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ABSTRACT

Let M be a smooth, orientable, closed, connected 4-manifold and suppose

that H1(M ;Z) is finitely generated and has no 2-torsion. We give a ho-

motopy decomposition of the suspension of M in terms of spheres, Moore

spaces and ΣCP 2. This is used to calculate any reduced generalized co-

homology theory of M as a group and to determine the homotopy types

of certain current groups and gauge groups.

1. Introduction

Let M be a smooth, orientable, closed, connected 4-manifold. This implies by

Morse theory that M has a CW -structure with one 4-cell. Suppose

that H1(M ;Z) is finitely generated and has no 2-torsion. Specifically, assume
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that:

• H1(M ;Z) ∼= Zm ⊕
n⊕

j=1

Z/bjZ;

• each bj is a prime power, where the prime is odd.

(1)

From (1), by Poincaré Duality, the integral homology of M is:

(2)

i Hi(M ;Z)

0 Z

1 Zm ⊕⊕n
j=1 Z/bjZ

2 Zd ⊕⊕n
j=1 Z/bjZ

3 Zm

4 Z

≥ 5 0

where d ≥ 0 can be any integer. Our main theorem identifies the homotopy

type of ΣM .

Theorem 1.1: Let M be a smooth, orientable, closed, connected 4-manifold

and suppose that H1(M ;Z) is finitely generated and has no 2-torsion. If M is

Spin then there is a homotopy equivalence

ΣM �
( m∨

i=1

(S2 ∨ S4)

)
∨
( n∨

j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨

k=1

S3

)
∨ S5.

If M is non-Spin then there is a homotopy equivalence

ΣM �
( m∨

i=1

(S2 ∨ S4)

)
∨
( n∨

j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d−1∨

k=1

S3

)
∨ΣCP 2.

In fact, Theorem 1.1 is a special case of a more general result about the sus-

pension of 4-dimensional CW -complexes whose cohomology satisfies Poincaré

Duality and has no 2-torsion (see Theorem 5.9). Such a classification fits into

a long history of classifying CW -complexes with cells occurring in a small

number of consecutive dimensions, with contributions, for example, by White-

head [32, 33], Chang [4], Baues and Hennes [3], Baues and Drozd [2] and Pan

and Zhu [21]. Apart from [33], these classifications occur in the stable range;

the classification in Theorem 5.9 notably occurs unstably.
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A key aspect of Theorem 1.1 is that the suspension of M involves only three

types of spaces: spheres, Moore spaces and ΣCP 2. Each is simple and character-

izes a cohomological property: a sphere corresponds to an isolated Z summand,

a Moore space corresponds to a torsion summand, and a ΣCP 2 corresponds to

two Z summands connected by the Steenrod operation Sq2. The hypothesis that

only odd torsion in cohomology is allowed is necessary to achieve this. For ex-

ample, the suspension of S1×RP3 is homotopy equivalent to S2∨ΣRP3∨Σ2RP3

which does not split as in Theorem 1.1 since ΣRP3 is indecomposable. The list

of indecomposable wedge summands at the prime 2 would therefore be much

more complex.

The simple description of ΣM in Theorem 1.1 is advantageous. It implies

that the homotopy type of ΣM is completely determined by only two properties:

(i) whether M is Spin or not and (ii) H∗(M ;Z) (or equivalently, H∗(M ;Z)).

Interestingly, while suspending a manifold loses all the geometry, it does give

access to many other properties. Theorem 1.1 is applied in three different

contexts: to determine any reduced generalized cohomology theory of M , to

determine the homotopy type of certain current groups associated to M , and to

determine the homotopy type of certain gauge groups associated to M . These

applications are discussed in detail in Section 6.

To prove Theorem 1.1 new methods are developed that use homology and

cohomology to detect whether certain maps are null homotopic. This generalizes

Neisendorfer’s work in defining and determining the mod-pr Hopf invariant [20].

2. Preliminary information on Moore spaces

This section records some information on the homotopy groups of Moore spaces

which will be needed later. For m ≥ 2 and k ≥ 2, the mod-k Moore

space Pm(k) of dimension m is the homotopy cofibre of the degree k map

on Sm−1. Notice that

ΣPm(k) � Pm+1(k).

Lemma 2.1: If p is an odd prime and r ≥ 1 then

π3(P
3(pr)) ∼= Z/prZ.



4 T. SO AND S. THERIAULT Isr. J. Math.

Proof. Consider the homotopy fibration F 3(pr) −→ P 3(pr)
q−→ S3 where q is

the pinch map to the top cell. This induces an exact sequence

[S3,ΩS3] −→ [S3, F 3(pr)] −→ [S3, P 3(pr)]
q∗−→ [S3, S3].

At odd primes,

π3(ΩS
3) ∼= 0.

Since P 3(pr) is rationally trivial and π3(S
3) → π3(S

3) ⊗ Q is injective, any

composite S3 f−→ P 3(pr)
q−→ S3 must have degree zero. Hence q∗ = 0. Thus,

by exactness, π3(F
3(pr)) ∼= π3(P

3(pr)).

To complete the proof it is now equivalent to show that π2(ΩF
3(pr)) ∼= Z/prZ.

Form ≥ 1, let S2m+1{pr} be the homotopy fibre of the degree pr map on S2m+1.

In particular, S2m+1{pr} is (2m−1)-connected. By [19, Proposition 14.2] there

is a homotopy equivalence

ΩF 3(pr) � S1 ×
( ∞∏

j=1

S2pj−1{pr+1}
)
× ΩR3(pr)

where R3(pr) is a wedge of mod-pr Moore spaces consisting of a single copy

of P 4(pr) and all other wedge summands being at least 3-connected. In par-

ticular, for R3(pr), by the Hilton–Milnor Theorem there is an isomorphism

π3(R
3(pr)) ∼= π3(P

4(pr)). Further, the Hurewicz homomorphism implies that

π3(P
4(pr)) ∼= H3(P

4(pr)) ∼= Z/prZ.

Returning to the decomposition of ΩF 3(pr), since each space S2pj−1{pr+1} is

at least 3-connected, we obtain π2(ΩF
3(pr)) ∼= π2(ΩR

3(pr)) and we have just

seen that π2(ΩR
3(pr)) ∼= Z/prZ.

Lemma 2.2 ([24, Lemma 3.3]): If p is an odd prime and r≥1 then π4(P
3(pr))∼=0

and π4(P
4(pr)) ∼= 0.

Lemma 2.3 ([19, Corollary 6.6]): Let p be an odd prime, s, t ≥ 1 and m,n ≥ 2.

Then there is a homotopy equivalence

Pm(ps) ∧ Pn(pt) � Pm+n−1(pmin(s,t)) ∨ Pm+n(pmin(s,t)).

Lemma 2.4: Let p be an odd prime and s, t ≥ 1. Then

π3(ΣP
2(ps) ∧ P 2(pt)) ∼= Z/pmin(s,t)Z.
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Proof. By Lemma 2.3 and for dimensional reasons there are isomorphisms

π3(ΣP
2(ps) ∧ P 2(pt)) ∼= π3(P

4(pmin(s,t)) ∨ P 5(pmin(s,t)) ∼= π3(P
4(pmin(s,t))).

Since P 4(pmin(s,t)) is 2-connected, by the Hurewicz Theorem there are isomor-
phisms

π3(P
4(pmin(s,t))) ∼= H3(P

4(pmin(s,t));Z) ∼= Z/pmin(s,t)Z.

3. A homological test for a null homotopy I

In the next two sections we give homological and cohomological criteria de-

termining when certain maps are null homotopic. These maps are from S3

or P 3(pr) into a wedge
∨m

i=1 P
3(pri). So the material in this section and the

next focus on 3-dimensional Moore spaces.

In what follows we will use the terms “homotopy fibration diagram” and “ho-

motopy cofibration diagram”. To explain these, recall that there is a standard

construction that turns any continuous, pointed map f : X −→ Y that is a sur-

jection on path-components into a fibration, in the sense that f factors as p ◦ φ
where φ : X −→ X ′ is a homotopy equivalence and p : X ′ −→ Y is a fibration

(see, for example, [23, Theorem 7.1.14]). The homotopy fibre of f is the fibre

of p. As in [23, Section 7.6], a homotopy commutative square

(3) W

f ′

g′
X

f

Y
g

Z

is equivalent up to homotopy to a strictly commutative square in which the hor-

izontal maps are fibrations. This induces a map between fibres, that is, a map

between the homotopy fibres of g′ and g. It is notable that while the homotopy

types of the fibres are determined by the homotopy classes of g′ and g, the

homotopy class of the induced map is not determined by the homotopy classes

of f and f ′. However, the induced map γ can be chosen via the standard con-

struction above so that there is a homotopy commutative diagram of fibration

sequences

ΩX
∂′

Ωf

F ′

γ

W
g

f ′

X

f

ΩY
∂

F Y
g

Z.
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Further, this diagram could be extended vertically as well, as in [23, Thoerem

7.6.2], to produce a homotopy commutative diagram in which each consecutive

pair of horizontal maps and each consecutive pair of vertical maps is a homo-

topy fibration. Any such diagram originating from the square (3) and extending

via homotopy fibrations horizontally or vertically in this manner is called a ho-

motopy fibration diagram. A homotopy cofibration diagram is defined

dually.

In general, let i1 : ΣX −→ ΣX ∨ ΣY and i2 : ΣY −→ ΣX ∨ ΣY be the

inclusions of the left and right wedge summands respectively. Let

[i1, i2] : ΣX ∧ Y −→ ΣX ∨ ΣY

be the Whitehead product of i1 and i2.

Let r, s, t be positive integers such that s, t ≥ r. Then

H2(P 3(ps);Z/prZ) ∼= H2(P 3(pt);Z/prZ) ∼= Z/prZ.

Let us and ut be the generators of H2(P 3(ps);Z/prZ) and H2(P 3(pt);Z/prZ)

respectively. Then H2(P 3(ps)×P 3(pt);Z/prZ) is generated by us⊗1 and 1⊗ut.

Lemma 3.1: Let p be a prime and let s and t be integers such that s, t ≥ 1.

Then there is an isomorphism

H4(P 2(ps)× P 2(pt);Z/pmin(s,t)Z) ∼= Z/pmin(s,t)Z

and us ∪ ut is a generator.

Proof. One case of the Künneth Theorem (see, for example, [10, Theorem 3.15])

is as follows. If X and Y are CW -complexes, R is a ring, and Hk(Y ;R) is a

finitely generated R-module for all k, then the cross product

H∗(X ;R)⊗R H∗(Y ;R) −→ H∗(X × Y ;R)

is a ring isomorphism. In our case, if r = min(s, t) then bothH∗(P 2(ps);Z/prZ)

and H∗(P 2)(pt);Z/prZ) are finitely generated free Z/prZ-modules. Therefore,

by the Künneth Theorem, there are isomorphisms

H4(P 2(ps)× P 2(pt);Z/prZ) ∼= H2(P 2(ps);Z/prZ)⊗H2(P 2(pt);Z/prZ)

∼= Z/prZ⊗ Z/prZ ∼= Z/prZ

and us ∪ ut is a generator.

Propositions 3.2 and 3.3 give useful tests for when a certain map is null

homotopic.
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Proposition 3.2: Let p be an odd prime and s, t ≥ 1. Let

f : S3 → ΣP 2(ps) ∧ P 2(pt)

be a map and let C be the homotopy cofibre of the composite

S3 f−→ ΣP 2(ps) ∧ P 2(pt)
[ı1,ı2]−→ P 3(ps) ∨ P 3(pt).

The following are equivalent:

(a) the map f is null homotopic;

(b) H3(ΣP 2(ps)∧P 2(pt);Z/pmin(s,t)Z)
f∗
−→ H3(S3;Z/pmin(s,t)Z) is the zero

map;

(c) all cup products in H̃∗(C;Z/pmin(s,t)Z) are zero.

Proof. (a) ⇔ (b). Let u = min(s, t) and consider the following string of iso-

morphisms:

π3(ΣP
2(ps) ∧ P 2(pt)) ∼= H3(ΣP

2(ps) ∧ P 2(pt);Z)

∼= H3(P
4(pu) ∨ P 5(pu);Z)

∼= H3(P
4(pu) ∨ P 5(pu);Z/puZ)

∼= H3(P 4(pu) ∨ P 5(pu);Z/puZ)

∼= H3(ΣP 2(ps) ∧ P 2(pr);Z/puZ).

The first isomorphism is due to the Hurewicz Theorem because ΣP 2(ps)∧P 2(pt)

is 2-connected. The second isomorphism holds by Lemma 2.3. The third iso-

morphism holds since

H3(P
4(pu) ∨ P 5(pu);Z) ∼= H3(P

4(pu);Z) ∼= Z/puZ

and changing homology coefficients from Z to Z/puZ induces an isomorphism

here. The fourth isomorphism holds by the Universal Coefficient Theorem. The

fifth isomorphism holds by Lemma 2.3. Observe that under these isomorphisms

the map S3 f−→ ΣP 2(ps) ∧ P 2(pt) is sent to

H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ)
f∗
−→ H3(S3;Z/puZ).

Thus f is null homotopic if and only if f∗ = 0 in degree 3 mod-pu cohomology.

(a)⇒(c). If f is null homotopic then C � P 3(ps)∨P 3(pt)∨S4 is a suspension,

so all cup products in H̃∗(C;Z/puZ) are zero.
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(c)⇒(b). Consider the homotopy cofibration diagram

(4) S3
f

ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]

Cf

S3
[ı1,ı2]◦f

P 3(ps) ∨ P 3(pt) C

d

∗ P 3(ps)× P 3(pt) P 3(ps)× P 3(pt)

where Cf is the homotopy cofibre of f and d is an induced map. As Cf is

2-connected, there is an isomorphism

d∗ : H2(P 3(ps)× P 3(pt);Z/puZ) → H2(C;Z/puZ).

Therefore H2(C;Z/puZ) is generated by d∗(us ⊗ 1) and d∗(1⊗ ut).

The right column of (4) induces the exact sequence

(5)
H3(C;Z/puZ) → H3(Cf ;Z/p

uZ)

b→ H4(P 3(ps)× P 3(pt);Z/puZ)
d∗→ H4(C;Z/puZ).

By Lemma 3.1, H4(P 3(ps)× P 3(pt);Z/puZ) ∼= Z/puZ is generated by the cup

product us ∪ ut. The naturality of the cup product implies that

d∗(us ∪ ut) = d∗(us) ∪ d∗(ut).

But by assumption, cup products in H̃∗(C;Z/puZ) are zero. Therefore d∗ = 0

in (5), implying that b is onto. Hence the order of H3(Cf ;Z/p
uZ) is at least pu.

On the other hand, the top row of (4) induces the exact sequence

(6)
H2(S3;Z/puZ) → H3(Cf ;Z/p

uZ)

a→ H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ)
f∗
→ H3(S3;Z/puZ).

Since H2(S3;Z/puZ) = 0, the map a is an injection, and by Lemma 2.3,

H3(ΣP 2(ps) ∧ P 2(pt);Z/puZ) ∼= Z/puZ.

Hence the order of H3(Cf ;Z/p
uZ) is at most pu.

Thus H3(Cf ;Z/p
uZ) has order pu. But this implies that a is a monomor-

phism between finite groups of the same order and so must be an isomorphism.

Therefore f∗ in (6) is the zero map.



Vol. TBD, 2024 SUSPENSION OF 4-MANIFOLDS 9

A similar argument to Proposition 3.2, but with variations, gives the follow-

ing.

Proposition 3.3: Let p be an odd prime and r, s, t ≥ 1. Let

f : P 3(pr) → ΣP 2(ps) ∧ P 2(pt)

be a map and let C be the homotopy cofibre of the composite

P 3(pr)
f−→ ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]−→ P 3(ps) ∨ P 3(pt).

Let v = min(r, s, t). Then the following are equivalent:

(a) the map f is null homotopic;

(b) H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ)
f∗
−→ H3(P 3(pr);Z/pvZ) is the zero map;

(c) all cup products in H̃∗(C;Z/pvZ) are zero.

Proof. (a)⇔(b): Let u = min(s, t) and consider the following string of isomor-

phisms

[P 3(pr),ΣP 2(ps) ∧ P 2(pt)] ∼= H3(ΣP
2(ps) ∧ P 2(pt);Z/prZ)

∼= H3(ΣP 2(ps) ∧ P 2(pt);Z/prZ)

∼= H3(P 4(pu) ∨ P 5(pu);Z/prZ)

∼=
⎧⎨
⎩Z/prZ if r < u

Z/puZ if r ≥ u

∼= Z/pvZ

∼= H3(P 4(pu) ∨ P 5(pu);Z/pvZ)

∼= H3(ΣP 2(pr ∧ P 2(ps);Z/pvZ).

The first isomorphism is due to the mod-pr Hurewicz isomorphism since

ΣP 2(ps) ∧ P 2(pt) is 2-connected. The second isomorphism holds by the Uni-

versal Coefficient Theorem and the third holds by Lemma 2.3. The fourth

isomorphism is the calculation of degree 3 cohomology, the fifth holds since

v = min(r, s, t) = min(r, u), the sixth is calculation again, and the seventh

holds by Lemma 2.3. The transition from the second to the seventh is induced

by the map of coefficient rings induced by the epimorphism Z/prZ −→ Z/pvZ.

Thus, under these isomorphisms, a map f : P 3(pr) −→ ΣP 2(ps) ∧ P (pt) is sent

to the map it induces in mod-pv cohomology. Thus f is null homotopic if and

only if f∗ = 0 in mod-pv cohomology.
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(b)⇔(c): Consider the homotopy cofibration diagram

P 3(pr)
f

ΣP 2(ps) ∧ P 2(pt)

[ı1,ı2]

Cf

P 3(pr)
[ı1,ı2]◦f

P 3(ps) ∨ P 3(pt) C

d

∗ P 3(ps)× P 3(pt) P 3(ps)× P 3(pt)

where Cf is the homotopy cofibre of f and d is an induced map. As Cf is

2-connected,

d∗ : H2(P 3(ps)× P 3(pt);Z/pvZ) → H2(C;Z/pvZ)

is an isomorphism. Therefore H2(C;Z/pvZ) is generated by d∗(us ⊗ 1)

and d∗(1⊗ ut). The diagram also induces a diagram of exact sequences

H3(Cf ;Z/p
vZ)

a

b

H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ)
f∗

c

H3(P 3(pr);Z/pvZ)

H4(P 3(ps)× P 3(pt);Z/pvZ)

d∗

H4(P 3(ps)× P 3(pt);Z/pvZ)

H4(C;Z/pvZ) H4(P 3(ps) ∨ P 3(ps);Z/pvZ) = 0

where a, b and c are names for the maps induced in cohomology. Observe that,

in the middle column, s, t ≥ v so

H3(ΣP 2(ps) ∧ P 2(pt);Z/pvZ) ∼= H4(P 3(ps)× P 3(pt);Z/pvZ) ∼= Z/pvZ,

implying that c is an isomorphism. Therefore, the commutativity of the top

square implies that a is surjective if and only if b is. On the other hand, the top

row implies that a is surjective if and only if f∗ is the zero map, while the left

column implies that b is surjective if and only if d∗ is the zero map. Thus f∗ = 0

if and only if d∗ = 0. Since H4(P 3(ps)× P 3(pt);Z/pvZ) is generated by us∪ut,

d∗ = 0 if and only if H4(C;Z/pvZ) has no cup products. Hence f∗ = 0 if and

only if H4(C;Z/pvZ) has no cup products.
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4. A homological test for a null homotopy II

In this section we aim towards Proposition 4.4, which gives homological and

cohomological criteria for when certain maps are null homotopic, and which is

applicable much more widely than Propositions 3.2 and 3.3. It also generalizes

a result of Neisendorfer [20, Corollary 11.12] on the mod-pr Hopf invariant. We

rephrase that result in weaker form for a better comparison to Proposition 4.4.

Lemma 4.1: Let p be an odd prime and r, s ≥ 1. Let f : P 3(pr) −→ P 3(ps) be

a map and let Cf be its cofibre. If

• f∗ : H̃∗(P 3(pr);Z) −→ H̃∗(P 3(ps);Z) is the zero map, and

• all cup products in H̃∗(Cf ;Z/p
min(r,s)Z) are zero,

then f is null homotopic.

Lemma 4.1 will be generalized to maps f : X −→ ∨m
i=1 P

3(pri) for X = S3

or X = P 3(pr). This requires some initial work, the first aspect of which is a

general lemma concerning trivial cup products related to maps of wedges.

Lemma 4.2: Let f:
∨m

i=1 Ai−→
∨n

j=1Bj be a map with homotopy cofibre Cf and

suppose that f∗=0 for cohomology with coefficient groupG and all cup products

in H̃∗(Cf ;G) are zero. For 1 ≤ ı ≤ m and 1 ≤ j ≤ n, let fı,j be the composite

fı,j : Aı ↪→
m∨
i=1

Ai
f−→

n∨
j=1

Bj −→ Bj

where the left map is the inclusion of the ıth wedge summand and the right

map is the pinch onto the jth wedge summand. If Cfı,j is the homotopy cofibre

of fı,j then all cup products in H̃∗(Cfı,j ;G) are zero.

Proof. We use an intermediate map. Let fj be the composite

(7) fj :
m∨
i=1

Ai
f−→

n∨
j=1

Bj −→ Bj

and let Cfj be the homotopy cofibre of fj. Consider the homotopy cofibration

diagram ∨m
i=1 Ai

f ∨n
j=1 Bj Cf

d∨m
i=1 Ai

fj
Bj Cfj
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where d is an induced map of cofibres. Take cohomology with coefficient

group G. The homotopy cofibration diagram induces a map between long exact

sequences in cohomology. By hypothesis, f∗ = 0 so the definition of fj implies

that f∗
j = 0 as well. Therefore, for every k ≥ 1, there is a commutative diagram

of exact sequences

0 Hk(
∨m

i=1 ΣA;G) Hk(Cfj : G)

d∗

Hk(Bj;G) 0

0 Hk(
∨m

i=1 ΣA;G) Hk(Cf ;G) Hk(
∨n

i=1 Bi;G) 0.

A diagram chase shows that d∗ is injective, and this is true for all k ≥ 1. Thus,

by the naturality of the cup product, the vanishing of cup products in H̃∗(Cf ;G)

implies their vanishing in H̃∗(Cfj ;G).

Next, notice that the definition of fı,j in the statement of the lemma and fj

in (7) imply that fı,j is the composite Aı ↪→
∨m

i=1 Ai
fj−→ Bj. This factorization

induces a homotopy cofibration diagram

Aı

∨m
i=1 Ai

h

fj

∨m
i=1
i�=ı

Ai

g

Aı

fı,j
Bj Cfı,j

d′

∗ Cfj Cfj

where h is the pinch map, and g and d′ are induced maps. Since f∗
j = 0 and

h∗ : H∗
( m∨

i=1
i�=ı

Ai;G

)
→ H∗

( m∨
i=1

Ai;G

)

is an injection, the top right square implies that g∗ = 0. Therefore, from the

right vertical cofibration in the preceding diagram we obtain a surjection

(d′)∗ : H∗(Cfj ;G) → H∗(Cfı,j ;G).

As cup products in H̃∗(Cfj ;G) are zero and (d′)∗ is a surjection, cup products

in H̃∗(Cfı,j ;G) are also zero.
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Next, we make a transition from a hypothesis that a map is zero in coho-

mology as in Lemma 4.2 to a map being zero in homology. In general, if the

coefficient group G in Lemma 4.2 is a field, then the Universal Coefficient The-

orem immediately implies that if f∗ = 0 then f∗ = 0. The coefficient ring we

care about is Z/prZ, so we need to be more cautious. Perhaps overdoing it, we

focus on the 3-dimensional Moore space case again.

Lemma 4.3: Let p be an odd prime and let r ≥ 1. Let X = P 3(pr) or S3 and

let f : X → ∨m
i=1 P

3(pri) be a map. If f∗ : H̃∗(X ;Z) → H̃∗(
∨m

i=1 P
3(pri);Z) is

trivial, then for any abelian group G the map

f∗ : H̃∗
( m∨

i=1

P 3(pri);G

)
→ H̃∗(X ;G)

is trivial.

Proof. It suffices to prove the lemma in the m = 1 case. For X = P 3(pr) it

is obvious that f∗ : H̃j(P 3(pr1);G) → H̃j(P 3(pr);G) is trivial except possi-

bly for j ∈ {2, 3}. By the Universal Coefficient Theorem, there are natural

isomorphisms

H2(P 3(pr);G) ∼= Hom(H2(P
3(pr);Z), G))

and

H3(P 3(pr);G) ∼= Ext(H2(P
3(pr);Z), G)).

By hypothesis, f∗ : H2(P
3(pr);Z) → H2(P

3(pr1);Z) is the zero map, so the

naturality of the Universal Coefficient Theorem implies that

f∗ : Hj(P 3(pr1);G) → Hj(P 3(pr);G)

is the zero map for j ∈ {2, 3}.
For X = S3, it suffices to show that f∗ : H3(P 3(pr1);G) → H3(S3;G) is

trivial. Let ρ : P 3(pr1) → S3 be the pinch map to the top cell and consider the

composite

(8) H3(S3;G)
ρ∗
−→ H3(P 3(pr1);G)

f∗
−→ H3(S3;G).

Observe that the long exact sequence in cohomology determined by the homo-

topy cofibration S2 → P 3(pr1)
ρ−→ S3 implies that ρ∗ in (8) is an epimorphism.

Therefore, in (8), f∗ = 0 if and only if f∗ ◦ ρ∗ = 0. But ρ ◦ f is a self-map of S3

which factors through a rationally contractible space, implying that it is null

homotopic. Hence f∗ ◦ ρ∗ = 0, and so f∗ = 0.
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In general, the Hilton–Milnor Theorem states that there is a homotopy equiv-

alence

(9) Ω

( m∨
i=1

ΣYi

)
�

∏
α∈I

ΩΣ(Y ∧α1
1 ∧ · · · ∧ Y ∧αm

m )

where I runs over a module basis for the free Lie algebra L〈v1, . . . , vm〉, and if

α ∈ L〈v1, . . . , vm〉 is a module basis element then for 1 ≤ i ≤ m the integer αi

records the number of instances of vi in α. Here, if αi = 0 for some i then the

smash product Y ∧α1
1 ∧ · · · ∧ Y ∧αm

m is regarded as omitting Yi rather than being

a point; for example, Y ∧2
1 ∧ Y ∧0

2 ∧ Y ∧3
3 is regarded as Y ∧2

1 ∧ Y ∧3
3 . Moreover,

for 1 ≤ k ≤ m let

ιk : ΣYk −→
m∨
i=1

ΣYi

be the inclusion of the kth wedge summand. For α ∈ I, let

wα : Σ(Y
∧α1
1 ∧ · · · ∧ Y ∧αm

m ) −→
m∨
i=1

ΣYi

be the iterated Whitehead product formed from the maps ιk where each in-

stance of vk in α is represented by the map ιk. Then the homotopy equiv-

alence (9) is realized by multiplying together the maps Ωwα using the loop

structure on Ω(
∨m

i=1 ΣYi).

In our case, we have

Ω

( m∨
i=1

P 3(pri)

)
�

∏
α∈I

ΩΣP 2(pr1)∧α1 ∧ · · · ∧ P 2(prm)∧αm .

Observe that P 2(pr1)∧α1 ∧ · · · ∧P 2(prm)∧αm is ((α1 + · · ·+αm)− 1)-connected.

Suppose that X ′ is 2-dimensional. Then

[X ′,ΩΣP 2(pr1)∧α1 ∧ · · · ∧ P 2(prm)∧αm ] ∼= 0 if (α1 + · · ·+ αm) ≥ 3.

Observe also that there are m cases for which (α1+ · · ·+αm) = 1 and
(
m
2

)
cases

for which (α1 + · · ·+ αm) = 2. So if X = ΣX ′ then[
X,

m∨
i=1

P 3(pri)

]
∼=

[
X ′,Ω

( m∨
i=1

P 3(pri)

)]

∼=
[
X ′,

m∏
j=1

ΩP 3(prj )×
∏
k �=l

ΩΣP 2(prk) ∧ P 2(prl)

]

∼=
m∏
j=1

[X,P 3(prj )]×
∏
k �=l

[X,ΣP 2(prk) ∧ P 2(prl)].



Vol. TBD, 2024 SUSPENSION OF 4-MANIFOLDS 15

Further, the jth factor [X,P 3(prj )] is mapped to [X,
∨m

i=1 P
3(pri)] by the in-

clusion ιj and the
(
m
2

)
factors [X,ΣP 2(prk)∧P 2(prl)] may be arranged so that

they map to [X,
∨m

i=1 P
3(pri)] by the Whitehead products

ΣP 2(prk) ∧ P 2(prl)
[ιk,ιl]−→ P 3(prk) ∨ P 3(prl) ↪→

m∨
i=1

P 3(pri)

where 1 ≤ k < l ≤ m. Hence if f : X −→ ∨m
i=1 P

3(pri) then we may write

(10) f �
m∑
j=1

ιj ◦ gj +
∑

1≤k<l≤m

[ιk, ιl] ◦ hk,l

for maps X
gj−→ P 3(prj ) and X

hk,l−→ ΣP 2(prk) ∧ P 2(prl).

Proposition 4.4: Let X = P 3(pr) where p is an odd prime and r ≥ 1 or

let X = S3 and set r = ∞. Let f : X → ∨m
i=1 P

3(pri) be a map and let Cf be

its cofibre. If

• f∗ : H̃∗(X ;Z) → H̃∗(
∨m

i=1 P
3(pri);Z) is the zero map and

• all cup products in H̃∗(Cf ;Z/p
min(r,ri)Z) are zero for all 1 ≤ i ≤ m,

then f is null homotopic.

Proof. Since X is S3 or P 3(pr) we have X � ΣX ′ where X ′ is 2-dimensional.

Therefore, by (10), we have

f �
m∑
j=1

ιj ◦ gj +
∑

1≤k<l≤m

[ιk, ιl] ◦ hk,l

for maps X
gj−→ P 3(prj ) and X

hk,l−→ ΣP 2(prk)∧P 2(prl). To show that f is null

homotopic it suffices to show that each gj and hk,l is null homotopic.

First consider the map gj when X = P 3(pr). Notice that gj is the composite

gj : P
3(pr)

f−→
m∨
i=1

P 3(pri)
q−→ P 3(prj )

where q is the pinch map onto the jth wedge summand. Since f induces

the zero map in integral homology, so does gj. by Lemma 4.3, gj therefore

induces the zero map in mod-pmin(r,rj) cohomology. By hypothesis, all cup

products in H̃∗(Cf ;Z/p
min(r,rj)Z) are zero, so by Lemma 4.2, all cup prod-

ucts in H̃∗(Cgj ;Z/p
min(r,rj)Z) are also zero. Thus, by Lemma 4.1, gj is null

homotopic.
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Next, consider the map gj when X = S3. Now gj is the composite

S3 f−→
m∨
i=1

P 3(pri)
q−→ P 3(prj ).

Consider the composite

gj : P
3(prj )

π−→ S3 gj−→ P 3(prj )

where π is the pinch map to the top cell. The argument in the previous para-

graph implies that gj is null homotopic. Therefore gk extends across the cofibre

of π, implying that gk factors as a composite S3 prj−→ S3 γj−→ P 3(prj ) for some

map γj . By Lemma 2.1,

π3(P
3(prj )) ∼= Z/prjZ,

so gj � prj · γj is null homotopic.

At this point, we have shown that for either X = S3 or P 3(pr) we have gj null

homotopic for 1 ≤ j ≤ m. Thus (10) implies that f � ∑
1≤k<l≤m[ιk, ιl] ◦ hk,l.

Let

qk,l :

m∨
i=1

P 3(pri) −→ P 3(prk) ∨ P 3(prl)

be the pinch map onto the kth and lth wedge summands. Observe that every

Whitehead product [ιs, ιt] for 1 ≤ s < t ≤ m composes trivially with qk,l except

[ιk, ιl]. Therefore qk,l ◦ f � qk,l ◦ (
∑

1≤s<t≤m[ιs, ιt] ◦ hs,t) � [ιk, ιl] ◦ hk,l. That

is, qk,l ◦ f is homotopic to the composite

hk,l : X
hk,l−→ ΣP 2(prk) ∧ P 2(prl)

[ιk,ιl]−→ P 3(prk) ∨ P 3(prl).

Since f induces the zero map in integral homology, so does hk,l. Let Chk,l
be the

homotopy cofibre of hk,l. By hypothesis, cup products in H̃∗(Cf ;Z/p
min(r,ri)Z)

are zero for 1 ≤ i ≤ m so cup products in

H̃∗(Cf ;Z/p
min(r,rk,rl)Z)

are zero. By Lemma 4.2 (with Bj = P 3(prk) ∨ P 3(prl)), cup products in

H̃∗(Chk,l
;Z/pmin(r,rk,rl)Z)

are also zero. Therefore, by Proposition 3.2 in the case X = S3 and Proposi-

tion 3.3 in the case X = P 3(pr), the map hk,l is null homotopic. As this is true

for all 1 ≤ k < l ≤ m we obtain f � ∗.
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5. The homotopy type of the suspension of certain CW -complexes

In this section we assume M to be a 4-dimensional finite CW -complex that has

one 4-cell and homology as follows:

(11)

i Hi(M ;Z)

0 Z

1 Z	 ⊕⊕n
j=1 Z/bjZ

2 Zd ⊕⊕n̄
j̄=1 Z/b̄j̄Z

3 Zm

4 Z

≥ 5 0

Here each bj and b̄j̄ is a power of an odd prime.

First consider the integer summands of H1(M ;Z). Since the Hurewicz ho-

momorphism π1(M) → H1(M ;Z) is an epimorphism, each direct summand Z

of H1(M ;Z) is generated by the Hurewicz image of some map αi : S
1 −→ M .

Let

a :
	∨

i=1

S1 −→ M

be the wedge sum of the maps αi and let W be the homotopy cofibre of a.

Lemma 5.1: The map Σa has a left homotopy inverse and there is a homotopy

equivalence

ΣM �
( 	∨

i=1

S2

)
∨ ΣW.

Proof. The Hurewicz Theorem implies that the image of a∗ is

H1(M ;Z)free ∼= Z	.

The Universal Coefficient Theorem implies that H1(M ;Z)free ∼= H1(M ;Z)free.

Let ai ∈ H1(M ;Z) be the image of (αi)∗ and āi ∈ H1(M ;Z) be the dual of ai.

Then āi is represented by a map εi : M −→ K(Z, 1) � S1 and the composite

S1 αi−→ M
εi−→ S1 is the identity map. After suspending, one may use the co-H

structure to give a map

ε : ΣM −→
	∨

i=1

S2
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which is a left homotopy inverse for Σa. Therefore, with respect to the homotopy

cofibration,
∨	

i=1 S
2 Σa−→ ΣM

Σw−→ ΣW where w : M → W is the quotient map,

if σ is the comultiplication on ΣM , the composite

e : ΣM
σ−−→ ΣM ∨ ΣM

ε∨Σw−−→
( 	∨

i=1

S2

)
∨ ΣW

induces an isomorphism in homology. As the domain and range of e are simply-

connected, Whitehead’s Theorem implies that e is a homotopy equivalence.

The description of H∗(M ;Z) in (11) implies that the homology of W is as

follows:

i Hi(W ;Z)

0 Z

1
⊕n

j=1 Z/bjZ

2 Zd ⊕⊕n̄
j̄=1 Z/b̄j̄Z

3 Zm

4 Z

≥ 5 0

We wish to give a homotopy decomposition of ΣW as a wedge of spheres and

Moore spaces. To do so we analyze the homology decomposition of ΣW .

Define M(Z/kZ, n) = Pn+1(k) and M(Z, n) = Sn, and for any finitely gen-

erated abelian groups A and B define

M(A⊕B, n) = M(A, n) ∨M(B, n).

Then H̃i(M(A, n);Z) is A for i = n and zero otherwise. The following lemma

describes the homology decomposition of a simply-connected CW -complex.

Lemma 5.2 ([10, Theorem 4H.3]): Let X be an n-dimensional simply-connected

CW -complex and let Hi = Hi(X ;Z). Then there is a sequence of subcom-

plexes {Xi}ni=1 such that

(1) Hi(Xm;Z) ∼= Hi(X ;Z) for i ≤ m and Hi(Xm;Z) = 0 for i > m;

(2) X2 = M(H2, 2) and X � Xn;

(3) Xm+1 is the mapping cone of a map fm :M(Hm+1,m)→Xm that induces

a trivial homomorphism (fm)∗ : Hm(M(Hm+1,m);Z) → Hm(Xm;Z).
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In our case, to describe the homology decomposition of ΣW we need some

notation. Let

P =

n∨
j=1

P 3(bj) P =

n̄∨
j̄=1

P 3(b̄j̄) and S =

d∨
k=1

S2.

Starting with W2 = P , Lemma 5.2 implies that there are homotopy cofibrations

(12)

S ∨ P
f2−→ W2 −→ W3,

m∨
i=1

S3 f3−→ W3 −→ W4,

S4 f4−→ W4 −→ ΣW,

where f2, f3 and f4 induce the zero map in integral homology. In Lemmas 5.5

and 5.7 we will show that the maps f2 and f3 are null homotopic, and in

Lemma 5.8 we will show that the map f4 is either null homotopic or factors

in an entirely controllable way. As this will involve analyzing maps between

Moore spaces of different torsion orders, a preliminary lemma is required.

Lemma 5.3: Let X be a finite CW -complex. If p and q are distinct primes

and m,n ≥ 3, then any map f : Pm(pr) → ΣX ∨ Pn(qt) is homotopic to the

composite

Pm(pr)
f ′
−→ ΣX ↪→ ΣX ∨ Pn(qt)

where f ′ is the composite Pm(pr)
f−−→ ΣC ∨ Pn(qt)

pinch−−→ ΣX .

Proof. First we show that [Pm(pr), Z ∧ Pm(qt)] is trivial for any finite path-

connected CW -complex Z. By the Künneth Theorem there is an exact sequence

0 →
n⊕

i=1

H̃i(Z)⊗ H̃n−i(P
n(qt)) → H̃n(Z ∧ Pn(qt))

→
n⊕

i=1

Tor(H̃i(Z), H̃n−i−1(P
n(qt))) → 0.

This implies that the groups H̃∗(Z∧Pn(qt)) are finite abelian and consist only of

q-torsion. Therefore, by Serre’s Theorem, the homotopy groups πi(Z ∧Pn(qt))

are also finite abelian and consist only of q-torsion. The homotopy cofibration

Sm−1 pr

−→ Sm−1 −→ Pm(pr)
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induces an exact sequence

πm(Z ∧ Pn(qt))
pr

−→ πm(Z ∧ Pn(qt)) −→ [Pm(pr), Z ∧ Pn(qt)]

−→ πm−1(Z ∧ Pn(qt))
pr

−→ πm−1(Z ∧ Pn(qt)).

Since multiplying πi(Z∧Pn(qt)) by pr is an isomorphism for i ≥ 1, by exactness

we obtain [Pm(pr), Z ∧ Pn(qt)] ∼= 0.

Next, the homotopy class of f is in [Pm(pr),ΣX ∨ Pn(qt)]. Noting that

both Pm(pr) and Pn(qt) are suspensions since m,n ≥ 3, the Hilton–Milnor

Theorem implies that

[Pm(pr),ΣX ∨ Pn(qt)] ∼=
∏
α∈I

[Pm(pr),ΣX∧α1 ∧ (Pn−1(qt))∧α2 ]

where I runs over a Hall basis for the free Lie algebra L〈u, v〉 and α1, α2 count

the number of instances of u, v respectively in the bracket corresponding to α.

The argument in the first paragraph implies that if α2 ≥ 1 then each factor

[Pm(pr),ΣX∧α1∧ (Pn−1(qt))∧α2 ], which is isomorphic to [Pm(pr), Z∧Pn(qt)]

for Z = X∧α1 ∧ (Pn−1(qt))∧α2−1, equals zero. The Hall basis for L〈u, v〉 only
has one term with α2 = 0, and that is u (when α1 = 1). Thus

[Pm(pr),ΣX ∨ Pn(qt)] ∼= [Pm(pr),ΣX ].

Hence f factors through f ′ up to homotopy.

We also need a lemma concerning cup products in W3.

Lemma 5.4: Cup products vanish in H̃∗(W3;Z/p
rZ).

Proof. Recall thatW is a 4-dimensional CW -complex with a single 4-cell. Let Y

be the 3-skeleton of W . Then by cellular approximation and the definition of

W3 the inclusion W3 ↪→ ΣW factors as a composite

W3
g→ ΣY ↪→ ΣW.

Suppose that there are elements x, y ∈ H̃∗(W3;Z/p
rZ) such that x ∪ y �= 0.

Since W3 is simply-connected and of dimension 4, it must be the case

that |x| = |y| = 2. By Lemma 5.2

g∗ : H2(ΣY ;Z/prZ) → H2(W3;Z/p
rZ)

is an isomorphism. Let x̄, ȳ ∈ H2(ΣY ;Z/prZ) be elements such that x = g∗(x̄)
and y = g∗(ȳ). Since ΣY is a suspension, all cup products in H̃∗(ΣY ;Z/prZ)
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are zero. In particular, we have x̄ ∪ ȳ = 0. The naturality of the cup product

therefore implies that

x ∪ y = g∗(x̄) ∪ g∗(ȳ) = g∗(x̄ ∪ ȳ) = 0,

a contradiction. Hence it must be the case that all cup products in

H̃∗(W3;Z/p
rZ)

are zero.

Lemma 5.5: There is a homotopy equivalence W3 � P ∨ ΣS ∨ ΣP .

Proof. We will show that the map S ∨ P
f2−→ W2 in (12) is null homotopic,

implying the statement of the lemma. It will be helpful to partition the Moore

spaces in P by primes. Recall that P =
∨n̄

j̄=1 P
3(b̄j̄) where each b̄j̄ is an odd

prime power. List the primes appearing as {p1, . . . , pt}. Write

P =

t∨
s=1

P s where P s =

n̄s∨
	=1

P 3(p
rs,�
s ).

Note that n̄ = n̄1 + · · ·+ n̄t. Isolating P 1, let

Q =

t∨
s=2

P s

so that P = P 1∨Q. For convenience, write p1 as p and r1,	 as r	 for 1 ≤ � ≤ n1

so that P 1 =
∨n1

	=1 P
3(pr�). Correspondingly, write P = P1 ∨Q where P1 is the

wedge of all the mod-pt Moore spaces in P for some t ≥ 1, and Q is the wedge

of mod-qs Moore spaces for all primes q �= p. Note that as the torsion in P

and P may be different, it is possible that for the given prime p the wedge P1

is trivial. Taking n1 = 0 in the trivial case, write P1 =
∨n1

k=1 P
3(prk). The

homotopy cofibration S ∨ P
f2−→ W2 = P −→ W3 may then be rewritten as

S ∨ P 1 ∨Q
f2−→ P1 ∨Q −→ W3.

To show that f2 is null homotopic it is equivalent to show that each of the

composites

fS :S ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q,

fP :P 1 ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q,

fQ :Q ↪→ S ∨ P 1 ∨Q
f2−→ P1 ∨Q,

is null homotopic. Since f2 induces the trivial map in integral homology, so do

each of fP , fQ and fS .



22 T. SO AND S. THERIAULT Isr. J. Math.

First, consider fS . Since S is 2-dimensional, P1 ∨ Q is 1-connected, and fS

induces the trivial map in degree two integral homology, the Hurewicz homo-

morphism implies that fS is null homotopic.

Next, consider fP . Since P 1 =
∨n̄1

	=1 P
3(pr�), to show that fP is null homo-

topic it suffices to show that the restriction

f 	
P : P 3(pr�) ↪→ P 1

fP−→ P1 ∨Q

of fP to the �th wedge summand is null homotopic. Since Q consists of mod-qs

Moore spaces for primes q �= p, Lemma 5.3 implies that f 	
P factors as a composite

P 3(pr�)
g�
P−→ P1 ↪→ P1 ∨Q

for some map g	P . We will show that g	P is null homotopic, thereby implying

that f 	
P is null homotopic.

Observe that as fP induces the zero map in homology, so does f 	
P and

therefore so does g	P . Let Cg�
P

be the homotopy cofibre of g	P and recall

that P1 =
∨n1

k=1 P
3(prk). If cup products vanish in H̃∗(C	

gP ;Z/p
min(r�,rk)Z)

for 1 ≤ k ≤ n1, then Proposition 4.4 implies that g	P is null homotopic.

It remains to show that cup products vanish in H̃∗(C	
gP ;Z/p

min(r�,rk)Z).

First, as g	P induces the zero map in integral homology, by Lemma 4.3 it also

induces the zero map in mod-pmin(r�,rk) cohomology. Second, notice that g	P is

homotopic to the composite

P 3(pr�)
f�
P−→ P1 ∨Q

pinch−→ P1.

The definitions of f 	
P and fP then imply that g	P is homotopic to the composite

P 3(pr�) −→ P 1 −→ S ∨ P ∨Q
f2−→ P1 ∨Q

pinch−→ P1.

As W3 is the homotopy cofibre of f2 and cup products vanish in

H̃∗(W3;Z/p
min(r�,rk)Z)

by Lemma 5.4, the factorization of g	P through f2 and Lemma 4.2 imply that

cup products vanish in H̃∗(C	
gP ;Z/p

min(r�,rk)Z).

Finally, consider fQ. Separating out the mod-prss Moore spaces in Q one

prime at a time as was done for p1 and P 1, the same argument as for fP can

be used iteratively. Thus fQ is null homotopic and the proof is complete.
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Observe that the space W4 in (12) is the same as the suspension of the 3-

skeleton of W . That is, W4 � ΣY for Y the 3-skeleton of W . Our approach to

dealing with the maps f3 and f4 in (12) will be to use the fact that both W4

and ΣW are suspensions. This requires a general lemma.

Lemma 5.6: Let Ai be simply connected for 1 ≤ i ≤ m. Suppose that there is a

map g :
∨m

i=1 Ai −→ ΣX and a sequence {i1, . . . , ik} with 1 ≤ i1 < · · · < ik ≤ m

such that, for 1 ≤ j ≤ k, the pinch map qj :
∨m

i=1 Ai −→ Aij extends across g to

a map rj : ΣX −→ Aij . Then the composite b :
∨k

j=1 Aij ↪→ ∨m
i=1 Ai

g−→ ΣX

has a left homotopy inverse.

Proof. Let r be the composite

r : ΣX
σ−−−−→

k∨
j=1

ΣX

∨k
j=1 rj−−−−→

k∨
j=1

Aij

where σ is defined using the comultiplication on ΣX . We claim that r ◦ b is

homotopic to a homotopy equivalence. Observe that for 1 ≤ j ≤ k we have

q̃j ◦ r � rj

where q̃j :
∨k

j=1 Aij → Aij is the pinch map. By hypothesis, rj ◦ g � qj , so by

definition of b we also have rj ◦ b � q̃j . Therefore q̃j ◦ r ◦ b � rj ◦ b � q̃j . In

homology, the direct sum of finitely many Z-modules is the same as the direct

product, so the map

H̃∗

( k∨
j=1

Ai;Z

)
r∗◦b∗−→ H̃∗

( k∨
j=1

Ai;Z

)
∼=

k⊕
j=1

H̃∗(Aj ;Z)

is determined by the projection to each H̃∗(Aj ;Z). This projection is given

by (q̃j)∗. Thus the fact that (q̃j)∗ = (q̃j)∗◦r∗◦b∗ implies that r∗◦b∗ is the identity
map. Hence, by Whitehead’s Theorem, r ◦ b is a homotopy equivalence.

Lemma 5.7: There is a homotopy equivalence W4 � P ∨ ΣS ∨ ΣP ∨∨m
i=1 S

4.

Proof. By (12) and Lemma 5.5 there is a homotopy cofibration

m∨
i=1

S3 f3−→ P ∨ ΣS ∨ ΣP −→ W4

where f3 induces the trivial map in integral homology. We will show that f3 is

null homotopic and then the statement of the lemma follows.
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Consider the composites

(13)

S3 ↪→
m∨
i=1

S3 f3−→ P ∨ ΣS ∨ ΣP −→ P −→ P 3(bj),

S3 ↪→
m∨
i=1

S3 f3−→ P ∨ ΣS ∨ ΣP −→ ΣS −→ S3,

S3 ↪→
m∨
i=1

S3 f3−→ P ∨ ΣS ∨ ΣP −→ ΣP −→ P 4(bj̄),

where the three right-hand maps pinch onto a single wedge summand. Let g

be the first composite in (13) and let Cg be its cofibre. Since the cofibre

of f3 is W4 which is the suspension of the 3-skeleton of W , all cup prod-

ucts in H̃∗(W4;Z/p
rj
j Z) are zero. Therefore, by Lemma 4.2, all cup products

in H̃∗(Cg;Z/p
rj
j Z) are zero. Hence, by Proposition 4.4, g is null homotopic.

Since f3 induces the zero map in integral homology, the second and third

composites in (13) are null homotopic by the Hurewicz Theorem. These null

homotopies hold for the inclusion of each S3 into
∨m

i=1 S
3, so f3 composes

trivially with each of the pinch maps P ∨ ΣS ∨ ΣP −→ X for X = P 3(bj), S
3

or P 4(b̄j̄). Thus each of these pinch maps extends to a mapW4 −→ X . SinceW4

is a suspension, Lemma 5.6 implies that the map P ∨ ΣS ∨ ΣP −→ W4 has a

left homotopy inverse. Hence f3 is null homotopic.

Lemma 5.8: Suppose that H∗(W ;Z) has no 2-torsion. If the Steenrod opera-

tion Sq2 acts trivially on H∗(W ;Z/2Z) then there is a homotopy equivalence

ΣW � P ∨ΣS ∨ ΣP ∨
( m∨

i=1

S4

)
∨ S5.

If Sq2 acts nontrivially on H∗(W ;Z/2Z) then there is a homotopy equivalence

ΣW � P ∨
d∨

k=2

S3 ∨ ΣP ∨
( m∨

i=1

S4

)
∨ΣCP 2.

Proof. By (12) and Lemma 5.7 there is a homotopy cofibration

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→ ΣW
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where f4 induces the trivial map in integral homology. Consider the composites

(14)

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→ P −→ P 3(bj),

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→ ΣS −→ S3,

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→ ΣP −→ P 4(b̄j̄),

S4 f4−→ P ∨ ΣS ∨ ΣP ∨
m∨
i=1

S4 −→
m∨
i=1

S4 −→ S4,

where the middle and right maps pinch onto a single wedge summand.

Suppose that Sq2 acts trivially on H∗(W ;Z/2Z). Since each bj and b̄j̄ is a

power of an odd prime, by Lemma 2.2,

π4(P
3(bj)) ∼= π4(P

3(b̄j̄)) ∼= 0 and π4(P
4(bj)) ∼= π4(P

4(b̄j̄)) ∼= 0,

implying the first and third composites in (14) are null homotopic.

Since π4(S
3) ∼= Z/2Z is generated by a map η which is detected by Sq2, the

assumption that Sq2 acts trivially on H∗(W ;Z/2Z) implies that the second

composite in (14) is null homotopic. Since f4 induces the zero map in homol-

ogy, the Hurewicz homomorphism implies that the fourth composite in (14) is

null homotopic. Thus each of the pinch maps P ∨ ΣS ∨ΣP ∨∨m
i=1 S

4 −→ X

for X = P 3(bj), S
3, P 4(b̄j̄) or S4 extends to a map ΣW −→ X . Therefore,

by Lemma 5.6, the map P ∨ ΣS ∨ ΣP ∨∨m
i=1 S

4 −→ ΣW has a left homotopy

inverse. Hence f4 is null homotopic, implying that

ΣW � P ∨ΣS ∨ ΣP ∨
( m∨

i=1

S4

)
∨ S5.

Next, suppose that Sq2 acts nontrivially onH∗(W ;Z/2Z). Arguing as before,

the first, third and fourth composites in (14) are null homotopic. As Sq2 detects

the generator η of π4(S
3) ∼= Z/2Z, the nontrivial action of Sq2 on H∗(W ;Z/2Z)

implies that the second composite in (14) is nontrivial for at least one of the

pinch maps ΣS =
∨d

k=1 S
3 −→ S3. Possibly the second composite in (14) could

be nontrivial for several such pinch maps. However, by [24], any map

h : S4
∨d

k=1 εkη−−−−→
d∨

k=1

S3 with εk ∈ {0, 1} for all 1 ≤ k ≤ d,
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and having at least one εk = 1, can be composed with a self-equivalence e

of
∨d

k=1 S
3 so that e ◦ h is homotopic to the composite S4 η−→ S3 ↪→ ∨d

k=1 S
3

where the inclusion can be assumed to be the first wedge summand. Altering the

copy of ΣS in P ∨ΣS ∨ΣP ∨∨m
i=1 S

4 by the same self-equivalence e, we obtain

that each of the pinch maps P ∨∨d
k=2 S

3∨ΣP ∨∨m
i=1 S

4 −→ X for X = P 3(bj),

S3 for 2 ≤ k ≤ d, P 4(b̄j̄) or S4 extends to a map ΣW −→ X . Therefore, by

Lemma 5.6, the map P ∨∨d
k=2 S

3∨ΣP ∨∨m
i=1 S

4 −→ ΣW has a left homotopy

inverse. Therefore f4 factors as the composite

S4 η−→ S3 ↪→ P ∨
d∨

k=1

S3 ∨ ΣP ∨
m∨
i=1

S4

implying that ΣW � P ∨∨d
k=2 S

3 ∨ΣP ∨ (
∨m

i=1 S
4)∨ΣCP 2 since ΣCP 2 is the

homotopy cofibre of η.

Combining the homotopy decomposition ΣM � (
∨m

i=1 S
2)∨ΣW in Lemma 5.1

with that of ΣW in Lemma 5.8, we obtain a homotopy decomposition for ΣM .

Theorem 5.9: Let M be a 4-dimensional CW -complex that has one 4-cell and

has homology as in (11). If Sq2 acts trivially on H∗(M ;Z/2Z) then there is a

homotopy equivalence

ΣM �
( 	∨

i=1

S2

)
∨
( d∨

k=1

S3

)
∨
( m∨

l=1

S4

)
∨
( n∨

j=1

P 3(bj)

)
∨
( n̄∨

j̄=1

P 4(b̄j̄)

)
∨S5.

If Sq2 acts non-trivially on H∗(M ;Z/2Z) then there is a homotopy equivalence

ΣM �
( 	∨

i=1

S2

)
∨
( d−1∨

k=1

S3

)
∨
( m∨

l=1

S4

)
∨
( n∨

j=1

P 3(bj)

)
∨
( n̄∨

j̄=1

P 4(b̄j̄)

)
∨ΣCP 2.

As a special case we prove Theorem 1.1.

Proof of Theorem 1.1. By assumption M is a smooth, orientable, closed, com-

pact 4-manifold. Then, by Morse Theory, M has a CW -structure with one

4-cell. Since H1(M ;Z) is finitely generated and has no 2-torsion, (1) holds and

so H∗(M ;Z) is as in (2). Since (2) is a special case of (11), Theorem 5.9 applies

to decompose ΣM . Observe that if M is Spin then the Steenrod operation Sq2

acts trivially on H∗(M ;Z/2Z), so Theorem 5.9 implies that there is a homotopy
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equivalence

ΣM �
( m∨

i=1

(S2 ∨ S4)

)
∨
( n∨

j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨

k=1

S3

)
∨ S5,

while if M is non-Spin then Sq2 acts nontrivially, so Theorem 5.9 implies that

there is a homotopy equivalence

ΣM�
( m∨

i=1

(S2∨S4)

)
∨
( n∨

j=1

(P 3(bj)∨P 4(bj))

)
∨
( d−1∨

k=1

S3

)
∨ ΣCP 2.

6. Applications

Suppose that M is a 4-dimensional manifold satisfying the hypotheses of The-

orem 1.1. In this section we give three applications of the homotopy decompo-

sition of ΣM .

The first application is to calculate E∗(M) as a group for any reduced gen-

eralized cohomology theory E∗. Examples include complex and real K-theory

and cobordism.

Proposition 6.1: LetM be a smooth, orientable, closed, connected 4-manifold

satisfying the hypotheses of Theorem 1.1 and let E∗ be a reduced generalized

cohomology theory. If M is Spin there is a group isomorphism

En(M) ∼=
m⊕
i=1

(En(S1)⊕ En(S3))⊕
n⊕

j=1

(En(P 2(bj))⊕ En(P 3(bj))

⊕
d⊕

k=1

En(S2)⊕ En(S4).

If M is non-Spin there is a group isomorphism

En(M) ∼=
m⊕
i=1

(En(S1)⊕ En(S3))⊕
n⊕

j=1

(En(P 2(bj))⊕ En(P 3(bj))

⊕
d⊕

k=2

En(S2)⊕ En(CP 2).
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Proof. Let X,A and B be CW -complexes such that ΣX � ΣA ∨ ΣB. Using

the axioms of reduced generalized cohomology theories, we obtain a string of

group isomorphisms

En(X) ∼= En+1(ΣX)

∼= En+1(ΣA ∨ ΣB)

∼= En+1(ΣA) ⊕ En+1(ΣB)

∼= En(A)⊕ En(B).

In our case, the asserted group isomorphisms for En(M) follow immediately

from the above group isomorphisms and the homotopy decomposition of ΣM

in Theorem 1.1.

The second application is to current groups. Let X be a smooth manifold

and let G be a connected Lie group. The current group associated to X

and G is the space of smooth maps from X to G, which is homotopy equiva-

lent to Map(X,G). The most famous example is the loop group Map(S1, G).

Current groups have received considerable attention, notably in [5, 17, 22].

In our case, consider Map(M,G). There is a fibration

Map∗(M,G) −→ Map(M,G)
ev−→ G

where ev evaluates a map at the basepoint of M . The multiplication on G

induces one on Map(M,G) so the right inverse of ev induced by projecting M

to the constant map implies that there is a homotopy equivalence

(15) Map(M,G) � G×Map∗(M,G).

Note that Map∗(Sn, G) = ΩnG. For k ∈ Z, let G
k−→ G be the kth-power map

and let G{k} be its homotopy fibre. Applying Map∗( , G) to the homotopy

cofibration

Sn k−→ Sn −→ Pn+1(k)

gives a homotopy fibration

Map∗(Pn+1(k), G) −→ ΩnG
k−→ ΩnG,

implying that

Map∗(Pn+1(k), G) � ΩnG{k}.
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Proposition 6.2: LetM be a smooth, orientable, closed, connected 4-manifold

satisfying the hypotheses of Theorem 1.1 and let G be a connected topological

group. If M is Spin there is a homotopy equivalence

Map(M,G) � G×
m∏
i=1

(ΩG×Ω3G)×
n∏

j=1

(ΩG{bj}×Ω2G{bj})×
( d∏

k=1

Ω2G

)
×Ω4G.

If M is non-Spin there is a homotopy equivalence

Map(M,G) �G×
m∏
i=1

(ΩG× Ω3G)×
n∏

j=1

(ΩG{bj} × Ω2G{bj})

×
( d∏

k=2

Ω2G

)
×Map∗(CP 2, G).

Proof. In general, if ΣX � ΣA ∨ ΣB then

Map∗(X,G) � Map∗(ΣX,BG) � Map∗(ΣA,BG)×Map∗(ΣB,BG)

� Map∗(A,G) ×Map∗(B,BG).

In our case, the homotopy decomposition of ΣM in Lemma 1.1 implies that

if M is Spin there is a homotopy equivalence

Map∗(M,G) �
m∏
i=1

(ΩG×Ω3G)×
n∏

j=1

(ΩG{bj}×Ω2G{bj})×
( d∏

k=1

Ω2G

)
×Ω4G

and if M is non-Spin there is a homotopy equivalence

Map∗(M,G) �
m∏
i=1

(ΩG× Ω3G)×
n∏

j=1

(ΩG{bj} × Ω2G{bj})

×
( d∏

k=2

Ω2G

)
×Map∗(CP 2, G).

The asserted homotopy decompositions for Map(M,G) now follow from (15).

The third application is to gauge groups. Let G be a simply-connected, sim-

ple compact Lie group and let M be an orientable, closed, compact 4-manifold.

Then [M,BG] ∼= Z so for each k ∈ Z there is a principal G-bundle Pk with sec-

ond Chern class k. The gauge group Gk(M) of Pk is the group of G-equivariant

automorphisms of Pk that fix M . Gauge groups are of paramount importance

in mathematical physics and geoemetry, and recently their homotopy theory

has received a great deal of attention [8, 9, 13, 14, 15, 16, 24, 25, 26, 27, 28, 29,

30, 31].
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By [1, 7] there is a homotopy equivalenceBGk(M) � Mapk(M,BG) where the

right side is the component of the space of continuous (not necessarily pointed)

maps from M to BG containing the map inducing Pk. From the mapping space

point of view there is an evaluation fibration sequence

G
∂k−→ Map∗k(M,BG) −→ Mapk(M,BG)

ev−→ BG

where ev evaluates a map at the basepoint of M and ∂k is the fibration con-

necting map. Notice that the homotopy fibre of ∂k is Gk(M).

In Propositions 6.3 and 6.4 the Spin and non-Spin cases of smooth, orientable,

closed, connected 4-manifolds are considered separately due to some additional

delicacy in the non-Spin case.

Proposition 6.3: LetM be a smooth, orientable, closed, connected 4-manifold

and let G be a simply-connected, compact, simple Lie group. If M is Spin and

satisfies the hypotheses of Theorem 1.1 then there is a homotopy equivalence

Gk(M) � Gk(S
4)×

m∏
i=1

(ΩG× Ω3G)×
n∏

j=1

(ΩG{bj} × Ω2G{bj})×
( d∏

l=1

Ω2G

)
.

Proof. The pinch map q : M −→ S4 to the top cell induces an isomorphism

[S4, BG] −→ [M,BG], so by the naturality of the evaluation fibration there is

a homotopy fibration diagram

(16) G Map∗k(S4, BG) Mapk(S
4, BG)

ev
BG

G Map∗k(M,BG) Mapk(M,BG)
ev

BG.

Consider the homotopy cofibration sequence S3 f−→M3−→M
q−→ S4 where M3

is the 3-skeleton of M and f is the attaching map for the top cell. This induces

a homotopy fibration Map∗(S4, BG) −→ Map∗(M,BG) −→ Map∗(M3, BG).

Since Map∗(M3, BG) has one component, restricting to the kth component

of Map∗(M,BG) we obtain a homotopy fibration

Map∗k(S
4, BG) −→ Map∗k(M,BG) −→ Map∗(M3, BG).

Notice that the connecting map for this homotopy cofibration is Σf , which is

null homotopic by Theorem 1.1 since it is assumed that M is Spin.
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From the left square in (16) we therefore obtain a homotopy fibration diagram

∗ ΩMap∗k(M,BG) ΩMap∗k(M,BG)

b

Gk(S
4) Gk(M)

a
Map∗(ΣM3, BG)

(Σf)∗

Gk(S
4) G Map∗k(S

4, BG)

∗ Map∗k(M,BG) Map∗k(M,BG)

where a and b are induced maps. Since (Σf)∗ is null homotopic, b has a right

homotopy inverse. The homotopy commutativity of the top right square then

implies that a has a right homotopy inverse. Therefore, using the multiplication

on Gk(M) we obtain a homotopy equivalence

Gk(M) � Gk(S
4)×Map∗(ΣM3, BG).

As M is Spin, the homotopy decomposition of ΣM in Theorem 1.1 implies that

ΣM3 �
( m∨

i=1

(S2 ∨ S4)

)
∨
( n∨

j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d∨

l=1

S3

)
.

Substituting this into Map∗(ΣM3, BG) then gives the homotopy equivalence

asserted in the statement of the Proposition.

Next, consider the non-Spin case. We aim for an argument mirroring the Spin

case, but using a mapM −→ CP2 instead of the pinch mapM −→ S4. However,

the existence of such a map is not obvious. We produce a near substitute using

the approach in [24]. To do so an extra hypothesis is introduced on π1(M)

involving the graph product of groups.

Let Γ = (V,E) be a finite undirected graph with vertex set V and edge

set E, and let Ĝ = {Gv|v ∈ V } be a collection of groups associated to the ver-

tices of Γ. The graph product ΓĜ of Ĝ over Γ is the quotient group F/R,

where F = ∗v∈V Gv is the free product of Gv’s and R is the normal subgroup

generated by commutator groups [Gu, Gv] wherever (u, v) is in E. For example,

if Γ is a complete graph then ΓĜ =
⊕

v∈V Gv or if Γ is a graph of discrete

points then ΓĜ = ∗v∈V Gv.
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If each Gv is cyclic then the abelianization of ΓĜ is
⊕

v∈V Gv. It is known

that if a group H is finitely presented then there is a smooth, orientable, closed,

connected 4-manifold whose fundamental group is H (see, for example, [6, The-

orem 1.2]). For example, if ΓĜ is a graph product of cyclic groups {Gv}v∈V then

there is a smooth, orientable, closed, connected 4-manifold with π1(M) ∼= ΓĜ

and H1(M ;Z) ∼= ⊕
v∈V Gv. A specific interesting case is when M = M ′ × S1

where M ′ is a smooth, orientable, closed, connected 3-manifold with π1(M
′)

the graph product of copies of Z (a right-angled Artin group) or copies of Z/2Z

(a right-angled Coxeter group).

Proposition 6.4: LetM be a smooth, orientable, closed, connected 4-manifold

and let G be a simply-connected, compact, simple Lie group. Let ΓĜ be a graph

product of {Gi}m+n
i=1 where Gi = Z for 1 ≤ i ≤ m, Gj+m = Z/bjZ for 1 ≤ j ≤ n,

and each bj is odd. If M is non-Spin and π1(M) ∼= ΓĜ then there is a homotopy

equivalence

Gk(M) � Gk(CP
2)×

m∏
i=1

(ΩG× Ω3G)×
n∏

j=1

(ΩG{bj} × Ω2G{bj})×
( d∏

l=2

Ω2G

)
.

Proof. For 1 ≤ i ≤ m, denote the generator of Gi = Z by αi. For 1 ≤ j ≤ n,

denote the generator of Gj+m = Z/bjZ by βj . Then each αi has infinite

order and each βj has finite order bj . Since the Hurewicz homomorphism

h : π1(M) → H1(M ;Z) is the abelianization, h(αi) has infinite order and h(βj)

has order bj. They generate the direct summands of

H1(M) ∼=
m⊕
i=1

Z⊕
n⊕

j=1

Z/bjZ.

In particular, M satisfies the hypotheses of Theorem 1.1.

For 1 ≤ i ≤ m, each αi is represented by a map xi : S1 −→ M of infinite

order and for 1 ≤ j ≤ n, each βj is represented by a map yj : S
1 −→ M of

order bj. Since βj has order bj, it extends to a map β̃j : P
2(bj) → M . Let

ξ :

( m∨
i=1

S1

)
∨
( n∨

j=1

P 2(bj)

)
−→ M

be the wedge sum of the maps αi and β̃j. The graph product hypothesis

on π1(M) implies that ξ induces an epimorphism on π1. By (1), ξ∗ is an

isomorphism in degree 1 integral homology, and the description of H∗(M ;Z)
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in (11) together with the homotopy decomposition of ΣM in Theorem 1.1 im-

plies that Σξ has a left homotopy inverse. Define the space C and the map g

by the homotopy cofibration( m∨
i=1

S1

)
∨
( n∨

j=1

P 2(bj)

)
ξ−→ M

g−→ C.

Since ξ induces an epimorphism on π1, C is simply-connected. This implies

that C can be given a minimal CW -structure with one cell corresponding to

each homology class, and H∗(C;Z) is determined by H∗(M ;Z) since ζ∗ has a

left inverse. Since Σξ has a left homotopy inverse, Σg has a right homotopy

inverse. Explicitly, the homotopy equivalence for ΣM in Theorem 1.1 implies

that

ΣC �
( m∨

i=1

S4

)
∨
( n∨

j=1

P 4(bj)

)
∨
( d−1∨

l=1

S3

)
∨ ΣCP 2.

This homotopy equivalence may not desuspend but observe that if C3 is the

3-skeleton of C then

ΣC3 �
( m∨

i=1

S4

)
∨
( n∨

j=1

P 4(bj)

)
∨
( d−1∨

l=1

S3

)
∨ S3.

Because C3 has cells only in dimensions 2 and 3, the attaching maps for the

3-cells are in the stable range, so this homotopy equivalence desuspends and we

have

C3 �
( m∨

i=1

S3

)
∨
( n∨

j=1

P 3(bj)

)
∨
( d−1∨

l=1

S2

)
∨ S2.

Let D be the subwedge of C3 given by

D =

( m∨
i=1

S3

)
∨
( n∨

j=1

P 3(bj)

)
∨
( d−1∨

l=1

S2

)
.

Then the composite of inclusions D −→ C3 −→ C has homotopy cofibre X ,

where ΣX � ΣCP2.

Define the map q′ by the composite q′ : M
g−→ C −→ X and define the

space Y and the maps f ′ and δ by the homotopy cofibration sequence

M
q′−→ X

f ′
−→ Y

δ−→ ΣM
Σq′−→ ΣX.

As Σq′ has a right homotopy inverse s : ΣX −→ ΣM , the composite

Y ∨ ΣX
δ∨s−→ ΣM ∨ ΣM

∇−→ ΣM
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is a homotopy equivalence, where ∇ is the fold map. This implies that δ has a

left homotopy inverse and hence f ′ is null homotopic. Further, when combined

with the homotopy equivalence for ΣM in Theorem 1.1, it implies that there is

a homotopy equivalence

(17) Y �
( m∨

i=1

(S2 ∨ S4)

)
∨
( n∨

j=1

(P 3(bj) ∨ P 4(bj))

)
∨
( d−1∨

l=1

S3

)
.

Now replace the homotopy cofibration M
q−→ S4 Σf−→ ΣM3 and the null homo-

topy for Σf in the argument for the Spin case with the homotopy cofibration

M −→ X
f ′
−→ Y and the null homotopy for f ′ to obtain a homotopy equivalence

Gk(M) � Gk(X)×Map∗(Y,BG).

Substituting the homotopy equivalence for Y in (17) into Map∗(Y,BG) then

gives a homotopy equivalence

(18) Gk(M) � Gk(X)×
m∏
i=1

(ΩG×Ω3G)×
n∏

j=1

(ΩG{bj}×Ω2G{bj})×
( d∏

l=2

Ω2G

)
.

Notice that X only contains one 2-cell and one 4-cell, so it is the cofibre of aη

for some odd number a. While X may not be homotopy equivalent to CP2, and

while Gk(X) may not be homotopy equivalent to Gk(CP
2), by [24, Lemma 2.12]

there is a homotopy equivalence Gk(X)× Ω2G � Gk(CP
2)× Ω2G for d ≥ 2.

If d = 1, by the construction of X , the map M → X induces isomorphisms

H2
free(M ;Z) ∼= H2

free(X ;Z) and H4(M : Z) ∼= H4(X ;Z).

Furthermore, the cup products of degree 2 free elements are preserved under

these identifications. So X is a Poincaré complex and must be CP2. Conse-

quently, Gk(X) � Gk(CP
2). Thus, in all cases, from (18) we obtain the asserted

homotopy decomposition of Gk(M).

Propositions 6.3 and 6.4 greatly generalize the results in [24], which considered

the special cases when π1(M) is: (i) free, (ii) isomorphic to Z/prZ, or (iii) a free

product of groups in (i) and (ii). It is worth emphasizing that the decomposition

of Gk(M) can be simply read off from H∗(M ;Z).

Further, Huang and Wu [11] proved a cancellation result in p-local homotopy

theory. From this we obtain the following.
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Corollary 6.5: Let M be a manifold as in Propositions 6.3 or 6.4 and let p be

a prime. If M is Spin, there is a p-local homotopy equivalence Gk(M) � Gl(M)

if and only if there is a p-local homotopy equivalence Gk(S
4) � Gl(S

4). If M is

non-Spin, there is a p-local homotopy equivalence Gk(M) � Gl(M) if and only

if there is a p-local homotopy equivalence Gk(CP
2) � Gl(CP

2).

A classification of when there is a p-local homotopy equivalence

Gk(S
4) � Gl(S

4)

for any prime p has been determined for G = SU(2) [15], G = SU(3) [8],

G=SU(5) [30], and G=Sp(2) [28]. For example, when G = SU(3) there is a p-

local homotopy equivalence Gk(S
4)�Gl(S

4) if and only if (k, 12)=(l, 12), where

(a, b) is the greatest common denominator of integers a and b. Partial classifi-

cations have been determined in many other cases [9, 13, 14, 16, 25, 29, 31].

Acknowledgments. The first author is funded by PIMS Post-doctoral Fel-

lowship at the University of Regina and was supported by the Oberwolfach Leib-

niz Fellowship. He would particularly like to thank Mathematisches Forschun-

ginstitut Oberwolfach for the opportunity to work in such a wonderful environ-

ment.

References

[1] M. Atiyah and R. Bott, The Yang–Mills equations over Riemann surfaces, Philosophi-

cal Transactions of the Royal Society of London. Series A. Mathematical and Physical

Sciences 308 (1983), 523–615.

[2] H.-J. Baues and Y. A. Drozd, Classification of sstable homotopy types with torsion-free

homology, Topology 40 (2001), 789–821.

[3] H.-J. Baues and M. Hennes, The homotopy classification of (n − 1)-connected (n + 3)-

dimensional polyhedral, n ≥ 4, Topology 30 (1991), 373–408.

[4] S. C. Chang, Homotopy invariants and continuous mappings, Proceedings of the Royal

Society of London. Series A 202 (1950), 253–263.

[5] I. Etingof and I. B. Frenkel, Central extensions of current groups in two dimensions,

Communications in Mathematical Physics 165 (1994), 429–444.

[6] S. Friedl, An introduction to 3-manifolds,

https://friedl.app.uni-regensburg.de/papers/muenster.pdf.

[7] D. Gottlieb, Applications of bundle map theory, Transactions of the American Mathe-

matical Society 171 (1972), 23–50.

[8] H. Hamanaka and A. Kono, Unstable K-group and homotopy type of certain gauge

groups, Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 136

(2006), 149–155.

https://friedl.app.uni-regensburg.de/papers/muenster.pdf


36 T. SO AND S. THERIAULT Isr. J. Math.

[9] S. Hasui, D. Kishimoto, T. So and S. Theriault, Odd primary homotopy types of the gauge

groups of exceptional Lie groups, Proceedings of the American Mathematical Society 147

(2019), 1751–1762.

[10] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.

[11] R. Huang and J. Wu, Cancellation and homotopy rigidity of classic functors, Journal of

the London Mathematical Society 99 (2019), 225–248.

[12] R. Kirby, The Topology of 4-Manifolds, Lecture Notes in Mathematics, Vol. 1374,

Springer, Berlin, 1989.

[13] D. Kishimoto and A. Kono, On the homotopy types of Sp(n) gauge groups, Algebraic &

Geomewtric Topology 19 (2019), 491–502.

[14] D. Kishimoto, S. Theriault and M. Tsutaya, The homotopy types of G2-gauge groups,

Topology and its Applications 228 (2017), 92–107.

[15] A. Kono, A note on the homotopy type of certain gauge groups, Proceedings of the Royal

Society of Edinburgh. Section A. Mathematics 117 (1991), 295–297.

[16] A. Kono and S. Tsukuda, A remark on the homotopy type of certain gauge groups,

Journal of Mathematics of Kyoto University 36 (1996), 115–121.

[17] P. Maier and K.-H. Neeb, Central extensions of current groups, Mathematische Annalen

326 (2003), 367–415.

[18] Y. Matsumoto, An Introduction to Morse Theory, Translations of Mathematical Mono-

graphs, Vol. 208, American Mathematical Society, Providence, RI, 2002.

[19] J. A. Neisendorfer, Primary homotopy theory, Memoirs of the American Mathematical

Society 232 (1980).

[20] J. A. Neisendorfer, Homotopy groups with coefficients, Journal of Fixed Point Theory

and Applications 8 (2010), 247–338.

[21] J. Z. Pan and Z. J. Zhu, The homotopy classification of A4
n-polyhedra with 2-torsion free

homology, Science China. Mathematics 59 (2016), 1141–1162.

[22] A. Pressley and G. Segal, Loop Groups, Oxford Mathematical Monographs, The Claren-

don Press, Oxford University Press, New York, 1986.

[23] P. Selick, Introduction to Homotopy Theory, Fields Institute Monographs, Vol. 9, Amer-

ican Mathematical Society, Providence, RI, 1997.

[24] T. So, Homotopy types of gauge groups over non-simply-connected closed 4-manifolds,

Glasgow Mathematical Journal 61 (2019), 349–371.

[25] T. So and S. Theriault, The homotopy types of Sp(2)-gauge groups over closed, simply-

connected four-manifolds, Proceedings of the Steklov Institute of Mathematics 305

(2019), 287–304.

[26] W. A. Sutherland, Function spaces related to gauge groups, Proceedings of the Royal

Society of Edinburgh. Section A. Mathematics 121 (1992), 185–190.

[27] S. Theriault, Odd primary homotopy decompositions of gauge groups, Algebraic & Geo-

metric Topology 10 (2010), 535–564.

[28] S. Theriault, The homotopy types of Sp(2)-gauge groups, Journal of Mathematics of

Kyoto University 50 (2010), 591–605.

[29] S. Theriault, Homotopy types of SU(3)-gauge groups over simply connected 4-manifolds,

Publications of the Research Institute for Mathematical Sciences 48 (2012), 543–563.



Vol. TBD, 2024 SUSPENSION OF 4-MANIFOLDS 37

[30] S. Theriault, The homotopy types of SU(5)-gauge groups, Osaka Journal of Mathematics

52 (2015), 15–29.

[31] S. Theriault, Odd primary homotopy types of SU(n)-gauge groups, Algebraic & Geo-

metric Topology 17 (2017), 1131–1150.

[32] J. H. C. Whitehead, The homotopy type of a special kind of polyhedron, Annales de la
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