the grading)

such that

(ab)ϕ = (−1)|a||b|aϕbϕ,

for any homogeneous elements a, b ∈ A. Here |c| denotes the homogeneous

degree of c ∈ A0 ∪A1.

Notice that A0 is just an algebra with an automorphism.

In what follows we shall consider only superautomorphisms ϕ of order ≤ 2,

i.e., (aϕ)ϕ = a for all a ∈ A and we shall say that A is a superalgebra with a

superautomorphism (we shall omit the order of ϕ) or a ϕ-superalgebra.

Since charF = 0, we can write A = A+
0 ⊕A−

0 ⊕A+
1 ⊕A−

1 , where for i = 0, 1,

A+
i = {a ∈ Ai | aϕ = a} and A−

i = {a ∈ Ai | aϕ = −a} denote the sets of

symmetric and skew elements of Ai, respectively.

One can define in a natural way a superautomorphism on the free associative

superalgebra F 〈Y ∪Z〉 = F0 ⊕F1 on the countable set Y ∪Z over F, where we

regard the variables of Y as even and those of Z as odd. Here F0 is the subspace

of F 〈Y ∪Z〉 spanned by all monomials in the variables of Y ∪Z having an even

number of variables of Z and F1 is the subspace spanned by all monomials

having an odd number of variables of Z.
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We shall write F 〈Y ∪Z,ϕ〉 for the free superalgebra with superautomorphism

on the countable set Y ∪Z over F. It is useful to regard F 〈Y ∪Z,ϕ〉 as generated
by even and odd symmetric variables and by even and odd skew variables: if

for i = 1, 2, . . . , we let y+i = yi+y
ϕ
i , y

−
i = yi−yϕi , z+i = zi+z

ϕ
i and z−i = zi−zϕi ,

then

F 〈Y ∪ Z,ϕ〉 = F 〈y+1 , y−1 , z+1 , z−1 , y+2 , y−2 , z+2 , z−2 , . . .〉.
A polynomial f(y+1 , . . . , y

+
m, y

−
1 , . . . , y

−
n , z

+
1 , . . . , z

+
r , z

−
1 , . . . , z

−
s ) ∈ F 〈Y ∪Z,ϕ〉

is a ϕ-polynomial identity of A (or simply a ϕ-identity), and we write f ≡ 0, if,

for all u+1 , . . . , u
+
m∈A+

0 , u
−
1 , . . . , u

−
n ∈A−

0 , v
+
1 , . . . , v

+
r ∈A+

1 and v−1 , . . . , v
−
s ∈A−

1 ,

we have that

f(u+1 , . . . , u
+
m, u

−
1 , . . . , u

−
n , v

+
1 , . . . , v

+
r , v

−
1 , . . . , v

−
s ) = 0.

We denote by Idϕ(A) = {f ∈ F 〈Y ∪ Z,ϕ〉 | f ≡ 0 on A} the Tϕ2 -ideal of ϕ-

identities of A, i.e., Idϕ(A) is an ideal of F 〈Y ∪Z,ϕ〉 invariant under all graded
endomorphisms of F 〈Y ∪ Z〉 commuting with the superautomorphism ϕ.

As in the super case, it is easily seen that in characteristic zero, every ϕ-

identity is equivalent to a system of multilinear ϕ-identities. Hence if we denote

by

Pϕn = spanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈ {y+i , y−i , z+i , z−i }, i = 1, . . . , n}

the space of multilinear polynomials of degree n in the variables y+1 , y
−
1 , z

+
1 ,

z−1 , . . ., y+n , y
−
n , z

+
n , z

−
n (i.e., y+i or y−i or z+i or z−i appears in each monomial

at degree 1), the study of Idϕ(A) is equivalent to the study of Pϕn ∩ Idϕ(A), for

all n ≥ 1. The non-negative integer

cϕn(A) = dimF
Pϕn

Pϕn ∩ Idϕ(A)
, n ≥ 1,

is called the n-th ϕ-codimension of A.

Let n ≥ 1 and write n = n1 + · · ·+n4 as a sum of four non-negative integers.

We denote by Pn1,...,n4 ⊆ Pϕn the vector space of the multilinear polynomials in

which the first n1 variables are even symmetric, the next n2 variables are odd

symmetric, the next n3 variables are even skew and the last n4 variables are

odd skew. Now if we set

cn1,...,n4(A) = dimF
Pn1,...,n4

Pn1,...,n4 ∩ Idϕ(A)
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it is immediate to see that

(1) cϕn(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
cn1,...,n4(A)

where
(

n
n1,...,n4

)
= n!

n1!···n4!
stands for the multinomial coefficient. Hence the

growth of cϕn(A) is related to the growth of multinomial coefficients and

of cn1,...,n4(A), for any n = n1 + · · ·+ n4. Since for any n = n1 + · · ·+ n4,

cn1,n2,n3,n4(A) ≤ cn(A),

where cn(A) is the n-th ordinary codimension of A (see [1, Remark 2.1]), we

get that cn(A) ≤ cϕn(A) ≤ 4ncn(A), n = 1, 2, . . . ; hence the following corollary

holds.

Corollary 1: If A is a PI-superalgebra with superautomorphism ϕ, then

cϕn(A), n = 1, 2, . . . , is exponentially bounded.

3. Superalgebras with superautomorphism generating varieties of al-

most polynomial growth

In this section we shall construct finite-dimensional superalgebras with super-

automorphism generating varieties of almost polynomial growth.

We recall that given a variety of algebras with superautomorphism V , the
growth of V is defined as the growth of the sequence of ϕ-codimensions of any

algebra A generating V , i.e., V = varϕ(A). Then we say that V has polynomial

growth if cϕn(V) is polynomially bounded and V has almost polynomial growth

if cϕn(V) is not polynomially bounded but every proper subvariety of V has

polynomial growth.

The proof of the following remark is immediate.

Remark 2: Let A = A0 ⊕A1 be a superalgebra.

(1) If A2
1 = 0 then the superautomorphisms on A coincide with the graded

automorphisms on A, i.e. automorphisms preserving the grading. In

particular, if A1 = 0 then the superautomorphisms on A coincide with

the automorphisms on A.

(2) If A is commutative then the superautomorphisms on A of order ≤ 2

coincide with the superinvolutions on A.
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In [1, 2] the authors classified the varieties of superalgebras with superinvolu-

tion of almost polynomial growth, by giving a complete list of algebras generat-

ing them. By the previous remark, any commutative algebra appearing in such

a list will generate a variety of superalgebras with superautomorphism of almost

polynomial growth. This is the case of the two-dimensional algebra F ⊕F with

trivial grading and exchange superinvolution ∗ given by (a, b)∗ = (b, a). In the

language of superalgebras with superautomorphism we get following.

Theorem 3 ([1, 3]): The superalgebra F ⊕F endowed with trivial grading and

exchange superautomorphism ϕ given by (a, b)ϕ = (b, a) generates a variety of

almost polynomial growth.

Given polynomials f1, . . . , fn ∈ F 〈Y ∪ Z,ϕ〉 let us denote by 〈f1, . . . , fn〉Tϕ
2

the Tϕ2 -ideal generated by f1, . . . , fn. Hence we have that

Idϕ(F ⊕ F ) = 〈[x1, x2], z+, z−〉Tϕ
2
,

for any variable x ∈ Y ∪ Z.
Now consider the algebra UT2 = UT2(F ) of 2× 2 upper-triangular matrices

over the field F :

UT2 =

{(
a c

0 b

)
| a, b, c ∈ F

}
.

We can see UT2 as a superalgebra with the only two non-isomorphic Z2-gradings:

Trivial grading: UT2 =

{(
a c

0 b

)}
⊕
{(

0 0

0 0

)}
;

Natural grading: UT2 =

{(
a 0

0 b

)}
⊕
{(

0 c

0 0

)}
.

The superalgebra UT2 with trivial grading will be denoted by UT2 whereas

we shall use the symbol UT gr
2 to indicate the superalgebra UT2 with natural

grading.

Moreover, let us consider the following two automorphisms on UT2 :

Trivial automorphism id:

(
a c

0 b

)id

=

(
a c

0 b

)
;

Natural automorphism ϕ:

(
a c

0 b

)ϕ
=

(
a −c
0 b

)
.
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Notice that both automorphisms are graded automorphisms on UT2 and UT gr
2 .

Hence, since in both gradings (UT2)
2
1 = 0, by Remark 2, we get four superalge-

bras with superautomorphism:

• UT2 is the algebra UT2 with trivial grading and trivial superautomor-

phism;

• UT sup
2 is the algebra UT2 with trivial grading and natural superauto-

morphism;

• UT gr
2 is the algebra UT2 with natural grading and trivial superauto-

morphism;

• UT gr,sup
2 is the algebra UT2 with natural grading and natural super-

automorphism.

Notice that the above algebras are not Tϕ2 -equivalent, i.e., their T
ϕ
2 -ideals are

different, as it is easily seen:

Idϕ(UT2) = 〈[y+1 , y+2 ][y+3 , y+4 ], y−, z+, z−〉Tϕ
2
,

Idϕ(UT sup
2 ) = 〈[y+1 , y+2 ], y−1 y−2 , z+, z−〉Tϕ

2
,

Idϕ(UT gr
2 ) = 〈[y+1 , y+2 ], y−, z+1 z+2 , z−〉Tϕ

2
,

Idϕ(UT gr,sup
2 ) = 〈[y+1 , y+2 ], y−, z+, z−1 z−2 〉Tϕ

2
.

The first three algebras, seen as ordinary algebras or superalgebras or algebras

with an automorphism of order 2, were proved to generate varieties of almost

polynomial growth (see [8, 9] and [16]). With the same approach it can be

proved that also the last one generates a variety of almost polynomial growth.

We summarize these results in the following.

Theorem 4: The algebras UT2, UT
sup
2 , UT gr

2 and UT gr,sup
2 generate varieties

of superalgebras with superautomorphism of almost polynomial growth.

4. A Wedderburn–Malcev decomposition

In this section we prove a Wedderburn–Malcev theorem for finite-dimensional

superalgebras with superautomorphism. Recall that if A is a superalgebra, a

subset (subalgebra, ideal) S ⊆ A is a graded subset (subalgebra, ideal) of A

if S = (S ∩A0)⊕ (S ∩A1). The following remark holds.
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Remark 5: Let A be a superalgebra with superautomorphism ϕ and let B ⊆ A

be a subalgebra.

(1) If B = B0 ⊕ B1 is a graded subalgebra of A then Bϕ = Bϕ0 ⊕ Bϕ1 is a

graded subalgebra of A.

(2) If I = I0 ⊕ I1 ⊆ B is a graded ideal (subset) of B then Iϕ = Iϕ0 ⊕ Iϕ1 is

a graded ideal (subset) of Bϕ.

(3) If I is a minimal graded ideal of B then Iϕ is a minimal graded ideal

of Bϕ.

From now on A = A0 ⊕ A1 denotes a finite-dimensional superalgebra with

superautomorphism ϕ of order ≤ 2 and J(A) its Jacobson radical.

Lemma 6: If B ⊆ A is a semisimple graded subalgebra of A, then also Bϕ is a

semisimple graded subalgebra of A.

Proof. By Remark 5, Bϕ is a graded subalgebra of A and we are left to prove

that Bϕ is semisimple, i.e., J(Bϕ) = 0, where J(Bϕ) denotes the Jacobson

radical of Bϕ. It is well known that J(Bϕ) is a graded nilpotent ideal of Bϕ.

We claim that J(Bϕ)ϕ is a nilpotent ideal of B. Let m be the smallest positive

integer such that J(Bϕ)m = 0 and let a1, . . . , am ∈ J(Bϕ)ϕ. Since J(Bϕ) is a

graded ideal of Bϕ we get that, for all i, ai = (bi + ci)
ϕ, where bi and ci are

homogeneous elements of J(Bϕ) of degree zero and one, respectively. Then

a1 · · · am =
∑

αj(d
j
1 · · · djm)ϕ

where either dji = bi or d
j
i = ci and αj = ±1. But J(Bϕ)m = 0 and, so, we

get that a1 · · · am = 0 and J(Bϕ)ϕ is nilpotent. Hence J(Bϕ)ϕ ⊆ J(B). But

since B is semisimple we get that J(Bϕ)ϕ = J(B) = 0 and, so, J(Bϕ) = 0.

By the Wedderburn–Malcev theorem for superalgebras [4], we can write

A = B + J,

where B is a semisimple graded subalgebra of A and J = J(A) = J0 ⊕ J1 is a

graded ideal. Moreover

B = B1 ⊕ · · · ⊕Bk,

where B1, . . . , Bk are simple graded algebras. The following result was proved

in [1, Lemma 4.2].
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Lemma 7: If B and B′ are semisimple graded subalgebras of A such that

A = B + J = B′ + J, with J2 = 0, then there exists x0 ∈ J0 such that

B′ = (1 + x0)B(1 − x0).

An ideal (subalgebra) I of A is a ϕ-ideal (-subalgebra) of A if it is a graded

ideal (subalgebra) and Iϕ = I.

Definition 8: Let A be a superalgebra with superautomorphism ϕ such

that A2 �= 0. We say that A is

- simple, as an ordinary algebra, if it has no non-trivial ideals.

- simple, as a superalgebra, or super simple if it has no non-trivial graded

ideals.

- simple, as a superalgebra with superautomorphism, or ϕ-simple if it has

no non-trivial ϕ-ideals.

Now we are in a position to prove the Wedderburn–Malcev Theorem for

superalgebras with superautomorphism.

Theorem 9: Let A be a finite-dimensional superalgebra with superautomor-

phism over a field F of characteristic zero. Then there exists a semisimple

ϕ-subalgebra B such that

A = B + J(A)

and J(A) is a ϕ-ideal of A. Moreover

B = B1 ⊕ · · · ⊕Bk

where B1, . . . , Bk are ϕ-simple algebras.

Proof. By the Wedderburn–Malcev theorem for superalgebras we can write

A = B + J

where B is a semisimple graded subalgebra of A and J = J(A), its Jacobson

radical, is a graded ideal of A. Since J is nilpotent, as in the proof of Lemma 6,

we have that Jϕ is a nilpotent ideal of A. But being J the maximal nilpotent

ideal of A, we get Jϕ ⊆ J and, so, J = Jϕ. Hence J is a ϕ-ideal of A.

If J = 0 or B = Bϕ then B is a semisimple superalgebra with superautomor-

phism and we are done. So assume that J �= 0 and B �= Bϕ.
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Suppose first that J2 = 0. By Lemma 6, Bϕ is a semisimple graded subalgebra

of A. Hence, by Lemma 7, we have that

Bϕ = (1 + x0)B(1− x0),

for some x0 ∈ J0. For any homogeneous element b ∈ B we have that

bϕ = (1 + x0)b̄(1− x0)

for some homogeneous element b̄ ∈ B with the same homogeneous degree as bϕ

and b. Hence

b = (bϕ)ϕ = ((1 + x0)b̄(1 − x0))
ϕ

= (1 + xϕ0 )b̄
ϕ(1− xϕ0 )

= (1 + xϕ0 )(1 + x0)b̃(1 − x0)(1 − xϕ0 )

= (1 + xϕ0 + x0)b̃(1− xϕ0 − x0)

for some b̃ ∈ B0 ∪B1 with the same homogeneous degree as b. Since J ∩B = 0

we obtain that

b = b̃ and (x0 + xϕ0 )b̃ = b̃(x0 + xϕ0 ).

It follows that, for any b ∈ B0 ∪B1,

bϕ = (1 + x0)b(1− x0)

=
(
1 +

x0 + xϕ0
2

+
x0 − xϕ0

2

)
b
(
1− x0 + xϕ0

2
− x0 − xϕ0

2

)
=
(
1 +

x0 − xϕ0
2

)
b
(
1− x0 − xϕ0

2

)
= (1 + x−0 )b(1− x−0 ),

where x−0 =
x0−xϕ

0

2 ∈ J−
0 .

Consider the subalgebra C = (1 +
x−
0

2 )B(1− x−
0

2 ) of A. Clearly C is a graded

subalgebra of A and by the above C is a ϕ-subalgebra. Also, since C is isomor-

phic to B, it is a semisimple ϕ-subalgebra of A.

Suppose now that J2 �= 0 and choosem ≥ 2 such that Jm �= 0 and Jm+1 = 0.

It is easy to see that Jm is a ϕ-ideal of A and, so, A/Jm is a superalgebra with

induced superautomorphism. Its Jacobson radical J(A/Jm) = J(A)/Jm is such

that J(A/Jm)m = 0. Hence, by induction on m, we have that there exists a

semisimple ϕ-subalgebra B′/Jm such that

A/Jm = B′/Jm + J/Jm.
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From J(B′/Jm) = 0 it follows that J(B′) = Jm and so, we can write

B′ = C + Jm,

where C is a semisimple graded subalgebra of B′. Since (Jm)2 ⊆ J2m = 0,

by the first part of the proof we can assume Cϕ = C, i.e., C is a semisimple

ϕ-subalgebra of A and we are done since

A = B′ + J = C + Jm + J = C + J.

By the Wedderburn–Malcev theorem for superalgebras, we can write

C = D1 ⊕ · · · ⊕Dh,

where D1, . . . , Dh are all the minimal graded ideals of C. Hence, by Remark 5,

for every i, Dϕ
i is also a minimal graded ideal of C and, so, Dϕ

i = Dj , for

some j ∈ {1, . . . , h}.
We now rename D1, . . . , Dh and we write

C = C1 ⊕ · · · ⊕ Ck

where either Ci = Dj with Dj = Dϕ
j or Ci = Dj ⊕ Dϕ

j , with Dj �= Dϕ
j .

Thus C1, . . . , Ck are minimal ϕ-ideals of C, i.e. ϕ-simple algebras.

5. Classifying simple superalgebras with superautomorphism

This section is devoted to the classification of simple superalgebras with super-

automorphism. Recall that we consider only superautomorphisms of order ≤ 2.

The following lemma goes in this direction.

Lemma 10: Let A be a finite-dimensional simple superalgebra with superauto-

morphism ϕ. Then A is either

• simple as a superalgebra or

• A = B ⊕Bϕ, for some simple superalgebra B.

Proof. If A is super simple we have nothing to prove.

Assume then that A is ϕ-simple but not super simple. Consider B a proper

non-zero graded ideal of A. It is not difficult to see that both B+Bϕ and B∩Bϕ
are graded ideals of A stable under the action of the superautomorphism ϕ.

Since A is ϕ-simple we get that A = B + Bϕ and that B ∩ Bϕ = {0}.
Hence A = B ⊕Bϕ.
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We are left to show that B is super simple. To this end, let I be a proper

non-zero graded ideal of B. Then I ⊕ Iϕ is a proper graded ideal of A stable

under ϕ, a contradiction.

In order to get a complete classification of the ϕ-simple superalgebras we need

the classification of the simple superalgebras.

Theorem 11: Let A be a finite-dimensional simple superalgebra over an alge-

braically closed field F of characteristic zero. Then A is isomorphic to one of

the following:

- Q(n) = Mn(F ⊕ cF ) = Q(n)0 ⊕ Q(n)1, where Q(n)0 = Mn(F ) and

Q(n)1 = cMn(F ) with c
2 = 1;

- Mk,h(F ), the algebra of n× n matrices, n = k+ h, k ≥ h ≥ 0, with the

following Z2-grading:

Mk,h(F ) =

{(
X 0

0 T

)}
⊕
{(

cc0 Y

Z 0

)}
,

where X,Y, Z, T are k × k, k × h, h× k, h× h matrices, respectively.

It is well-known that there is a one-to-one correspondence between Z2-grad-

ings and automorphisms of order ≤ 2. If A = A0 ⊕ A1 is a superalgebra

then A can be endowed with an automorphism ψ as follows: ψ : A → A such

that ϕ(a0+a1) = a0−a1, for all a0 ∈ A0, a1 ∈ A1. Conversely, let A be endowed

with an automorphism ψ of order ≤ 2 and let

Aψ0 = {a ∈ A | ψ(a) = a} and Aψ1 = {a ∈ A | ψ(a) = −a}.
Then A = A0 ⊕ A1 is a superalgebra with grading A0 = Aψ0 and A1 = Aψ1 .

Hence, in the language of algebras with an automorphism the previous theorem

can be rewritten as follows.

Theorem 12: Let A be a simple algebra over an algebraically closed field F

of characteristic zero endowed with an automorphism of order ≤ 2. Then A is

isomorphic to one of the following:

- Mn(F )⊕Mn(F ) with the exchange automorphism (a, b)ψ = (b, a);

- Mk,h(F ) = {(X Y
Z T )}, where k ≥ h ≥ 0 and(

X Y

Z T

)ψ
=

(
X −Y
−Z T

)
.
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Definition 13: Given a superalgebra B, we define B̄ to be the superalgebra

with the same graded vector space structure as B but with product ◦ given on

homogeneous elements a, b by the formula

a ◦ b := (−1)|a||b|ab.

The following remark can be easily proved.

Remark 14: The algebras B̄ and B are isomorphic as superalgebras.

Now consider the superalgebra B ⊕ B̄ with grading induced by the grading

on B and define on it the following superautomorphism:

ex : B ⊕ B̄ → B ⊕ B̄

with (a, b)ex = (b, a).

Given two superalgebras with superautomorphism (A,ϕ) and (C,ψ) we say

that they are isomorphic (as superalgebras with superautomorphism) if there

exists a graded isomorphism of algebras τ : A −→ C such that τ(aϕ) = τ(a)ψ ,

for any a ∈ A.

Let A = B⊕Bϕ be a finite-dimensional simple superalgebra with superauto-

morphism ϕ. An easy computation shows that the map

ψ : (B ⊕Bϕ, ϕ) −→ (B ⊕ B̄, ex)

a+ bϕ �−→ (a, b)

is an isomorphism of superalgebras with superautomorphism.

Hence, as a consequence of this result and Lemma 10, by taking into account

the classification of the simple superalgebras, we get the following result.

Theorem 15: If A = B ⊕Bϕ is a finite-dimensional simple superalgebra with

superautomorphism ϕ over an algebraically closed field F of characteristic zero,

then A is isomorphic to

- (Mk,h(F )⊕Mk,h(F ), ex) or

- (Q(n)⊕Q(n), ex).

We are left to investigate the case in which our superalgebra A with super-

automorphism ϕ is super simple. Actually, in light of the following result, we

have to consider only the case A ∼=Mk,h(F ).
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Proposition 16: It is not possible to define superautomorphisms of order ≤ 2

on the superalgebra Q(n).

Proof. Suppose that ϕ : Q(n) → Q(n) is a superautomorphism.

Since ϕ is in particular a graded linear map, for all a + cb ∈ Q(n), one can

write

ϕ(a+ cb) = f(a) + cg(b),

where f, g are linear maps on Mn(F ), f = ϕ|Mn(F ) and g : Mn(F ) →Mn(F ) is

such that g(a) = b if ϕ(ca) = cb.

Clearly f is an automorphism on Mn(F ).

Now let us prove that g(1) is a scalar matrix. We have that

cg(1)f(b) = ϕ(c1)ϕ(b) = ϕ(c1b) = ϕ(cb) = ϕ(cb1)

= ϕ(bc1) = ϕ(b)ϕ(c1) = f(b)cg(1) = cf(b)g(1).

It follows that g(1) commutes with f(b), for any b ∈ Mn(F ). Since f is in

particular surjective, g(1) commutes with any element of Mn(F ) and so it is a

scalar matrix.

Moreover, we have that g(1)2 = −1. In fact,

1 = f(1) = ϕ(1) = ϕ(c1 · c1) = −ϕ(c1)ϕ(c1) = −g(1)g(1) = −g(1)2.

In conclusion, we have proved that g(1) = α1 with α2 = −1. This leads to a

contradiction. In fact

c1 = ϕ2(c1) = ϕ(ϕ(c1)) = ϕ(cg(1)) = ϕ(cα1)

= αϕ(c1) = αcg(1) = αcα1 = −c1.

Finally let us assume that the ϕ-simple superalgebra A is isomorphic

to Mk,h(F ). In case h = 0, Mk,0(F ) =Mk(F ) is endowed with the trivial grad-

ing. Hence by Remark 2, the superautomorphisms on Mn(F ) coincide with the

automorphisms, which are described in the second item of Theorem 12. Notice

that the number of non-isomorphic automorphisms of order ≤ 2 coincides with

the number of partitions of n in 2 parts which is �n2 �+ 1.

We are left to consider the case h > 0. We start with the following lemma.
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Lemma 17: Let A = A0 ⊕ A1 be a superalgebra with non-trivial grading en-

dowed with a superautomorphism ϕ of order 2.

If A is ϕ-simple then either (A0, ϕ|A0) is simple, as an algebra with automor-

phism, or A0 = C1 ⊕C2, A1 = D1⊕D2, where (Ci, ϕ|Ci) are simple and Di are

irreducible A0-bimodules, ϕ-invariant. Moreover:

- C2D1 = C1D2 = D1D1 = D2D2 = D1C1 = D2C2 = {0}.
- D1D2 = C1, D2D1 = C2, C1D1 = D1, D1C2 = D1, C2D2 = D2,

D2C1 = D2.

Proof. The result can be proved by following word by word the proof of [13,

Theorem 12].

Now we shall prove that for the algebra Mk,h(F ) the first case of Lemma 17

cannot occur.

Proposition 18: If A = Mk,h(F ) is a superalgebra with non-trivial grading

endowed with a superautomorphism ϕ of order 2, then (A0, ϕ|A0) cannot be

simple as an algebra with automorphism.

Proof. Suppose by absurd that A0 = Mk(F ) ⊕Mh(F ) is simple as an algebra

with automorphism. Since Mk(F ) ⊕Mh(F ) is not simple (as an algebra), by

Theorem 12, we get that k = h and, up to isomorphism,

(A0, ϕ = ϕ|A0) = (Mk(F )⊕Mk(F ), ϕ),

where (a, b)ϕ = (bϕ, aϕ). Now let us consider the following elements:

a11 =

k∑
i=1

eii, a12 =

k∑
i=1

eik+i, a21 =

k∑
i=1

ek+ii, a22 =

2k∑
i=k+1

eii,

where the eij ’s are the elementary matrices. We have that

A0 =Mk(F )a11 ⊕Mk(F )a22, A1 =Mk(F )a12 ⊕Mk(F )a21

and aϕ11 = a22, a
ϕ
22 = a11.

Hence aϕ12 = (a11a12a22)
ϕ = a22a

ϕ
12a11 and so aϕ12 = ea21, for some e∈Mk(F ).

Analogously, aϕ21 = e′a12, for some e′ ∈ Mk(F ). Moreover, for any b ∈ Mk(F ),

we have that

ebϕa21 = ea21b
ϕa11 = ((a12)(ba22))

ϕ

= (ba12)
ϕ = ((ba11)a12)

ϕ = bϕa22ea21 = bϕea21.
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It follows that e ∈ Z(Mk(F )) ∼= F . In the same way it is possible to show

that e′ ∈ Z(Mk(F )) ∼= F .

Since ϕ has order 2, we have that a12 = (aϕ12)
ϕ = (ea21)

ϕ = eaϕ21 = ee′a12
and so ee′ = 1.

But, a22 = aϕ11 = (a12a21)
ϕ = −aϕ12aϕ21 = −ee′a22 and so ee′ = −1, a

contradiction.

By taking into account Lemma 17 and Proposition 18, we are able to prove

the following theorem.

Theorem 19: If Mk,h(F ), h > 0, is endowed with a superautomorphism of

order 2, then it is isomorphic to (Mk,h(F ), ϕ), where(
A B

C D

)ϕ
=

(
PAP PBQ

−QCP QDQ

)

with

P =

(
Ik1 0

0 −Ik2

)
, Q =

(
Ih1 0

0 −Ih2

)
,

and Ik1 , Ik2 , Ih1 , Ih2 , are the identity matrices of orders k1, k2, h1, h2, respec-

tively, k = k1 + k2, h = h1 + h2, k1 ≥ k2 and h1 ≥ h2.

Proof. According to Proposition 18 we have that (Mk,h(F ))0 is not simple as

an algebra with automorphism. Clearly

(Mk,h(F ))0 =Mk(F )⊕Mh(F ) and (Mk,h(F ))1 =Mk×h(F )⊕Mh×k(F ).

Now, by Lemma 17 we have that Mk(F ) and Mh(F ) are simple, as algebras

with automorphism. Hence there exists P ∈Mk(F ) with P
2 = Ik such that

ϕ|Mk(F )(A) = PAP, A ∈Mk(F ).

Analogously, there exists Q ∈Mh(F ) with Q
2 = Ih such that

ϕ|Mh(F )(D) = QDQ, D ∈Mh(F ).

On the other hand, according to Lemma 17, we have that Mk×h(F ) and

Mh×k(F ) are ϕ-invariant. Now, if we take a matrix units eij with i ∈ {1, . . . , k}
and j ∈ {k + 1, . . . , k + h}, we have that, for some α ∈ F ,

ϕ(eij) = ϕ(eiieijejj) = ϕ(eii)ϕ(eij)ϕ(ejj) = P [eiiPϕ(eij)Qejj ]Q = αPeijQ.



Vol. TBD, 2024 ALGEBRAS WITH SUPERAUTOMORPHISM 17

Let r ∈ {1, . . . , k} and s ∈ {k + 1, . . . , k + h}. As before, we get that

ϕ(ers) = βPersQ, for some β ∈ F . Next we prove that α = β. In fact

αPeijQ = ϕ(eij) = ϕ(eirersesj) = ϕ(eir)ϕ(ers)ϕ(esj)

= (PeirP )(βPersQ)(QesjQ) = βPeijQ.

Since ϕ2 = id, we have that

eij = ϕ2(eij) = ϕ(αPeijQ) = α2eij

and so α = ±1. Now, with the same argument, we get that ϕ(eji) = −αQejiP.
Obviously, we may assume α = 1. Hence(

A B

C D

)ϕ
=

(
PAP PBQ

−QCP QDQ

)
.

By Theorem 12 we know that (Mk(F ), ϕ|Mk(F )) is isomorphic to (Mk1,k2(F ), ψ)

for some k = k1+k2, k1 ≥ k2. Hence, without loss of generality we may assume

that P is similar to

P ′ =

(
Ik1 0

0 −Ik2

)
,

i.e., P ′ = LPL−1, for some matrix L. Analogously (Mh(F ), ϕ|Mh(F )) is isomor-

phic to (Mh1,h2(F ), ρ) for some h = h1 + h2, h1 ≥ h2. Hence M−1QM = Q′

where

Q′ =

(
Ih1 0

0 −Ih2

)
.

Then (Mk,h(F ), ϕ) is isomorphic to (Mk,h(F ), σ) where(
A B

C D

)σ
=

(
P ′AP ′ P ′BQ′

−Q′CP ′ Q′DQ′

)
.

In fact the map f : (Mk,h(F ), ϕ) −→ (Mk,h(F ), σ) defined by

f(

(
A B

C D

)
) =

(
LAL−1 LBM−1

MCL−1 MDM−1

)

is an isomorphism of superalgebras with superautomorphism.

The results of this section can be summarized in the following theorem, giving

the classification of simple superalgebra with superautomorphism.
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Theorem 20: Let A be a finite-dimensional simple superalgebra with super-

automorphism of order ≤ 2 over an algebraically closed field F of characteristic

zero. Then A is isomorphic to one of the following:

(1) Mk,h(F ), with superautomorphism ϕ defined as(
A B

C D

)ϕ
=

(
PAP PBQ

−QCP QDQ

)
,

where

P =

(
Ik1 0

0 −Ik2

)
, Q =

(
Ih1 0

0 −Ih2

)
,

with Ik1 , Ik2 , Ih1 , Ih2 , are the identity matrices of orders k1, k2, h1, h2,

respectively, k = k1 + k2, h = h1 + h2, k1 ≥ k2 and h1 ≥ h2.

(2) Mk,h(F )⊕Mk,h(F ) with the exchange superautomorphism ex.

(3) Q(n)⊕Q(n) with the exchange superautomorphism ex.

6. Superalgebras with superautomorphism of polynomial growth

In this section we shall characterize the varieties of superalgebras with super-

automorphism of polynomial growth generated by finite-dimensional algebras.

Let A = A0 ⊕ A1 be a superalgebra. We say that A is endowed with the

trivial superautomorphism ϕ if A1 = 0 and ϕ is the identity map.

Lemma 21: Let A be a finite-dimensional superalgebra with superautomor-

phism over an algebraically closed field F of characteristic zero and suppose

that F ⊕ F,UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 /∈ varϕ(A). Then A = B + J(A),

where B ∼= F ⊕ · · · ⊕ F is endowed with trivial (induced) superautomorphism.

Proof. By Theorem 9

A = A1 ⊕ · · · ⊕Ak + J,

where A1, . . . , Ak are finite-dimensional ϕ-simple superalgebras and J is the

Jacobson radical of A. According to Theorem 20, we have to consider just 4

cases.
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Case 1. Ai ∼= (Mk,0(F ), ϕ), k > 1.

In this case, as stated in item (1) of Theorem 20, the superautomorphism ϕ

is uniquely determined by the decomposition k = k1 + k2. Consider the subal-

gebra C = 〈a, b, c〉 of Ai generated by the elements

a = e11, b = e1,k1+k2 , c = ek1+k2,k1+k2 .

It is clearly a graded subalgebra with (induced) superautomorphism isomorphic

to UT2 in case k2 = 0 and to UT sup
2 in case k2 > 0. Hence UT2 or UT

sup
2 belongs

to varϕ(Ai) ⊆ varϕ(A), a contradiction.

Case 2. Ai ∼= (Mk,h(F ), ϕ), h > 0.

Consider the subalgebra C = 〈a, b, c〉, where
a = e11, b = ek+hk+h, c = e1k+h.

Clearly C is a graded subalgebra with superautomorphism. By Theorem 20,

since ϕ(e1k+k) = ±e1,k+h, we get that C is isomorphic (as a superalgebra with

superautomorphism) to UT gr
2 or UT gr,sup

2 , via the map f given by

f(a) = e11, f(b) = e22, f(c) = e12.

This implies that UT gr
2 or UT gr,sup

2 belongs to varϕ(Ai) ⊆ varϕ(A), a contra-

diction.

Cases 3 and 4. Ai ∼= (B ⊕ B̄, ex), where B is Mk,h(F ) or Q(n).

Consider the subalgebra C = 〈a, b〉 of Ai generated by the elements

a = (e11, 0) and b = (0, e11).

The linear map f : C → F ⊕ F given by

f(a) = (1, 0) and f(b) = (0, 1)

is an isomorphism of superalgebras with superautomorphism. Hence

F ⊕ F ∈ varϕ(Ai) ⊆ varϕ(A), a contradiction.

Hence, for every i we must have Ai ∼= M1,0(F ) = F with trivial superauto-

morphism and this completes the proof.

Lemma 22: Let A = A1 ⊕ · · · ⊕ Am + J be a finite-dimensional superalgebra

with superautomorphism over an algebraically closed field F of characteristic

zero, where for every i = 1, . . . ,m, Ai ∼= F is endowed with the trivial super-

automorphism. If UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 /∈ varϕ(A) then AiJAk = 0, for

all 1 ≤ i, k ≤ m, i �= k.



20 A. IOPPOLO AND D. LA MATTINA Isr. J. Math.

Proof. Suppose that there exist i, k ∈ {1, . . . ,m}, i �= k, such that AiJAk �= 0.

Then there exist elements a ∈ Ai, b ∈ Ak, j ∈ J such that ajb �= 0

with a2 = a = aϕ, b2 = b = bϕ and |a| = |b| = 0. Without loss of gen-

erality we may assume that j is a homogeneous element either symmetric or

skew.

Let C be the subalgebra of A generated by a, b, ajb which is a graded subal-

gebra with (induced) superautomorphism. Now let f : UT2 → C be the linear

map defined by

f(e11) = a, f(e22) = b, f(e12) = ajb.

Clearly f is an isomorphism of ordinary algebras. Moreover, f can be regarded

as an isomorphism of superalgebras with superautomorphism between C and

UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 , according as j is symmetric or skew of homoge-

neous degree 0 or 1, respectively.

In all the four cases we reach a contradiction and the proof is complete.

We are in a position to prove the following theorem characterizing the varieties

of superalgebras with superautomorphism of polynomial growth.

Theorem 23: Let A be a finite-dimensional superalgebra with superauto-

morphism over a field F of characteristic zero. Then the sequence cϕn(A),

n = 1, 2, . . . , is polynomially bounded if and only if

UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 , F ⊕ F /∈ varϕ(A).

Proof. By Theorems 3 and 4, the algebras F ⊕ F,UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2

generate varieties of exponential growth. Hence, if cϕn(A) is polynomially

bounded, then they cannot belong to the variety generated by A.

Conversely suppose that UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 , F ⊕F /∈ varϕ(A). Since

we are dealing with codimensions that do not change by extending the base field,

we may assume that the field F is algebraically closed. Hence, by Theorem 9

and Lemmas 21 and 22,

A = A1 ⊕ · · · ⊕Am + J,

where for every i = 1, . . . ,m, Ai ∼= F is endowed with the trivial superautomor-

phism and AiJAk = 0, for all 1 ≤ i, k ≤ m, i �= k. Hence A−
0 ⊕A+

1 ⊕A−
1 ⊆ J and,

if q is the least positive integer such that Jq = 0, then A−
0 ⊕A+

1 ⊕A−
1 generates

a nilpotent ideal of A of nilpotency index ≤ q. This says that cn1,n2,n3,n4(A) = 0
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as soon as n2 + n3 + n4 ≥ q (see [11, Theorem 2.2]). Hence, by (1), we get

(2) cϕn(A) =
∑

n1+···+n4
n2+n3+n4<q

(
n

n1, . . . , n4

)
cn1,...,n4(A).

Notice that the number of non-zero summands in (2) is bounded by q3 and

that
(

n
n1,...,n4

)
< nq ([11, Proposition 2.2]). Hence, since cr1,r2,r3,r4(A) ≤ cn(A)

and cn(A) ≤ ant (see [4, Theorem 7.2.14]), we get the desired conclusion.

As a consequence we have the following corollaries.

Corollary 24: The algebras UT2, UT
sup
2 , UT gr

2 , UT
gr,sup
2 , F ⊕ F are the only

finite-dimensional superalgebras with superautomorphism generating varieties

of almost polynomial growth.

Corollary 25: If A is a finite-dimensional superalgebra with superautomor-

phism, the sequence cϕn(A), n = 1, 2, . . . , either is polynomially bounded or

grows exponentially.
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CRUI-CARE Agreement.

References

[1] A. Giambruno, A. Ioppolo and D. La Mattina, Varieties of algebras with superinvolution

of almost polynomial growth, Algebras and Representation Theory 19 (2016), 599–611.

[2] A. Giambruno, A. Ioppolo and D. La Mattina, Superalgebras with involution or superin-

volution and almost polynomial growth of the codimensions, Algebras and Representation

Theory 22 (2019), 961–976.

[3] A. Giambruno and S. Mishchenko, Polynomial growth of the ∗-codimensions and Young

diagrams, Communications in Algebra 29 (2001), 277–28.

[4] A. Giambruno and M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathe-

matical Surveys and Monographs, Vol. 122, American Mathematical Society, Providence,

RI, 2005.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


22 A. IOPPOLO AND D. LA MATTINA Isr. J. Math.

[5] A. Ioppolo, Graded linear maps on superalgebras, Journal of Algebra 605 (2022), 377–

393.

[6] A. Ioppolo and F. Martino, Superinvolutions on upper-triangular matrix algebras, Jour-

nal of Pure and Applied Algebra 222 (2018), 2022–2039.

[7] V. G. Kac, Lie superalgebras, Advances in Mathematics 26 (1977), 8–96.

[8] A. R. Kemer, The Spechtian nature of T -ideals whose condimensions have power growth.,
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