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ABSTRACT

This paper deals with countable products of countable Borel equivalence

relations and equivalence relations “just above” those in the Borel re-

ducibility hierarchy. We show that if E is strongly ergodic with respect

to µ then EN is strongly ergodic with respect to µN. We answer questions

of Clemens and Coskey regarding their recently defined Γ-jump opera-

tions, in particular showing that the Z
k+1-jump of E∞ is strictly above

the Z
k-jump of E∞. We study a notion of equivalence relations which can

be classified by infinite sequences of “definably countable sets”. In par-

ticular, we define an interesting example of such an equivalence relation

which is strictly above EN∞, strictly below =+, and is incomparable with

the Γ-jumps of countable equivalence relations.

We establish a characterization of strong ergodicity between Borel

equivalence relations in terms of symmetric models, using results from

[Sha21]. The proofs then rely on a fine analysis of the very weak choice

principles “every sequence of E-classes admits a choice sequence”, for var-

ious countable Borel equivalence relations E.

1. Introduction

Let E be an equivalence relation on a Polish space X . Say that E is Borel if

it is a Borel subset of X ×X , and E is countable if each E-class is countable.

Given a countable group Γ and a Borel action a : Γ � X , the corresponding

orbit equivalence relation Ea is defined by x Ea y if there is some γ ∈ Γ
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sending x to y. The Feldman–Moore theorem states that any countable Borel

equivalence relation is the orbit equivalence relation of some Borel action of a

countable group.

Given Borel equivalence relations E and F on Polish spaces X and Y re-

spectively, a Borel map f : X −→ Y is a homomorphism from E to F ,

denoted f : E −→B F , if for any x, x′ ∈ X , if x E x′ then f(x) F f(x′).
A Borel map f : X −→ Y is a reduction of E to F if for all x, x′ ∈ X ,

x E x′ ⇐⇒ f(x) F f(x′). A Borel homomorphism f : E −→B F corresponds

to a “Borel definable” map between E-classes and F -classes. This map is in-

jective if and only if f is a reduction. Say that E is Borel reducible to F ,

denoted E ≤B F , if there is a Borel reduction from E to F . This pre-order

is used to measure the complexity of various equivalence relations. Say that

E <B F if E ≤B F and F �≤B E.

Let a be a Borel action of a countable group Γ on a probability measure

space (X,μ). Recall that the action is said to be ergodic (with respect

to μ) if every a-invariant Borel set has either measure zero or measure one.

An equivalent condition is: any Borel a-invariant function from X to [0, 1] is

constant on a measure one set. Similarly, the action is said to be generically

ergodic if any a-invariant Borel set is either meager or comeager, equivalently,

if any Borel a-invariant function from X to [0, 1] is constant on a comeager

set. Note that a Borel a-invariant function is precisely a Borel homomorphism

from Ea to =[0,1], where =Y is the equality relation on Y .

Definition 1.1 (See [Kec∞, Definition 7.5]): Let E and F be Borel equivalence

relations on Polish spaces X and Y respectively and let μ be a probability

measure on X . Say that E is (μ,F)-ergodic if for any Borel homomorphism

f : E −→B F there is a Borel E-invariant measure one set A ⊆ X such that f

maps A into a single F -class.

We sometime say that E is F -ergodic with respect to μ. Note that E is

ergodic with respect to μ if and only if E is (μ,=[0,1])-ergodic. The notion of

E0-ergodicity is also known as “strong ergodicity”, as first defined by Jones

and Schmidt [JS87]. Let F2 be the free group on two generators, ν the (12 ,
1
2 )

measure on {0, 1}. Define E0 on {0, 1}Z to be the orbit equivalence relation

of the shift action Z � {0, 1}Z, and E∞ as the orbit equivalence relation of

the shift action F2 � {0, 1}F2. Then E∞ is (νF2 , E0)-ergodic (see [HK05]).

The notion of strong ergodicity is prevalent in the study of countable Borel
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equivalence relations. In order to show that E is not Borel reducible to F , one

often shows that E is F -ergodic with respect to some measure (see [AK00]).

When studying non-countable Borel equivalence relations, Baire category ar-

guments are often used rather than measure theoretic ones. In this case the

notion of generic strong ergodicity is often useful. Let E and F be Borel equiv-

alence relations on Polish spaces X and Y respectively. Say that E is generi-

cally F-ergodic if for any Borel homomorphism f : E −→B F there is a Borel

E-invariant comeager set A ⊆ X such that f maps A into a single F -class. Say

that E is generically ergodic if it is generically =[0,1]-ergodic. If E is induced

by an action of some countable group, this is equivalent to the action being

generically ergodic.

1.1. Strong ergodicity for infinite products. Given equivalence rela-

tions En on Polish spaces Xn respectively, let their (full support) prod-

uct
∏
nEn be the equivalence relation on

∏
nXn defined by x (

∏
nEn) y if

x(n) (En) y(n) for all n. Let EN be the product
∏
nE. These equivalence

relations arise naturally in the study of the Borel reducibility hierarchy; see for

example [HK97].

Let the finite support product
∏fin
n En be the equivalence relation on∏

nXn defined by x (
∏fin
n En) y if x (

∏
nEn) y and x(n) = y(n) for all but

finitely many n. While the full support product of countable equivalence relation

is no longer a countable equivalence relation, the finite support product is. The

finite support product operation was studied by Kechris where he showed the

following [Kec20, Lemma 4.2]: suppose En is a countable Borel equivalence

relation and μn is a probability measure on Xn. Then
∏fin
n En is ergodic with

respect to
∏
n μn if and only if En is ergodic with respect to μn for every n.

Note that if the finite support product is ergodic, then so is the full support

product. While strong ergodicity is not preserved under finite support products,

we show that it is preserved under full support products.

Lemma 1.2 (Corollary 3.9 below): Suppose En is a countable Borel equivalence

relation and μn is a probability measure on Xn. Let F be a countable Borel

equivalence relation. Then

∏
n

En is

(∏
n

μn, F

)
-ergodic if and only if En is (μn, F )-ergodic for all n.
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The non-trivial direction is right to left, that is, showing that the infinite

product is F -ergodic with respect to the product measure. Let us note that

full support products are necessary, even for E0-ergodicity. Let X = {0, 1},
μ = (12 ,

1
2 ) and E = X2 be the equivalence relation with a single equivalence

class. Then E is (μ,E0)-ergodic but
∏fin
n E is not (μN, E0)-ergodic (as it is

Borel bireducible with E0). More generally, if μ does not concentrate on a single

element and E is any equivalence relation, then
∏fin
n E is not (μN, E0)-ergodic.

Thus a different approach is necessary for the lemma above, the proof of which

appeals to set-theoretic definability in symmetric models. The proof shows in

general that for ergodic En, homomorphisms
∏
nEn −→B F are determined by

homomorphisms defined on finite products
∏
n<mEn, on a measure 1 set.

1.2. The Γ-jumps of Clemens and Coskey. Recently Clemens and Coskey

[CC22] defined new “gentle” jump operators. In particular, by applying these

operations to countable equivalence relations, these yield new interesting equiv-

alence relations which are strictly above the countable products of countable

equivalence relations, yet lower in the Borel reducibility hierarchy than previ-

ously known examples. For a countable group Γ, Clemens and Coskey define

the Γ-jump of E, E[Γ] on XΓ, by

x E[Γ] y ⇐⇒ (∃γ ∈ Γ)(∀α ∈ Γ)x(γ−1α) E y(α).

The Γ-jumps generalize the usual shift actions of countable groups. For example,

the Z-jump of ={0,1} is E0 and the F2-jump of ={0,1} is E∞, where ={0,1} is

the equality relation on {0, 1}.
Clemens and Coskey show that for any countable infinite group Γ, if E is a

generically ergodic countable Borel equivalence relation (for example, E may

be E0 or E∞) then E[Γ] is E∞-generically ergodic. It follows that E[Γ] is not

Borel reducible to a countable product of countable equivalence relations. In

particular, they conclude that E
[Z]
0 is strictly above EN

0 in the Borel reducibility

hierarchy (it is open whether in fact E
[Z]
0 is an immediate successor of EN

0 ).

Whether distinct groups Γ produce non Borel bireducible jumps E[Γ] was left

open. In particular, they asked if the equivalence relations E
[F2]∞ and EN

∞×E
[Z]
0

are different than E
[Z]
∞ . In Section 5 we show that EN

∞ × E
[Z]
0 and E

[Z]
∞ are

≤B-incomparable (see Corollary 5.6 and Proposition 5.14), and that E
[Z]
∞ is

strictly below E
[F2]∞ (and even E

[Z2]
∞ ) with respect to Borel reducibility (see

Corollary 1.4). Moreover, we completely characterize strong ergodicity between
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Γ-jumps of countable Borel equivalence relations in terms of group theoretic

properties.

Theorem 1.3: Let Γ and Δ be countable groups and E a generically ergodic

countable Borel equivalence relation. The following are equivalent:

(1) There is a subgroup Δ̃ of Δ, a normal subgroup H of Δ̃ and a group

homomorphism from Γ to Δ̃/H with finite kernel;

(2) E[Γ] is not generically E
[Δ]
∞ -ergodic.

The same is also true for measures. That is, if E is ergodic with respect to

some measure μ, then we may replace (2) with “E[Γ] is not (μΓ, E
[Δ]
∞ )-ergodic”.

Corollary 1.4: Let E be a generically ergodic countable Borel equivalence

relation.

• E[Z] <B E[Z2] <B E[Z3] <B · · · <B E[Z<ω] <B E[F2];

• EZ and E[Z<N

2 ] are ≤B-incomparable.

Remark 1.5: This is in stark contrast to the situation with countable equiva-

lence relations, in which case any action of a countable abelian group induces

an equivalence relation which is Borel reducible to E0 (see [GJ15]), and any

countable Borel equivalence relation is Borel reducible to E0 on a comeager

set (see [KM04, Theorem 12.1]). A central tool in these and other arguments

showing hyperfiniteness of countable Borel equivalence relations is the use of the

“Marker Lemma” (see [KM04, Lemma 6.7]). The main tool in the proof of The-

orem 1.3 is Lemma 5.1, which shows a strong failure of the Marker Lemma in

the context of a countable group acting on a set of E0-classes (see Remark 5.2).

This shows that some kind of appeal to the Marker Lemma is necessary to show

the hyperfiniteness of, for example, Z2-actions.

1.3. Classification by countable sequences of definably countable

sets. Recall that =+ is the equivalence relation on R
N defined so that the map

x ∈ R
N �→ {x(n) : n ∈ N} is a complete classification. That is, x =+ y if

and only if {x(n) : n ∈ N}={y(n) : n ∈ N}. The classifying invariants are

countable sets of reals. However, given such arbitrary countable set of reals A,

there is no enumeration of A which is definable from A. On the other hand,

suppose E is a countable Borel equivalence relation, induced by a Borel action

of a countable group Γ. The map x �→ {γ · x : γ ∈ Γ}, sending x to its orbit,

is a complete classification. In this case the classifying invariants are countable
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sets of reals which can be enumerated in a simple way: given any y in the orbit

of x, 〈γ · y : γ ∈ Γ〉 provides an enumeration of the orbit.

For a countable Borel equivalence relation E, EN can be classified by se-

quences of countable sets of reals A = 〈An : n < ω〉 such that for each n there

is an enumeration of An definable from A and elements in the transitive closure

of A. Next we consider equivalence relations which can be classified in such a

way, by countable sequences of definably countable sets of reals.

Definition 1.6: Let

D = {f ∈ (RN)N : ∀n, i, j(f(n)(i) is computable from f(n+ 1)(j))}.
Define the equivalence relation EΠ on D by x (EΠ) y if for each n,

{x(n)(i) : i ∈ N} = {y(n)(i) : i ∈ N}.
That is, EΠ is (=+)N restricted to the domain D.

Given x ∈ D let Axn = {x(n)(j) : j ∈ N}. The map x �→ Ax = 〈Axn : n ∈ N〉 is
a complete classification ofEΠ. For every n and any z ∈ Axn+1, all the reals in A

x
n

are computable from z, so there is a definable enumeration of Axn using z. That

is, given the sequence Ax we can definably witness that each Axn is a countable

set. We show that EΠ is not a product of countable Borel equivalence relations,

and is also different than the Γ-jumps.

Theorem 1.7: (1) EN
∞ <B EΠ <B=

+ and EΠ is pinned;

(2) EΠ �≤B E
[Γ]
∞ and E

[Γ]
0 �≤B EΠ for any infinite countable group Γ.

See Definition 2.6 for the definition of pinned. Part (1) is proved in Section 4

and part (2) is proved in Section 5. In Section 4 we give a more general definition

attempting to capture those equivalence relations which can be classified by

countable sequences of definably countable sets of reals (Definition 4.1), and

show that EΠ is maximal among those (Theorem 4.15).

Remark 1.8: The only previously known examples of equivalence relations be-

tween EN
∞ and =+ were the non-pinned equivalence relations constructed by

Zapletal in [Zap11]. Clemens and Coskey [CC22] note that E
[Z]
∞ is strictly

above EN∞, strictly below =+ and is pinned, thus is much closer to products of

countable Borel equivalence relations. By the results above the equivalence rela-

tion EΠ also sits in this gap, and is incomparable with the Γ-jumps of countable

Borel equivalence relations.
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1.4. Very weak choice principles. Using the developments in [Sha21], the

results above are proved by first reformulating the questions in terms of sym-

metric models and choice principles. In particular, we isolate an equivalent

condition for strong ergodicity between equivalence relations (Lemma 2.5). The

results then rely on studying the following weak choice principles.

Definition 1.9: Let E be a countable equivalence relation on a Polish space X .

Then choice for countable sequences of E classes, abbreviated CC[EN],

stands for the following statement: Suppose A = 〈An : n ∈ N〉 is a countable

sequence of sets An ⊆ X such that each An is an E-class. Then
∏
nAn is not

empty.

Theorem 1.10 (Theorem 3.2 below): Suppose E and F are countable Borel

equivalence relations on Polish spaces X and Y respectively, and there is a

Borel probability measure μ on X such that E is (μ, F )-ergodic. Then there is

a model in which CC[FN] holds yet CC[EN] fails.

In particular, there are many pairs of countable Borel equivalence relations E

and F such that CC[EN] and CC[FN] are independent. A curious point here is

that these models are constructed as intermediate extensions of a random real

generic extension (using the measure μN). Furthemore, these arguments will not

work using a Cohen real, due to the fact that all countable Borel equivalence

relations are hyperfinite on a comeager set.

Recall that countable choice for countable sets of reals, abbreviated

here as CC[R]ℵ0 , states that any countable sequence A = 〈An : n ∈ N〉 of

countable sets of reals An ⊆ R admits a choice function. This is a very weak

choice principle, commonly studied in the literature (see [HR98]). Over ZF, for

a countable equivalence relation E, CC[EN] follows from CC[R]ℵ0 (since any

Polish space is Borel isomorphic to R).

The proof that EΠ is not Borel reducible to EN∞ and to the Γ-jumps relies on

finding a model in which CC[R]ℵ0 fails yet for any countable Borel equivalence

relation E, CC[EN] holds (Theorem 4.10).
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2. Preliminaries

The reader is referred to any standard text, such as [Jec03] or [Kun83] for the

set theoretic notions used below.

From now on V always denotes some ground model over which we force.

Most often V will be assumed to be a model of ZFC, and sometimes a model

of ZF alone. We will often consider extensions V ⊆ M where M is a model

of ZF or ZFC. It will always be the case that M and V have the same ordinals.

Shoenfield absoluteness will be used repeatedly, often for statements of the form

“f is a Borel reduction of E to F”. The most common instance of this situation

is when M is a generic extension of V . This is done sometimes with V being

replaced with some sufficiently elementary transitive countable model. Another

situation is when V is LM , the constructible universe as calculated in M .

By “generic extension” we always mean using a set forcing. When no poset is

involved, we say that a set X is generic over V if X is in some generic extension

of V . If x is a real (which we identify with a subset of ω) in some generic

extension of V , then x is in fact P -generic over V for some poset P . In this

case we write V [x] for V (x). For a formula ψ and a model M , we denote the

relativization of ψ to M by ψM .

Fact 2.1 (Folklore): Let V be a ZF model, and A a set in some extension

of V . Then there exists a minimal transitive model of ZF containing V and A,

denoted V (A).

Even if V satisfies ZFC, the axiom of choice may fail in V (A). This does not

happen if A is a real, or more generally a set of ordinals.

Fact 2.2 (Folklore): Assume V satisfies ZFC. Suppose A is a set of ordinals in

some extension. Then V (A) satisfies the axiom of choice.
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For the results in this paper it suffices to consider V = L[r], for some real r

(so that the Borel equivalence relations we discuss are in L[r]). In this case

V (A) is the usual Hajnal relativized L-construction, L(r, A). Generally, V (A)

can be constructed as the union of L(Vα, A) over all ordinals α.

Working in some extension of V , let HODV,A be the collection of all sets

which are heredetarily definable using A, parameters from V , and parameters

from the transitive closure of A. Then HODV,A is a transitive model of ZF,

extending V and containing A. In the examples considered in this paper it will

not matter if one takes the minimal model V (A) or the model HODV,A.

More important for the developments below, note that inside V (A), the model

HODV,A must be everything, by minimality. We will use this below repeatedly,

in the following way:

For any X ∈ V (A), there is some formula ψ, parameters ā from the transitive

closure of A and v ∈ V such that X is the unique set satisfying ψ(X,A, ā, v)

in V (A). Equivalently, there is a formula ϕ such that X = {x : ϕ(x,A, ā, v)}
in V (A). In this case say that ā is a support for X . We will be particularly

interested in sets with empty support. That is, those definable from A and

parameters in V alone.

Lemma 2.3 (Folklore): Let V be a ZF model. Suppose P,Q are posets in V

and G×H is generic for P ×Q over V . (That is, G and H are mutually generic

over V .) Then V [G] ∩ V [H ] = V .

The reader is referred to [Gao09] or [Kano08] for a discussion on equivalence

relations which are classifiable by countable structures. The main consequence

of being classification by countable structures which we use in this paper is

the existence of a complete classification which is absolute in the following way

(see [Sha21, Fact 2.5]).

If E is classifiable by countable structures, there is a map x �→ Ax (definable

by a set theoretic formula) which is a complete classification of E and remains

so in any generic extension. Furthermore, the assignment is absolute, in the

sense that the statement Ax = A cannot change in a forcing extension. We

will call such x �→ Ax an absolute classification. For example, the map

x �→ Ax = {x(i) : i ∈ N} is an absolute classification of =+.

Fix an absolute classification x �→ Ax of E. The sets Ax are the classifying

invariants. More generally, we will say that a set A is an invariant (with this

fixed classification) if it is of the form Ax in some generic extension. (This
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is sometimes called a potential invariant.) For example, any set of reals is an

invariant for =+, as it can be made countable by collapsing.

Lemma 2.4 (see [Sha21, Lemma 3.6]): Let V be a ZF model. Suppose E and F

are Borel equivalence relations on X and Y respectively and x �→ Ax and

y �→ By are absolute classifications of E and F respectively. Assume that A is

a set in some extension of V so that A is an invariant for E in V (A) (meaning

there is some x in a generic extension of V (A) so that A = Ax). Assume further

that E is Borel reducible to F . Then there is an invariant B for F , definable

from A and parameters in V alone, such that V (A) = V (B).

Proof sketch. Fix a Borel reduction f of E to F . The set B is defined as the

unique set such that in any generic extension of V (A), if there is an x ∈ X

with A = Ax, then B = Bf(x). Since f is a reduction, A can be defined from B

as the unique set such that for any x in a generic extension, if B = Bf(x)
then A = Ax.

Given an ideal I of Borel subsets of X let PI be the poset of all Borel I-

positive sets, ordered by inclusion, p extends q if p ⊆ q. The reader is referred

to [Zap08] or [KSZ13] for the definition and a discussion on proper ideals. For

the results in this paper we only need to consider the meager ideal, in which

case PI is Cohen forcing, or the null ideal in which case PI is Random forcing.

The following lemma characterizes strong ergodicity between Borel equiva-

lence relations, which are classifiable by countable structures, in terms of sym-

metric models. The proof follows from [Sha21, Section 3], where it is shown that

a Borel homomorphism corresponds to a definable set in the relevant symmetric

model.

Lemma 2.5: Suppose E and F are Borel equivalence relations on X and Y

respectively and x �→ Ax and y �→ By are absolute classifications of E and F

respectively. Let I be a proper ideal over X . The following are equivalent.

(1) For every partial Borel homomorphism f : E −→B F , defined on some

I-positive set, f maps an I-positive set into a single F -class.

(2) If x ∈ X is PI -generic over V and B is an invariant for F in V (Ax)

which is definable only from Ax and parameters in V , then B ∈ V .

Proof sketch. (1) =⇒ (2). If x is PI -generic and B ∈ V (Ax) is definable using

only Ax and a parameter in V then by [Sha21, Proposition 3.7] B = Bf(x) for
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some partial Borel homomorphism f : E −→B F defined on an I-positive set.

By (1) f maps an I-positive set C into a single F -class. Taking two mutually

generic x, y ∈ C, we see that B is in V [x] ∩ V [y] = V .

(2) =⇒ (1). Given a partial Borel homomorphism f , let x be PI -generic in

the domain of f and let B = Bf(x). By [Sha21, Lemma 3.6] B ∈ V (Ax) is

definable from Ax and parameters in V alone, and so B ∈ V by (2). Let C be

some I-positive set forcing that Bf(x) = B̌. Fix a sufficiently large countable

transitive modelM . Then all PI -generics overM in C are mapped into a single

F -class, since their images under f have the same invariant B.

We briefly recall the definition of pinned equivalence relations. See [Kano08,

Definition 7.1.2] and [Zap11].

Definition 2.6: Let E be an analytic equivalence relation on a Polish space X .

Let P be a poset and τ a P -name. The pair 〈P, τ〉 is a virtual E-class if P ×P
forces that τl is E-equivalent to τr, where τl and τr are the interpretation of τ

using the left and right generics respectively. A virtual E-class 〈P, τ〉 is pinned
if there is some x ∈ X from the ground model such that P forces that τ is

E-equivalent to x̌. Finally, E is pinned if any virtual E-class is pinned.

Assume E is a Borel equivalence relation and x �→ Ax is a complete classi-

fication using hereditarily countable structures. Then a virtual E-class simply

corresponds to a set A in the ground model and a pair 〈P, τ〉 where P forces

that Aτ = A. To see this, let Gl × Gr be P × P -generic and let xl, xr be the

interpretations of τ according to Gl,Gr respectively. Then A = Axl
= Axr is

in V [Gl] ∩ V [Gr] = V . So a virtual E-class is a set A (in the ground model)

which is forced to be the invariant of some real. This virtual E-class is pinned

if and only if A is Ax for some x in the ground model. Thus E is pinned if and

only if “being an E-invariant” is absolute for forcing extensions. For example,

the equivalence relation =+ is not pinned, as the set of all reals R is not the

image of any x ∈ R
N in the ground model, but it is after collapsing the con-

tinuum to be countable. On the other hand, suppose E is a countable Borel

equivalence relation induced by some action a : Γ � X of a countable group Γ,

and consider the classification x �→ Γ · x. Then “being an orbit of the action a”

is absolute, and E is pinned. Similarly, if E is countable then EN is pinned:

if A = 〈An : n < ω〉 is a sequence of E-classes, then any x ∈ ∏
nAn satisfies

that A is the invariant of x.
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Remark 2.7: While ZF proves that any countable Borel equivalence relation is

pinned, and more generally that any Fσ equivalence relation is pinned, CC[EN]

is used to show that EN is pinned. Furthermore this is necessary, as EN is

not pinned in the models considered in Section 3. Larson and Zapletal [LZ20]

also noticed the consistency of ZF with “EN
0 is not pinned”. They further study

pinned equivalence relations in choiceless models, with a focus on models of DC.

2.1. Notation. We use ω to denote the set of natural numbers N = 0, 1, 2, . . ..

From now on we will use Eω instead of EN. For an equivalence relation E on X

and a subset A ⊆ X , its E-saturation is defined by

[A]E = {x ∈ X : (∃y ∈ A)xEy}.
Say that E and F are Borel bireducible, denoted E ∼B F if E ≤B F and

F ≤B E. We write =+
X for the equivalence relation on Xω identifying x, y if

they enumerate the same subset of X . For any Polish space X , =+
X∼B=+.

3. Countable products of countable equivalence relations

In this section we consider countable powers of countable Borel equivalence

relations. That is, equivalence relations of the form Eω where E is a count-

able Borel equivalence relation. For notational simplicity we give a proof of

Lemma 1.2 for powers only, the general proof is similar. To each such equiv-

alence relation Eω we associated a choice principle CC[Eω] (Definition 1.9),

which states that any countable sequence of E-classes admits a choice function.

First we note that if E is Borel reducible to F , then CC[Fω] implies CC[Eω],

over ZF. More generally:

Proposition 3.1: Let E and F be countable Borel equivalence relations on

Polish spaces X and Y respectively. If Eω is Borel reducible to Fω then CC[Fω]

implies CC[Eω], over ZF.

Proof. Assume that CC[Fω] holds and fix a sequence A = 〈An : n < ω〉 such

that each An is an E-class. It remains to show that
∏
nAn �= ∅. By Lemma 2.4

there is an Fω-invariant B such that L(A) = L(B), B = 〈Bn : n < ω〉 where

each Bn is an F -class. Applying CC[Fω], there is some y ∈ ∏
nBn. Now

L(A) = L(B) ⊆ L[y]

and the latter is a model of ZFC, so there is some x ∈ ∏
nAn in L(y).
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Next we separate these choice principles.

Theorem 3.2: Let E and F be countable Borel equivalence relations on X

and Y respectively, μ a Borel probability measure on X and suppose that E is

(μ, F )-ergodic. Then there is a model in which CC[Fω] holds yet CC[Eω] fails.

Corollary 3.3: CC[Eω∞] is strictly stronger than CC[Eω0 ].

Adams and Kechris [AK00] showed that there is a continuum size family F of

countable Borel equivalence relations such that for any distinct E,F ∈ F , E is

F -ergodic and F is E-ergodic, with respect to some measures on their domains.

By Theorem 3.2 we conclude:

Corollary 3.4: There is a continuum size family F of countable Borel equiv-

alence relations such that for any distinct E,F ∈ F , CC[Eω ] and CC[Fω] are

independent.

Towards proving Theorem 3.2 fix E, F and μ as in the theorem. By the

Feldman–Moore theorem we may fix a countable group Γ and a Borel action

a : Γ � X such that E = Ea. For a Borel probability measure ν on a Polish

space Y , let R(ν) be the poset PI(ν) where I(ν) is the ideal of ν-measure zero

sets. That is, all ν-positive measure Borel subsets of Y ordered by inclusion.

Let x = 〈xn : n < ω〉 ∈ Xω be a R(μω) generic over V , An = [xn]E and

A = 〈An : n < ω〉 the corresponding Eω-invariant.

We work now in V (A); recall the definitions from Section 2. Given Z ∈ V (A),

there is some formula ϕ, a parameter v ∈ V and finitely many parameters ā from

the transitive closure of A (the support of Z) such that Z = {z : ϕ(z, A, ā, v)}.
Since each Ai (which is in the transitive closure of A) is definable from A, we

may assume that ā is contained in
⋃
iAi. If a ∈ Ai then a is definable from x(i).

Thus the support of X can be taken to be of the form ā = 〈x(i) : i ∈ s〉 where
s ⊆ ω is finite.

The following proposition establishes the basic symmetric-model analysis

of V (A) that will be used. The proof follows a similar outline to that of an

analogous property of the “basic Cohen model” (see [Bla81, Proposition 2.1]).

One difference is the required permutations, which are here the ones preserv-

ing Eω . Furthermore, we are working with a Random real and not a Cohen

real. We note that the proposition holds for a Cohen real x as well, with the

proof slightly simpler.
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Proposition 3.5: Let X be a Polish space, μ a probability measure on X , Γ

a countable group, a : Γ � X a μ-ergodic action, and E = Ea. Let x ∈ Xω be

R(μω)-generic and define A as above. Suppose Z ∈ V (A) and Z ⊆ V , s ⊆ ω is

finite and x̄ = 〈x(i) : i ∈ s〉 is a support for Z. Then Z ∈ V [x̄].

In particular, any real b ∈ V (A) is in V [x � n] for some n < ω.

Proof. Let Γ<ω be the group of all infinite sequences 〈γi : i < ω〉 such that

γi ∈ Γ and γi = 1 for all but finitely many i. Fix ϕ and v ∈ V such that

Z = {z : ϕ(z, v, x̄, A)}
in V (A). Let Ω = ω \ s. Given y ∈ XΩ denote by x̄�y the element of Xω

whose restriction to Ω is y and its restriction to s is x̄. For p ∈ R(μω), say that

p agrees with x̄ if {y ∈ XΩ : x̄�y ∈ p} has positive μΩ-measure. That is, it is

a condition in R(μΩ). Note that if p is a condition so that x ∈ p, then p agrees

with x̄.

We work now in the R(μω)-generic extension V [x]. Hence, if z ∈ Z then

ϕV (A)(z, v, x̄, A) holds in V [x], so there is a condition p which agrees with x̄

forcing ϕV (Ȧ)(ž, v̌, ˙̄x, Ȧ). Similarly, if z /∈ Z there is some p which agrees with x̄

forcing ¬ϕV (Ȧ)(ž, x̌, ˙̄x, Ȧ). We will show that Z is defined in V [x̄] as the set of

all z ∈ V such that there is some condition p ∈ R(μω) which agrees with x̄ and

forces that ϕV (Ȧ)(ž, v̌, ˙̄x, Ȧ). It suffices to show the following: for any z ∈ V

there are no p0, p1 which agree with x̄ such that p1 � ϕV (Ȧ)(ž, v̌, ˙̄x, Ȧ) and

p0 � ¬ϕV (Ȧ)(ž, v̌, ˙̄x, Ȧ).

For contradiction, assume we have p0, p1 as above. Let

qi = {y ∈ XΩ : x̄�y ∈ pi}.
Fix a large enough countable model M and let q̃i be the set of all y ∈ qi

which are R(μΩ)-generic overM [x̄]. Note that q̃i has positive measure. Since E

is (μ, F )-ergodic, E is in particular ergodic with respect to μ, hence Γ acts

ergodically. By [Kec20, Lemma 4.2] the countable group Γ<ω acts ergodically

on Xω (which we identify here with XΩ). It follows that there is some g ∈ Γ<ω

such that (g−1 · q̃1) ∩ q̃0 has positive measure. In particular there is some

x′ ∈ (g−1 · q̃1) ∩ q̃0. That is, both x0 = x̄�x′ and x1 = x̄�g · x′ are R(μω)-
generics over M , and they agree on Ȧ and ˙̄x. Furthermore, x0 extends p0, thus

ϕ(z, v, x̄, A) fails in M(A), but x1 extends p1, so ϕ(z, v, x̄, A) holds in M(A), a

contradiction.
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Corollary 3.6: In V (〈An : n<ω〉) there is no choice function for 〈An : n<ω〉.
In particular, CC[Eω ] fails.

Proof. Otherwise, there is a choice function

r ∈
∏
n

An

which is in V [x � n] for some n, by the lemma. However, r(n) is generic over

V [x � n], a contradiction.

Corollary 3.7: If B ∈ V (A) is a set of subsets of V , and B is countable

in V (A), then V (B) �= V (A).

Proof. Using an enumeration of B, B can be coded as a subset of V and there-

fore B is in V [x � n] for some n < ω.

In particular, if F is a countable Borel equivalence relation and B is an F -

invariant in V (A), then B is a countable set of reals (an F -class), and therefore

V (A) �= V (B). By Lemma 2.4 it follows that Eω is not essentially countable.

This recovers the well known fact that when E is as in Proposition 3.5 then Eω

is not essentially countable (as in this case Eω0 ≤B Eω).

We will see that the choice separation in Theorem 3.2 corresponds to strong

ergodicity between Eω and Fω, rather than E and F . First we show that the

first follows from the latter.

Lemma 3.8: Suppose E,F are countable Borel equivalence relations on X

and Y respectively. Let μ be a Borel probability measure on X and assume

that E is (μ, F )-ergodic. Then Eω is (μω , F )-ergodic.

Corollary 3.9: Suppose E,F , and μ are as above. Then E is (μ, F )-ergodic

if and only if Eω is (μω , F )-ergodic if and only if Eω is (μω , Fω)-ergodic.

Proof. Assume first that E is (μ, F )-ergodic, then Eω is (μω, F )-ergodic by the

lemma above. Given a homomorphism f : Eω −→ Fω the projections

fn(x) = f(x)(n)

are homomorphisms from Eω to F . Thus each fn is constant on a μω-conull

set An, and so f is constant on the conull set A =
⋂
nAn.
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Conversely, assume that Eω is (μω, Fω)-ergodic and fix f : E −→ F . Then

fω : Xω −→ Y ω, defined by fω(x)(n) = f(x(n)), is a homomorphism from Eω

to Fω. By assumption, there is a conull set A ⊆ Xω which fω sends to a single

Fω-class, 〈[yi]F : i < ω〉. Let A0 be the projection of A to the first coordinate.

Then A0 is conull and for any x ∈ A0, f(x) ∈ [y0]F .

The proof of Lemma 3.8 will appeal to Proposition 3.5 to reduce the problem

to that of finite powers, in which case a direct measure theoretic argument

works.

Proposition 3.10: Let E, F , μ be as in Lemma 3.8. Then En is (μn, F )-

ergodic.

Proof. Suppose that E and E′ are countable Borel equivalence relations on X

and X ′ respectively and are F -ergodic with respect to μ and μ′ respectively.
We show that E×E′ is (μ×μ′, F )-ergodic. The proposition is then established

inductively. Fix a Borel homomorphism f : E × E′ −→ F . For x ∈ X define

fx : X
′ −→ Y by fx(x

′) = f(x, x′). For each x, fx is a homomorphism from E′

to F . By assumption there is a μ′-measure 1 set Cx ⊆ X ′ and yx ∈ Y such

that fx(x
′) F yx for any x′ ∈ Cx. If x1 E x2 then yx1 F yx2 , since for any

x′ ∈ Cx1 ∩Cx2 , yx1 F f(x1, x
′) F f(x2, x

′) F yx2 .

Let D ⊆ X × Y be the set of all pairs (x, y) such that for any measure 1

set C ⊆ X ′ there is some x′ ∈ C with fx(x
′) F y; D is Borel and has

countable Y -sections. By Lusin–Novikov uniformization (see [Kec95]) there

is a Borel function g : X −→ Y such that (x, g(x)) is in D for all x ∈ X . Note

that g(x) F yx for any x ∈ X and so g is a homomorphism from E to F . Since E

is (μ, F )-ergodic, there is a measure 1 set C ⊆ X and y ∈ Y such that g(x) F y

for all x ∈ C. Let A =
⋃
x∈C{x}×Cx, a μ×μ′-measure 1 subset of X×X . We

claim that f(x, x′) F y for any (x, x′) ∈ A, which concludes the proof. Indeed,

f(x, x′) = fx(x
′) F yx F g(x) F y. The first F -relation is since x′ ∈ Cx, the

second by the property of g, and the third since x ∈ C.

Proof of Lemma 3.8. Fix a Borel homomorphism f : Eω −→B F . Fix a large

enough countable transitive model M containing a code for f . Let x be R(μω)-

generic over M , An = [x(n)]E and A = 〈An : n < ω〉. By Lemma 2.4 the

F -class of f(x), B = {y : f(x) F y}, is in M(A) and has empty support. In

particular, f(x) ∈ M(A). Note that B is a set of reals, so not necessarily a

subset of the ground model M . However, each member of B, such as f(x), is a
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real and may be coded as a subset of ω. By Proposition 3.5, f(x) ∈ M [x � m]

for some m < ω, and so B ∈M [x � m]. Note that

M [x � m] =M(〈Ai : i < m〉).
Fix ϕ and v ∈ M such that B = {y : ϕM(A)(y, v, A)}. We claim that B is

definable in M(〈Ai : i < m〉) using only 〈Ai : i < m〉 and v. This follows from
Proposition 3.5. Viewing M(〈Ai : i < m〉) as the ground model, then B is a

subset of the ground model and is definable in M(〈Ai : i < m〉)(〈Ai : i ≥ m〉)
using only 〈Ai : i ≥ m〉 and the ground model parameters v, 〈Ai : i < m〉.

By [Sha21, Lemma 3.7] there is a Borel homomorphism

g : Em −→B F

defined on a μm-positive measure set C containing x � m such that B = Bg(x�m).

By assumption and by Proposition 3.10, g sends a full measure subset of C to a

single F -class. W.l.o.g. assume the above statements are forced by the maximal

condition. Now the set D of all μω-generics x ∈ Xω such that x � m ∈ C has

positive μω-measure and for any x ∈ D, f(x) F g(x � m) lies in a single F -class.

Finally, since D is a set of generics its saturation [D]Eω is Borel (see [KSZ13,

Theorem 2.29]), invariant and measure 1 (since Eω is ergodic with respect

to μω).

By Corollary 3.6, Lemma 3.8 and Corollary 3.9, the following proposition will

finish the proof of Theorem 3.2.

Proposition 3.11: Let E, F and μ be as above such that Eω is (μω, Fω)-

ergodic. Let x ∈ Xω be μω-Random real generic over V , An = [x(n)]E and

A = 〈An : n < ω〉. Then V (A) |= CC[Fω].

Proof. Suppose B = 〈Bn : n < ω〉 ∈ V (A) is a sequence of F -classes. B is

definable using A, parameters in V and some parameters ā from
⋃
nAn. If

ā = ∅ then by Lemma 2.5, B is in V , and therefore admits a choice function

in V . Generally, fix somem such that ā is in V [x � m]. Work now with V [x � m]

as the base model, forcing 〈An : n ≥ m〉 over it. A similar argument shows

that B∈V [x�m], which is a model of ZFC, and so B admits a choice function.

We end this section with a simple remark about the choice principles CC[Eω].

Fix a countable Borel equivalence relation E on X and let a : Γ � X be an

action of a countable group Γ on X generating E. Note that if 〈An : n < ω〉 is
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a sequence of E classes, then any choice function x ∈ ∏
nAn codes a countable

enumeration of
⋃
nAn (using some fixed enumeration of Γ). It follows that

CC[Eω] is equivalent to the formally stronger statement, that the union of

countably many E-classes is countable. In particular, it follows that if F ⊆ E,

then CC[Eω] implies CC[Fω]: given a sequence of F classes 〈Bn : n < ω〉, let
An = [Bn]E be the corresponding E-class. Now a wellordering of

⋃
nAn gives

a wellordering of
⋃
nBn.

4. Equivalence relations which can be classified by sequences of count-

able sets of reals

The following definition attempts to capture those equivalence relations which

can be classified using classifying invariants of the form 〈An : n < ω〉 where

each An is a subset of a Polish space and An is definably enumerated using

some elements in
⋃
nAn as a parameter.

Definition 4.1: Let E be an equivalence relation such that the domain of E is

a subset of some product space X =
∏
nXn. Then E is said to be a Point-

wise Countable Product (PCP) relation if there are Borel equivalence

relations Fn on Xn such that

E =
∏
n

Fn � domE,

and for every n, for any x E y, y(n) is Δ1
1 in x(n+ 1).

In this case, define AE,xn ≡ {y(n) : y E x}, the projection to Xn of the

equivalence class of x (which will be denoted as Axn when E is unambiguous).

The map sending x to 〈Axn : n < ω〉 is a complete classification of E, using

classifying invariants which are countable sequences of countable subsets of a

Polish space. Furthermore, given an invariant 〈Axn : n < ω〉, one can definably

enumerate each Axn. That is, fix any element z ∈ Axn+1, then all elements in Axn
are Δ1

1 in z.

Lemma 4.2: Suppose E satisfies the following weakening of PCP: There is a

function ϕ : ω −→ ω such that for all n and f E g in domE, g(n) is Δ1
1 in

f(0), . . . , f(ϕ(n)). Then E is Borel reducible to a PCP relation.
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Proof. Define ψ : ω −→ ω inductively by

ψ(0) = 0 and ψ(n+ 1) = sup
k≤ψ(n)

ϕ(k).

Let Yn =
∏
m≤ψ(n)Xn and consider the map θ :

∏
nXn −→ ∏

n Yn defined by

θ(f)(n) = 〈f(m); m ≤ ψ(n)〉.
Let Gn =

∏
m≤ψ(n) Fn and Ẽ =

∏
nGn. It can be verified that θ is a reduction

of E to Ẽ and Ẽ � θ[domE] is a PCP relation. Note also θ is one-to-one, so if

domE is Borel, so is θ[domE].

Example 4.3: For any countable Borel equivalence relation E on X , Eω is Borel

reducible to a PCP equivalence relation. In this case, if x, y ∈ Xω are Eω-

related, y(n) is Δ1
1(x(n)).

Definition 4.4: Given a PCP relation E as above, let

AEn = {(y, z) : ∃x ∈ domE(y = x(n+ 1) ∧ z ∈ AE,xn )}.
If z ∈ AE,xn then (x(n + 1), z) ∈ AEn , but not necessarily the other way. In

general both AEn and AE,xn are analytic. By modifying the domain a little, we

can get a PCP relation for which both AE,xn and AEn are Borel, and in fact

AE,xn = {z : (x(n+ 1), z) ∈ AEn ∧ z Fn x(n)}.
For Proposition 4.6 below we will only need AE,xn . The result about AEn will

be used in Theorem 4.15.

Lemma 4.5: Suppose E is a PCP Borel equivalence relation as in Definition 4.1

above. So E =
∏
n Fn � domE where domE is a Borel subset of

∏
nXn. There

is a Borel set D containing domE such that, for F =
∏
n Fn � D, F is a

PCP relation and for any x ∈ D and any n, the sets AF,xn and AFn are Borel.

Moreover, for any z, z ∈ AF,xn ⇐⇒ z Fn x(n) and (x(n+ 1), z) ∈ AEn .

Proof. Given x ∈ ∏
nXn and z ∈ Xn, let x[n, z] be the result of replacing

the n’th coordinate of x with z. The idea is to determine whether z ∈ AE,xn

by asking if x[n, z] is in domE. For natural examples, this is in fact the case.

In general, we will have to add members to domE. To do this in a controlled

manner, preserving the PCP conditions, we will use a reflection argument.

Define first D0 to be all x ∈ ∏
nXn such that there is some y ∈ domE for

which x ∈ ∏
nA

E,y
n ; D0 is Σ

1
1 and

∏
n Fn � D0 is still PCP. That is, if x(

∏
n Fn)y
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then x(n) is Δ1
1(y(n+ 1)) for all n. Define a property of subsets of X , Φ(A,B)

as follows (we think of A as D0 and B as its complement). Φ(A,B) holds if

(1) For any x, y if x, y ∈ A and x(
∏
n Fn)y then x(n) is Δ1

1(y(n + 1)) for

all n.

(2) For any x, y, if x ∈ A and for all m there is some x′ ∈ A such that

x′(
∏
n Fn)x and x′(m) = y(m), then y /∈ B.

Φ is hereditary, continuous upward in the second variable and is Π1
1 on Σ1

1.

Furthermore, Φ(D0,¬D0) holds. By the second reflection theorem (Theo-

rem 35.16 in [Kec95]), there is some Δ1
1 set D ⊇ D0 such that Φ(D,¬D) holds.

Let F =
∏
n Fn � D; F is PCP by condition (1) above.

Fix x ∈ D. By condition (2), for any z ∈ AF,xn , x[n, z] ∈ D. Also,

if x[n, z] ∈ D and z Fn x(n), then x F x[n, z] and so z ∈ AF,xn . We conclude

that z ∈ AF,xn if and only if z Fn x(n) and x[n, z] ∈ D, which is Borel.

The relation (y, z) ∈ AFn holds if and only if ∃x s.t. x(n + 1) = y and

x[n, z] ∈ D, if and only if ∀x if x(n + 1) = y then x[n, z] ∈ D. Thus AFn
is Σ1

1 and Π1
1, and therefore is Borel.

Note also that if z Fn x(n) and (x(n + 1), z) ∈ AFn , then by (2) x[n, z] ∈ D,

and so z ∈ AF,xn .

Proposition 4.6: Assume E is PCP and Borel, then

(1) E ≤B=+, and

(2) E is pinned, hence is strictly below =+.

Proof. By Lemma 4.5 we may assume that the sets AE,xn are Borel. For each x

and n the set AE,xn is countable, so by Lusin-Novikov uniformization we may

find Borel functions hni so that for any x ∈ domE, AE,xn = {hni (x) : i ∈ ω}.
(1) Define a map f : X −→ (Rω)ω by

f(x) = 〈〈hni (x)); i < ω〉; n < ω〉,
sending x to the sequence 〈Axn : n < ω〉. We show that f is a Borel reduction

to (=+)ω which is Borel bireducible with =+. If x E y then Axn = Ayn for all n,

and so f(x)(n) =+ f(y)(n) for each n. Conversely, assume

f(x)(n) =+ f(y)(n)

for every n. For each n, there is some i such that xn = hni (x), and then

some j such that hni (x) = hnj (y), which is Fn-related to y(n). It follows that

x(n) Fn y(n) for each n, thus x E y.
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(2) Note that the statement

∀x∀y(y E x =⇒ ∃i(y(n) = hni (x))

is Π1
1, and therefore is absolute. Suppose P is some poset, τ a P -name, such

that P × P � τl E τr. Let G be P -generic over V and x = τ [G]. We need to

find some x′ ∈ V such that x′ E x. Take H such that (G,H) is P × P generic

over V and let y = τ [H ].

Using absoluteness between the models V [G], V [H ] and V [G,H ], and that

x E y, it follows that Axn = Ayn for every n. Thus

Ax = 〈Axn : n < ω〉 ∈ V [G] ∩ V [H ] = V.

Applying countable choice in V , there is some z such that z(n) ∈ Axn for every n.

By absoluteness, there is some x′ ∈ V such that x′ ∈ domE and x′(n) Fn z(n)
for every n. Thus x′(n) Fn x(n) for each n, and x′ ∈ domE, hence x′ E x as

required.

4.1. An interesting PCP equivalence relation. We now define an inter-

esting PCP relation which we denote EΠ. The definition below, which is the one

used in all the proofs, is different than the one mentioned in the introduction

(Definition 1.6). We will show in Proposition 4.16 below that the two definitions

are Borel bireducible.

Definition 4.7: (EΠ) Let Xn = R
ωn+1

, where we think of Xn+1 as Xω
n . Let

X =
∏
nXn and define:

D = {f ∈ X :∀n∀j(f(n+ 1)(j) is an enumeration

of f(n)) ∧ ∃j(f(n) = f(n+ 1)(j))}.
(By “f(n+1)(j) is an enumeration of f(n)” we mean that both have the same

image, as elements in Xn = Xω
n−1.) We define the equivalence relation EΠ

(Π for product and permutations) on D = dom EΠ as follows: f EΠ g iff for

every n, {f(n)(i) : i ∈ ω} = {g(n)(i) : i ∈ ω}. That is, EΠ is the equivalence

relation
∏
n(=

+
Rωn ) restricted to the domain D.

The equivalence relation EΠ is PCP: if f, g are EΠ-related, then for any n

there is some j such that g(n) = g(n + 1)(j), and therefore there is some i

such that g(n) = f(n+ 1)(i). In particular, g(n) is Δ1
1(f(n+ 1)). The natural

complete classification of EΠ is the map sending f ∈ domEΠ to the sequence

〈AEΠ,f
n : n < ω〉. The classifying invariants are sequences 〈An : n < ω〉 such
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that each An is a subset of the Polish space Xn and any element of An+1 is a

countable enumeration of An.

By Proposition 4.6, EΠ is pinned and strictly below =+. We now turn to

prove that EΠ is not Borel reducible to Eω∞. The proof relies on constructing a

model in which CC[R]ℵ0 fails yet CC[Eω∞] holds.

Consider the poset

{p : dom p −→ ω : dom p ⊆ ω is finite and p is injective}.

This poset adds a generic permutation of ω, and is equivalent to the poset for

adding a single Cohen real.

Construction 4.8: Let P be the poset to add ω× ω mutually generic Cohen

reals, indexed by di, i < ω where each di is an ω sequence of Cohen reals. We

think of d0 ∈ R
ω and di for i > 0 as a sequence of permutations of ω. Define

inductively an ∈ R
ωn+1

as follows:

• Let a0 = d0 ∈ R
ω.

• Given an, let an+1 = 〈an ◦ dn+1(i); i < ω〉.
Thinking of an as an element of (Rω

n

)ω, let

An = Im an = {an(i) : i ∈ ω}.

So A0 ⊆ R is a set of mutually generic Cohen reals; A1 ⊆ R
ω is a set of mutually

generic enumerations of A0; and so forth, An+1 is a set of generic enumerations

of An. Let A = 〈An; n < ω〉. Our model will be V (A).

Proposition 4.9: In V (A),
∏
nAn = ∅. In fact: Suppose h : ω −→ ω, in V (A),

is unbounded. Then there is no function f such that for each n, f(n) is a non-

empty finite subset of Ah(n).

Theorem 4.10: In V (A): For any countable Borel equivalence relation F ,

CC[Fω] holds.

It follows that V (A) is not of the form V (B) for any sequence of E∞-classes

B = 〈Bn : n < ω〉: Otherwise, by the theorem there is some x ∈ ∏
nBn

in V (A). As B is definable from x, it follows that

V (A) = V (B) = V (x),

which is a model of ZFC, by Fact 2.2, contradicting the proposition above.
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Finally, note that A is an EΠ-invariant. Recall that this simply means that

A = 〈AEΠ,f
n : n < ω〉

for some f ∈ D (possibly in some further generic extension, see the paragraph

before Lemma 2.4). Indeed, define

f(n) = an+1(0) for all n ∈ ω.

Then f ∈ X =
∏
nXn, f(n) is an enumeration of An, and f(n + 1)(j) is an

enumeration of f(n) for any j. Moreover, as f(n) = an+1(0) and the sequences

f(n+1), an+1 enumerate the same set An+1, it follows that f(n) = f(n+1)(j)

for some j. So f ∈ D is in the model V [〈di : i < ω〉] and 〈AEΠ,f
n : n < ω〉 = A,

as required. (Such f can be found in any model in which
∏
nAn is not empty.)

By Lemma 2.4 we conclude:

Corollary 4.11: EΠ is not Borel reducible to Eω∞.

The following lemma provides the basic symmetric model properties of V (A)

(the existence of minimal supports). We first show how to prove Theorem 4.10

from the lemma and then sketch a proof of the lemma.

Lemma 4.12: There is map, definable in V (A), sending a real b ∈ V (A)

to n(b), E(b), where n(b) < ω, E(b) is the minimal finite subset of An(b) such

that b ∈ V (E(b)) and n(b) is the minimal n for which such E(b) exists.

Proof of Proposition 4.9. Suppose h, f are as in the statement of the propo-

sition. Using the linear ordering of the reals, define g(n) to be the smallest

member of f(n). Now g is a real, so by Lemma 4.12 there is some m and a

finite E ⊆ Am such that g ∈ V (E). In particular, h(n) ≤ m for all n.

Proof of Theorem 4.10. Fix a countable Borel equivalence relation F on a Pol-

ish space X . Assume the parameters defining F are in V (otherwise, we need

to add a fixed finite set to all the supports below). Assume B = 〈Bn; n < ω〉 is
a sequence of F -classes. For x, y ∈ Bn, y is Δ1

1 in x (and a parameter for F ).

It follows that

x ∈ V (E) ⇐⇒ y ∈ V (E)

for any E, therefore n(x) = n(y) and E(x) = E(y).
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Consider the map h : ω −→ ω defined by h(k) = n(x) for any x ∈ Bk, and

f : ω −→ ⋃
nAn defined by f(k) = E(x) for any x ∈ Bk. These are well

defined by the argument above. Note that, if h(k) > 0, then f(k) is a non-

empty subset of Ah(k). By Proposition 4.9, h must be bounded. Fix such a

bound m ∈ ω, then Bn ⊆ V (Am) for all n. Fix an enumeration a of Am

in V (A). Then V (Am) ⊆ V [a], and V [a] satisfies the choice. In particular there

is a well ordering in V (A) of the reals in V (Am). Using this wellorder a choice

function for 〈Bn : n < ω〉 can be defined in V (A).

For b ∈ V (A) and a finite E ⊆ ⋃
nAn, say that E is a support for b if there

is a formula φ and v ∈ V such that φ(b, v, E,A) defines b in V (A).

Lemma 4.13: For any real b ∈ V (A), if E is a support for b then b ∈ V (E).

Proof. For notational simplicity consider the following special case: assume

that E = a1(0) ∈ A1, we show that b ∈ V (a1(0)). Let φ and v ∈ V be such that

b = {n ∈ ω : V (A) |= φ(n, v, a1(0), A)}.
First note that the sequence 〈ai : 1 ≤ i < ω〉 can be added generically

over V (A0). Define Q in V (A0) as the poset of all finite partial functions

p : ω × ω → A0

such that p(k, ) is injective. Then a1 is Q-generic over V (A0). Let P2 be the

sub-poset of P to add the sequence 〈d2, d3, . . .〉. Then 〈a1, d2, d3, . . .〉 is Q×P2-

generic over V (A0) and 〈a1, a2, . . .〉 can be defined in V (A0)[〈a1, d2, d3, . . .〉].
We show that b can be defined in V (a1(0)) = V (A0)[a1(0)] as the set of

all n ∈ ω such that some condition in Q × P2 which agrees with a1(0) forces

φV (Ȧ)(n, v, ȧ1(0), Ȧ). The proof is similar to Proposition 3.5 (see also [Bla81,

Proposition 2.1] or [Sha21, Lemma 2.4]). The main point is showing that two

conditions which agree with a1(0) agree on φV (Ȧ)(n, v, ȧ1(0), Ȧ).

Assume for contradiction that there are two conditions p, q in Q × P2 which

agree on a1(0) yet force incompatible statements about φV (Ȧ)(n, v, ȧ1(0), Ȧ)

for some n. We may assume that 〈a1, d2, d3, . . .〉 extends p. We will con-

struct a generic 〈a′1, d′2, d′3, . . .〉 which extends q, computes the same Ȧ and

satisfies a′1(0) = a1(0), which leads to a contradiction.

First, let π1 be a finite permutation preserving 0 such that a′1 = a1◦π1 agrees

with the restriction of q to Q; a′1 is Q-generic over V (A0). Note that a′1 ◦ d2(i)
may no longer agree with a1 ◦ d2(i) = a2(i). That is, 〈a′1, d2, . . .〉 calculates
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the “wrong” A2. Let d′′2 (i) = π−1
1 ◦ d2(i), so 〈a′1, d′′2 , . . .〉 now calculates the

correct a2. Note that d′′2 is a generic sequence permutation over V (A0). At

this point q may not agree with d′′2 . Let π2 be a finite permutation such that

d′2 = d′′2 ◦ π2 agrees with q. This is possible by genericity. Note that 〈a′1, d′2, . . .〉
still calculates the correct A2 (but not a2). Now set d′′3(i) = π−1

2 ◦ d3(i), so
that 〈a′1, d′2, d′′3 , . . .〉 calculates the correct a3. Continue in this fashion, at each

step making finite changes to the values of dk+1(i) to get “the correct ak+1”

and then applying a finite permuting to the sequence 〈dk+1(i) : i < ω〉 to make

it compatible with q. Since q has finite support, after finitely many steps we

get 〈a′1, d′2, . . . , d′k, dk+1, . . .〉 which is compatible with q, which completes the

proof.

If E is a support for b, then for all large enough n, and any a ∈ An, all the

elements of E are definable from a, hence {a} is a support for b. Note that if E

is a support for b, n is maximal such that E ∩ An �= ∅, then E ∩ An is also a

support for b. Let n(b) be the minimal n such that there is some E ⊆ An which

is a support for b.

Claim 4.14: Fix a real b ∈ V (A) and n ∈ ω. If E1, E2 ⊆ An are supports

for b, then E1 ∩ E2 is a support for b. By saying ∅ ⊆ An is a support for b,

when n > 0, we mean that there is E ⊆ An−1 which is a support for b.

Proof. The members of An are enumerations of An−1, mutually generic over

V (An−1). By mutual genericity, if b is in V (An−1)(E1) and V (An−1)(E2) then b

is in V (An−1)(E1 ∩ E2). If E1 ∩ E2 = ∅, then b ∈ V (An−1) is definable from

finitely many members of An−1, thus has a support in An−1.

Let E(b) be the minimal E ⊆ An(b) which is a support for b. The map

b �→ n(b), E(b) satisfies the properties required by Lemma 4.12. This finishes

the proof.

4.2. More on EΠ. In this section we show that EΠ is maximal Borel PCP.

Theorem 4.15: If E is a Borel PCP relation, then E ≤B EΠ.

Proof. Given a Polish space Y , let EΠ(Y ) be defined as in Definition 4.7 above,

replacing each R
ωn

with Y ω
n

. Any Borel isomorphism between R and Y gives a

Borel isomorphism between EΠ = EΠ(R) and EΠ(Y ). Let E be a PCP relation

as in Definition 4.1 above, domE ⊆ ∏
nXn. The idea will be to construct a
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reduction of E to EΠ(X0). Each f ∈ domE will be sent to an EΠ(X0)-invariant

〈Dn : n < ω〉 where D0 is equal to Af0 , D1 is a set of enumerations of D0, given

by the elements of Af1 , and so forth.

First, we extend the domain of E to assume the conclusion of Lemma 4.5,

so AEn is Borel for any n. By definition of AEn , if (y, z) ∈ AEn then z is Δ1
1(y).

So AEn has countable sections. Fix Borel functions hni so that

{hni (y) : i ∈ ω} = {z : (y, z) ∈ AEn },
for y ∈ Xn+1. Recall also from Lemma 4.5 that for f ∈ domE,

AE,fn = {z ∈ Xn : z Fn f(n) ∧ (f(n+ 1), z) ∈ AEn }.
In other words, given f ∈ domE, {hni (f(n + 1)) : i ∈ ω} enumerates a set

whose intersection with [f(n)]Fn is precisely AE,fn .

Add two new and distinct elements, which we will call 0 and 1, to the

space X0. Let Y = X0 ∪ {0, 1}, where 0, 1 are both isolated. Fix Borel in-

jections

θn : Xn+1 −→ {0, 1}ω

such that the constant sequences 〈0, 0, . . .〉 and 〈1, 1, . . .〉 are not in the images.

Fix f ∈ domE. First we define some auxiliary functions (depending on f):

given x ∈ X1 define ϕf0 (x) ∈ Y ω by:

• ϕf0 (x)(2i) = h0i (x) if h
0
i (x) F0 f(0);

• ϕf0 (x)(2i) = 0 otherwise;

• ϕf0 (x)(2i + 1) = θ0(x)(i).

So ϕf0 (x) enumerates Af0 (in the even entries) and codes x (in the odd entires).

Inductively, given x ∈ Xn+2 define ϕfn+1(x) ∈ (Y ω
n+1

)ω by

• ϕfn+1(x)(2i) = ϕfn(h
n+1
i (x)) if hn+1

i (x) Fn+1 f(n+ 1);

• ϕfn+1(x)(2i) = 0 otherwise;

• ϕfn+1(x)(2i+ 1) = θn+1(x)(i).

(Here, the elements are in the space Y ω
n

. By 0, 1 we mean the constant func-

tions of such, in the corresponding space.) Note that if f E g then ϕfn and ϕgn
are equal. This is because the definition of ϕf depends only on the equivalence

classes [f(n)]Fn .

Finally, define a map Ψ: domE −→ ∏
n Y

ωn+1

by

Ψ(f)(n) = ϕfn(f(n+ 1)).
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It remains to show that Ψ is a reduction of E to EΠ(Y ). First we show that

the range of Ψ is included in the domain of EΠ(Y ). For f ∈ ∏
nXn and n ∈ ω,

we need to show that Ψ(f)(n) = Ψ(f)(n + 1)(j) for some j. By the choice of

the functions hni there is some j such that hn+1
j (f(n+ 2)) = f(n+ 1). Thus

Ψ(f)(n+ 1)(2j) = ϕfn+1(f(n+ 2))(2j) = ϕfn(h
n+1
j (f(n+ 2)))

= ϕfn(f(n+ 1)) = Ψ(f)(n).

Next we show that

f E g =⇒ Ψ(f) EΠ Ψ(g).

For n = 0, note that for any f E g:

ImΨ(f)(0) = Imϕf0 (f(1)) = Af0 ∪ {0, 1} = Ag0 ∪ {0, 1}
= Imϕg0(g(1)) = ImΨ(g)(0).

Given f E g, n and i, we need to find some j such that

Ψ(g)(n+ 1)(i) = Ψ(f)(n+ 1)(j).

For odd i, it follows by the choice of θ that such j exists. Consider now an even

number of the form 2i. If hn+1
i (g(n+2)) �Fn+1 g(n+1) then Ψ(g)(n+1)(2i) = 0

and again we are done. Otherwise, hn+1
i (g(n+ 2)) ∈ Agn+1 = Afn+1, so there is

some j such that hn+1
i (g(n+ 2)) = hn+1

j (f(n+ 2)). Thus

Ψ(g)(n+ 1)(2i) = ϕgn+1(g(n+ 2))(2i) = ϕgn(h
n+1
i (g(n+ 2)))

= ϕfn(h
n+1
j (f(n+ 2))) = ϕfn+1(f(n+ 1))(2j)

= Ψ(f)(n+ 1)(2j).

Finally, it remains to show that if Ψ(f) EΠ Ψ(g) then f E g. Recall that,

since E is a PCP relation, it is a product of relations Fn on Xn. It suffices to

show that f(n) Fn g(n) for all n. Assume Ψ(f) EΠ Ψ(g) and fix n ∈ ω. Fix i

such that Ψ(g)(n) = Ψ(g)(n+ 1)(i), and find a j such that

Ψ(g)(n+ 1)(i) = Ψ(f)(n+ 1)(j).

It follows that both i, j are even. Let i = 2l, j = 2k. Then it also follows that

hn+1
l (g(n+ 2)) is Fn+1-related to g(n+ 1), and hn+1

k (f(n+ 2)) is Fn+1-related

to f(n+ 1). Now

ϕgn(g(n+ 1)) = Ψ(g)(n) = Ψ(f)(n+ 1)(j) = ϕfn+1(f(n+ 2))(j)

= ϕfn(h
n+1
k (f(n+ 2))).
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Note that x is coded in the odd entries of ϕn(x) using the functions θn+1. Thus

from the equation above it follows that g(n + 1) = hn+1
k (f(n + 2)) ∈ Afn+1,

hence g(n+ 1) Fn+1 f(n+ 1). Finally, for the 0’th entry,

g(0) ∈ ImΨ(g)(0) = ImΨ(f)(0),

so there is some j such that

g(0) = Ψ(f)(0)(j) = ϕ0(f(1))(j).

It follows from the definition of ϕ0 that g(0) ∈ Af0 , thus g(0) F0 f(0). We

established that g(n) Fn f(n) for all n, thus g E f and the proof is done.

We will use the theorem above to establish a few basic properties of the

equivalence relation EΠ.

Proposition 4.16: Let

D = {f ∈ (Rω)ω : ∀n, i, j(f(n)(i) is computable in f(n+ 1)(j))}.

Then (=+)ω � D ∼B EΠ. That is, Definitions 4.7 and 1.6 agree.

Proof. Fix recursive bijections φn : R
ωn −→ R where φ0 = id. Define a

map
∏
n(R

ωn

)ω −→ (Rω)ω by f �→ 〈φn ◦ f(n); n < ω〉. This map is a reduction

of
∏
n(=Rωn )+ to (=+)ω and its image, when restricted to the domain of EΠ, is

contained in D. Thus EΠ ≤B (=+)ω � D. Note that (=+)ω � D is Borel PCP,

hence is Borel reducible to EΠ by Theorem 4.15.

Corollary 4.17: (EΠ)
ω ∼B EΠ.

Proof. (EΠ)
ω can be represented as an equivalence relation with domain con-

tained in a space
∏
m,nXm,n, satisfying that: if f(EΠ)

ωg then g(m,n) is Borel

in f(m,n+ 1). Let s : ω −→ ω × ω be the snake enumeration of ω × ω, and let

Xn = Xs(n). This gives an isomorphism of
∏
nXn to

∏
m,nXm,n. The pullback

of (EΠ)
ω produces a relation which is Borel isomorphic to (EΠ)

ω and satisfies

the conditions of Lemma 4.2.

We conclude by noting the following generalization of PCP equivalence rela-

tions.
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Definition 4.18: Let E be an equivalence relation such that the domain of E is a

Borel subset of some product space X =
∏
nXn. Then E is said to be PCP* if

there are Borel equivalence relations Fn on Xn such that E =
∏
n Fn � domE,

and for every x and every n, the set AE,xn ≡ {y(n) : yEx} is countable.

Any PCP equivalence relation is PCP*. The proof of Proposition 4.6 can be

established for PCP* equivalence relations by similar arguments. That is, any

PCP* equivalence relation is pinned and strictly below =+. We do not know

whether there is any PCP* equivalence relation which is not reducible to EΠ.

5. Applications to the Clemens–Coskey jumps

Recall the definition of the Γ-jumps from Section 1.2. Let E be a countable

Borel equivalence relation on a Polish space X and Γ a countable group. Given

x ∈ XΓ, for each γ ∈ Γ let Axγ = [x(γ)]E , the E-class of x(γ). For a Γ-indexed

sequence A′ = 〈A′
α : α ∈ Γ〉, define γ · A′ = 〈A′

γ−1α : α ∈ Γ〉. Define

Ax = {γ · 〈Axα : α ∈ Γ〉 : γ ∈ Γ}.
The map x �→ Ax is a complete classification of E[Γ].

Fix a countable infinite group Γ. Let E be either ergodic with respect to a

measure μ on X or generically ergodic. Let x ∈ XΓ be a μΓ-Random generic,

or Cohen generic, respectively. Consider A = Ax, its E[Γ]-invariant. We will

study the model V (A). Note that this model is equal to V (〈Aγ : γ ∈ Γ〉). The
latter is generated by a countable sequence of E-classes, which is the model

studied in Section 3. By genericity the elements of {Aα : α ∈ Γ} are distinct.

In particular there is a well defined action of Γ on {Aα : α ∈ Γ} defined by

γ · Aα = Aγ−1α.

Lemma 5.1: In V (A), the elements {Aα : α ∈ Γ} are indiscernibles over A and

parameters in V .

Remark 5.2: In our context the Marker Lemma (see [KM04, Lemma 6.7]) is

manifested in the following way. Consider the shift action of Γ on {0, 1}Γ and

let x ∈ {0, 1}Γ. The natural invariant will be the unordered set {γ · x : γ ∈ Γ}
together with the action of Γ on this set. Then the Marker Lemma provides

arbitrarily sparse subsets of {γ · x : γ ∈ Γ}, definable using only the invariant
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and parameters in V . On the other hand, when Γ is acting on a collection of

E0-classes rather than on reals, Lemma 5.1 shows that the Marker Lemma fails

in a strong way.

Proof. We present the case where x is Random generic. The case for a Cohen

generic is similar and slightly easier. Work in the big generic extension V [x].

Let 1 denote the identity of the group Γ. Fix a formula φ, v ∈ V such that

φV (A)(A1, A, v) holds. We will show that φV (A)(Aγ−1 , A, v) holds for arbi-

trary γ ∈ Γ. Assume towards a contradiction that φV (A)(Aγ−1 , A, v) fails, and

let p be a condition forcing the above. Since the shift action preserve the prod-

uct measure, γ · p is a condition. Furthermore, since p forces φV (Ȧ)(Ȧ1, Ȧ, v̌)

then γ · p forces φV (Ȧ)(Ȧγ−1 , Ȧ, v̌).

Consider p and γ ·p as positive measure subsets ofXΓ. By [Kec20, Lemma 4.2]

the finite support power
∏fin
γ∈ΓE is μΓ-ergodic. It follows that we may find

generics x1, x2 such that x1 extends p, x2 extends γ·p, and furthermore x1 and x2

are EΓ-equivalent and they differ in only finitely many coordinates. (See the

arguments in the proof of Proposition 3.5.) Note that Ax1
γ = Ax2

γ for every γ.

Since x1 extends p, working in V [x1] we conclude that φV (Ax1)(Ax1

γ−1 , A
x1 , v)

fails. However, since x2 extends γ · p, working in V [x2] we conclude that

φV (Ax2 )(Ax2

γ−1 , A
x2 , v) holds, a contradiction.

Corollary 5.3: No non-empty finite subset Ā ⊆ {Aα : α ∈ Γ} is definable

in V (A) from A and parameters in V alone.

Proof. Assume for contradiction there is such Ā, defined as the unique solution

to φ(Ā, A, v). Fix γ such that

γ · Ā ≡ {γ ·Aα : Aα ∈ Ā}

is different than Ā (possible since Γ is infinite.) Then φ also uniquely defines γ·Ā,
a contradiction.

Claim 5.4: If B ∈ V (A) is a countable set of subsets of V , definable from A

and parameters in V alone, then B ∈ V .

Proof. Fix some enumeration f of B. Note that supp(b) ⊆ supp(f) for any

b ∈ B. Let Ā be the minimal finite subset of {Aα : α ∈ Γ} such that supp(b) ⊆ Ā

for any b ∈ B. Since Ā is definable from A, Ā is empty by Corollary 5.3. It

follows that B is a subset of V . Then B ∈ V by Proposition 3.5.
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By Lemma 2.5 we conclude:

Corollary 5.5: Let Γ be any countable infinite group. Suppose E is a count-

able Borel equivalence relation and either (1) E is ergodic with respect to μ

or (2) E is generically ergodic. Then for any countable Borel equivalence rela-

tion F

(1) E[Γ] is (μΓ, F )-ergodic;

(2) E[Γ] is generically F -ergodic.

Part (2) was proved by Clemens and Coskey [CC22]. From part (1) we

conclude:

Corollary 5.6: E
[Z]
∞ is not Borel reducible to EN

∞ × E
[Z]
0 .

Proof. Fix a measure μ for which E∞ is (μ,E0)-ergodic. Then E
[Z]
∞ is (μZ, E∞)-

ergodic by the discussion above, and is therefore (μZ, EN∞)-ergodic. Any reduc-

tion from E
[Z]
∞ to EN∞ × E

[Z]
0 would give a reduction to E

[Z]
0 on a μZ-measure 1

set. Since E∞ is not reducible to E
[Z]
0 on any μ-measure 1 set (see [CC22]), this

would give a contradiction.

Proposition 5.7: EΠ �≤ E
[Γ]
∞ andE

[Γ]
0 �≤ EΠ for any infinite countable group Γ.

Proof. Let A be an E
[Γ]
0 -invariant of a Cohen generic real as above. Suppose

B = 〈B0, B1, . . .〉 is an EΠ-invariant definable from A alone. By Claim 5.4

Bk ∈ V for every k, thus B is in fact a subset of V , and so B ∈ V by Proposi-

tion 3.5. It follows that E
[Γ]
0 is generically EΠ-ergodic.

Let now A be the EΠ-invariant from Construction 4.8. Let B be a E
[Γ]
∞ -

invariant in V (A). Then V (B) = V (〈Bγ : γ ∈ Γ〉). Since V (A) is not gen-

erated by any countable sequence of E∞-classes (by Theorem 4.10), it follows

that V (A) �= V (B), so EΠ �≤ E
[Γ]
∞ by Lemma 2.4.

We now turn to prove Theorem 1.3, establishing strong ergodicity between

the Γ-jumps for different values of Γ. The central tools used in the proof are

Proposition 3.5 and Lemma 5.1, which hold for both measure and category. We

focus on Baire category arguments, though the analogous results for measures

also hold, as mentioned after Theorem 1.3. Note that when working mod mea-

ger sets, all the countable Borel equivalence relations below may be replaced

with E0, by generic hyperfiniteness [KM04, Theorem 12.1].
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Lemma 5.8: Let Γ be a countable group and Γ̃ a finite normal subgroup of Γ.

Let E be countable Borel equivalence relation on X which is generically ergodic.

Then E[Γ] is not generically E
[Γ/Γ̃]
∞ -ergodic.

Proof. Fix a Borel linear ordering < of X and let m be the size of Γ̃. Define

an equivalence relation Ẽ on Xm, relating two finite sequences x̄, ȳ if there is

a permutation π of m such that x ◦ π and y are Em-related. Note that Ẽ is

a countable Borel equivalence relation, thus it suffices to show that E[Γ] is not

generically Ẽ[Γ/Γ̃]-ergodic.

Let x ∈ XΓ be Cohen generic and Ax its E[Γ]-invariant. For γ ∈ Γ define BγΓ̃
to be all choice functions in {Aγγ′ : γ′ ∈ Γ̃}. Note that BγΓ̃ can be viewed as an

Ẽ-class. Define B = {〈Bg−1γΓ̃ : γΓ̃ ∈ Γ/Γ̃〉 : g ∈ Γ/Γ̃}. Then B is an Ẽ[Γ/Γ̃]-

invariant definable in V (A) from A and parameters in V alone, and B /∈ V . By

Lemma 2.5 it follows that E[Γ] is not generically Ẽ[Γ/Γ̃]-ergodic.

Corollary 5.9: Suppose there is a finite normal subgroup Γ̃ of Γ, a sub-

group Δ̃ of Δ and a normal subgroup H of Δ̃ such that Γ/Γ̃ embeds into Δ̃/H .

Then E[Γ] is not generically E
[Δ]
∞ -ergodic.

Proof. Clemens and Coskey [CC22] show that for any equivalence relation F ,

if Λ is either a subgroup or a quotient of Γ, then E[Λ] is Borel reducible to E[Γ].

It follows that E
[Γ/Γ̃]
∞ is Borel reducible to E

[Δ]
∞ , so by the lemma above E[Γ] is

not generically E
[Δ]
∞ -ergodic.

The corollary is the implication (1) =⇒ (2) of Theorem 1.3. The following

proposition gives the reverse implication and will establish the theorem.

Proposition 5.10: Let Γ and Δ be countable groups, E a generically ergodic

countable Borel equivalence relation and F a countable Borel equivalence rela-

tion. Suppose E[Γ] is not generically F [Δ]-ergodic. Then there is a subgroup Δ̃

of Δ, a normal subgroup H of Δ̃ and a group homomorphism from Γ to Δ̃/H

with finite kernel.

Proof. By Lemma 2.5 there is a Cohen generic x ∈ XΓ, A = Ax its E[Γ]-

invariant, such that in V (A) there is an F [Δ]-invariant B, definable from A and

parameters in V alone, such that B /∈ V . Let B = {〈Bδ−1ξ : ξ ∈ Δ〉 : δ ∈ Δ},
where each Bξ is an F -class.

Claim 5.11: There is some ξ and b ∈ Bξ which is not in V .
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Proof. Otherwise, it follows that each Bξ is in V and so 〈Bδ−1ξ : ξ ∈ Δ〉 is a

subset of V for each δ. B is countable in V (A): fix some B′ = 〈B′
ξ : ξ ∈ Δ〉 ∈ B.

Let δ · B′ = 〈B′
δ−1ξ : ξ ∈ Δ〉, then 〈δ · B′ : δ ∈ Δ〉 is an enumeration of B.

Thus B is a countable set of subsets of V , definable from A alone, so B is in V

by Claim 5.4.

Fix some b ∈ Bξ not in V . Since b is a real there is a minimal finite s ⊆ Γ

such that for x̄ = 〈x(γ) : γ ∈ s〉, b ∈ V [x̄]. Let Ā = 〈Aγ : γ ∈ s〉. Note that

V (Ā) = V [x̄] and Bξ ⊆ V (Ā). Say that Ā is the support for Bξ. For a fixed Ā

there could be many Bξ whose support is Ā. We utilize the following coding

functions to ensure that the set of ξ for which Ā is a support for Bξ forms a

subgroup. These are variations of the coding functions used by Clemens and

Coskey in [CC22] to show that E[Z] is Borel reducible to =+.

For B′∈B define pB′: Δ2×Γ−→{0, 1} by pB′(δ1, δ2, γ)=1 if and only if the

support of (δ1·B′)1 is the γ-shift of the support of (δ2·B′)1. Let P ={pB′ : B′∈B}.
(Note that (δ1 ·B′)1 is B′

δ−1
1

, which has a well defined support according to the

previous paragraph.) P is a set of reals definable from A alone (since B is

definable from A alone). Furthermore P is countable: fix any pB′ ∈ P and

define pδ(δ1, δ2, γ) = 1 if and only if pB′(δ1δ, δ2δ, γ) = 1. Given any other

pB′′ ∈ B, fix δ such that B′′ = δ · B′, then pB′′(δ1, δ2, γ) = 1 if and only if

the support of (δ1 · B′′)1 is a γ-shift of the support of (δ2 · B′′)1, if and only if

the support of (δ1δ · B′)1 is a γ-shift of the support of (δ1δ · B′)1, if and only

if pδ(δ1, δ2, γ) = 1. It follows that 〈pδ : δ ∈ Δ〉 enumerates P . By Claim 5.4 we

conclude that P is in V , and so each p ∈ P is in V .

Fix p ∈ P and B∗ ∈ B such that pB∗ = p and Ā is the support of B∗
1 . Let Δ̃

be the set of all δ ∈ Δ such that pδ·B∗ = p and the support of (δ ·B∗)1 is γ · Ā
for some γ ∈ Γ. Note that for any γ there is a δ as above, by indiscernibility.

Define H ⊆ Δ̃ as the set of all δ ∈ Δ̃ such that B∗
1 and (δ ·B∗)1 have the same

support Ā. From now on Ā, B∗ and p are fixed. For δ ∈ Δ̃ say that γ is the

support of δ if γ · Ā is the support of (δ · B∗)1.

Lemma 5.12: Suppose δ, δ′∈Δ̃ with supports γ, γ′ respectively. Then δ−1, δδ′∈Δ̃

with supports γ−1, γγ′ respectively.

Proof. Suppose δ ∈ Δ̃ and γ · Ā is the support for (δ · B∗)1.
Then pδ·B∗(1, δ−1, γ) = 1. Since pB∗ = p = pδ·B∗ , pB∗(1, δ−1, γ) = 1 as well.

Thus γ−1 ·Ā is the support for (δ−1 ·B∗)1. Furthermore, pδ−1·B∗(δ1, δ2, γ) = 1 if
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and only pB∗(δ1δ
−1, δ2δ

−1, γ) = 1 if and only if pδ·B∗(δ1δ
−1, δ2δ

−1, γ) = 1 if and

only if pB∗(δ1δ
−1δ, δ2δ

−1δ, γ) = 1 if and only if pB∗(δ1, δ2, γ) = 1. Therefore δ−1

is in Δ̃.

Assume now δ, δ′ are both in Δ̃, where γ · Ā and γ′ · Ā are the supports

for (δ · B∗)1 and (δ′ ·B∗)1 respectively. Then

pB∗(δ, 1, γ) = 1 = pδ′·B∗(δ, 1, γ),

therefore the support of (δδ′ · B∗)1 is the γ-shift of the support of (δ′ · B∗)1,
that is, it is γγ′ · Ā. Furthermore,

pδδ′·B∗(δ1, δ2, ζ) = pδ′·B∗(δ1δ, δ2δ, ζ) = pB∗(δ1δ, δ2δ, ζ) = pδ·B∗(δ1, δ2, ζ)

= pB∗(δ1, δ2, ζ).

Therefore δδ′ is in Δ̃.

Corollary 5.13: Δ̃ is a subgroup of Δ and H is a normal subgroup of Δ̃.

Proof. It follows from the lemma that Δ̃ and H are subgroups. For example,

if h ∈ H then its support is 1 ∈ Γ. By the lemma h−1 ∈ Δ̃ with support

1−1 = 1, that is, h−1 ∈ H . We now show that H is a normal subgroup of Δ̃.

Suppose h ∈ H , δ ∈ Δ̃ with support γ. By the lemma hδ ∈ Δ̃ with support γ.

Applying the lemma again it follows that δ−1hδ ∈ Δ̃ with support γ−1γ = 1,

thus δ−1hδ ∈ H .

For γ ∈ Γ define Hγ ⊆ Δ̃ as the set of all δ ∈ Δ̃ whose support is γ. It follows

from Lemma 5.12 that each Hγ is a coset of H and that the map γ �→ Hγ

is a group homomorphism. Furthermore, if γ is in the kernel then Hγ = H

and so γ · Ā = Ā. There could be only finitely many such γ’s, so the kernel is

finite.

We now show that E
[Z]
∞ and E

[Z]
0 × Eω∞ are pairwise ≤B-incomparable. By

Corollary 5.6 it suffices to show the following irreducibility.

Proposition 5.14: E
[Z]
0 × Eω0 is not Borel reducible to E

[Z]
∞ .

Remark 5.15: In this case, we do not have strong ergodicity with respect to

either measure or category. Since E0 ≤B E∞, then E
[Z]
0 ≤B E

[Z]
∞ . Fix a Borel

reduction f of E
[Z]
0 to E

[Z]
∞ . Then the map (x, y) �→ f(x) is a non-trivial Borel

homomorphism from E
[Z]
0 ×Eω0 to E

[Z]
∞ . The pre-image of a single E

[Z]
∞ -class will
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involve only one E
[Z]
0 -class, and will be meager and measure zero, with respect

to a natural product topology, or a natural product measure.

Proof of Proposition 5.14. Since we are dealing with an additive group we will

write the action in an additive way: Aα + γ = Aα+γ . Towards a contra-

diction, assume that there is a Borel reduction of E
[Z]
0 × Eω0 to E

[Z]
∞ . Let

(x, y) ∈ (2ω)Z × (2ω)ω be Cohen generic. Let A,B be the E
[Z]
0 × Eω0 -invariant.

That is, A = Ax as above and B = 〈[y(n)]E0 : n < ω〉. By Lemma 2.4 there

is an E
[Z]
∞ -invariant C ∈ V (A,B) such that V (A,B) = V (C) and C is definable

from A,B and parameters in V . Let Ck, k ∈ Z be E∞-classes such that

C = {〈Cn+k : n ∈ Z〉 : k ∈ Z}.
Claim 5.16: (1) The members of {An : n ∈ Z} are indiscernible over A

and parameters from V (B).

(2) For any X ⊆ V there is a minimal support (s, t) where s is a finite

subset of Z, t a finite subset of ω such that

X ∈ V (〈x(k) : k ∈ s〉, 〈y(n) : n ∈ t〉) = V (〈Ak : k ∈ s〉, 〈Bn : n ∈ t〉).
Part (1) follows from Lemma 5.1, working over V (B) as the ground model.

Part (2) is proved similarly: working over V (B) we get that X is in V (B)[x̄].

Now working over V [x̄] we get that X is in V [x̄][ȳ]. In particular, any c ∈ Ck

has a minimal support (s, t). The support is the same for any other c′ ∈ Ck, and

so we say that (s, t) is the support of Ck as well. Given such s, t we will denote

x̄ = 〈x(k) : k ∈ s〉, Ā = 〈Ak : k ∈ s〉, ȳ = 〈y(n) : n ∈ t〉 and B̄ = 〈Bn : n ∈ t〉.
We sometimes call the pair (x̄, ȳ) or (Ā, B̄) the support of Ck as well.

For each C′ ∈ C (C ′ = 〈C ′
k : k ∈ Z〉) define pC′ : Z2 −→ {0, 1} by pC′(t, l) = 1

if and only if C′
t and C′

l have the same support. Let P = {pC′ : C ′ ∈ C}.
Then P is a countable set of reals, definable from (A,B) alone, and therefore

P ∈ V (B). It follows that P ∈ V (〈Bn : n ≤ m〉) for some m. By replacing V

with V (〈Bn : n ≤ m〉) and B with 〈Bn : n ≥ m〉, we may assume that P ∈ V .

Fix p∈P in V for which there is some C ′∈C with p=pC′ and the support of

C′
0 is (Ā, B̄). Suppose there is some C ′′∈C such that pC′′= p and C ′′

0 has the

same support (Ā, B̄). Fix m such that C ′′=C ′+m, then for every k∈Z, C ′
mk has

the same support (Ā, B̄). That is, we associate to (Ā, B̄) an arithmetic sequence

in the Z-ordering on {Cn : n ∈ Z}. If not such C ′′ exists then this arithmetic

sequence is a singleton (m = 0). Note that for the distinct pairs (Ā, B̄) and

(Ā′, B̄′) the corresponding arithmetic sequences must be disjoint.



36 A. SHANI Isr. J. Math.

Claim 5.17: If Ā is not empty then for any B̄ the arithmetic sequence corre-

sponding to (Ā, B̄) is a singleton (that is, m = 0).

Proof. Otherwise, there is an arithmetic sequence with common difference m

corresponding to (Ā, B̄) with m > 0. By indiscernibility, for any t there is

an arithmetic sequence with common difference m corresponding to (Ā+ t, B̄).

Since there could be only finitely many disjoint arithmetic sequences with fixed

common difference m, we arrive at a contradiction.

Case 1: Suppose there is a support (Ā, B̄) for some Ct where Ā is not empty.

By the claim (Ā, B̄) defines uniquely some C′ ∈ C with suppC′
0 = (Ā, B̄). As

before, there is some k ∈ Z such that {(Ā + l, B̄) : l ∈ Z} corresponds to the

k-arithmetic sequence {C ′
kl : l ∈ Z} with suppC ′

kl = (Ā+ l, B̄).

Claim 5.18: (1) Assume that (∅, B̄′) is a support corresponding to an m-

arithmetic sequence. Then 0 < m ≤ k.

(2) Assume Ā′ is not empty. Any (Ā′, B̄′) is a support corresponding to

a singleton, so {(Ā′ + l, B̄′) : k ∈ Z} corresponds to an m-arithmetic

sequence for some m. Then m ≤ k.

Proof. We prove (1), the proof of (2) is similar. Fix l such that for the unique C ′

corresponding to (Ā + l, B̄), there is 0 < j < k with suppC′
j = (∅, B̄′). By

indiscernibility, this is true for (Ā + l, B̄) for any l. Fixing C′, it follows that

for any l there is some 0 < j < k with suppC ′
kl+j = (∅, B̄′). We conclude that

m > 0 and m ≤ k.

There could be at most finitely many disjoint m-arithmetic sequences

with 0 < m ≤ k. Therefore there are only finitely many B̄′ for which there is

some Ā′ (possibly empty) so that (Ā′, B̄′) is a support of some Ct. It follows

that there is some m < ω such that Ct ∈ V (A, 〈Bn : n < m〉) for all t. Forcing
now 〈Bn : n ≥ m〉 over V (A, 〈Bn : n < m〉), we get that C is a set of subsets

of the ground model V (A, 〈Bn : n < m〉), which is countable and definable

from 〈Bn : n ≥ m〉 and parameters in V (A, 〈Bn : n < m〉). By Corollary 3.7

it follows that V (A, 〈Bn : n < m〉)(〈Bn : n ≥ k〉) �= V (A, 〈Bn : n < m〉)(C),
contradicting the assumption that V (C) = V (A,B).

Case 2: For any Ck its support is of the form (∅, B̄) for some B̄. It follows

that C ∈ V (B), a contradiction.
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The proposition also implies that E[Z] <B (E[Z])2 for any generically ergodic

countable Borel equivalence relation E. Similar arguments show that

E[Z] <B (E[Z])2 <B (E[Z])3 <B · · · .
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[Mos39] A. Mostowski, Über die Unabhängigkeit des Wohlordnungssatzes vom Ord-

nungsprinzip, Fundamenta Mathematicae 32 (1939), 201–252.

[Sha21] A. Shani, Borel reducibility and symmetric models, Transactions of the American

Mathematical Society 374 (2021), 453–485.

[Zap08] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics, Vol. 174, Cam-

bridge University Press, Cambridge, 2008.

[Zap11] J. Zapletal, Pinned equivalence relations, Mathematical Research Letters 18 (2011),

1149–1156.


	1. Introduction
	2. Preliminaries
	3. Countable products of countable equivalence relations
	4. Equivalence relations which can be classified by sequences of countable sets of reals
	5. Applications to the Clemens–Coskey jumps
	References

