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ABSTRACT

For a very general complex projective K3 surface S and a smooth pro-

jective surface A with trivial canonical class, we prove that there is no

dominant rational map A ��� S, which is not an isomorphism.

1. Introduction

The purpose of this note is to contribute to the study of rational maps with tar-

get a K3 surface (we will mainly consider smooth complex projective surfaces).

A particular question is this:

Does the existence of a dominant rational map, which is not an isomorphism,

from a surface with trivial canonical class to a given K3 surface constrain this K3

surface from being “general enough”?

The answer is provided by the following
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Theorem 1.1: Suppose there exists a dominant rational map φ : A ��� S from

a surface A with trivial canonical class to a K3 surface S. Suppose also that

deg φ ≥ 2. Then the Picard number ρ(S) is strictly greater than 1.

The study of dominant rational maps between K3 and Abelian surfaces goes

back to the papers [S-I] and [Mo] (there the authors used the lattice-theoretic

point of view). Also, a special case of Theorem 1.1, concerning general quartic

surfaces, follows from the results obtained by C. Voisin in [Vo, Theorem 2] (she

took the IVHS approach). We unify these trends in a way by employing some

simple birational and projective geometry (cf. Remark 1.6 below).

Let us collect some examples supporting Theorem 1.1.

Example 1.2 (Kummer surfaces): Take an Abelian surface A and consider the

involution τ : A −→ A acting as x �→ −x for all x ∈ A. The minimal resolution

KmA −→ A/τ of the quotient A/τ (extracting sixteen (−2)-curves out of ordi-

nary double points) gives a K3 surface admitting a rational map A ��� KmA

of degree 2. One has ρ(KmA) = 16 + ρ(A) in this case.

In view of Example 1.2 it is worth noting that already the case of K3 surfaces

in positive characteristic (≥ 5) indicating the setup of Theorem 1.1 is not so

trivial. Indeed, it is known that the supersingular Kummer surfaces form a

1-dimensional family, whereas there is a 9-dimensional family of all supersin-

gular K3 (see [L, Section 5] for precise results and references). This, together

with the “rational sandwich theorem” from [L1], implies that there exist non-

Kummer (supersingular) K3 surfaces dominated by Abelian ones.

Here are more examples over C:

Example 1.3 (Shioda surfaces): Let S be an elliptic K3 surface with a section

and two singular fibers of type II∗ (plus some other singular fibers). It was

proved by T. Shioda in [Shi] that there exists a Kummer surface KmC1 × C2,

where Ci are elliptic curves, and two rational maps

KmC1 × C2 ��� S, S ��� KmC1 × C2

of degree 2. One can also compute that ρ(S) ≥ 18.

The existence of such S follows from the results in [N]. Namely, all K3

surfaces Y , admitting a primitive embedding of lattices

U ⊕ E8(−1)⊕2 ⊕ Z〈−2d〉 ↪→ NS(Y )
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for some d ≥ 1, form a moduli space of dimension one. Any such Y possesses

a jacobian elliptic fibration (that is it has a section) and two singular fibers of

type II∗. Also for very general such Y the equality

U ⊕ E8(−1)⊕2 ⊕ Z〈−2d〉 = NS(Y )

holds. Moreover, the lattice U ⊕ E8(−1)⊕2 ⊕ Z〈−2d〉 has a unique, up to

isometries, primitive embedding into the K3 lattice (see [N1, Theorem 1.14.4]).

Consequently, the transcendental lattice T (Y ) coincides with U ⊕Z〈2d〉, and it

follows from [Mo, Corollary 4.4] that Y is not a Kummer surface.

Finally, let us indicate that for even d there is a geometric construction of Y

due to K. Hulek and M. Schütt, see [H-S]. They proved that any such Y is

obtained by a quadratic base change from a rational (jacobian) elliptic surface.

It was also shown that Y represents a specific member of the so-called Barth–

Peters family (cf. [H-S, Lemma 4.8]).

Example 1.4 (Symplectic automophisms): An automorphism σ of a K3 sur-

face A is called symplectic if σ induces trivial action on H0(A,Ω2
A) 	 C.

Let G ⊂ Aut(A) be a finite group of symplectic automorphisms. The minimal

resolution S −→ A/G provides a K3 surface S together with a dominant rational

map A ��� S. It is easy to see that ρ(S) ≥ 9. Indeed, the morphism A −→ A/G

can not be étale, hence the resolution S −→ A/G has an exceptional locus. Note

that with a detailed analysis of possible G one can describe the Picard group

of S more precisely (see [Hu, Chapter 15]).

Example 1.5: Let S ⊂ P1 × P2 be given by a general divisor of type (2, 3).

Projection on the first factor yields an elliptic fibration π : S −→ P1. Then

there exists a rational map S ��� S of degree 16 which induces the morphism

[4] : E −→ E on every smooth fiber E of π (cf. [D]). Note that ρ(S) = 2 and

so the estimate in Theorem 1.1 is sharp. Also observe that the quadratic form

on NS(S) is 2x2 + 6xy and hence S does not contain (−2)-curves—contrary to

the claim in the first version of our paper. We are indebted to S. Galkin and

E. Shinder for communicating this construction to us.

Remark 1.6: Suppose that A in Theorem 1.1 is an Abelian surface and take the

resolution of indeterminacies of φ as in the diagram (2.1) below. We have

T (W ) = T (A)
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for the transcendental lattices of A and its blow-up W . It also follows from

the projection formula for the resolved morphism q : W −→ S that q∗ gives an

embedding T (S) ↪→ T (W ). Thus

rk T (S) ≤ rk T (A) ≤ 5

and so ρ(S) ≥ 17 (we would like to thank E. Shinder for pointing out this

argument). Yet let us note that our result provides more impact on the geometry

of S. In particular, when A = S is general, Theorem 1.1 improves the main

result of [Ch] (our proof is also considerably shorter). We refer to [B-S-V],

[Ma], [N2] and [A-R-V], [B], [Ka] for relevant studies of dominant rational maps

between different K3 surfaces and some other classes of algebraic varieties.

2. The proof of Theorem 1.1

Consider the following commutative diagram:

(2.1) W
p q

g
B

f

A
φ

S

Here p blows up the indeterminacy locus of φ, g and f are a proper contraction

and a finite morphism, respectively, provided by the Stein factorization of q,

and B is a normal surface.

The idea behind the proof of Theorem 1.1 is that the exceptional set Ex(p)

of p should constrain the geometry of S and φ.

The next lemma shows that φ does not contract any curves:

Lemma 2.1: The inclusion Ex(g) ⊆ Ex(p) holds.

Proof. Restrict φ to appropriate A′ := A \ {a finite set of points} to obtain a

morphism φ̃ : A′ −→ S. Consider the exact sequence

0 → φ̃∗Ω1
S

γ−→ Ω1
A′ → Ω1

φ̃
→ 0

of sheaves of differentials. It follows that

SuppΩ1
φ̃
= V (det γ), the scheme of zeros,

for det γ being the morphism φ̃∗KS −→ KA′ induced by γ. Further, since the

canonical classes of A, A′ and S are trivial, we get that det γ is a constant.
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Moreover, we have det γ 
= 0, since γ induces an isomorphism of stalks over the

generic point. Thus we obtain Ω1
φ̃
= 0. Then, since q

∣∣
W\Ex(p)

= φ̃ for a natural

identification A′ = W \ Ex(p), we obtain

(2.2) SuppΩ1
q ⊆ Ex(p)

for the relative cotangent sheaf Ω1
q of q.

Note that Ex(g) = SuppΩ1
g because g is a proper contraction. Note also that

SuppΩ1
g ⊆ SuppΩ1

q by the exact sequence

g∗Ω1
f → Ω1

q → Ω1
g → 0

(cf. (2.1)). The inclusion

Ex(g) ⊆ Ex(p)

of exceptional loci now follows from (2.2).

Write Ex(p) =
⋃

i Ei for smooth rational exceptional curves Ei. Let also

R :=
∑

j Zj be the ramification divisor of f with Zj ⊂ B some (not necessarily

distinct) irreducible curves. This R is defined in terms of the canonical classes

as follows:

(2.3) R
∣∣
B\g(Ex(g))

= KB\g(Ex(g)) ⊗ (f∗K∨
S )

∣∣
B\g(Ex(g))

= KB\g(Ex(g)).

We can also put B \g(Ex(g)) = W \Ex(g) and identify R with its closure in W .

Lemma 2.2: R ⊂ W consists of exactly those Ei that are not contracted by g.

Proof. We have KW =
∑

i niEi for some ni ∈ N by the ramification formula

applied to p (recall that KA is trivial). Now the claim follows from

R
∣∣
B\g(Ex(g))

= KB\g(Ex(g)) =
∑
i

niEi

∣∣
W\Ex(g)

,

where the first identity is due to the Hurwitz formula applied to the finite

morphism f : B −→ S, together with the fact that KS is trivial.

The following lemma proves a special case of Theorem 1.1:

Lemma 2.3: Suppose that Supp f∗(f(Zj)) ⊆ R for some j. Then f(Zj) is a

(−2)-curve on S and hence ρ(S) ≥ 2.

Proof. We have Supp q∗f(Zj) ⊆ Supp g∗R by assumption. Note further that

Supp g∗R ⊆ Ex(p) by Lemmas 2.1 and 2.2. Consequently, we obtain

Supp q∗f(Zj) ⊆ Ex(p)
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and

(deg q)(f(Zj)
2) = (q∗f(Zj)

2) < 0,

where the latter inequality is due to the fact that the matrix of (Ei · Ek) is

negative definite (see [M]). The claim now follows because the arithmetic genus

pa(f(Zj)) =
1
2 (f(Zj)

2) + 1 ≥ 0 and the equality holds iff f(Zj) 	 P1.

Let us turn to the case not covered by Lemma 2.3:

Lemma 2.4: Suppose that either R = ∅ or for every j there exists an effective

cycle Z̃j 
= 0 such that f∗(f(Zj)) ≥ Zj + Z̃j and Supp Z̃j � R. Then φ is

onto S′ := S \ {a finite set of points} and is unramified over S′.1

Proof. IfR = ∅, then Lemmas 2.1 and 2.2 imply that φ induces a finite surjective

unramified morphism A′ −→ S′, where ′ indicates removing a finite set of points.

In the second case, when R 
= ∅, Lemma 2.2 and the assumption imply that

each f(Zj) is dominated by p(g−1
∗ (Z̃j)) via φ because g−1

∗ (Z̃j) � Ex(p). Then

it follows from Lemma 2.1 and the equality q(Ex(p)) = f(
⋃

j Zj) that φ induces

a finite surjective morphism A′ −→ S′ for A′ = W \ Ex(p) (cf. (2.1)). Finally,

φ
∣∣
A′ is unramified, since R ⊆ Ex(p) (cf. (2.3)).

We will now assume that ρ(S) = 1 and complete the proof of Theorem 1.1

by establishing a contradiction (this should be contrasted with Example 1.5).

Write NS(S) = Z ·HS for an ample generator HS .

It follows from Lemmas 2.3 and 2.4 that φ induces a surjective unramified

morphism A′ −→ S′ as above. Then, since the complements A \ A′ and S \ S′

have codimension ≥ 2, the divisorial pull-back φ∗HS of HS to A is naturally de-

fined. Namely, writeHS as a sum
∑

i diDi of primeWeil divisorsDi with di ∈ Z,

set φ∗Di to be the Zariski closure of φ−1(Di∩S′) and extend by linearity. Note

that φ∗ preserves the linear equivalence.

So we have φ∗HS = HA for some divisor HA on A. Let n ∈ N be such

that nHS is very ample. From the construction we get

n2(H2
A) = n2(deg φ)(H2

S) > 0

1 We use interchangeably the terms “unramified” and “smooth” when applied to a finite

morphism. Note also that in our case φ : A′ −→ S′ need not be a topological covering

(the picture here is similar to , e.g., f : C −→ C, given by f(z) = z2(z − 1), which

becomes smooth on C \ {0}).
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and (nHA ·Z) = (nHS · φ∗(Z)) > 0 for every curve Z ⊂ A. Hence HA is ample

by the Nakai–Moishezon criterion. Then multiplying by a common factor one

may assume that both HA and HS are very ample.

Consider a general smooth curve C ∈ |HA| with C ⊂ A′. Then the (scheme-

theoretic) image φ(C) ⊂ S is defined. Furthermore, since actually φ(C) ⊂ S′,
the preimage φ−1φ(C) is defined as well.

Proposition 2.5: φ(C) is a smooth curve.

Proof. Suppose that φ(C) is singular at some point p. Then, since φ
∣∣
A′ is

a local isomorphism, there exist two distinct points p1, p2 ∈ C and tangent

vectors ti ∈ TpiC such that φ(pi) = p and φ∗(t1) 
= φ∗(t2) (cf. Figure 1).

S

A

p

t1

t2 C

H̃

φ

φ∗(t2)
φ∗(t1)

Figure 1.
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Consider a general curve H ∈ φ∗|HS | ⊂ |HA| which is tangent to C along

both ti (these H constitute a codimension 3 linear system LA ⊂ φ∗|HS | by
generality of C). Then the curve φ(H ∩A′) is singular at p.2 The linear system

LS ⊂ |HS | of the closures of such φ(H∩A′) has codimension 3, since φ∗HS = HA,

and consists of all members from |HS | singular at p. Indeed, these members

are cut out on S by hyperplanes containing the tangent plane TpS, which is a

codimension 3 condition.

On the other hand, take a general curve H̃ ∈ φ∗|HS | through p1, p2, which

has tangency along t1, but not along t2 (i.e., H̃ is the preimage of a curve from

|HS | tangent to only one branch of φ(C) at p). Then φ(H̃ ∩ A′) is singular

at p for φ∗(t1) 
= φ∗(t2) and φ
∣∣
A′ being a local isomorphism, hence H̃ ∈ LA, a

contradiction.

Remark 2.6: Using [D, Proposition 2.1, (ii)] together with our Proposition 2.5

it is tempting to claim a contradiction and conclude the proof of Theorem 1.1.

But this, however, disagrees with Example 1.5 because the argument in [D]

applies to arbitrary A, S and φ of degree ≥ 2. The reason for this confusion is

that [D, Proposition 2.1, (ii)] is formulated a bit imprecisely. A more accurate

formulation should be that φ(C) is at most nodal. In fact, Dedieu considers the

scheme J parameterizing various pairs (C∗, x1+x2), where C
∗ ∈ |HA|, xi ∈ C∗

are distinct points with φ(x1) = φ(x2), and shows that dim J = dim |HA|. Then
the fiber of the natural projection J −→ |HA| over a general C is either finite

(in which case φ(C) is nodal and φ
∣∣
C

is its normalization) or empty (in which

case φ
∣∣
C

is an isomorphism).

Corollary 2.7: φ−1φ(C) = C.

Proof. Firstly, the closure of the preimage φ−1φ(C) is connected, since

φ∗HS = HA is ample. Now, if φ−1φ(C) has an irreducible component C ′ 
= C,

then there is a point p ∈ C ∩ C′, so that φ(C) is singular at φ(p) for φ
∣∣
A′

being a local isomorphism (cf. Figure 1). But the latter contradicts Proposi-

tion 2.5.

We have φ(C) ∈ |kHS | for some k ≥ 1 because ρ(S) = 1 by assumption.

Now observe that φ∗C = φ∗φ∗HS = (deg φ)HS by the projection formula and

also φ∗C = dφ(C) = dkHS for d := deg φ
∣∣
C
. Hence deg φ = dk. On the other

2 Note that a priori H �⊂ A′ and φ has indeterminacies on H.



Vol. TBD, 2024 RATIONAL MAPS AND K3 SURFACES 9

hand, we have d = degφ by Corollary 2.7, and so k = 1. Thus φ(C) ∈ |HS |
and it follows that |HA| = φ∗|HS | for C = φ−1φ(C). In particular, φ must be

regular because C ⊂ A′ by construction, hence it induces an étale cover, which

is impossible for the K3 surface S.

Theorem 1.1 is completely proved.

We conclude the paper by asking the following question (suggested by the

referee):

Is there an analog of Theorem 1.1 for non-projecitve compact complex sur-

faces?
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between threefolds, Université de Grenoble. Annales de l’Institut Fourier 49 (1999),

405–415.

[B] A. Beauville, Endomorphisms of hypersurfaces and other manifolds, International

Mathematics Research Notices 2001 (2001), 53–58.

[B-S-V] S. Boissière, A. Sarti and D. C. Veniani, On prime degree isogenies between K3

surfaces, Rendiconti del Circolo Matematico di Palermo 66 (2017), 3–18.

[Ch] X. Chen, Self rational maps of K3 surfaces, https://arxiv.org/abs/1008.1619 .

[D] T. Dedieu, Severi varieties and self-rational maps of K3 surfaces, International Jour-

nal of Mathematics 20 (2009), 1455–1477.
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