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ABSTRACT

We investigate a problem of when commutative local domains have a finite

number of trace ideals. The problem is left for the case of dimension one.

In this paper, with a necessary assumption, we give a complete answer by

using integrally closed ideals. We also explore properties of such domains

related to birational extensions, reflexive ideals, and reflexive Ulrich mod-

ules. Special attention is given in the case of numerical semigroup rings

of non-gap four. We then obtain a criterion for a ring to have a finite

number of reflexive ideals up to isomorphism. Non-domains arising from

fiber products are also explored.

1. Introduction

Classification of ideals is one of the most classical problems in commutative

ring theory. It has been studied at least since the works of Dedekind on rings

of algebraic numbers. For a (one-dimensional) Dedekind domain, its ideal class
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group classifies the isomorphism classes of ideals. If a ring is not a Dedekind

domain, the situation becomes more complicate. One of the reasons may origi-

nate from the fact that classification of ideals relates to representations of the

ring in a one-dimensional local ring. Actually, the result by Greuel and Knörrer

[11] shows that a one-dimensional Cohen–Macaulay local ring satisfying some

mild assumptions has a finite number of isomorphism classes of ideals exactly

when it is of finite representation type (see also [22, Theorem 4.13]). Here we

say that a one-dimensional local ring is of finite representation type if it

has only finitely many torsion-free modules up to isomorphism (this definition

is not the usual one, but equivalent to it under our assumption; see [22] for de-

tails). More generally, for some special class X of ideals/module, the finiteness

problem, that is, the problem of when does X have only finitely many elements

up to isomorphism, is well considered. One can find references, for example,

[2, 7] and references therein.

In this paper, we study isomorphism classes of ideals in rings which are not

necessarily of finite representation type. We then focus on trace ideals for this

study. Let us recall their definition to explain our motivation and results more

precisely. Let R be a commutative Noetherian local ring. The trace ideal of

an R-module M is defined to be the ideal

trR(M) =
∑

f∈HomR(M,R)

Im f.

Then an ideal I in R is called a trace ideal if I = trR(M) for some R-

module M . While the notion of trace ideals has long been used as a technical

tool in commutative algebra, it itself has gained new attention in recent years

[6, 8, 16, 20, 23]. We should also mention the recent use of trace ideals to

develop the theory of rings which are close to Gorenstein [5, 12, 14].

One of the advantages in studying trace ideals can be explained by a simple

fact: if I and J are distinct trace ideals of a ringR, then they are non-isomorphic

(see [16, Corollary 1.2(a)] for example). By this fact, to see how many non-

isomorphic trace ideals there are, we only need to know what is the set of trace

ideals. We should mention a previous study [9] on the set of trace ideals. As

a particular question, the following is raised naturally and explored in several

papers:

Question 1.1 ([8, Question 3.7], [7, Question 7.16(1)],[16, 21]): When does a

Noetherian local ring have a finite number of trace ideals?
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In [21], the second author proved that if a local domain R has a finite number

of trace ideals, then dimR ≤ 1 and R is analytically unramified ([21, Lemma 2.4

and Theorem 2.6]). In the case of dimension one, it is also proven that ana-

lytically irreducible Arf local domains have a finite number of trace ideals ([21,

Corollary 5.5]). Here we refer to the paragraph before Corollary 3.10 for the

definition of Arf rings. Note that the notion of Arf rings originates from a clas-

sification of certain singular points of plane curves ([24]). We also remark that,

under some suitable assumptions, a Gorenstein local ring of dimension one has a

finite number of trace ideals if and only if it is a ring of finite representation type

[7, 16]. However, other than Arf rings and rings of finite representation type,

only few examples of rings having a finite number of trace ideals are known.

Due to the previous results, we mainly deal with analytically irreducible local

domains of dimension one. Then our first aim is to give a complete answer to

Question 1.1 by assuming some mild conditions. Let (R,m, k) be analytically

irreducible local domains of dimension one. Then the integral closure R of R

in the total ring of fraction Q(R) of R is finitely generated as an R-module

and a local ring. Suppose that the canonical map k → R/n, where n is the

maximal ideal of R, is an isomorphism (for instance, this is fulfilled if k is

algebraically closed). Let c = R : R denote the conductor of R, where the

colon is considered in Q(R). Set n = �R(R/(R : R)), where �R(∗) denotes the

length. Let v(x) denote the value of x ∈ Q(R). For 0 ≤ i ≤ n, there exists a

unique integrally closed ideal Ii such that �R(R/Ii) = i (see Setup 3.1). Let

T(R) = {nonzero trace ideals of a domain R}.
With these notations and assumptions, we obtain a criterion for a ring to have

a finite number of trace ideals. Note that for an ideal I, choosing q ∈ I such

that v(q) = min{v(x) | x ∈ I} is equivalent to saying that (q) is a minimal

reduction of I.

Theorem 1.2 (Theorems 3.8 and 4.1): Let n = �R(R/c) ≥ 3. If k is infinite,

then the following conditions are equivalent:

(1) T(R) is a finite set.

(2) All nonzero trace ideals are integrally closed ideals and contain the

conductor c, that is, T(R) = {Ii | 0 ≤ i ≤ n}.
(3) For each 1 ≤ i ≤ n− 2, there exists qi ∈ R such that

v(qi) = min{v(x) | x ∈ Ii} and IiIi+2 = qiIi+2.
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If R is a numerical semigroup ring k[[H ]] of a numerical semigroup

H = {a0 = 0 < a1 < a2 < · · · < an < an+1 < an+2 < · · · } ⊆ N,

then the following is also equivalent to the above conditions.

(4) aj + ai+1 − ai ∈ H for all i ∈ {1, . . . , n− 2} and j ∈ {i+ 2, . . . , n}.
As a corollary, we obtain that T(R) is a finite set and equal to the set of

integrally closed ideals if n = �R(R/c) ≤ 3 (Corollary 3.9). Furthermore, we

see that there are abundant examples of rings having a finite number of trace

ideals other than Arf rings (Examples 4.3 and 4.4). It is also observed that the

finiteness of T(R) is inherited by that of T(Ii : Ii) (Theorem 3.11). This can

be regarded as an analogue of a characterization of Arf rings by Lipman ([24,

Theorem 2.2]).

By using Theorem 1.2, we also try to understand the set Ref(R) of isomor-

phism classes of reflexive modules over a ring R. Here, an R-module M is

called reflexive if the canonical homomorphism M → HomR(HomR(M,R), R)

is an isomorphism. We remark that reflexive modules play an important role

in representation theory of Cohen–Macaulay rings. We refer to [7] for a brief

history of the study of reflexive modules. In this context, it is natural to ask

when Ref(R) is a finite set. In this paper, we mainly restrict our attention

to reflexive modules of rank one, that is, reflexive ideals. Such a restriction is

inspired by the following theorem given by Dao, Maitra, and Sridhar.

Theorem 1.3 ([7,Propositions 7.3 and 7.9]):Let (R,m, k) be a Cohen–Macaulay

local ring of dimension one. Assume R is almost Gorenstein, contains Q, and k

is algebraically closed. Then the following conditions are equivalent:

(1) Ref(R) is a finite set.

(2) R has a finite number of reflexive ideals up to isomorphism.

(3) T(R) is a finite set.

We also note that if R is Arf, then Ref(R) is a finite set ([18, Theorem 3.5]

and [4, Corollary 3.5]).

As a consequence of Theorem 1.2, we deduce that under the same assumption

as in Theorem 1.2, R has only finitely many reflexive ideals up to isomorphism

(Theorem 6.2) provided that T(R) is a finite set. In particular, we verify the

implication (3)⇒(2) of Theorem 1.3 by assuming that R is a domain instead of

that R is almost Gorenstein.
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Special attention is given in the case of n = 4. By observing Theorem 1.2,

we see that all rings R have a finite number of trace ideals if n ≤ 3. On the

other hand, it is also known that all rings R have a finite number of reflexive

ideals if n ≤ 3 ([7, Theorem 6.8]). Hence, the case of n = 4 is the next step to

study the relation between trace ideals and reflexive ideals. In conclusion, we

determine conditions under which a numerical semigroup ring has finite reflexive

ideals up to isomorphism for n = 4, as follows.

Theorem 1.4 (Theorem 7.1): Let R = k[[H ]] be a numerical semigroup ring

of a numerical semigroup

H = {a0 = 0 < a1 < a2 < · · · < an < an+1 < an+2 < · · · } ⊆ N,

where k is a field. Suppose that n = 4 and k is infinite. Then the following

conditions are equivalent:

(1) R has a finite number of reflexive ideals up to isomorphism.

(2) R has a finite number of reflexive trace ideals.

(3) All reflexive ideals are isomorphic to some monomial ideal containing

the conductor c.

(4) Either one of the following holds true:

(i) a2 − a1 + a3 ≥ a4, that is, T(R) is finite.

(ii) 2a3 − a1 < a4.

As a corollary, we obtain examples of a ring which has infinitely many trace

ideals, but has a finite number of reflexive ideals (Example 7.6). Note that

such examples do not exist when the rings are assumed to be Arf or almost

Gorenstein.

Let us explain how we organize this paper. In Section 2, we note several

lemmas, which we use throughout this paper. In particular, we study an equal-

ity IJ = qJ for ideals I, J and q ∈ I. Recall that this equality is used to

characterize the finiteness of trace ideals in Theorem 1.2(3). We also note that

the condition IJ = qJ is saying that J is I-Ulrich in [7, Definition 4.1]. In Sec-

tion 3, we prove Theorem 1.2. In Section 4, we apply Theorem 1.2 to numerical

semigroup rings, and give examples.

The subject of Section 5 is a little different from that of the other sections.

According to our results, the case of analytically irreducible domains is well-

explored. However, the case of non-domains is left open. Thus, in Section 5,

we examine the set of trace ideals of fiber products as a trial run. We describe
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the set of trace ideals containing a non-zerodivisor of fiber product R1 ×k R2

by those of R1 and R2 (Theorem 5.1). Section 6 comes back to the main focus

of this paper. We prove that for each ring R having finite trace ideals, R has a

finite number of reflexive ideals up to isomorphism. We also investigate reflexive

Ulrich modules under similar assumptions. In Section 7 we prove Theorem 1.4.

Convention 1.5: In the rest of this paper, all rings are commutative Noetherian

rings with identity. Let R be a ring. Then, Q(R) and R denote the total ring of

the fraction of R and the integral closure of R, respectively. We denote by R×

the set of units of R.

We say that I is a fractional ideal if I is a finitely generated R-submodule

of Q(R) containing a non-zerodivisor of R. For fractional ideals I and J , we

denote by I : J the fractional ideal {x ∈ Q(R) | xJ ⊆ I}. It is known that

an isomorphism I : J ∼= HomR(J, I) is given by the correspondence x 
→ x̂,

where x̂ denotes the multiplication map of x ∈ I : J (see [15, Lemma 2.1]). We

say that an ideal I is regular if I contains a non-zerodivisor of R. For a finitely

generated R-module M , �R(M) (resp. μR(M), e(M)) denotes the length of M

(resp. the number of minimal generators of M , the multiplicity of M). Set

T(R) = {regular trace ideals of R}.
Note that T(R) is precisely the set of nonzero trace ideals if R is a domain. In

addition, if R is finitely generated as an R-module, then c = R : R denotes the

conductor of R.

2. Preliminaries

Let (R,m) be a Cohen–Macaulay local ring of dimension one. The aim of this

section is to prepare several lemmas, which are used from the next section

onward.

Lemma 2.1 ([9, Corollary 2.2]): Let I be a regular ideal of R. The following

are equivalent:

(1) I is a trace ideal.

(2) (R : I)I = I.

(3) R : I = I : I.

Lemma 2.2: Let I and J be regular trace ideals of R such that I ⊆ J . Then,

J : J ⊆ I : I. In particular, (J : J)I = I.
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Proof. Since I ⊆ J , we have J : J = R : J ⊆ R : I = I : I by Lemma 2.1. By

noting that R ⊆ J : J , we have I ⊆ (J : J)I ⊆ (I : I)I = I.

Next we consider an equality IJ = qJ , where I and J are regular ideals

of R and q ∈ I. Such an equality plays a key role in our characterization of

the finiteness of the set of regular trace ideals given in the next section (see

Theorem 3.8). We also note that the condition IJ = qJ is saying that J is

I-Ulrich in [7, Definition 4.1].

Lemma 2.3: Let I and J be regular ideals of R and q ∈ I is a non-zerodivisor

of R. Then J : I ⊆ q−1J . Furthermore, J : I = q−1J if and only if IJ = qJ .

In particular, I : I ⊆ q−1I, and I : I = q−1I if and only if I2 = qI.

Proof. Let x ∈ J : I. Then qx ∈ Ix ⊆ J . It follows that x ∈ q−1J . Further-

more,

q−1J = J : I ⇐⇒ q−1J ⊆ J : I ⇐⇒ q−1IJ ⊆ I

⇐⇒ IJ ⊆ qI ⇐⇒ IJ = qI.

Lemma 2.4: Let I and J be regular ideals of R. Suppose that there exists an

element q ∈ I of R such that IJ = qJ . Then for each regular trace ideal L

with L ⊆ trR(J), an equality IL = qL holds.

Proof. Note that q is a non-zerodivisor of R since IJ is a regular ideal and

IJ = qJ ⊆ (q). Consider the evaluation map

ev : (R : J)⊗R J → trR(J),

x⊗ y 
→ xy,

where x ∈ R : J and y ∈ J . It induces a surjection J⊕n → trR(J) for

some n. Tensoring R/(q), we have a surjection (J/qJ)⊕n → trR(J)/q trR(J).

Since IJ = qJ , J/qJ is annihilated by I. Hence, I trR(J)/q trR(J) = 0, that is,

I trR(J) = q trR(J).

Let L be a regular trace ideal L with L⊆trR(J). Note that I trR(J)=q trR(J)

implies q−1I ⊆ trR(J) : trR(J). Then, we obtain that

q−1I ⊆ trR(J) : trR(J) ⊆ L : L

by Lemma 2.2. It follows that q−1IL ⊆ L; hence, IL = qL.

Next we give a correspondence between certain subsets of T(R) and T(I : I)

for a pair of ideals I and J with IJ = qJ .
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Proposition 2.5: Let I be a regular trace ideal of R, and let J be a regular

ideal of R with J ⊆ I. Suppose that there exists an element q ∈ I such that

IJ = qJ . Then

{X ∈ T(I : I) | X ⊆ J : I} = {q−1Y | Y ∈ T(R) such that Y ⊆ J}.
Proof. Set S := I : I. Note that q−1J = J : I ⊆ S by Lemma 2.3.

(⊇): Let Y ∈ T(R) such that Y ⊆ J . Then q−1Y ⊆ q−1J ⊆ S. On the other

hand, since Y ⊆ I, q−1Y S = q−1Y by Lemma 2.2. Hence, q−1Y is an ideal

of S. Check the equalities

(S : q−1Y )q−1Y = [(R : I) : q−1Y ]q−1Y

= (R : q−1IY )q−1Y = (R : Y )q−1Y = q−1Y,

where the third equality follows from IY = qY by Lemma 2.4. It follows

that q−1Y ∈ T(S). By Lemma 2.4 again, I(q−1Y ) = Y ⊆ J . Thus, q−1Y ⊆J :I.

(⊆): Let X ∈ T(S) such that X ⊆ J : I. Then

IX = I(S : X)X = I[(R : I) : X ]X = (R : IX)IX.

This means that IX ∈ T(R). Since X ⊆ J : I, q−1IX ⊆ q−1J ⊆ S. Hence,

q−1I ⊆ S : X = X : X . It follows that q−1IX ⊆ X . Therefore, we obtain

that X = q−1IX .

We have some applications of Proposition 2.5. First we deal with the case

of I = J . Then we obtain the following description of T(I : I).

Corollary 2.6: Let I be a regular trace ideal of R. Assume that there exists

an element q ∈ I such that I2 = qI. Then

T(I : I) = {q−1Y | Y ∈ T(R) such that Y ⊆ I}.
Proof. We may apply Proposition 2.5 by letting J = I.

Next we consider the case of �R(I/J) = 2. If I : I is local, then we get a

description of T(I : I) similar to Corollary 2.6. Before stating it, we prepare a

lemma.

Lemma 2.7: Let I, J be regular trace ideals ofR such that J⊆I and �R(I/J)=2.

Assume that I : I is a local ring, and there exists an element q ∈ I \J such that

IJ = qJ and I2 �= qI. Then the maximal ideal of I : I is q−1J .
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Proof. Set S := I : I. By our assumption, we have q−1IJ = J ⊆ I. It follows

by Lemma 2.3 that

q−1J � S � q−1I.

Here the first inequality follows by observing 1 ∈ S \ q−1J . By noting that

�R(q
−1I/q−1J) = �R(I/J) = 2, we obtain that �R(S/q

−1J) = 1. On the other

hand, q−1J is an ideal of S by Lemma 2.2. Hence,

0 < �S(S/q
−1J) ≤ �R(S/q

−1J) = 1.

This shows that q−1J is the maximal ideal of S.

Corollary 2.8: Let I, J be nonzero trace ideals of R such that J ⊆ I

and �R(I/J) = 2. Assume that I : I is a local ring, and there exists an el-

ement q ∈ I \ J such that IJ = qJ and I2 �= qI. Then

T(I : I) = {q−1Y | Y ∈ T(R) such that Y ⊆ J} ∪ {I : I}.
Proof. Since I : I is a local ring with the maximal ideal q−1J , it follows that

T(I : I) = {X ∈ T(I : I) | X ⊆ q−1J}∪{I : I}. Note that q−1J ⊆ J : I � I : I.

So, applying Proposition 2.5, we see the equality

{X ∈ T(I : I) | X ⊆ q−1J} = {q−1Y | Y ∈ T(R) such that Y ⊆ J}.

3. Trace ideals of curve singularities

In this section, let (R,m, k) be an analytically irreducible local domain of di-

mension one, that is, R is finitely generated as an R-module and R is a local

ring (hence, R is a discrete valuation ring). We assume that the canonical

map k → R/n, where n is the maximal ideal of R, is an isomorphism (e.g.,

k is an algebraically closed field or R is a numerical semigroup ring). With

this assumption, we investigate the structure of T(R). We use the following

notations:

Setup 3.1: (1) v : Q(R) → Z ∪ {∞} denotes the normalized valuation

associated to R.

(2) v(R) = {v(r) | 0 �= r ∈ R} denotes the value semigroup of R.

Set H = v(R).

(3) We write H = {a0 = 0 < a1 < a2 < · · · < an < an+1 < an+2 < · · · }.
Note that there exists an integer n such that an+i = an+ i for all i ≥ 0.

We choose such n as small as possible.
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In addition, let

T(R) = {regular trace ideals of R} as in the previous section, and

I(R) = {integrally closed ideals of R containing c}.

By letting Ii := {r ∈ R | v(r) ≥ ai} for all i ∈ {0, 1, . . . , n}, we obtain that

I(R) = {Ii | i = 0, . . . , n}

([17, Proposition 6.8.4]). Note that I0 = R, I1 = m, and In = c.

Remark 3.2: (1) Let r ∈ R be an element such that v(r) = ai, where

0 ≤ i ≤ n. Then the equality Ii = (r) + Ii+1 holds. In particular,

�R(Ii/Ii+1) = 1.

(2) The integer n appearing in Setup 3.1 (3) is equal to �R(R/c). Indeed, we

have equalities n = �R(R/I1)+�R(I1/I2)+· · ·+�R(In−1/In) = �R(R/c).

Fact 3.3: (1) ([16, Proposition 2.2]): Let I be a regular trace ideal of R.

Then, I contains c.

(2) ([3, Theorem 1]): I(R) is a subset of T(R).

(3) ([7, Theorem 6.8]): If n = 2, then T(R) = {R,m, c} = I(R).

On the basis of the above facts, we aim to explore the finiteness of T(R). Let

us start with the following technical proposition.

Proposition 3.4: Let 1 ≤ i ≤ n− 2. The following conditions are equivalent:

(1) For any element r ∈ R with v(r) = ai, the equality IiIi+2 = rIi+2 holds.

(2) There exists an element q ∈ R such that v(q) = ai and the equality

IiIi+2 = qIi+2 holds.

Assume i ≤ n − 3 and s ∈ R is an element such that v(s) = ai+1 and

Ii+1Ii+3 = sIi+3. Then the following is also equivalent to both of the above

conditions.

(3) There exists an element q ∈ R such that v(q) = ai and the inclusion

sIi+2 ⊆ (q) holds.

Proof. (1)⇒(2): This is obvious.

(2)⇒(1): Let r ∈ R with v(r) = ai. We first prove the following claim.

Claim 1: Ii+1Ij ⊆ (r) for all i+ 2 ≤ j ≤ n.
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Proof of Claim 1. We prove Claim 1 by descending induction on j. If j = n,

then r−1Ii+1In ⊆ {x ∈ Q(R) | v(x) ≥ an} = c; hence,

Ii+1In ⊆ rc ⊆ (r).

Suppose that j < n and Ii+1Ij+1 ⊆ (r). By noting that

q−1Ii+1Ij ⊆ q−1IiIi+2 = Ii+2 ⊆ R,

where the equality follows from the assumption (2), we obtain that

q−1Ii+1Ij ⊆ R ∩ {x ∈ Q(R) | v(x) ≥ aj + (ai+1 − ai)} ⊆ Ij+1.

This means Ii+1Ij ⊆ qIj+1. Choose a unit u ∈ R× such that q − ur ∈ Ii+1.

Then Ii+1Ij ⊆ qIj+1 ⊆ urIj+1 + Ii+1Ij+1. By the induction hypothesis,

Ii+1Ij+1 ⊆ (r). Hence we get Ii+1Ij ⊆ (r). Thus we may proceed with the

induction.

By Claim 1, we obtain that Ii+1Ii+2 ⊆ (r). Remembering that Ii = (r)+Ii+1 ,

it follows that

r−1IiIi+2 ⊆ R ∩ {x ∈ Q(R) | v(x) ≥ ai+2} = Ii+2,

that is, IiIi+2 = rIi+2.

Now assume i ≤ n − 3 and s ∈ R is an element such that v(s) = ai+1

and Ii+1Ii+3 = sIi+3. The implication (2)⇒(3) is clear. We consider the

reverse direction (3)⇒(2). Our assumption (3) says

q−1sIi+2 ⊆ R ∩ {x ∈ Q(R) | v(x) ≥ ai+3} = Ii+3.

On the other hand, we see inclusions

q−1Ii+2Ii+2 = s−1Ii+2(q
−1sIi+2) ⊆ s−1Ii+2Ii+3 ⊆ Ii+3.

Here the last inclusion follows by the assumption on s. Hence, we have inclusions

Ii+2Ii+2, sIi+2 ⊆ qIi+3. Remembering Ii = (q) + (s) + Ii+2, we get

IiIi+2 = qIi+2 + sIi+2 + Ii+2Ii+2 = qIi+2.

Lemma 3.5: When i = n − 1 or i = n, the equality I2i = qiIi holds, where

qi ∈ Ii such that v(qi) = ai. (Thus, Ii is stable in the sense of [23].)

Proof. This is clear if i = n. Assume that i = n− 1. Since In−1 = (qn−1) + In,

we only need to check I2n ⊆ qn−1In−1. Since

q−1
n−1I

2
n ⊆ {x ∈ Q(R) | v(x) ≥ 2an − an−1(≥ an)} ⊆ In ⊆ In−1,

we see the inclusion I2n ⊆ qn−1In−1.
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Let n ≥ 4, and fix an integer i such that 1 ≤ i ≤ n−3. Fix elements q, q′ ∈ R

such that v(q) = ai and v(q′) = ai+1. For each α ∈ R, we set

J (i)
α := (q + αq′) + Ii+2.

Although the ideal above depends on the choice of q and q′ (not only on i

and α), we use this notation to avoid complications. The following proposition

shows that J
(i)
α are trace ideals.

Proposition 3.6: Assume that IiIi+2 �= qIi+2 and Ii+1Ii+3 = q′Ii+3. Then

the following hold true.

(1) For each α ∈ R, J
(i)
α ∈ T(R).

(2) If α− β �∈ m, then J
(i)
α �⊇ J

(i)
β .

(3) If k is infinite, then T(R) is an infinite set.

Proof. Set f := q + αq′.
(1): Let g ∈ R : J

(i)
α . It is enough to prove that g ∈ J

(i)
α : J

(i)
α (see Lemma

2.1). Since c = In ⊆ J
(i)
α , g ∈ R : c = R. Hence, we can write g = u + h,

where h ∈ R with v(h) ≥ 1 and either u = 0 or u ∈ R×. Indeed, if v(g) > 0,

then we can choose u as 0 and h as g. If v(g) = 0, then there exists u ∈ R

such that g − u ∈ n since k ∼= R/n. That is, v(g − u) > 0. Thus, we can

define h as g − u. By noting that u ∈ R and g ∈ R : J
(i)
α , we have h ∈ R : J

(i)
α .

Moreover, to show g ∈ J
(i)
α : J

(i)
α , it is enough to check h ∈ J

(i)
α : J

(i)
α . We may

assume h �= 0.

Observe that h ∈ R : J
(i)
α ⊆ R : Ii+2, and so hIi+2 ⊆ (R : Ii+2)Ii+2 = Ii+2.

Since v(h) ≥ 1, we can obtain a more strict inclusion hIi+2 ⊆ Ii+3. As f ∈ J
(i)
α ,

we have hf ∈ R. Thus v(h) + ai = v(fh) ∈ H . Since v(h) ≥ 1, this implies

that either v(h) + ai = ai+1 or v(h) + ai ≥ ai+2. Suppose v(h) + ai = ai+1.

Then v(fh) = v(f)+v(h) = ai+1; hence, Ii+1Ii+3 = fhIi+3 by Proposition 3.4.

On the other hand, fhIi+2 = f(hIi+2) ⊆ fIi+3. By Proposition 3.4(3)⇒(1)

with q = f and s = fh, we reach an equality IiIi+2 = qIi+2. This contradicts

our assumption. It follows that v(h) + ai ≥ ai+2.

Hence,

hf ∈ R ∩ {x ∈ Q(R) | v(x) ≥ ai+2} = Ii+2 ⊆ J (i)
α .

By combining this inclusion with the inclusion hIi+2 ⊆ Ii+3 ⊆ J
(i)
α , we obtain

the desired inclusion hJ
(i)
α ⊆ J

(i)
α . Therefore, we conclude that J

(i)
α is a trace

ideal of R.
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(2): Suppose that α− β �∈ m and J
(i)
α ⊇ J

(i)
β . Then

(α− β)q′ = (q + αq′)− (q + βq′) ∈ J (i)
α .

By noting that α−β is a unit of R, q′ ∈ J
(i)
α . This means that there exists x ∈ R

and y ∈ Ii+2 such that q′ = xf + y (note that f = q+αq′). Since v(q′) = ai+1,

we have v(q′ − y) = ai+1. It follows that

Ii+1Ii+3 = (q′ − y)Ii+3

by Proposition 3.4. On the other hand, since q′ − y = xf , we can also ob-

serve that (q′ − y)Ii+2 = xfIi+2 ⊆ (f). Thus, by Proposition 3.4(3)⇒(1), we

get IiIi+2 = qIi+2. This contradicts our assumption.

(3): By (1) and (2), any pair of nonzero distinct representatives α and β of

the residue field k = R/m provides distinct trace ideals J
(i)
α and J

(i)
β . Hence,

there are trace ideals more than the cardinality of k.

Corollary 3.7: Let n ≥ 4. Assume there exists 1 ≤ i ≤ n − 3 such that

IiIi+2 �= qIi+2 for some (any) q ∈ R with v(q) = ai. Then the following hold

true:

(1) I(R) � T(R).

(2) If k is infinite, then T(R) is an infinite set.

Proof. We first note that for any element p ∈ In−2 with v(q) = n − 2, the

equality In−2In = qIn always holds. Thus we may pick i as the biggest integer

such that the inequality IiIi+2 �= qIi+2 holds for any q ∈ R with v(q) = ai. In

particular, for such i, we have Ii+1Ii+3 = q′Ii+3 for any q
′ ∈ R with v(q′) = ai+1.

(1): By Proposition 3.6(1), we have J
(i)
1 = (q + q′) + Ii+2 ∈ T(R). On

the other hand, by Proposition 3.6(2), J
(i)
1 cannot contain J

(i)
0 . In particular,

J
(i)
1 �= Ii since J

(i)
0 ⊆ Ii. This shows that J

(1)
1 �∈ I(R). Hence we obtain

that I(R) �= T(R). By recalling Fact 3.3, this proves I(R) � T(R).

(2): Now we assume k is infinite. Then, by Proposition 3.6(3), T(R) contains

an infinite subset {J (i)
α | α is a nonzero representative of k}.

Here we achieve the main theorem of this section.

Theorem 3.8: Let n ≥ 3. The following conditions are equivalent:

(1) T(R) = I(R).

(2) For each 1 ≤ i ≤ n− 2, there exists an element qi such that v(qi) = ai

and IiIi+2 = qiIi+2.
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(3) For each 1 ≤ i ≤ n − 2 and each element qi ∈ R with v(qi) = ai, the

equality IiIi+2 = qiIi+2 holds.

If the residue field k is infinite, then the following is also equivalent to the above

conditions.

(4) T(R) is a finite set.

Proof. (1)⇒(4): This is trivial.

(4)⇒(2): If n = 3, then the condition (2) is I1I3 = q1I3, and this is auto-

matically satisfied since I3 = c and R is a discrete valuation ring. Hence, the

assertion holds true. Assume that k is infinite and n ≥ 4. Then the assertion

holds by Corollary 3.7.

Hence, it is enough to prove that (1), (2), (3) are equivalent. (2)⇔(3) follows

from Proposition 3.4. Note that for the case of n = 3, the condition (2) is auto-

matically satisfied by Lemma 3.5. Hence, it is enough to prove the implications

(1)⇒(2) for n ≥ 4 and (3) ⇒ (1) for n ≥ 3.

(1)⇒(2): This implication follows from Corollary 3.7.

(3)⇒(1): Let I ∈ T(R). We aim to prove I ∈ I(R). Let i be an integer

such that ai = min{v(x) | x ∈ I}, and we choose qi ∈ I such that v(qi) = ai.

Note that I contains c by Fact 3.3(1). Hence, I = c if i = n. If i = n − 1, we

obtain that c � I ⊆ In−1. It follows that I = In−1. Hence, we may assume

that 1 ≤ i ≤ n− 2.

Since I contains c, we can write I = (qi, f2, . . . , fl) + c for some l ≥ 2, where

f2, . . . , fl ∈ Ii+1.

Claim 2: I contains Ij for each j ∈ {i+ 2, . . . , n}.
Proof of Claim 2. We proceed by descending induction on j. The case of j = n

is trivial. Suppose that j < n and I ⊇ Ij+1. Since j ≥ i+2 and i+1 ≥ i, we have

Ii+1Ij ⊆ IiIi+2 = qiIi+2. In other words, q−1
i IjIi+1 ⊆ Ii+2 ⊆ R. Hence, by not-

ing that f2, . . . , fl∈Ii+1, we obtain that q−1
i Ij [(f2, . . . , fl) + c]⊆q−1

i IjIi+1⊆R.

It follows that

q−1
i IjI = q−1

i Ij [(qi, f2, . . . , fl) + c] ⊆ Ij + q−1
i IjIi+1 ⊆ R.

In other words, we have q−1
i Ij ⊆ R : I = I : I, where the last equality follows

from Lemma 2.1. Therefore, we obtain that

Ij = q−1
i Ijqi ⊆ q−1

i IjI ⊆ (I : I)I = I.



Vol. TBD, 2024 SET OF TRACE IDEALS 15

By Claim 2, we have Ii+2 � I ⊆ Ii. By noting that �R(Ii/Ii+2) = 2 (see

Remark 3.2) and there is nothing to prove if I = Ii, we may write I = (qi)+Ii+2.

Let qi+1 ∈ R such that v(qi+1) = ai+1. By noting that IiIi+2 = qiIi+2, we

obtain that

(q−1
i qi+1)Ii+2 ⊆ (q−1

i )Ii+1Ii+2 ⊆ (q−1
i )IiIi+2 = (q−1

i )qiIi+2 = Ii+2 ⊆ R

and

(q−1
i qi+1)qi = qi+1 ∈ R.

From the above inclusions, we deduce q−1
i qi+1∈R :I. Hence, qi+1 ∈ (R : I)I=I.

Thus, we conclude I = (qi, qi+1) + Ii+2 = Ii.

Corollary 3.9: Let n ≤ 3. Then the equality T(R) = I(R) holds. In partic-

ular, T(R) is a finite set.

We aim to apply Theorem 3.8 to Arf rings. Here we say that a local ring

(R,m) is Arf if every regular integrally closed ideal I satisfies I2 = xI for

some x ∈ I (cf. [24, Theorem 2.2]).

Corollary 3.10 ([18, Proposition 3.1]): If R is an Arf ring, then T(R) = I(R).

Proof. Since R is an Arf ring, I2i = qiIi for all 1 ≤ i ≤ n− 2. By Lemma 2.4,

IiIi+2 = qiIi+2 for all 1 ≤ i ≤ n − 2. Hence, the assertion follows from Theo-

rem 3.8.

The following theorem shows that the finiteness of T(R) is inherited by that

of T(Ii : Ii).

Theorem 3.11: Assume the equality I(R) = T(R) holds. Let 1 ≤ i ≤ n and

qi ∈ R be an element such that v(qi) = ai. Then

T(Ii : Ii) =

⎧⎨
⎩
{q−1

i Ij | i ≤ j ≤ n} if I2i = qiIi,

{q−1
i Ij | i+ 2 ≤ j ≤ n} ∪ {Ii : Ii} if I2i �= qiIi.

In particular, T(Ii : Ii) is a finite set.

Proof. Note that every intermediate ring between R and R is a local ring be-

cause R is a local ring and finitely generated as an R-module. In particular,

Ii : Ii is a local ring for all 1 ≤ i ≤ n.

Suppose that either i = n or n − 1. Then, the equality I2i = qiIi holds by

Lemma 3.5.
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Thus, the assertion follows by Corollary 2.6. Now let 1 ≤ i ≤ n − 2. By

Theorem 3.8, we have an equality IiIi+2 = qiIi+2. Note that qi ∈ Ii \ Ii+2

and �(Ii/Ii+2)=2. Therefore, the assertion can be derived from Corollary 2.8.

Note that the reverse of Theorem 3.11 does not hold in general:

Example 3.12: Let R = k[[t5, t6, t7]] be a numerical semigroup ring over an

infinite field k. Then T(R) is infinite (see Example 7.6), but as m : m is equal

to k[[t5, t6, t7, t8, t9]], which is an Arf ring, we see that T(m : m) is finite.

4. Trace ideals of numerical semigroup rings

In this section we focus on numerical semigroup rings. Throughout this section,

let H ⊆ N be a numerical semigroup. Then, H defines a local k-subalgebra

R = k[[H ]] = k[[th | h ∈ H ]] ⊆ k[[t]],

where k[[t]] is the formal power series ring over a field k. Then R satisfies the

assumption written in the beginning of Section 3; hence, we reuse the notation

of Setup 3.1. Note that H is equal to the value semigroup v(R) of R.

Theorem 4.1: Let n ≥ 3. The following conditions are equivalent:

(1) T(R) = I(R).

(2) IiIi+2 = (tai)Ii+2 for all i ∈ {1, . . . , n− 2}.
(3) aj + ai+1 − ai ∈ H for all i ∈ {1, . . . , n− 2} and j ∈ {i+ 2, . . . , n}.

If the residue field k is infinite, then the following is also equivalent to the above

conditions.

(4) T(R) is a finite set.

Proof. The equivalence of (1), (2), and (4) follows by Theorem 3.8.

(2)⇒(3): Assume (2). This means that t−aiIiIi+2 = Ii+2 for each

i = 1, . . . , n− 2. Then, the elements tai+1 ∈ Ii+1 and taj ∈ Ii+2, where

j∈{i+2, . . . , n}, satisfy t−aitai+1taj ∈Ii+2⊆R. It shows that aj+ai+1−ai∈H .

(3)⇒(2): Note that the assumption (3) is equivalent to saying that

tai+1Ii+2 ⊆ (tai) for all i ∈ {1, . . . , n − 2}. We then show that for each

i ∈ {1, . . . , n− 2}, the equality IiIi+2 = taiIi+2 holds by descending induc-

tion on i. We know that the equality In−2In = tan−2In always holds. Let

i < n−2. By the induction hypothesis, we have Ii+1Ii+3 = (tai+1)Ii+3. Thanks

to Proposition 3.4 (3)⇒(1), we deduce the equality IiIi+2 = taiIi+2.
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We also note a characterization of numerical semigroups with T(R) = I(R)

and n = 4 as a special case of Theorem 4.1. In Section 7, we consider such a

situation again with paying attention to reflexive ideals.

Corollary 4.2: Assume k is infinite and n = 4. Then the following conditions

are equivalent:

(1) T(R) is finite.

(2) T(R) = I(R).

(3) a2 − a1 ≥ a4 − a3.

Proof. Since n = 4, the condition (3) of Theorem 4.1 is stated as follows:

a3 + a2 − a1, a4 + a2 − a1, a4 + a3 − a2 ∈ H.

Since the last two of the above are larger than a4, a4+ a2 − a1 and a4 + a3− a2

are automatically in H . Furthermore, we have a3 < a3 + a2 − a1. Hence,

a3 + a2 − a1 ∈ H if and only if a3 + a2 − a1 ≥ a4. Therefore, the assertion

follows from Theorem 4.1.

By using Theorem 4.1 and Corollary 4.2, we obtain infinitely many rings R

satisfying T(R) = I(R) other than Arf rings (see Corollary 3.10). Since Arf rings

have minimal multiplicity, we explored rings that are not of minimal multiplicity.

Although, at least to our knowledge, we are not able to describe every numerical

semigroups satisfying the conditions above by giving their systems of minimal

generators, we note some of them.

Example 4.3: The following numerical semigroup rings R satisfy T(R) = I(R)

and n = 4, but are not of minimal multiplicity. Let k be a field.

(1) R = k[[t11, t14, t18, t20, t21, t23, t24, t26, t27, t30]].

(2) R = k[[t9, t12, t16, t19, t20, t22, t23, t26]].

(3) R = k[[t5, t8, t12, t14]].

Example 4.4: Let n ≥ 3 be an integer, and let

H = {0} ∪ {3n+ 3i ∈ N | 0 ≤ i ≤ n− 1, but i �= 2 } ∪ {j ∈ N | j ≥ 6n}
be a numerical semigroup. Set R = k[[H ]]. Then

T(R) = I(R) and �R(R/(R : R)) = n.

Furthermore, R does not have minimal multiplicity. In particular, R is not an

Arf ring.
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Proof. We have

a1 = 3n, a2 = 3n+ 3, a3 = 3n+ 9, a4 = 3n+ 12, . . . , an−1 = 6n− 3,

and

an+k = 6n+ k for all k ≥ 0.

Hence, �R(R/(R : R)) = n. By noting that ai+1 − ai is either 3 or 6, where

i ∈ {1, 2, . . . , n− 3}, we obtain that for all j ∈ {i+2, . . . , n− 1}, aj + ai+1 − ai

is either aj + 3 or aj + 6. In both cases, we have aj + ai+1 − ai ∈ H . It follows

that H satisfies Theorem 4.1 (3), thus T(R) = I(R).

Since an+6 = 6n+6 = 2(3n+ 3) = 2a2, it is straightforward to check that R

does not have minimal multiplicity.

Let (R,m, k) be an analytically irreducible local domain of dimension one.

In what follows, we note the relation between the conditions T(R) = I(R)

and T(k[[v(R)]]) = I(k[[v(R)]]).

Remark 4.5: Let (R,m, k) be an analytically irreducible local domain of di-

mension one as in Section 3. We reuse the notation of Setup 3.1. Suppose

that T(R) = I(R). Then, T(k[[H ]]) = I(k[[H ]]).

Proof. Since T(R) = I(R), we have IiIi+2 = qiIi+2 for all i ∈ {1, . . . , n− 2}. It
follows that for all j ∈ {i+ 2, . . . , n},

qi+1qj ∈ IiIi+2 = qiIi+2 ⊆ (qi).

Hence, q−1
i qi+1qj ∈ R. Thus, −ai+ai+1+aj ∈ H . This concludes the assertion

by Theorem 4.1.

On the other hand, the reverse of the assertion in Remark 4.5 does not hold

in general.

Example 4.6: Let R = k[[t15 + t16, t18, t24, t27, tn | n ≥ 30]]. Then

v(R) = {0, 15, 18, 24, 27}∪ {n | n ≥ 30}.
Set H = v(R). Note that k[[H ]] is the ring of Example 4.4, where n = 5. Hence,

T(k[[H ]]) = I(k[[H ]]).

On the other hand, one can obtain that T(R) � I(R).



Vol. TBD, 2024 SET OF TRACE IDEALS 19

Indeed, assume that T(R) = I(R). Then, we have I1I3 = (t15 + t16)I3 by

Theorem 3.8. It follows that

t42= t18t24∈I1I3 = (t15+t16)I3 ⊆ (t15+t16)I3+t44R = (t39+t40, t42+t43)+t44R.

Hence, we can write t42 = f(t39 + t40) + g(t42 + t43) + h, where f, g ∈ R

and h ∈ t44R. Write f = a + f1 and g = b+ g1, where a, b ∈ k and f1, g1 ∈ R

with v(f1), v(g1) ≥ 15. Then

t42 − a(t39 + t40)− b(t42 + t43) = f1(t
39 + t40) + g1(t

42 + t43) + h ∈ t44R.

This is impossible. Hence, I1I3 �= (t15 + t16)I3. It follows that T(R) � I(R).

5. Trace ideals over fiber products

In this section, we discuss trace ideals over fiber products of local rings as a

trial for the case of non-domains. Let

R = R1 ×k R2

be a fiber product of Noetherian local rings (R1, n1, k) and (R2, n2, k) over k,

i.e., R is a subring {(s, t) ∈ R1×R2 | π1(s) = π2(t)} of a usual product R1×R2,

where π1 : R1 → k and π2 : R2 → k are canonical surjections. Let m denote the

maximal ideal of R. The canonical maps p1 : R → R1 and p2 : R → R2 are

surjective homomorphisms of rings. In addition, there are isomorphisms

i1 : n1 ∼= Ker p2 = n1 × (0)and i2 : n2 ∼= Ker p1 = (0)× n2

as R-modules. And m has a decomposition m = Ker p2⊕Ker p1 as an R-module.

Theorem 5.1: Let (R1, n1, k) and (R2, n2, k) be (not necessarily one-dimen-

sional Cohen–Macaulay) local rings with positive depth. Let R be a fiber prod-

uct R1 ×k R2 of R1 and R2 over k. Then

T(R) = {i1(I)⊕ i2(J) | I ∈ X1, J ∈ X2} ∪ {R},
where X1 and X2 are defined as follows:

(1) If R1 (resp. R2) is a discrete valuation ring, then X1 = {n1} (resp.

X2 = {n2}).
(2) If R1 (resp. R2) is not a discrete valuation ring, then X1 = T(R1)\{R1}

(resp. X2 = T(R2) \ {R2}).
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Proof. (⊆): Let L be an ideal in T(R) with I �= R. Then one has an equal-

ity L = i2p2(L) ⊕ i1p1(L). Indeed, the inclusion L ⊆ i2p2(L) ⊕ i1p1(L) is

clear. Since there are surjections i1p1 : L → i1p1(L) and i2p2 : L → i2p2(L),

it yields that i2p2(L) ⊕ i1p1(L) ⊆ trR(L) = L. Thus we only need to know

what p1(L) and p2(L) are. Note that both p1(L) and p2(L) are nonzero. In-

deed, if p1(L) = 0, then L = i2p2(L) is annihilated by i1(n1). This means that L

is not a regular ideal of R.

(1): If R1 is a discrete valuation ring, then p1(L) is isomorphic to R1
∼= n1.

Thus, we have a surjection L → i1(n1)(⊆ m). Therefore, i1(n1) is contained in

trR(L) = L. In particular, one obtains n1 ⊇ p1(L) ⊇ p1(i1(n1)) = n1.

(2): Suppose thatR1 is not a discrete valuation ring. What we need to prove is

that p1(L) belongs to T(R1)\{R1}. In order to show this, let f : p1(L) → R1 be

a homomorphism of modules. Assume that Im f = R1. Then, since there exists

a surjection R⊕a
1 → n1 for some integer a > 0, we obtain the surjective homo-

morphism L⊕a → R⊕a
1 → n1. Thus, i1(n1) is contained in trR(L)(= L), which

yields that p1(L) = n1. It follows that f induces a surjection n1 → R1; hence, R1

is a discrete valuation ring. This contradicts our assumption. We now see that

an inclusion Im f ⊆ n1 holds for any homomorphism f ∈ HomR1(p1(L), R1).

Take the composition i1fp1 : L → R. We have Im(i1fp1) ⊆ trR(L) = L. Hence,

we obtain that p1(L) ⊇ Im(p1i1fp1) = Im(p1i1f) = Im f . This means that p1(L)

is a trace ideal of R1.

(⊇): Let L = i1(I) ⊕ i2(J), where I ∈ X1 and J ∈ X2. Then, since

μR(L) = μR(i1(I)) + μR(i2(J)) > 1, L has no free summands. Hence,

HomR(L,R) = HomR(L,m) = HomR(i1(I)⊕ i2(J), i1(n1)⊕ i2(n2)).

Assume that f ∈ HomR(i1(I), i2(n2)). Then, since i1(I) is annihilated by i2(n2),

Im f is also annihilated by i2(n2). By noting that depthR2 > 0, it follows that

f = 0. By the same argument, we have HomR(i2(J), i1(n1)) = 0. Hence,

HomR(L,m) = HomR(i1(I), i1(n1))⊕HomR(i2(J), i2(n2)).

Therefore, it is enough to prove that

(5.1.1)
HomR(i1(I), i1(n1)) = HomR(i1(I), i1(I)) and

HomR(i2(J), i2(n2)) = HomR(i2(J), i2(J)).

Indeed, (5.1.1) shows that HomR(L,m) = HomR(L,L).
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If R1 (resp. R2) is a discrete valuation ring, then I = n1 (resp. J = n2).

Hence, (5.1.1) holds. If R1 (resp. R2) is not a discrete valuation ring, then

I ∈ T(R1) \ {R1} (resp. J ∈ T(R2) \ {R2}). In any case, (5.1.1) holds. This

completes the proof.

Corollary 5.2: Let R be a fiber product R1 ×k R2 of local rings (R1, n1, k)

and (R2, n2, k) with positive depth over k. Then T(R) is finite if and only if so

are both T(R1) and T(R2).

Example 5.3: Let R be a fiber product

k[[t5, t8, t12, t14]]×k k[[t
9, t12, t16, t19, t20, t22, t23, t26]].

Then, it is clear that R is not a domain. On the other hand, since both

T(k[[t5, t8, t12, t14]]) and T(k[[t9, t12, t16, t19, t20, t22, t23, t26]]) are finite by Ex-

ample 4.3, T(R) is also finite.

6. Some special reflexive modules

Throughout this section, we employ Setup 3.1. Denote by Ref1(R) the set of

isomorphism classes of reflexive modules of rank one over R. We say a fractional

ideal I is reflexive if R : (R : I) = I. Note that an ideal I is reflexive exactly

when its isomorphism class belongs to Ref1(R).

As a first part of this section, we prove that Ref1(R) is finite when the

equality T(R) = I(R) holds.

Lemma 6.1: Let M be a reflexive R-module of rank one. Then there exists a

reflexive ideal I of R such that I is isomorphic to M and contains c.

Proof. First note that M is isomorphic to some nonzero ideal J of R.

Set ai = min{v(x) | x ∈ J} and take an element q ∈ J such that v(q) = ai.

Then both of the integral closures of J and (q) are equal to Ii. Hence (q) is

a minimal reduction of J , that is, J�+1 = qJ� for some � > 0. By [7, Theo-

rem 3.5], J is isomorphic to an ideal I containing c. As M ∼= I, it is clear that I

is reflexive.

Theorem 6.2: Assume T(R) = I(R). Let qi be elements such that

v(qi) = ai for 1 ≤ i ≤ n − 1. Then there is an inclusion map from Ref1(R)

to I(R) ∪ {(qi) + Ii+2}i∈{1,...,n−2}. In particular, Ref1(R) is a finite set.
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Proof. Set J
(i)
α := (qi + αqi+1) + Ii+2 for α ∈ R and 1 ≤ i ≤ n− 2.

Let I be a reflexive ideal of R containing c. Fix an integer i and an element

q ∈ I such that ai = v(q) = min{v(f) | f ∈ I}. The inequality i ≤ n is obvious.

Claim 3: We have either I = Ii or i ≤ n− 2 and I = J
(i)
α for some α ∈ R.

Claim 4: If i ≤ n−2 and I = J
(i)
α for some α ∈ R, then I is isomorphic to J

(i)
0 .

Proof of Claim 3. The case where n− 2 ≤ i ≤ n is clear since I contains c. So

we may assume i ≤ n− 3. Since I contains c, R : I ⊆ R : c = R. Then observe

that q(R : I) ⊆ qR ∩R ⊆ {x ∈ R | v(x) ≥ v(q)} = Ii. Therefore

I = R : (R : I) ⊇ R : q−1Ii.

Using Theorem 4.1 and the assumption T(R) = I(R), we see that

q−1IiIi+2 ⊆ Ii+2 ⊆ R.

It follows that R : q−1Ii ⊇ Ii+2. We then have an inclusion I ⊇ Ii+2, which

yields that either I = Ii or J
(i)
α for some α ∈ R.

Proof of Claim 4. We set x := 1 + αq−1
i qi+1. Then qix = qi + αqi+1.

In view of Theorem 4.1, the assumption T(R) = I(R) implies xIi+2 = Ii+2.

Indeed, xIi+2 ⊆ Ii+2 follows from

xIi+2 ⊆ Ii+2 + αq−1
i qi+1Ii+2 and αq−1

i qi+1Ii+2 ⊆ αq−1
i IiIi+2 ⊆ Ii+2.

On the other hand, the inclusion xIi+2⊇Ii+2 follows from the observation

that xIi+2 contains c and all elements of order aj for i ≤ j ≤ n since v(x) = 0.

Thus we get

xJ
(i)
0 = (xqi) + xIi+2 = (qi + αqi+1) + Ii+2 = J (i)

α .

This means that J
(i)
0 is isomorphic to J

(i)
α via the multiplication by x.

By Claims 3 and 4, reflexive ideals containing c are only either Ij for 0 ≤ j ≤ n

or J
(i)
0 for 0 ≤ i ≤ n − 2 up to isomorphism. By combining this result with

Lemma 6.1, a system of representatives of Ref1(R) is a subset

of I(R) ∪ {J (i)
0 }i∈{1,...,n−2}.

Next we explore reflexive Ulrich modules over rings R satisfying an equality

mI3 = qI3 for some q ∈ m. Note that rings R satisfying T(R) = I(R) have the

equality mI3 = qI3 (Theorem 3.8). Let us recall the notion of Ulrich modules.



Vol. TBD, 2024 SET OF TRACE IDEALS 23

Definition 6.3 ([10, Definition 3.1]):We say that a finitely generatedR-moduleM

is an Ulrich module if M is maximal Cohen–Macaulay (equivalently, torsion-

free since dimR = depthR = 1), and e(M) = μR(M), where e(M) denotes the

multiplicity of M and μR(M) denotes the number of minimal generators of M .

It is known that M is Ulrich module if and only if mM = qM , where (q) is a

minimal reduction of m (see [10]).

In what follows, throughout this section, let (q) be a minimal reduction of m.

Lemma 6.4 ([1]): LetM be a finitely generated reflexive R-module such that M

has no free summands. Then, M can be regarded as an m : m-module. That is,

by regarding M as a submodule of Q(R)⊗R M ∼= Q(R)rankR(M), we have

(m : m)M = M.

Lemma 6.5: Let M be an Ulrich R-module. Then HomR(M,R) is a reflexive

Ulrich R-module.

Proof. By applying the R-dual to 0 → M
q−→ M → M/qM → 0, we obtain an

exact sequence

0 → HomR(M,R)
q−→ HomR(M,R) → Ext1R(M/qM,R).

Note that Ext1R(M/qM,R) is a free R/m-module since mM = qM . Hence, the

above exact sequence proves that HomR(M,R)/qHomR(M,R) is a free R/(q)-

module. It follows that

mHomR(M,R) ⊆ qHomR(M,R).

Hence, HomR(M,R) is an Ulrich R-module. The reflexivity of HomR(M,R)

follows from a well-known fact; see [13, Lemma 4.1] for example.

Lemma 6.6: Set S = m : m. If M is a reflexive Ulrich R-module, then M is a

reflexive S-module.

Proof. By Lemma 6.4, M can be regarded as an S-module. Let X be the kernel

of the canonical surjective S-homomorphism

m⊗S M → mM ;

a⊗ x 
→ ax

for a ∈ m and x ∈ M . Note that X is of finite length as an R-module since

there are equalities

rankR(X) = rankR(m⊗S M)− rankR(mM) = 0.
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Hence, by applying the R-dual to 0 → X → m⊗S M → mM → 0, we obtain an

isomorphism HomR(M ⊗S m, R) ∼= HomR(mM,R). Therefore, we obtain that

HomS(M,S) = HomS(M,HomR(m, R)) ∼= HomR(M ⊗S m, R)

∼= HomR(mM,R) = HomR(qM,R) ∼= HomR(M,R).

By noting that HomR(M,R) is again a reflexive Ulrich R-module by Lemma 6.5,

we obtain that

HomS(HomS(M,S), S) ∼= HomS(HomR(M,R), S)

∼= HomR(HomR(M,R), R) ∼= M.

Hence, M is reflexive as an S-module ([13, Lemma 4.1]).

We now characterize reflexive UlrichR-modules in terms of the endomorphism

algebra m : m of m.

Theorem 6.7: Suppose that an equality mI3 = qI3 holds. Set S = m : m.

Let M be a finitely generated R-module such that R and S are not in the direct

summand of M . Then, the following are equivalent:

(1) M is a reflexive Ulrich R-module.

(2) M is a reflexive S-module.

Proof. (1)⇒(2): This follows by Lemma 6.6.

(2)⇒(1): Suppose that M is a reflexive S-module. Then M is reflexive as an

R-module by [19, Theorem 1.3(1)]. Thus, we have only to show that M is an

Ulrich R-module.

Let n be the maximal ideal of S. Since S is not in the direct summand of M ,

M can be regarded as an n : n-module by Lemma 6.4. Suppose that m2 �= qm.

Then, by Lemma 2.7, n : n = q−1I3 : q−1I3 = I3 : I3. Hence, we have

q−1mM ⊆ (I3 : I3)M = M.

It follows that M is an Ulrich R-module.

Suppose that m2 = qm. Then, by Lemma 2.3, q−1m = S. Hence,

q−1mM = SM = M,

that is, M is an Ulrich R-module.

As an application, we obtain the finiteness of reflexive Ulrich R-modules up

to isomorphism when n is small. Before showing it, we need a lemma.
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Lemma 6.8: Suppose that R is not a discrete valuation ring. Let S = m : m

and cS denote the conductor of S. Then, �S(S/cS) < �R(R/c). Furthermore,

�S(S/cS) = �R(R/c)− 1 if and only if R has minimal multiplicity.

Proof. Note that cS = S : S = (R : m) : R = R : mR. Therefore, by noting

that mR = qR, we obtain that cS = R : qR = q−1c. It follows that

�S(S/cS) = �R(S/cS) = �R(qS/c) ≤ �R(m/c) = �R(R/c)− 1,

where the third inequality follows from qS ⊆ m.

The equality �S(S/cS) = �R(R/c) − 1 is equivalent to saying that qS = m.

This is also equivalent to saying that m2 = qm by Lemma 2.3.

Corollary 6.9: Assume that either of the following holds:

(1) n ≤ 3.

(2) n = 4, mI3 = qI3, and R is not of minimal multiplicity.

Then there exist only finitely many indecomposable reflexive Ulrich R-modules

up to isomorphism.

Proof. Set S = m : m. By Theorem 6.7, it is enough to show that there exist

only finitely many reflexive S-modules up to isomorphism.

By Lemma 6.8, �S(S/cS) ≤ 2, where cS is the conductor of S. Then, by

Lemma 3.5, S has minimal multiplicity. Let n be the maximal ideal of S, and

set S1 = n : n. Then, �S1(S1/cS1) ≤ 1. It follows that S1 again has minimal

multiplicity by Lemma 3.5. Therefore, S1 or the endomorphism algebra of the

maximal ideal of S1 is a discrete valuation ring. In any case, we obtain that S

is an Arf ring by [24].

In particular, there exist only finitely many reflexive S-modules up to iso-

morphism by [18, Corollary 3.6].

7. Reflexive ideals in numerical semigroup rings with small non-gaps

The purpose of this section is to explore the relation between the finiteness of

T(R) and that of Ref1(R) for numerical semigroup rings R. Here, Ref1(R)

denotes the set of isomorphism classes of reflexive modules of rank one over R,

as introduced in the beginning of Section 6. We maintain the notations of Sec-

tion 4. We already saw that both T(R) and Ref1(R) are finite if n = �R(R/c) ≤ 3

(Corollary 3.9 and [7, Theorem 6.8]). Thus, we focus on the case of n = 4. The
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goal of this section is to prove Theorem 7.1. Let us prepare notations to de-

scribe Theorem 7.1. We say that an ideal I is monomial if I is generated by

monomial elements. Set

RT(R) = {I ∈ T(R) | I is reflexive}.
Theorem 7.1: Suppose that n = 4 and k is infinite. Then the following con-

ditions are equivalent:

(1) For all I ∈ Ref1(R), I is isomorphic to some monomial ideal contain-

ing c.

(2) Ref1(R) is finite.

(3) RT(R) is finite.

(4) Either one of the following holds true:

(i) a2 − a1 + a3 ≥ a4, that is, T(R) is finite.

(ii) 2a3 − a1 < a4.

To prove Theorem 7.1, we note several lemmas.

Lemma 7.2: Let I be an ideal of R containing c. Then, R : I ⊆ R.

Proof. Since c ⊆ I, we obtain that

R : I ⊆ R : c = R : tanR = t−an(R : R) = R.

Lemma 7.3: Let I = (f)+c be an ideal of R, where f ∈ R. Then I ∼= (tv(f))+c.

Proof. f can be written in the form tv(f) + tv(f)x, where x ∈ R with v(x) ≥ 1.

Hence, c = (1 + x)c and

(tv(f)) + c ∼= (1 + x)[(tv(f)) + c] = (f) + (1 + x)c = I.

Lemma 7.4: Let I be an ideal of R. Let ai = min{v(f) ∈ H | f ∈ I}. Then:
(1) R+ tan−aiR ⊆ R : I.

(2) R : [R+ tan−aiR] = Ii. Hence, I ⊆ R : (R : I) ⊆ Ii.

Proof. (1): R ⊆ R : I is trivial. Note that tan−aiI ⊆ tanR = c since v(f) ≥ ai

for all f ∈ I. Hence, tan−aiIR ⊆ R, that is, tan−aiR ⊆ R : I.

(2): Note that R : [R + tan−aiR] = (R : R) ∩ (R : tan−aiR). On the other

hand, we obtain that

R : tan−aiR = tai−an(R : R) = tai−antanR = taiR.

Hence, R : [R + tan−aiR] = R ∩ taiR = Ii. Therefore, by (1), we obtain

that R : (R : I) ⊆ R : [R+ tan−aiR] = Ii.
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Lemma 7.5: Assume that n = 4 and a2 − a1 + a3 �∈ H . Then the following

hold true:

(1) For each α ∈ R, J
(1)
α := (ta1 + αta2) + I3 ∈ T(R).

(2) Let α, β ∈ k. If α �= β, then J
(1)
α �= J

(1)
β .

Proof. Since n = 4, the equality I2I4 = ta2I4 holds. On the other hand, the

inequality I1I3 �= ta1I3 follows by the assumption a2 − a1 + a3 �∈ H . So we may

apply Proposition 3.6.

Now we prove Theorem 7.1.

Proof of Theorem 7.1. (1)⇒(2): This is clear.

(2)⇒(3): Recall that for I, J ∈ T(R), I = J if I ∼= J ; see [16, Corollary 1.2(a)]

for example. Hence, we can regard RT(R) as a subset of Ref1(R). Thus,

(2)⇒(3) holds.

(3)⇒(4): Suppose that a2 − a1 + a3 < a4 and 2a3 − a1 ≥ a4. It is enough to

prove that RT(R) is infinite. Let α ∈ k and I = (ta1 +αta2 , ta3)+ c. Then, it is

enough to show that I ∈ Ref1(R). Indeed, by noting that a3 < a2−a1+a3 < a4

implies that a2−a1+a3 �∈ H , we have I = J
(1)
α ∈ T(R) by Lemma 7.5(1), where

J (1)
α := (ta1 + αta2) + I3.

We further prove that I = J
(1)
α is a reflexive ideal for each α ∈ k. Then, we

complete the proof since RT(R) is infinite by Lemma 7.5(2).

Set f = ta1 + αta2 and x = −αta2−a1 . Then f = ta1(1− x). Set

g = ta3−a1(1 + x+ · · ·+ x�),

where � ≥ a4. We obtain that

fg = ta3(1− x�+1), ta3g = t2a3−a1(1 + x+ · · ·+ x�), and gc ⊆ c.

Since we assume that 2a3−a1 ≥ a4, it follows that g ∈ R : I. By Lemma 7.4(1),

R+ tan−a1R+ (g) ⊆ R : I. Hence,

R : (R : I) ⊆ R : [R+ tan−a1R + (g)] = I1 ∩ (R : g)

by Lemma 7.4(2). Let h ∈ I1 ∩ (R : g). We can write

h = d1t
a1 + d2t

a2 + d3t
a3 + · · · ,
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where di ∈ k. Then,

gh ≡ ta3−a1(1 + x+ · · ·+ x�)(d1t
a1 + d2t

a2 + d3t
a3) (mod c)

≡ (1 + x+ · · ·+ x�)(d1t
a3 + d2t

a2+a3−a1) (mod c).

By noting that v(x) = a2 − a1, the gh’s coefficient of degree a2 + a3 − a1

is −αd1+d2. On the other hand, we have gh ∈ R and a2−a1+a3 �∈ H . Hence,

we obtain that −αd1 + d2 = 0. It follows that

h = d1(t
a1 + αta2) + d3t

a3 + · · · ∈ (ta1 + αta2 , ta3) + c = I.

Hence, I1 ∩ (R : g) ⊆ I. In conclusion, we obtain that

I ⊆ R : (R : I) ⊆ I1 ∩ (R : g) ⊆ I.

Hence I is a reflexive ideal.

(4)(i)⇒(1): This follows from Theorem 6.2.

(4)(ii)⇒(1): Suppose that I is a reflexive ideal. By Lemma 6.1, we may

assume that c ⊆ I. Then I forms one of the following. Let α, β ∈ k.

(a) I = I0, I1, I2, I3, I4.

(b) I = (ta2 + αta3) + c.

(c) I = (ta1 + αta2 + βta3) + c.

(d) I = (ta1 + αta2 , ta3) + c.

(e) I = (ta1 + αta3 , ta2 + βta3) + c.

For the case (a), there is nothing to prove. By Lemma 7.3, in the cases (b)

and (c), I is isomorphic to some monomial ideal containing c. Thus, it is enough

to prove the following claims:

Claim 5: Suppose that 2a3 − a1 < a4. Let I = (ta1 + αta2 , ta3) + c.

Then R : (R : I) = I1.

Claim 6: Suppose that 2a3 − a1 < a4. Let I = (ta1 + αta3 , ta2 + βta3) + c.

Then the following hold true:

(d-1) If a1 + a3 �= 2a2, then R : (R : I) = I1.

(d-2) If a1 + a3 = 2a2 and α �= −β2, then R : (R : I) = I1.

(d-3) If a1 + a3 = 2a2 and α = −β2, then I ∼= (ta1 , ta2) + c.

Proof of Claim 5. It is enough to prove that R : I ⊆ R + ta4−a1R. Indeed, if

R : I ⊆ R + ta4−a1R, then we have R : I = R + ta4−a1R by Lemma 7.4(1).

Hence, R : (R : I) = I1 by Lemma 7.4(2).
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Let g ∈ R : I. Then, by Lemma 7.2, we can write g = c0 + g′, where c0 ∈ k

and g′ ∈ R : I such that v(g′) > 0. Then g′(ta1 + αta2) ∈ R and g′ta3 ∈ R

since g′I ⊆ R. This proves that

v(g′) + a1 ∈ H and v(g′) + a3 ∈ H.

Hence, we have v(g′) + a1 = ai for some i ≥ 2, and ai − a1 + a3 ∈ H . On the

other hand, by the assumption, we have a3 < a3+a2−a1 < 2a3−a1 < a4. Thus,

a3+a2−a1, 2a3−a1 �∈ H . This proves that i �= 2, 3. Therefore, v(g′) ≥ a4−a1,

that is, g′ ∈ ta4−a1R. It follows that g = c0 + g′ ∈ R+ ta4−a1R.

Proof of Claim 6. (d-1): This proof proceeds in the same way as the proof of

Claim 5. As we explain in the beginning of the proof of Claim 5, it is enough

to prove that R : I ⊆ R + ta4−a1R. Let g ∈ R : I and write g = c0 + g′,
where c0 ∈ k and g′ ∈ R : I such that v(g′) > 0. Then g′(ta1 + αta3) ∈ R

and g′(ta2 + βta3) ∈ R since g′I ⊆ R. This proves that

v(g′) + a1 ∈ H and v(g′) + a2 ∈ H.

Hence, we have v(g′) + a1 = ai for some i ≥ 2, and ai − a1 + a2 = aj for

some j ≥ 3. We show that i ≥ 4. Assume that i = 2. Then 2a2 − a1 = aj

for some j ≥ 3. By the assumption of (d-1), we obtain that j �= 3. But,

because 2a2−a1 < 2a3−a1 < a4, j ≥ 4 is also impossible. Thus, i �= 2. Assume

that i = 3. Then a3−a1+a2 = aj for some j ≥ 3. Since a3 < a3−a1+a2, j �= 3.

It follows that a3−a1+a2 ≥ a4. This contradicts the assumption 2a3−a1 < a4.

Therefore, i ≥ 4. It follows that v(g′) ≥ a4 − a1, that is, g
′ ∈ ta4−a1R. Hence,

g = c0 + g′ ∈ R + tan−a1R.

(d-2): Set s = a2 − a1. By the assumptions, a3 = 2a2 − a1 = a1 + 2s and

a3 + 2s = 2a3 − a1 < a4. Hence, we obtain that

a2 = a1 + s, a3 = a1 + 2s, and a4 − a3 ≥ 2s+ 1.(7.5.1)

Set

f1 = ta1 + αta1+2s and f2 = ta1+s + βta1+2s.

Then R : I = (R : f1) ∩ (R : f2) ∩ R by Lemma 7.2. Let g ∈ R : I, and write

g = c0+ c1t+ c2t
2+ · · · , where ci ∈ k. Then, for all x ≥ a1+2s, we obtain that

(7.5.2)
(the f1g’s coefficient of degree x) = cx−a1 + αcx−(a1+2s),

(the f2g’s coefficient of degree x) = cx−(a1+s) + βcx−(a1+2s).
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Here, suppose that x, x+ s �∈ H . By (7.5.2), we obtain that

cx−a1 + αcx−(a1+2s) = 0,(7.5.3)

cx+s−a1 + αcx+s−(a1+2s) = 0,(7.5.4)

cx−(a1+s) + βcx−(a1+2s) = 0,(7.5.5)

cx+s−(a1+s) + βcx+s−(a1+2s) = 0.(7.5.6)

By (7.5.3), (7.5.6), and (7.5.5), we have

−αcx−a1−2s = cx−a1 = −βcx−a1−s = β2cx−a1−2s.(7.5.7)

Therefore, since we assume that α �= −β2, we obtain that cx−a1−2s = 0. It

follows that

cx−a1+s = cx−a1 = cx−a1−s = cx−a1−2s = 0(7.5.8)

by (7.5.3)–(7.5.6). That is, if x, x+ s �∈ H , then we have (7.5.8).

On the other hand, x, x + s �∈ H holds for all a3 + 1 ≤ x ≤ a4 − s − 1.

Note that the number of (consecutive) integers between a3 + 1 and a4 − s− 1

is a4 − s − 1 − a3 ≥ s by (7.5.1). Therefore, the fact that (7.5.8) holds for

all x = a3 + 1, . . . , a4 − s− 1 turns out that

c(a3+1)−a1−2s = · · · = c(a4−s−1)−a1+s = 0.

By noting that (a3 + 1)− a1 − 2s = 1 and (a4 − s− 1)− a1 + s = a4 − a1 − 1

due to (7.5.1), we obtain that

g = c0 + ca4−a1t
a4−a1 + ca4−a1+1t

a4−a1+1 + · · · ∈ R+ ta4−a1R.

Therefore, by combining this result with Lemma 7.3,

R : (R : I) = R : (R+ ta4−a1R) = I1.

(d-3): Suppose that a1 + a3 = 2a2 and α = −β2. Set s = a2 − a1. Note that

we have (7.5.1). Hence,

(ta1 , ta2) + c =(ta1 , ta1+s) + c = (ta1 − βta1+s, ta1+s) + c

∼=(1 + βts)[(ta1 − βta1+s, ta1+s) + c]

=(ta1 − β2ta1+2s, ta1+s + βta1+2s) + (1 + βts)c

=(ta1 + αta1+2s, ta1+s + βta1+2s) + c

=I.
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By Claims 5 and 6, in the cases (d) and (e), a reflexive ideal I is isomorphic

to some monomial ideal containing c, respectively. Therefore, for each of the

cases (a)–(e), I is isomorphic to some monomial ideal containing c.

Example 7.6: Let e ≥ 5 be an integer and set

R = k[[te, te+1, te+2, ti | 2e+ 5 ≤ i ≤ 3e− 1]],

a numerical semigroup ring over an infinite field k. Then T(R) is infinite, but

Ref1(R) is finite.

Proof. This is the case where n = 4, a1 = e, a2 = e+1, a3 = e+2, and a4 = 2e.

It follows that 2a3 − a1 = e+ 4 < 2e = a4 and a2 − a1 + a3 = e+ 3 < 2e = a4.

Hence, the conclusion follows from Corollary 4.2 and Theorem 7.1.

We note one of the easiest examples arising from Example 7.6.

Example 7.7: Let R = k[[t5, t6, t7]] be a numerical semigroup ring over an infi-

nite field k. Then T(R) is infinite, but Ref1(R) is finite.

Example 7.8: Let e ≥ 4 be an integer and set

R = k[[te, te+1, t2e−2, ti | 2e+ 3 ≤ i ≤ 3e− 3]],

a numerical semigroup ring over an infinite field k. Then Ref1(R) (and

hence T(R)) is infinite.

Proof. This is the case where n = 4, a1 = e, a2 = e + 1, a3 = 2e − 2,

and a4 = 2e. It follows that 2a3 − a1 = 3e − 4 ≥ 2e = a4 since e ≥ 4. We

also have a2 − a1 + a3 = 2e− 1 < 2e = a4. Hence, the conclusion follows from

Corollary 4.2 and Theorem 7.1.
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