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ABSTRACT

We study the potential of Borel asymptotic dimension, a tool introduced

recently in [2], to help produce Borel edge colorings of Schreier graphs

generated by Borel group actions. We find that it allows us to recover

the classical bound of Vizing in certain cases, and also use it to exactly

determine the Borel edge chromatic number for free actions of abelian

groups.

1. Introduction

In a recent paper [2], Conley et al. introduced a new tool, Borel asymptotic

dimension, to the study of Borel combinatorics. We will define this notion in

Section 2, but for now we emphasize that they exhibited several useful conse-

quences which follow when a locally finite Borel graph has finite Borel asymp-

totic dimension, including hyperfiniteness for its connectedness relation, and

Borel vertex colorings using relatively few colors.

The aim of this paper is to add to this list by showing applications of finite

Borel asymptotic dimension to edge colorings.

Let X be a standard Borel space and G ⊂ X × X a Borel graph on X .

An edge coloring of G is a function c : G → Y which sends adjacent edges

in G, that is, edges sharing a vertex, to distinct elements of Y , or “colors”.

Such a c is called a k-coloring if |Y | = k. The edge chromatic number
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of G, denoted χ′(G), is the smallest cardinal k such that G admits a k-coloring.

The Borel edge-chromatic number of G, denoted χ′
B(G), is the smallest

cardinal k such that G admits a Borel k-coloring. See [8] for a survey of these

and related notions.

The Borel graphs of interest to us in this paper will be those generated by

Borel actions of finitely generated groups. A marked group is a pair (Γ, S)

where Γ is a group and S is a finite symmetric generating set for Γ not contain-

ing 1. We will sometimes omit the S if it will not cause confusion. Let X be

a standard Borel space and a : Γ � X a free Borel action. Let G(a, S) denote

the Schreier graph generated by this action. This is the graph defined by

setting x, y ∈ X adjacent if and only if γ ·a x = y for some γ ∈ S.

Note that all the notions in the above paragraph make sense even if S does

not generate the entire group Γ. We shall sometimes use them in this case.

A classical theorem of Vizing states that if G is a graph with maximum de-

gree d, then χ′(G) ≤ d+1. Of natural interest is the extent to which this bound

continues to hold in the Borel setting. Greb́ık and Pikhurko have shown that

this bound holds in the measurable setting when G is measure preserving [5],

but on the other hand Marks has shown that it fails in the general Borel setting,

even for acyclic G [10].

As was previously promised, in Section 2 we shall see a precise definition

of Borel asymptotic dimension for graphs and Borel actions. Actually, of more

direct use will be a variant of this number, also from [2], called Borel asymptotic

separation index. Our main result in Section 3 will be that the Vizing’s bound

holds in the Borel context for graphs generated by certain group actions when

this index is 1.

Theorem 1: Let a : Γ � X be a free Borel action of a marked group (Γ, S) on

a standard Borel space X with Borel asymptotic separation index 1, and such

that none of the elements of S has odd order. Then

χ′
B(G(a, S)) ≤ |S|+ 1.

We emphasize that the condition on the generators in Theorem 1 implies that

χ′(G(a, S)) = |S|.

Nevertheless, we will see in Section 4 that the “+1” in Theorem 1 cannot always

be removed.
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In [2], it is shown that finite Borel asymptotic dimension implies a Borel

asymptotic separation index of 1. Several quite general classes of groups, in-

cluding those with a polynomial growth rate, are also shown to always have

finite Borel asymptotic dimension for their free Borel actions. The work of

that paper therefore provides us with many groups to which Theorem 1 can be

applied.

We will also see in Section 3 that Theorem 1 can be applied to finite extensions

of marked groups which satisfy its constraints.

Finally, we will note in Section 3 that Theorem 1 implies that the Vizing

bound holds in certain Baire measurable or measurable settings.

It follows from the third most recent paragraph that free actions of abelian

groups always have finite Borel asymptotic dimension, although this was known

earlier from work of Gao et al. [4]. In Section 4, we will see how a more

specific analysis allows us to improve on Theorem 1 for these groups by exactly

determining their edge chromatic numbers.

Theorem 2: Let (Γ, S) be a marked group with Γ = Δ×Zd abelian, where Δ

is the torsion part of Γ and d ∈ ω is its free rank. Let a : Γ � X be the action

of Γ on the free part of its Bernoulli shift, and G = G(a, S).

(1) If d = 0, χ′(G) = χ′
B(G) = |S| if and only if Δ has even order (and

χ′(G) = χ′
B(G) = |S|+ 1 otherwise).

(2) If d = 1, χ′(G) = |S| and χ′
B(G) = |S| if and only if Δ has even order

(and χ′
B(G) = |S|+ 1 otherwise).

(3) If d ≥ 2, χ′(G) = χ′
B(G) = |S|.

The point of using the Bernoulli shift in the above statement is that arbitrary

Borel free actions of Γ always admit Borel Γ-equivariant embeddings to the free

part of the Bernoulli shift [7], and so the chromatic numbers for the free part

of the Bernoulli shift are the supremums of the chromatic numbers of arbitrary

free actions of Γ.

Note that the statements in parentheses follow from Vizing’s Theorem/ The-

orem 1 (or rather the aforementioned generalization of the theorem to finite

extensions) and the fact that when Γ is finite, its discrete and Borel combina-

torics coincide.

During the preparation of this project, we became aware that this result was

recently arrived at two other times independently in the special case Γ = Zd

and S = the standard generating set [6], [1] (the latter for d = 2). The key
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ideas from the proof given in [6] appear also in this work, but some additional

ideas are needed to extend the result to arbitrary abelian groups and arbitrary

generating sets. Additionally, we learned via personal communication that the

authors of [6] were aware of Theorem 1. Our paper provides the first write up

of this result.

On that note, we mention one interesting difference between our approach and

those in [6] and [1]. Throughout the paper, we use having a Borel asymptotic

separation index of 1 as our key background assumption, where most existing

work has used the existence of what is sometimes called a “toast” structure,

following [4], which is a particularly nice witness to hyperfiniteness. The exis-

tence of toast can easily be seen to imply asymptotic separation index 1, but it

is unclear whether the converse holds. See Problem 1.

2. Borel asymptotic dimension and asymptotic separation index

In this section we will review the relevant definitions and facts from [2] regarding

Borel asymptotic dimension and asymptotic separation index.

We start with the discrete versions of these notions: Let G be a locally finite

graph on a set X , and N a positive integer. Let G≤N denote the distance

N-graph of G. This is the graph which sets two vertices adjacent if and only

if there is a path from one to the other of length at most N .

The asymptotic separation index of G, denoted asi(G), is the infimum

over s ∈ ω such that the following holds: For every positive integer N , X can

be partitioned into s+ 1 sets, say U0, . . . , Us, such that for each 0 ≤ i ≤ s, the

induced graph G≤N � Ui has only finite connected components. The asymp-

totic dimension of G, denoted asdim(G), is defined similarly, except now the

connected components of each G≤N � Ui are required to have a uniform (finite)

bound on their diameter.

Let G now be a Borel graph on a standard Borel space X . The Borel

asymptotic separation index and Borel asymptotic dimension of G, de-

noted asiB(G) and asdimB(G) respectively, are defined exactly as their discrete

counterparts were, except that now all the Ui’s are required to be Borel sets.

Now let Γ be a finitely generated group, and a : Γ � X a free Borel action. It

is easy to verify that none of the above numbers for the graph G(a, S) depend

on the choice of generating set S for Γ. We can thus talk about the (Borel)

asymptotic separation index and (Borel) asymptotic dimension of the action a

itself.
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We now list some facts. If G has only finite connected components, then

asiB(G) is trivially 0 and its Borel and discrete combinatorics coincide, so until

Section 4 assume this is not the case. The following facts, which were referenced

in Section 1, can be used to establish that Borel actions of finitely generated free

abelian groups have Borel asymptotic separation index 1, and are also relevant

to the discussion more broadly.

Theorem 3 ([2]): Let Γ be a finitely generated group with polynomial growth

rate for its Cayley graph(s). Then any free Borel action of Γ has finite Borel

asymptotic dimension.

Theorem 4 ([2]): Let G be a locally finite Borel graph with asdimB(G) < ∞.

Then asiB(G) = 1.

These next facts will sometimes allow us to recover Vizing’s bound in the

Baire measurable and measurable contexts, even for groups for which asiB �= 1.

Theorem 5 ([3], [2]): Let G be a locally finite Borel graph on a Polish space X .

Then there is a BorelG-invariant comeager set X ′⊂X such that asiB(G�X ′)=1.

Theorem 6 ([3]): Let G be a locally finite Borel graph on a standard Borel

probability measure space (X,μ) such that the connectedness equivalence rela-

tion of G is hyperfinite. Then there is a Borel G-invariant μ-conull set X ′ ⊂ X

such that asiB(G � X ′) = 1.

Finally, we mention a problem in this context which appears to be open, and

which was mentioned at the end of Section 1.

Problem 1: Let G be a locally finite Borel graph with asiB(G) = 1. Is the

connectedness equivalence relation of G hyperfinite?

In [2], this is shown under the stronger assumption asdimB(G) < ∞.

3. Degree plus one colorings

In this section we prove Theorem 1 and give some examples where it cannot be

improved.

3.1. Proof of Theorem 1. Let G be a graph on a set X . An injective

G-ray is an injective infinite sequence x0, x1, . . . ∈ X such that (xi, xi+1) ∈ G

for all i ∈ ω. Given a set U ⊂ X and an n ∈ ω, let us write B(U, n) for the ball
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of radius n around U . That is, the set of all points x ∈ X whose path distance

to U is less than or equal to n. For m ∈ ω, let us write

A(U, n,m) = B(U,m)−B(U, n).

One can check that if G and U are Borel, these sets are always Borel.

The following two lemmas together explain how having a Borel asymptotic

separation index of 1 will help us to construct edge colorings.

Lemma 1: Suppose G is a locally finite Borel graph on a space X with

asiB(G) = 1, and d ∈ ω. Then we can find pairwise disjoint Borel sets

V1, . . . , Vd ⊂ X such that any injective G-ray contains infinitely many edges

within each Vi.

Proof. Since the tail of an injective G-ray is still an injective G-ray, it suffices

to prove this with “infinitely many edges” replaced by “an edge”.

Let X = U0 	 U1 be a Borel partition of X witnessing asiB(G) = 1

for N = 4d+ 1. That is, such that the graphs G≤N � U0 and G≤N � U1

both have only finite connected components. Set Vi = A(U0, 2(i − 1), 2i) for

each 1 ≤ i ≤ d. Also set

W = X \B(U0, 2d) ⊂ U1.

As was mentioned above, these are all still Borel. Let us now show these Vi’s

work.

Let x = (xn) be an injective G-ray. We first show that x contains some

point from W . Suppose not. Then for each n, there is a yn ∈ U0 whose path

distance to xn is less than or equal to 2d. Now for each n, going from yn

to xn, then to xn+1, then to yn+1, produces a path from yn to yn+1 of length

at most 2d + 1 + 2d = N , so all the yn’s are in the same G≤N � U0-connected

component. By definition of U0, then, the set {yn | n ∈ ω} is finite. But now x

gives infinitely many points within distance 2d of this set, contradicting local

finiteness.

Since W ⊂U1, the above shows in particular that x contains some point from

U1. Similarly, x must contain some point from U0. Let xn ∈ W and xm∈U0.

We can assume m < n. Now the path distance from xi to U0 changes by at

most 1 each time i is incremented by 1. Thus, since xm has distance 0 from U0

and xn has distance greater than 2d from U0, for each 1 ≤ i ≤ d, there must be

some m < j < n such that xj and xj+1 have distance 2i− 1 and 2i respectively

from U0. Then (xj , xj+1) is an edge of x contained in Vi, as desired.
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Lemma 2: Let a : Z � X be a free Borel action of Z, and S the usual generating

set for Z. Suppose V ⊂ X is a Borel set with the property that every injective

G(a, S)-ray contains infinitely many edges within V . Then there is a Borel 3-

edge coloring of G(a, S), say with the colors 1, 2, and 3, such that the color 3

only occurs on edges contained within V .

Proof. A well known theorem from [9] (Proposition 4.2) states that for locally

finite Borel graphs, it is always possible to find Borel maximal independent sets.

Apply this to the edge graph of G(a, S) � V to get a maximal set of edges A

contained within V such that no two edges in A share a vertex. Give all the

edges in A the color 3.

By maximality and the defining condition for the set V , these edges occur

infinitely often in both directions along each Z-orbit. Thus, the connected

components of G(a, S) \A are all simply finite paths. These can of course be 2-

colored with the colors 1 and 2, and since they are all finite, this can be done

in a Borel fashion. (For example, by fixing a Borel linear order on the space

of 2-edge colored finite subgraphs of G(a, S), and picking the least 2-coloring in

this order for each path above.)

The proof of Theorem 1 is now easy:

Proof. By hypothesis, we may write S = S0 	 S1, where S0 contains all of our

generators of infinite order, and S1 contains all of our elements of even (finite)

order. For each γ ∈ S1, the connected components of the graph G(a, {γ±1})
are all even (finite) cycles, or just single edges if γ has order 2. Thus they may

be 2-colored in a Borel fashion as in the previous proof (or just 1-colored if γ

has order 2). Thus we may Borel |S1|-color the edges in G(a, S1).

It now suffices to Borel |S0|+1-color the edges in G(a, S0) using a disjoint set

of colors. Let S0 = {γ±1
1 , . . . , γ±1

d }, so that |S0| = 2d. We will use the color set

{1, . . . , 2d+ 1}. Let V1, . . . , Vd ⊂ X be the sets from Lemma 1. Since 〈γi〉 ∼= Z

for each i, by Lemma 2 we may for each i color the edges in G(a, {γ±1
i }) using

the colors 2i−1, 2i, and 2d+1 such that the color 2d+1 only appears on edges

contained within Vi. Since the Vi’s are pairwise disjoint, this does not cause

any color conflicts, so we are done.

We now wish to see that we can extend Theorem 1 to finite extensions. To

do this, it will be helpful to slightly expand our notion of graph to allow for

multiple edges.
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Let Γ be a group and S ⊂ Γ a finite symmetric multi-set of generators for it

not containing 1. That is, the elements of S can appear with some multiplicity.

With a : Γ � X a Borel free action as before, let G(a, S) denote the Borel-

multigraph where now points x and y are connected with one edge for each γ ∈ S

such that γ · x = y. Edge colorings can be defined as before. Of course, if x

and y have multiple edges between them, those all need different colors in an

edge coloring.

Observe that Theorem 1 still holds, with the same proof, if S is allowed to

be a multi-set. This allows us to prove:

Corollary 1: Let a : Γ � X be a free Borel action of a marked group (Γ, S)

on a standard Borel spaceX with Borel asymptotic separation index 1. Suppose

Δ ≤ Γ is a finite normal subgroup of Γ, and that for each γ ∈ S \Δ, the image

of γ in the quotient Γ/Δ does not have odd order. Then χ′
B(G(a, S)) ≤ |S|+1.

Proof. Write S = S0	S1, where S1 = S∩Δ. Consider first the graph G(a, S1).

Its connected components are all contained within Δ-orbits, and therefore finite.

They are also |S1|-regular, so by the classical Vizing’s Theorem and the argu-

ment from the final paragraph of Lemma 2, we may find a Borel (|S1|+1)-edge

coloring of this graph, say using the color set C.

Now let X be the Borel space of Δ-orbits. Then a induces a free Borel action,

say a, of Γ/Δ on X. Let S0 be the multi-set which results from considering

the images of the elements of S0 in Γ/Δ. By the last paragraph before the

statement of the corollary, we may find a Borel (|S0|+ 1)-edge coloring using a

disjoint set of colors from C, say C′, of G(a, S0). Now, given an edge (x, γ · x)
in G(a, S0), give it the color received by the edge (Δ · x,Δγ · x) in G(a, S0)

corresponding to γ. This results in a Borel (|S0|+ 1)-edge coloring of G(a, S0)

since whenever x, y are distinct vertices in the same Δ-orbit, the edges (x, γ ·x)
and (y, γ · y) share no vertices.

Amalgamating these two colorings gives us a Borel (|S|+ 2)-edge coloring of

G(a, S), but we can remove a color: Fix a color c from C. For each Δ-orbit,

say E ∈ X, E has degree |S0| in the graph G(a, S0), and therefore is incident

to only |S0| colors in our coloring of that graph. By our construction, it is still

incident to only those colors in the resulting coloring of G(a, S0). Thus, we may

pick a color c′ from C′ which E does not meet. Then we may change the color

of any edge within E colored c to c′. This process maintains Borel-ness, and

results in an edge coloring not using c, hence a (|S|+ 1)-edge coloring.



Vol. TBD, 2024 BOREL EDGE COLORINGS 9

The following variant of Corollary 1 will be used in Section 4:

Corollary 2: Using the notation from the proof of Corollary 1, suppose

χ′(G(a, S1)) = |S1| (that is, the Cayley graph of (Δ, S1) is degree-edge col-

orable) and S1 �= ∅. Then χ′
B(G(a, S)) = |S|.

Proof. Repeat the proof of Corollary 1, but now where the color set C has

size |S1|. The condition S1 �= ∅ is needed for the final step in the proof where

we fix a color from C.

Corollary 1 also generalizes a previous result of this author, which was proved

using similar ideas [13]:

Corollary 3: Let a : Γ � X be a free Borel action of a marked group (Γ, S)

with two ends. Then χ′
B(G(a, S)) ≤ |S|+ 1.

Proof. Two ended groups are always finite extensions of Z or the infinite dihe-

dral group D∞, neither of which have any odd order elements. Furthermore, a

Borel asymptotic separation index of 1 is automatic by Theorem 3 since Γ has

linear growth rate, though this also follows from earlier work of Miller [11].

Similarly, Corollary 1 implies Vizing’s bound for any action of an abelian

group:

Corollary 4: Let a : Γ � X be a free Borel action of an abelian marked

group (Γ, S). Then χ′
B(G(a, S)) ≤ |S|+ 1.

Proof. By the fundamental theorem of finitely generated abelian groups, Γ is a

finite extension of some Zd. This implies it has polynomial (degree d) growth

rate, and Zd does not have any odd order elements.

Note that the combination of Corollary 3 and Theorem 2 actually render this

Corollary redundant. It is still nice to state here, though, as Theorem 2 will

require somewhat more work.

We now pause briefly to address the measurable and Baire measurable situ-

ations. If G is a Borel graph on a Polish space X , we denote by χ′
BM (G) the

minimum of χ′
B(G � X ′) as X ′ ranges over all Borel comeager G-invariant sub-

sets of X . If X is instead equipped with a Borel probability measure μ, χ′
µ(G)

is defined similarly. Note that these numbers are both lower bounds for χ′
B(G).

Now, Theorems 5 and 6 have the following obvious consequences:



10 F. WEILACHER Isr. J. Math.

Corollary 5: If we replace χ′
B with χ′

BM , Theorem 1 and Corollary 1 hold

for Borel actions on Polish spaces without any assumptions on asymptotic sep-

aration index.

Similarly in the measurable setting for actions with hyperfinite orbit equiva-

lence relation.

3.2. Examples of tightness. Let us now consider when the “+1” in Theo-

rem 1 cannot be removed. It is well known that there are free Borel actions of

Z with its usual generating set which cannot be even Baire measurably 2-edge

colored [9] (page 11, essentially), and so the bound in Theorem 1 is certainly

sometimes tight. It would be reasonable, however, to chalk this up to the fact

that 2-colorings are very rigid. For example, the following fact shows that the

situation can sometimes be very different for graphs of max degree > 2:

Theorem 7 ([8]): If G is an acyclic, d-regular Borel graph on a Polish space

and d > 2, then

χ′
BM (G) = d.

Thus it is natural to ask for examples in our situation for larger degrees. The

following shows that Theorem 1 remains tight for graphs of arbitrarily large

degree, even if they are also assumed to be bipartite. It also provides one of the

directions in the d = 1 case of Theorem 2.

Proposition 1: Let (Γ, S) be a marked group with Γ = Δ × Z and Δ finite

of odd order. Let a : Γ � X be the usual action of Γ on the free part of

its Bernoulli shift. Then G(a, S) does not admit a Baire measurable perfect

matching (i.e., it does not admit a Borel perfect matching on a Γ-invariant

comeager set). In particular,

χ′
BM (G(a, S)) = χ′

B(G(a, S)) = |S|+ 1.

Proof. Suppose, to the contrary, there is a Borel Γ-invariant comeager set

X ′ ⊂ X and a Borel perfect matching M ⊂ (G(a, S) � X ′).
Start by defining a : Z = Γ/Δ � X , S0, and S0 exactly as in the proof of

Corollary 1. Also let X ′ ⊂ X be the set of Δ-orbits contained in X ′.
Let M ⊂ G(a, S0) be the submultigraph which includes an edge between

distinct Δ orbits y and y′ for each edge between y and y′ in M . Since Δ has

odd order, each orbit y ∈ X ′ must be contained in an odd number of edges

in M .
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Let n ∈ ω be large enough so that

S ⊂ Δ× (−n, n).

For any edge (y,m ·y) ∈ G(a, S0) with m > 0, define y to be the left endpoint

of that edge and m ·y to be the right endpoint. For y ∈ X ′, define F (y) to be

the number of edges in M with a right endpoint in [0, n] · y and a left endpoint

not in [0, n] · y. Put another way, this is the number of edges in M which leave

the set [0, n] · y to the left.

Let us compare F (y) and F (1 ·y). For an edge of M to be counted in F (1 ·y)
but not F (y), it would have to either have y as a left endpoint, or (n+1) · y as

a right endpoint. Since S0 ⊂ (−n, n), though, no edge with (n+1) · y as a right

endpoint can leave the set [1, n + 1] · y to the left, and so this cannot occur.

Thus our edge would have to have the form (y,m · y) for some 0 < m < n, and

conversely any edge with this form is counted in F (1 · y) but not F (y).

Similarly, for an edge of M to be counted in F (y) but not F (1 · y), it would
have to have y as its right endpoint or (n+1) · y as its left endpoint. The latter

is absurd, though, and so our edge would have to have the form (m · y, y) for

some m < 0. Once again, conversely any edge with this form is counted in F (y)

but not F (1 · y).
Now, y must be the left or right endpoint of each edge in M to which it

belongs. Let L and R be the number of such edges falling into these respective

cases. By the above discussion, we can conclude F (1 · y) = F (y) + L − R. By

an earlier comment, though, L+R is odd, so

F (1 · y) = F (y) + 1 (mod 2).

Thus, if we define f(y) to be the mod 2 value of F (y), f is a 2-vertex coloring

of G(a, {±1}) � X ′. It is also clearly Borel since M was. This is well known to

be impossible for nonmeager X ′ by a basic ergodicity argument [9] (page 11),

so we are done.

Finally, the conclusions about the edge chromatic numbers follow from this

and Corollary 3, since an |S|-edge coloring is a decomposition into perfect

matchings.

Note that this fails if we do not use the convention that S must be finite.

Indeed it is not hard to construct Borel perfect matchings for the Borel graph

on X above which connects any two points in the same Γ-orbit.
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3.3. Open problems. We end this section by listing interesting open problems

related to Theorem 1.

First, for Schreier graphs, it seems to be open whether any of the assumptions

of the theorem are necessary:

Problem 2: Is there any marked group (Γ, S) and free Borel action a : Γ � X

such that χ′
B(G(a, S)) > |S|+ 1?

Natural candidates to resolve this question are the free groups with their usual

generating sets. It follows from the results in [10] that the Schreier graphs of

these marked groups do not necessarily admit Borel pefect matchings, ruling

out Borel degree-edge colorings, but not much else seems to be known. (See [8,

Problem 5.37].)

It is also unclear whether the presence of a group action is necessary:

Problem 3: Let G be a locally finite d-regular Borel graph with asiB(G) = 1.

Is χ′
B(G) ≤ d+ 1?

It may be necessary to add an assumption of bipartite-ness to get an affir-

mative answer to this problem as a replacement to Theorem 1’s prohibition of

odd-order generators. This restricted version of the problem still seems to be

open.1 Note that by Theorem 5, an affirmative answer to Problem 3 would im-

ply that Vizing’s theorem holds in complete generality in the Baire measurable

setting.

Given Theorem 1, one way to make progress on Problem 3 in the case where d

is even would be to find so-called Schreier decorations of G which are Borel.

These are orientations of the edges of G along with edge colorings so that each

vertex ends up with exactly one in and one out edge of each color, and so they

essentially realize G as the Schreier graph of some not-necessarily free group

action. Some recent progress has been made in this area: See [12], [1]. Even

more generally, it would be useful to simply find Borel ways of decomposing G

into graphs of max degree 2.

Finally, given Proposition 1 it is interesting to ask whether any groups other

than finite extensions of Z can provide examples where the degree plus one

bound is tight.

1 Addendum: While this paper was under review, an affirmative answer in the bipartite

case was indeed found by Matthew Bowen and the author.
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Problem 4: Is there a marked group (Γ, S) and a free Borel action a : Γ � X

satisfying the hypothesis of Theorem 1 for which χ′
B(G(a, S)) = |S| + 1, and

for which Γ is not a finite extension of Z?

See [1, Question 6.4] for a similar problem. Note that by Theorem 2, the

answer is “No” for abelian Γ.

4. Degree colorings for abelian groups

In this section we prove Theorem 2. In two situations the theorem asserts the

non-existence of degree colorings: In the discrete setting when d = 0 and Δ

has odd order, and in the Borel setting when d = 1 and Δ has odd order. We

have already mentioned that the latter is covered by Proposition 1. The former

is obvious since a finite graph with an odd number of vertices cannot admit a

perfect matching. Therefore in this section we can focus on constructing degree

colorings in the remaining cases.

Throughout, let a,X ,Γ,S, d, and Δ be as in the statement of the theorem,

unless otherwise stated. Note, though, that nothing in this section is specific to

the Bernoulli shift. We only use that a is a free Borel action of Γ.

4.1. Free rank 0. In this subsection we complete the proof of statement (1)

of Theorem 2 by showing that if Γ = Δ is an even order finite abelian group,

then χ′(G(a, S)) = |S|. Note that this will imply the same for χ′
B(G(a, S)), by

the argument from the second half of Lemma 2. While it seems unlikely that

this result is original, our coverage of it will introduce a general technique which

will be useful for dealing with the torsion part when d > 0. We feel it is also

simply nice to include for the sake of completeness.

It suffices to consider the case when a is the action of Δ on itself by multi-

plication. In this case our graph is called the Cayley graph of (Δ, S).

The following lemma is not specific to the case d = 0.

Lemma 3: Let Δ′ ≤ Γ be a finite proper subgroup. Let Γ = Γ/Δ′, and then de-

fine a : Γ � X, S0, and S0 as in the proof of Corollary 1. If χ′(G(a, S0)) = |S0|,
then

χ′(G(a, S)) = |S|.
Likewise for the Borel edge chromatic numbers of these graphs.
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Proof. Let S1 = S∩Δ′ = S\S0. By hypothesis, we may find a |S0|-edge coloring
of G(a, S0), say using the set of colors C. As in the proof of Corollary 1, we may

lift this to a |S0|-edge coloring of G(a, S0) by giving the edge (x, γ ·x) for x ∈ X

and γ ∈ S0 whichever color was given to the edge (Δ′ · x, γΔ′ · x) in G(a, S0)

corresponding to γ.

Fix a color c ∈ C, which exists since Δ′ is proper, so S0 is nonempty. Con-

sider the subgraph G′ of G(a, S) consisting of G(a, S1) along with all the edges

colored c in the previous step.

Since, in our coloring of G(a, S0), the set of edges colored c gives a perfect

matching, each connected component of our subgraph looks like the following:

Two adjacent Δ-orbits, say y and γ · y for some γ ∈ S0, with all the internal

edges from S1, along with all edges between them of the form (x, γ ·x) for x ∈ y.

Fix a set C′ of |S1|+ 1 colors disjoint from C. We now use C′ to edge color

the above component. First, by Vizing’s theorem, we may use C′ to color the

edges within y. Now, for every such edge, say (x, x′), give the edge (γ · x, γ ·x′)
the same color. Since Γ is abelian, this colors all edges within γ · y without

conflict. Finally, for each x ∈ y, by this construction the set of colors of edges

in y meeting x is the same as the set of colors of edges in γ · y meeting γ · x.
This set has size |S1|, though, so we still have one free color, and can assign it

to the edge (x, γ · x), completing our coloring.

Thus we can edge color G′ using C′, and we already have an edge coloring

of G(a, S) \G′ using C \ {c}, so unioning these gives a coloring using

|C|′ + |C| − 1 = |S1|+ 1 + |S0| − 1 = |S|

colors as desired.

Finally, if our original coloring was Borel, our lift will still be Borel, and then

our construction can be done in a Borel fashion since we only need to work with

finite components. Again this uses the argument from Lemma 2.

Statement (1) now follows:

Proof. Since Δ has even order, we may by the fundemental theorem of finite

abelian groups find an index 2 subgroup Δ′ ≤ Δ. We now wish to apply

Lemma 3 with this choice of Δ′. We clearly can, though, since we will have

Γ = Z/2, and so G(a, S0) will just consist of two points with |S0|-many edges

between them. (Recall we started with the Cayley graph of (Δ, S).)
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4.2. Free rank ≥ 2. In this subsection we complete the proof of statement (3)

of Theorem 2. Applying Lemma 3 with Δ′ = Δ, we reduce to the case Γ = Zd,

but where we now allow multiplicity for the generators in S. For the rest of the

subsection, assume (Γ, S) has this form.

For motivation, consider Figures 1 and 2. The former shows that we can

think about the proof of Theorem 1 as follows: For each i, the orbits of γi are

edge colored using mostly the colors 2i−1 and 2i, but with an occasional 2d+1

thrown in to help align parity.

Figure 1. The key idea in the proof of Theorem 1. The color

2d + 1 is used (within the region V1) to “swap parity” along

the orbits of γ1.

The latter makes an analogy between this and our upcoming proof of state-

ment (3). For notational convenience, consider the case where

S = {±ei | 1 ≤ i ≤ d}
is the standard generating set, where ei = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in

the i-th coordinate. We will still color the orbits of each ei using mostly the

colors 2i − 1 and 2i, but as before we will need to occasionally swap parity.

Thanks to the structure of Zd, though, when d ≥ 2 we will be able to do this

by “borrowing” a color from some ej-edge, j �= i.

Figure 2. The key idea in the proof of Theorem 2. Now

parity along the horizontal orbits is swapped without the use

of an additional color. The regions A and B are labeled so that

they can be referenced later.
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4.2.1. Borrowing colors. We will now describe a general setup for using this

“borrowing” idea. See Figure 3 for a visualization. Let γ1, γ2 ∈ S such

that 〈γ1, γ2〉∼=Z2. That is, γ1 and γ2 are not scalar multiples of each other. Work

in some finite subset U of some Zd-orbit, with two disjoint subsets A,B⊂U .

Let S′ = {±γ1,±γ2}.
Let F denote the set of γ1-orbits meeting U . Call two elements of F adjacent

(with respect to γ2) if the action of γ2 sends one to the other. Note that this

makes sense since Zd is abelian. Suppose P is a partition of F into adjacent

pairs. Suppose e = (x, γ1 · x) is a γ1-edge in some f ∈ F . Let ε ∈ {±1} be the

unique sign so that {f, εγ2 · f} ∈ P . Then let us call the edge (εγ2 · x, εγ2γ1 · x)
the parallel edge to e.

In what follows, we will sometimes speak of edges as if they are sets of ver-

tices, e.g, “the distance between two edges” or “these two edges are disjoint”.

The meaning of such statements will be the one resulting from identifying an

edge (x, y) with the set {x, y}.
Lemma 4: Suppose we have a partial edge coloring c : (G(a, S′)�U)→{1, 2, 3, 4}
which satisfies the following properties.

(1) The domain of c consists of all γ2-edges, and all γ1-edges meeting A∪B.

(2) c gives all γ1-edges the color 1 or 2, and all γ2-edges the color 3 or 4.

(3) Parallel γ1-edges are always given the same color.

(4) If e, e′ are two edges in a single element of F meeting A, they get the

same color iff the distance between them is odd. Likewise for B.

(5) For every path from A to B consisting only of γ1-edges, there is some

edge e on the path such that e and its parallel edge, say e′, are both

disjoint from A ∪B, and both γ2-edges from e to e′ have the color 3.

Then there is an (total) edge coloring c′ : (G(a, S′) � U) → {1, 2, 3, 4} which

agrees with c on all edges meeting A ∪B.

Proof. Essentially a proof by picture; see Figure 3.

First, the move from c to c′ will not change which edges get the color 4, so

ignore those edges for the rest of the proof. We are left with a graph like the

one in the figure. Fix a pair {f, f ′} ∈ P , so that we need to fill in the colors of

the edges in f and f ′ not meeting A ∪ B. We would like to simply do this by

continuing to alternate between the colors 1 and 2 on them, but we may run

into parity issues.
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Figure 3. A visualization of the setup and proof of Lemma 4.

The horizontal edges correspond to γ1, and the vertical to γ2.

The edges pictured are those not given the color 4. A and B

are the regions indicated. The brackets show pairs in P . (c)

shows the configuration of edges mentioned in condition (5)

of the lemma statement. That configuration is used to swap

parity for the element of P labeled by (a), as shown. (b) labels

an element of P on which no parity swap is needed.

By condition (4), this can only be the case along paths in f or f ′ between A

and B. By condition (5), though, whenever we have such a situation, we can

“borrow” the color 3 to indeed do a parity swap if necessary. Item (a) in the

figure shows an example where this is the case, and item (b) an example where

it is not.
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4.2.2. The standard generators. The remainder of Subsection 4.2 will involve

reducing our desired result to several concrete cases. All will be handled using

similar overall strategies, and ultimately relying on Lemma 4. The first of these

will be when S = {±ei | 1 ≤ i ≤ d} is the usual generating set for Zd. Fix this

particular S for now. We will cover this case carefully to illustrate our general

strategy.

We first set up some additional terminology. Let U ⊂ U ′ be subsets of some

fixed Zd-orbit U ′′, and let c : (G(a, S) � U ′) → {1, . . . , 2d} be an edge coloring.

Let x0 ∈ U ′′, 1 ≤ i ≤ d, and k, k′ distinct colors. We say that c follows the

protocol x0 for ei using k and k′ on U if for each edge (x, ei·x) ofG(a, S) � U ′

meeting U , c gives this edge the color k if ai is even and k′ otherwise, where
(a1, . . . , ad) ∈ Zd is the unique element such that (a1, . . . , ad) · x0 = x. Note

for later that this definition makes sense for any S containing ei. Sometimes

the “on U” will be omitted if U is clear from context, which typically will be

when U = U ′. Likewise, the colors may be omitted if they are clear or if there

is no need to name them.

Of course, given x1, . . . , xd ∈ U ′′, it is always possible to 2d-edge color a given

subset of U ′′ following the protocol xi for ei using the colors 2i − 1 and 2i for

each i. Also note that the choice of each xi only matters modulo the action of

the subgroup 〈2ei〉.

Figure 4. A partial coloring for d = 2 following the protocol x0

for e1 using the colors 1 and 2 and also following the protocol x0

for e2 using the colors 3 and 4.
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It is clear that if U and V are two disjoint subsets of U ′′ and c is a coloring of

G(a, S) � (U ∪ V ) following the protocol xi for ei using the colors 2i− 1 and 2i

for each i, then c can be extended to a coloring of all of G(a, S) � U ′′ following
those same protocols. We now need to see what to do when U and V follow

different sequences of protocols.

Lemma 5: Let 1 ≤ i ≤ d. Suppose U ⊂ U ′′ and c is an edge coloring

of G � B(U, 1) which for each 1 ≤ j ≤ d follows some protocol xj for ej

using 2j − 1 and 2j on A(U, 0, 1). Then we can extend c to a 2d-coloring

of G � B(U, 5) which still follows those protocols on A(U, 0, 1), and which

on A(U, 4, 5) follows those protocols for each j �= i, but follows protocol ei · xi

for ei using 2i− 1 and 2i.

Proof. First, color any edges in B(U, 5) meeting A(U, 4, 5) or A(U, 0, 1) as dic-

tated by our sequences of protocols. These two sequences agree about which pro-

tocols to use for ej, j �= i, so tentatively color all ej-edges for j �= i in A(U, 0, 5)

as dictated by these protocols.

We need to fill in the colors for the remaining ei edges: those contained

in A(U, 1, 4). Since d > 1, fix some j �= i. Observe that we can do this by

applying Lemma 4 with γ1 = ei, γ2 = ej , A = A(U, 0, 1), B = A(U, 4, 5)

and the colors 1,2,3, and 4 replaced with 2i− 1, 2i, 2j − 1, and 2j respectively.

All conditions other than (5) are immediately apparent. P will pair up any

two adjacent ei orbits whose connecting edges all get the color 2j − 1. That

is, it will consist of pairs of the form f, ej · f for which f contains a point

(a1, . . . , ad) ∈ x0 with aj even. Then, for condition (5), any edge e such that

both e and its parallel edge are contained in A(U, 1, 4) will work. 4 is large

enough so that we are always guaranteed the existence of such an edge, so we

are done. Note that the picture here will look like that in Figure 2.

Lemma 6: Let x1, . . . , xd, y1, . . . , yd ∈ U ′′. Suppose U ⊂ U ′′ and c is an edge

coloring of G(a, S) � U which for each 1 ≤ i ≤ d follows protocol xi for ei

using 2i− 1 and 2i. Then we can extend c to a 2d-coloring of G � B(U, 4d+ 1)

which still follows these protocols on U , but also for each i follows protocol xi

for ei using 2i− 1 and 2i on A(4d, 4d+ 1).

Proof. This is an obvious induction using Lemma 5.
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Lemma 7: Let x1, . . . , xd, y1, . . . , yd ∈ U ′′. Suppose U, V ⊂ U ′′, the G(a, S)-

path distance between U and V is greater than 4d+1, and c is an edge coloring

of G � (U ∪ V ) which, on U , follows protocol xi for ei using 2i − 1 and 2i for

each i, and likewise for V and the yi’s. Then we can extend c to a 2d-coloring

of U ′′ which still follows those same protocols on U and V respectively.

Proof. First, extend c to B(U, 4d + 1) as in Lemma 6. Then color the rest of

the edges in U ′′ following protocol yi for ei using 2i− 1 and 2i for each i.

Now, thanks to the fact that asiB(G(a, S)) = 1, Lemma 7 is enough:

Lemma 8: With S the standard generating set, χB(G(a, S)) = |S| = 2d.

Proof. Let N = 8(d + 1). Let X = U1 	 V be a Borel partition witness-

ing asiB(G(a, S)) = 1 for this value of N . Let

V1 = X \B(U1, 4d+ 1).

Arguing as in the proof of Lemma 1, we can conclude that every injective

G(a, S)-ray passes through V1. Thus, by König’s lemma, the connected com-

ponents of G(a, S) � (X \ V1) are still all finite. G(a, S) � V1 also has only

finite connected components since G(a, s) � V did. Likewise for U1 and its

complement. See Figure 5 to see how these sets might be arranged.

Figure 5. A typical arrangement of the sets in the proof of

Lemma 8 for d = 2.
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Thus, as in the proof of Lemma 2, we may Borel 2d-edge color G(a, S) � U1

so that a consistent sequence of protocols having the form from Lemmas 6

and 7 is followed within each G(a, S) � (X \ V1) component, and Borel 2d-edge

color G(a, S) � V1 so that a consistent such sequence of protocols is followed

within each G(a, S) � (X \ U1)-component.

Now let C be a G(a, S) � (V \ V1)-component. Let V2 be the union of the

V1-components meeting B(C, 1) (that is, with edges to C),and U2 the union

of the U1-components meeting B(C, 1). V2 is contained in a single (X \ U1)-

component, and hence is colored using a consistent sequence of protocols having

the form from Lemma 7, and likewise for U2. Thus, by the lemma (note that

the path distance between U2 and V2 is more than 4d + 1), we can find a 2d-

coloring of G � (C ∪U2 ∪V2) which still follows the original protocols set for U2

and V2 on those sets. Since C is always finite, we can in a Borel fashion do this

simultaneously for every such C, and by construction this does not cause any

color conflicts.

4.2.3. Protocols and transitions. Since the remaining cases we cover will be

handled very similarly to this one, we will not go over these details for each one.

Instead we will content ourselves in each one with establishing some appropriate

notions of “protocol”, and using Lemma 4 to at least sketch some analogue

of Lemma 6 saying different sequences of such protocols can be transitioned

between in a bounded neighborhood.

What we called “protocol” in the previous arguments, let us now call “stan-

dard protocol”, to differentiate it from the variants to come. Many such variants

will be defined, so they are collected in Table 1 to help the reader keep track of

them. The general form of these protocols will be the same as for the standard

protocol: They will always specify some periodic way of 2-coloring the γ-edges

in some orbit of some group relative to some basepoint in that orbit for γ some

specified generator of the group. Some protocols will only make sense for certain

groups and/or certain values of γ.

The syntax for specifying γ and the colors will be the same as for the standard

protocol. As with the standard protocol, when we say this protocol is followed

on some set of vertices U , it will mean that all γ-edges meeting U are colored

in the “way” specified by the protocol.
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Table 1. The different protocols used in Section 4.2. Column

two gives the ambient group for which each protocol is defined.

Column three lists those group elements for whose edges the

protocol sets colors.

Protocol Context Generators applied to Reference

Standard Zd, d ≥ 2 ei, 1 ≤ i ≤ d Figure 4

Block Z2 (a, 0) or (0, a), a > 0 Section 4.2.4

Diagonal Z2 (b1, b2), b1, b2 > 0 Beginning of Section 4.2.5

Alternating Z2 (0, 1) Figure 6

Let us now introduce some general terminology for the “transitions” between

protocols mentioned three paragraphs ago. Let U ′′ be an orbit of some group ac-

tion a, γ1, . . . , γn generators, Π1, . . . ,Πn,Π
′
1, . . . ,Π

′
n protocols (including base-

points), where for each i, γi is the type of group element for which Πi and Π′
i de-

scribe colorings. We say we can transition from Π1 for γ1, . . . ,Πn for γn to Π′
1 for

γ1, . . . ,Π
′
n for γn if, roughly speaking, given a 2n-coloring c of G(a, {γ1, . . . , γn})

restricted to some subset U of U ′′ which for each i follows Πi for γi using, say,

the colors 2i− 1 and 2i, we can extend c to a 2n-coloring of the restriction to

some bounded neighborhood of U which on the “boundary” of that neighbor-

hood follows Π′
i for γi using the colors 2i− 1 and 2i for each i. A more precise

statement would look something like the statements of Lemmas 5 and 6.

The most basic claims of the form described in the previous paragraph will

be proven using a single application of Lemma 4, with some distinct γi, γj from

the previous paragraph playing the part of γ1 and γ2 from the lemma. More

difficult ones will be built up in steps from several of these “basic” ones, using

additional sequences of protocols as intermediaries.

Let us use the already covered case of Zd, with the standard generators as an

example to showcase our terminology. After defining the standard protocol and

fixing a Zd-orbit U ′′, we could replace Lemma 5 with the following statement,

proved the same way with a single application of Lemma 4.

Lemma 9: Let i �= j, xi, xj ∈ U ′′. We can transition from standard protocol xi

for ei and standard protocol xj for ej to standard protocol ei · xi for ei and

standard protocol xj for ej.

Inductively applying this would give the following restatement of Lemma 6:
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Lemma 10: Let x1, . . . , xd, y1, . . . , yd ∈ U ′′. We can transition from standard

protocol xi for ei for each i to standard protocol yi for ei for each i.

4.2.4. Multiples of the standard generators. One easy case we will need to ad-

dress is d = 2,

S = {±(a1, 0), . . . ,±(an, 0),±(0, b1), . . . ,±(0, bm)}

for n,m > 1, and the ai’s and bi’s arbitrary positive integers (possibly with

repeats).

Let U ′′ be a Z2-orbit as before, x0 ∈ U ′′, a > 0. The block protocol x0

for (a, 0) using, say, the colors 1 and 2, will dictate that if x = (g1, g2) ·x0, then

the edge (x, (a, 0) · x) gets the color 1 if g1 ∈ [0, a) (mod 2a), and the color 2

otherwise. The block protocol x0 for (0, a) is defined similarly. Note that the

standard protocols are a special case of these.

Lemma 11: Let a, b > 0, x0, y0 ∈ U ′′. We can transition from block protocol x0

for (a, 0) and block protocol y0 for (0, b) to block protocol (1, 0) · x0 for (a, 0)

and block protocol y0 for (0, b).

Proof. Let us say our protocols use the colors 1 and 2 for (a, 0) and 3 and 4

for (0, b). As in the proof of Lemma 5, we apply Lemma 4 with γ1 = (a, 0),

γ2 = (0, b), and P pairing up adjacent (a, 0)-orbits whose connecting edges all

get the color 3. This time, though, we only need to change parity along those

(a, 0)-orbits containing a point of the form (g1, g2) · x with g1 a multiple of a.

An orbit f satisfies this condition if and only if its adjacent orbits do, so this

is fine. Note that condition (3) from the lemma holds since in a block protocol

for (a, 0), the color of the edge ((g1, g2) · x0, (g1 + a, g2) · x0) only depends on

the first coordinate g1.

Of course, the analogous statement with the coordinates swapped holds as

well. Therefore, since n,m > 0, an inductive argument shows that we can

transition between any pair of sequences of block protocols for our generators

in S, and so we conclude:

Lemma 12: With d = 2 and S as above, χB(G(a, S)) = |S|.
Of course, there is nothing special here about d = 2, but we will not need the

higher dimensional versions of this case.
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4.2.5. Z2 with three generators, subcase 1. We now consider cases of the

form d = 2, S = {±(n, 0),±(0, n),±(b1, b2)}, where n, b1, and b2 are posi-

tive integers. Of course, we may assume n, b1, and b2 do not share any common

factors. Fix such an S for the time being.

Let U ′′, x0 be as before. The diagonal protocol x0 for (b1, b2), say using the

colors 5 and 6, will dictate that edges of the form ((a1, a2)·x0, (a1+b1, a2+b2)·x0)

get the color 5 if a1 ∈ [0, b1) (mod 2b1) and 6 otherwise. We will always use

such protocols for (b1, b2).

First consider the subcase n = 1. If b1 and b2 are not both odd, assume

without loss of generality that b2 is even. Outside of transitional steps, we will

use standard protocols for the generators (1, 0) and (0, 1). We have already

seen that, with the standard protocols, these generators can use each other to

change their basepoints. Since the diagonal protocol only depends on the first

coordinate of its basepoint, it therefore suffices to show:

Lemma 13: Let x0 ∈ U ′′. We can transition from the standard protocol x0

for (1, 0) and (0, 1) and the diagonal protocol x0 for (b1, b2) to the standard

protocol x0 for (1, 0) and (0, 1) and the diagonal protocol (1, 0) · x0 for (b1, b2).

Proof. This will be split into two further subcases, depending on the parity

of b1 and b2. For the first, suppose b2 is even.

Let us say our protocols for (0, 1) use the colors 3 and 4. We want to apply

Lemma 4 with γ1 = (b1, b2) and γ2 = (0, 1). Since b2 is even, if an edge between

two adjacent (b1, b2)-orbits is given the color 3 by the standard protocol x0

for (0, 1), then all such edges are. Thus we can apply the lemma exactly as we

did in the proof of Lemma 11.

For the second, by our assumption from before the statement of the lemma,

both b1 and b2 are odd. The alternating protocol x0 for (0, 1), say using the

colors 3 and 4, will dictate that edges of the form

((a1, a2) · x0, (a1, a2 + 1) · x0)

get the color dictated by the standard protocol x0 using 3 and 4 if a1 ∈ {0, 1}
(mod 4), and the opposite of that color otherwise. See Figure 6.

Our desired transition will be accomplished in three “steps” in the sense of

Subsection 4.2.3. First we switch to an alternating protocol for (0, 1), then shift

the basepoint for (b1, b2)’s diagonal protocol as desired, then switch back to the

standard protocol for (0, 1).



Vol. TBD, 2024 BOREL EDGE COLORINGS 25

For the first and third of these steps (noting our “we can transition. . . ” re-

lation is symmetric) we show that we can transition from standard protocol x0

for (1, 0) and (0, 1) to standard protocol x0 for (1, 0) and alternating protocol x0

for (0, 1). This is exactly like the transition to standard protocol (0, 1) · x0

for (0, 1), but in our application of Lemma 4, instead of changing parity along

each pair of (0, 1)-orbits in P , we only change parity along every other pair.

For the second, we show that we can transition from alternating protocol x0

for (0, 1) and diagonal protocol x0 for (b1, b2) to alternating protocol x0 for (0, 1)

and diagonal protocol (1, 0) · x0 for (b1, b2). Figure 6 shows the configuration

given by our starting set of protocols. Let us say we are using the same colors

as in the figure. Consider removing the (0, 1)-edges colored 4 from this picture.

Since b1 and b2 are odd, the resulting picture looks exactly like that in Fig-

ure 3, but with the colors 5 and 6 in place of the colors 1 and 2. Therefore

condition (5) from Lemma 4 is satisfied with γ1 = (b1, b2), γ2 = (0, 1). Condi-

tion (3) is satisfied as in the previous subcase. Thus we can swap parity along

the appropriate pairs of adjacent (b1, b2)-orbits. (As in the proof of Lemma 11,

this will be those whose orbits contain a point of the form (a1, a2) · x0 with a1

a multiple of b1.)

Figure 6. A picture of a coloring using an alternating protocol

for (0, 1) and a diagonal one for (b1, b2), as in the second case

in the proof of Lemma 13. Here b1 = b2 = 1.
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4.2.6. Z2 with three generators, subcase 2. Next consider the subcase n > 1.

Then, since we assumed there were no common divisors, without loss of gener-

ality n does not divide b2. We will use block protocols for the (n, 0) and (0, n)

edges.

Once again, since we already have Lemma 11, we need only show:

Lemma 14: Let x0 ∈ U ′′. We can transition from the block protocol x0

for (0, n) and the diagonal protocol x0 for (b1, b2) to the block protocol x0

for (0, n) and the diagonal protocol (1, 0) · x0 for (b1, b2).

Proof. We wish to apply Lemma 4 with γ1 = (b1, b2) and γ2 = (0, n), let us say

using the colors 5 and 6 for γ1 and 3 and 4 for γ2. Condition (3) is satisfied as in

previous arguments. To apply the lemma in the way we want, it would suffice

to show the following about a coloring using our starting protocols: There is

an N (depending only on n, b1, and b2) such that for every (b1, b2)-orbit f with

adjacent orbit f ′ = (0, n) · f , for every path in f of length N , there is some

edge e in the path satisfying condition (5) of the lemma. That is, such that

both (0, n)-edges from e to f ′ get the color 3.

Let (a1, a2) ·x0 be an arbitrary point in f , so that the points on f are those of

the form (a1 + kb1, a2 + kb2) · x0 for k ∈ Z. By definition of the block protocol,

the edge from such a point to f ′ will get the color 3 if and only if a2+kb2 ∈ [0, n)

(mod 2n). The picture so far is summed up in Figure 7.

Figure 7. A visualization of the n > 1 case. The horizon-

tal edges are the (b1, b2)-edges, while the vertical ones are the

(0, n)-edges colored 3. The label (g1, g2) for a point is short-

hand for (g1, g2) · x0. Whether or not a vertical edge touching

some (g1, g2) is included depends on the value of g2 mod 2n.
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Our problem thus reduces to the following number theoretic one. Given

that n � b2, find N large enough so that for any a2 ∈ Z, there is some k ∈ [0, N ]

such that a2 + kb2 and a2 + (k + 1)b2 are both in the range [0, n) (mod 2n).

Since everything is modulo 2n, it just suffices to show that we can find some

such k ∈ N, and then we can take N = 2n. Assume that b2 ∈ (0, n) (mod 2n),

as the case b2 ∈ (n, 2n) (mod 2n) will follow from a similar argument.

Now let q = gcd(b2, 2n) < n. Then there will always be a k such that

a2 + kb2 ∈ [0, q) (mod 2n). Also, since we have assumed b2 ∈ (0, n) (mod 2n),

we must actually have b2 ∈ [q, n − q] (mod 2n). Then a2 + (k + 1)b2 is in the

range [0, n) (mod 2n) as desired.

Let us record the result of Subsubsections 4.2.5 and 4.2.6 together:

Lemma 15: With d = 2, S = {±(n, 0),±(0, n),±(b1, b2)} for some b1, b2, n > 0,

we have χ′
B(G(a, S)) = |S| = 6.

4.2.7. Combining the cases. Finally, we are ready to finish the proof for gen-

eral d and S.

Proof. Let S = {±γ1, . . . ,±γn} and let S′ = {γ1, . . . , γn}. We define an equiv-

alence relation ∼ on S′ which sets two generators as equivalent if one is a

scalar multiple of the other; equivalently, if the subgroup they generate is cyclic.

Let C1, . . . , Cm list the classes in S′/ ∼. Note that we must have m ≥ d > 1.

Because of this, we can partition the set of Ci’s into sets of size 2 and 3. It

now suffices to show that given an element of this partition {Cij | 1 ≤ j ≤ r},
where r ∈ {2, 3}, we can Borel color the edges in G(a,±⋃

j Cij ) using |±⋃
j Cij |

colors.

First consider the case r = 2. For notational convenience, take ij = j

for j = 1, 2. Let Γ = 〈C1, C2〉 ∼= Z2. Then (Γ,±(C1 ∪ C2)) is isomorphic as a

marked group to Z2 with a set of generators of the form covered in Lemma 12,

so that the lemma says this case is done.

Next consider the case r = 3, and again take ij = j for j = 1, 2, 3. We would

like to reduce to the case where C1, C2, and C3 are all singletons. Suppose,

for instance, that C1 includes at least two elements, and let δ1 be one. Pick

some δ2 from C2. Then we can 4-edge color G(a, {±δ1,±δ2}) by the previous

paragraph. We are left with C1 −{δ1}, C2 −{δ2}, and C3. Note that C1 −{δ1}
is still nonempty. If |C2| = 1, then we have reduced to the previous paragraph.

If not, and one of our three sets still contains more than one element, repeat

this.
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Thus we have our reduction. Let Ci = {δi} for i = 1, 2, 3. Now by definition

of ∼, Γ := 〈δ1, δ2, δ3〉 is isomorphic to either Z2 or Z3.

In the latter case, (Γ, {±δ1,±δ2,±δ3}) is isomorphic as a marked group to Z3

with its standard generators, so by Lemma 8 we are done.

In the former case, we can write nδ3 = b1δ1+b2δ2 for some n, b1, b2 �= 0. Then

(Γ, {±δ1,±δ2,±δ3}) is isomorphic as a marked group to Z2 with the generating

set from Lemma 15. (Send δ1 to (n, 0), δ2 to (0, n), and δ3 to (b1, b2).) We can

also assume n, b1, b2 > 0 by replacing the δ’s with their inverses if necessary.

Thus by the lemma, we are done.

4.3. Free rank 1. In this subsection we complete the proof of statement (2)

of Theorem 2. For the discrete part of the statement, since we can use Lemma 3

with Δ = Δ′, it suffices to prove χ′(G(a, S)) = |S| when Γ = Z, but where we

now allow multiplicity for generators. This is obviously the case, though.

We thus turn to the Borel part of the statement. We need to show that if Δ

has even order, then χ′
B(G(a, S)) = |S|. As in the proof of statement (1), we

can start by finding an index 2 subgroup Δ′ ≤ Δ, and then use Lemma 3 to

reduce to the case where Δ = Z/2, but where we now allow multiplicity for

generators in S. For the rest of the subsection, assume (Γ, S) has this form. We

will sometimes write “Z” to refer to the subgroup {0} × Z ≤ Γ.

We start with the special case where (1, 0) ∈ S. (Recall we are writing

Γ = Z/2× Z. For example, this element has order 2.)

Lemma 16: If (1, 0) ∈ S, χ′
B(Γ, S) = |S|.

Proof. This follows immediately from Corollary 2 with Δ = Z/2.

Thus, from now on assume (1, 0) �∈ S. Then we can write S = S′ 	 −S′,
where S′ consists of all pairs (ε, n) ∈ S for which n > 0. The elements (ε, n) ∈ S′

will be organized into 4 categories corresponding to the value of ε and the parity

of n. We will consider these categories roughly one at a time, for each establish-

ing suitable notions of protocol as in the previous subsection, and demonstrating

how to transition between protocols. See Table 2 for a list of protocols to be

used in this subsection.

These transitions will almost always be accomplished by an argument using

Lemma 4. That lemma was stated in the context of Zd, but in this context its

terminology still makes sense and its conclusion still holds.
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Table 2. Like Table 1, but for free rank 1. Note that the offset,

one code, short code, and two code protocols require additional

data to be fully specified.

Protocol Context Generators applied to Reference

Two sided Z/2×Z (1,m), m>0 Figure 8

Odd Z n>0 odd Figure 8

Parallel Z/2×Z (0, n), n>0 odd Figure 8(b)

Alternating Z/2×Z (0, n), n>0 odd Figure 8(a)

Block Z n>0 odd Figure 10(b)

Offset Z/2×Z (0, n), n>0 odd Figure 10(b)

One code Z b>0 even Before Lemma 24

Short code Z b>0 even After the proof of Lemma 24

Two code Z/2×Z (0, b), b>0 even Figure 13

4.3.1. Generators from 2Z+ (0, 1) and Z + (1, 0). We start by examining how

to color edges of the form (0, n) for n an odd positive integer and (1,m) for m

any positive integer. Fix such n and m. Let U ′′ be a Γ-orbit, and x0 ∈ U ′′.
The two sided protocol x0 for (1,m), say using the colors 3 and 4, will

dictate that edges of the form (x, (1,m) · x) get the color 3 if x and x0 are in

the same Z-orbit and 4 if they are not. See both parts of Figure 8 for examples.

For the (0, n) edges, we start with one Z-orbit: If y0 is in an orbit of some

free Z-action, a coloring of n-edges in that orbit will be said to follow the odd

protocol y0 for n, say using the colors 1 and 2, if the edge (a·y0, (a+n)·y0) gets
the color 1 if a is even and 2 otherwise. Note that this does define a coloring

since n is odd.

Now in our original context, the parallel protocol x0 for (0, n) will dictate

that the odd protocols x0 and (1, 0) · x0 are followed on the Z-orbits Z · x0

and Z ·(1, 0) ·x0 respectively. The alternating protocol x0 for (0, n) is defined

similarly, except that (1, 1) · x0 is used as the basepoint for the odd protocol on

the second Z-orbit. See Figure 8 for examples.

Note that for two sided protocols, any choice of basepoint will give the same

protocol as either x0 or (1, 0) · x0. Similarly, for parallel and alternating proto-

cols, any choice of basepoint will give the same protocol as either x0 or (0, 1)·x0.
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Figure 8. (a) A drawing of a coloring following protocol x0

in the case n = m = 1. Note that the (0, 1)-edges use the

alternating protocol. (b) Same, but now with m = 2. Note

that now the (0, 1)-edges use the parallel protocol. The dotted

line sections off a pair of adjacent (1,m) orbits. This makes it

clear that they follow the necessary hypotheses to ap-

ply Lemma 4.

Lemma 17: Let x0, y0, x1, y1 ∈ U ′′. Then:

(1) If m is even, then we can transition from the two sided protocol x0

for (1,m) and the parallel protocol y0 for (0, n) to the two sided proto-

col x1 for (1,m) and the parallel protocol y1 for (0, n).

(2) Likewise if m is odd, but with alternating protocols in place of the

parallel ones for (0, n).

Proof. Note that Figures 8 (b) and (a) provide a picture for parts 1 and 2 of

the lemma respectively. Let us use the color assignments from those pictures.

By the comment before the statement of the lemma, it suffices to show these

statements in the following two instances: When x0 = x1 and y1 = (0, 1) · y0,
and when y0 = y1 and x1 = (1, 0) · x0.

For the first instance, we want to apply Lemma 4 with γ1 = (0, n)

and γ2 = (1,m). P will group together (0, n)-orbits f and (1,m) · f if f lies

in the same Z-orbit as x0. This way, by definition of the two sided protocol,
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the (1,m)-edges from an edge e in f to its parallel edge always get the color 3.

This gives condition (5) from the lemma. Condition (3) is ensured by our choice

of parallel or alternating protocols for (0, n) according to the parity of m. Thus

we can use the lemma to swap parity along every (0, n)-orbit, which lets us

transition to the protocol (0, 1) · y0.
For the second instance, we want to apply Lemma 4 with γ1 = (1,m)

and γ2 = (0, n). Observe that it is possible to define the partition P so that

if {f, f ′} ∈ P (so f and f ′ are (1,m)-orbits), the edges between them all get

color 1. Part (b) of Figure 8 gives an example of how to do this. The idea is that

we have chosen the protocol for our (0, n)-edges according to the parity of m so

that our coloring of them descends to one of the quotients of our graph by the

subgroup 〈(1,m)〉, so we can group together orbits exactly if they are related

in this quotient by an edge of color 1. This takes care of condition (5) from the

lemma, and condition (3) comes from our use of two sided protocols.

4.3.2. Generators from Z+(1, 0) with different parity. As an example to moti-

vate this subsubsection, suppose S′ consists of one element of the form (0, n),

for n odd, and several of the form (1,m) for m even. It follows from Lemma 17

that if we use parallel protocols for (0, n) and two sided protocols for the (1,m)’s,

we can transition between different sequences of basepoints as needed, and there-

fore get a Borel |S|-coloring.
Suppose, though, that we throw in a generator of the form (1, b) for b odd. To

use Lemma 17 for this generator would require an alternating protocol for (0, n),

but we have already committed to using parallel protocols for it. Thus we need

the following:

Lemma 18: Letm,n be as in the previous subsubsection, withm even. Let b > 0

be odd. Let x0 ∈ U ′′. We can transition from the parallel protocol x0 for (0, n)

and the two sided protocols x0 for (1,m) and (1, b) to the parallel proto-

col x0 for (0, n), the two sided protocol x0 for (1,m), and the two sided proto-

col (1, 0) · x0 for (1, b).

Throughout, let us use the colors 1 through 4 for (0, n) and (1,m) as in the

previous subsubsection, and the colors 5 and 6 for (1, b). Our proof split into

cases depending on whether n | b. Suppose first that it does. Then, we can

actually make do without the (1,m)-edge:
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Lemma 19: If n | b, we can transition from the parallel protocol x0 for (0, n)

and the two sided protocol x0 for (1, b) to the parallel protocol x0 for (0, n) and

the two sided protocol (1, 0) · x0 for (1, b).

Proof. Essentially a proof by picture. By working separately on each Z/2×nZ-

orbit, we can assume n = 1. Then, Figure 9 shows how to use the (0, 1)-edges

to transition between our two protocols for the (1, b)-edges in the case b = 3. It

should be clear how this pattern can be continued to other b.

Figure 9. A demonstration of how to change protocol for the

(1, b) edges when n = 1 and b = 3. The (0, 1)-edges use parallel

protocol x0. The dashed diagonal lines all get the color 1.

Observe that, on the left side of the figure, the (1, b)-edges use

the two sided protocol x0, while on the right they use the two

sided protocol (1, 0) · x0, as desired.

Next suppose that n does not divide b. Let

q = gcd(n, b) = gcd(n, 2b) < n.

The following will be important for a soon-to-come number theoretic argument.

Lemma 20: b + m and b − m do not both lie in the interval (n − q, n + q)

(mod 2n).

Proof. Suppose not. Then, since m+ b and m− b differ by 2b, a multiple of q,

they must either be equal mod 2n, or differ by exactly q mod 2n.

In the former case, we get 2b = 0 (mod 2n), which contradicts n not dividing b.

In the latter case, we get 2b = ±q (mod 2n), but note that q must be odd,

so this is also a contradiction.
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Assume then that b−m does not lie in this interval mod 2n. The argument

in the case where b+m is not in this interval will be similar. Assume further

that b − m ∈ [0, n − q] (mod 2n), as the argument in the case where it is in

[n+ q, 2n] (mod 2n) will again be similar. With these assumptions, let us prove

Lemma 18:

Proof. In the style of the hard case of Lemma 13, our transition will be accom-

plished in three steps, with the first step altering the protocol for (0, n), the

second step using this altered protocol to make the desired transition for the

(1, b)-edges, and the third step reversing the first.

To describe the first step, we will need to define a new protocol. First, in

the context of a Z-action, say in the orbit Z · y0, the block protocol y0 for n

using the colors 1 and 2 will dictate that edges of the form (a · y0, (a+ n) · y0)
get the color 2 if a ∈ [0, n) (mod 2n) and the color 1 otherwise. In our original

context, if k ∈ Z the offset protocol (x0, k) for (0, n) will dictate that the block

protocols x0 and (1, k) · x0 are followed on the Z-orbits Z · x0 and Z · (1, 0) · x0

respectively.

Consider our starting sequence of protocols. In the proof of Lemma 17, we

saw that we could apply Lemma 4 with γ1 = (0, n) and γ2 = (1,m) by letting P

consist of pairs of (0, n)-orbits of the form {f, (1,m) · f} for f ⊂ Z · x0. In that

proof, we swapped parity along every pair, but here, let us only swap parity on

those pairs for which (0, 2l) · x0 ∈ f for l = 0, . . . , (n− 1)/2. The setup for this

transition is shown in part (a) of Figure 10, and the result in part (b). The

conclusion is that we can transition from the parallel protocol x0 for (0, n) and

the two sided protocol x0 for (1,m) to the offset protocol (x0,m) for (0, n) and

the two sided protocol x0 for (1,m).

Now for step two, we claim that we can transition from the offset proto-

col (x0,m) for (0, n) and the two sided protocol x0 for (1, b) to the offset pro-

tocol (x0,m) for (0, n) and the two sided protocol (1, 0) · x0 for (1, b).

We want to apply Lemma 4 with γ1 = (1, b) and γ2 = (0, n) and the color 2

in place of the color 3. P will be any partition of the (1, b)-orbits into pairs

of the form {f, (0, n) · f}, which is possible as (0, n) has even order in the

quotient Γ/〈(1, b)〉 since n is odd. One such pair is depicted in part (b) of

Figure 10. Condition (3) from the lemma is clear by our use of a two sided

protocol for (1, b).
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Figure 10. A demonstration of how to transition between pro-

tocols for the (1, b) edges when n = 5,m = 2, and b = 3. For vi-

sual clarity, the label of a vertex x refers to the color of the edge

(x, (0, n) ·x). (a): Step 1 of the procedure. The dashed vertices

are those included in one of the (0, n)-orbits along which parity

is changed. The edges drawn are the (0, n) and (1,m)-edges in-

volved in making that change for these orbits. (b): The effects

of step 1, along with a pair of (1, b)-orbits of the form f, (0, n)·f
from step 2. The solid and dashed lines are the edges from f

and (0, n) · f respectively. A vertex (0, a0+2kb) ·x0 of f which

satisfies the number theoretic condition from step 2 is high-

lighted.

Condition (5) will be handled by an argument similar to that from the proof

of Lemma 14. An f as above can be described by a vertex of the form (0, a0)·x0,

so that the vertices in f ∩Z ·x0 are those of the form (0, a0+2kb) ·x0 for k ∈ Z.

Each such point determines a pair of parallel edges

e := ((0, a0 + 2kb) · x0, (1, a0 + 2kb+ b) · x0)

and (0, n) · e in f and (0, n) · f respectively. If the two (0, n)-edges connecting e

and (0, n) · e both are given the color two by the offset protocol (x0,m), then

this pair of edges will witness condition (5) from Lemma 4 as desired.
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By definition of the offset protocol, this will be the case if both a0 + 2kb

and a0+2kb+b−m are in the interval [0, n) (mod 2n), so we want to show that

given a0, we can always find a k such that this is the case. Since q = gcd(n, 2b),

we can find a k such that a0 + 2kb ∈ [0, q) (mod 2n), and then since we

are working under the assumption b − m ∈ [0, n − q] (mod 2n), we will also

have a0 + 2kb+ b−m ∈ [0, n) (mod 2n) as desired.

4.3.3. Generators from 2Z. The only generators left to consider are those of

the form (0, b) for b even. In our treatment of these, we will often work in one

Z-orbit at a time. We therefore start by establishing a key lemma in the setting

of Z-actions. For this, we start with a purely combinatorial game.

Suppose we have a finite graph consisting of a single path v0, . . . , vl of length l,

where vi and vj are adjacent if and only if |i − j| = 1. Suppose the vertices of

this path are labeled with two colors, say 5 and 6. In one move, we are allowed

to pick two adjacent vertices of the same color, and change both of their colors.

Some examples of moves are shown in Figure 11.

Figure 11. An example of a sequence of moves in our game

with l = 4. When a pair of adjacent vertices is circled, it

indicates that our next move will be changing the color on

those vertices. We sometimes draw two moves as occurring in

a single step if the pairs of vertices they involve are disjoint.

Note also that this sequence provides an example for

Lemma 21.
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Lemma 21: If either l is even and v0 and vl have different colors, or l is odd

and v0 and vl have the same color, then there is a sequence of moves which result

in v0 and vl switching their colors, but all other vertices keeping the same color.

Proof. We proceed by strong induction on l. The base case l = 1 is clear.

Now suppose l > 1. By hypothesis, there must be some pair vi, vi+1 of

adjacent vertices with the same color. Pick the pair with i minimal. Our first

move will be changing the colors on this pair.

If i = 0, then v0 is now the color we want it to be. If i > 0, then we now

want to change the colors on v0 and vi, but leave the vertices between them the

same color. By the minimality of i, in our initial coloring, v0 and vi had the

same color if and only if i is even. Thus, after our first move, the path from v0

to vi satisfies the hypotheses of the lemma, so by the inductive hypothesis, we

can indeed change the colors of v0 and vi and leave the vertices between them

the same color.

Essentially the same thing happens for the path from vi+1 to vl. We would

like to check that in our initial coloring, vi+1 and vl had the same color if and

only if l − (i + 1) is even. We know as in the previous paragraph that vi+1

has the same color as v0 if and only if i + 1 is odd. Also by hypothesis, vl has

the same color as v0 if and only if l is odd. Combining these gives us what we

want.

We now turn to the promised Z-action setting. Let X ′ be an orbit of some

Z-action a′. Let n′, b′ > 0 with n′ odd, b′ even, and furthermore assume

gcd(n′, b′) = 1. Consider edge colorings of the graph G(a′, {±n′,±b′}) � X ′.
Now a 2 coloring of the b′-edges, say with the colors 5 and 6, is completely de-

termined by the colors it gives to the edges (k·x0, (k+b′)·x0) for k = 0, . . . , b′ − 1,

where here x0 ∈ X ′ is some base point as before. Consider this sequence of col-

ors, say c(0), . . . , c(b′ − 1), as a map c : Z/b′ → {5, 6}. Call this c a b′-code.
We will say this coloring follows the one code protocol (x0, c) for b

′ using 5

and 6.

For α ∈ {5, 6}, let ¬α denote the element of {5, 6} not equal to α. Define the

map c : Z/(2b′) → {5, 6} by c(k) = c(k) if k ∈ [0, b′) (mod 2b′) and c(k) = ¬c(k)
otherwise. (Note that we are implicitly sending k through the natural quotient

map Z/(2b′) → Z/b′. Similar implicit reductions are made throughout the

remainder of the section.) c will be called the double code of c. Of course, it

carries the same information as c, but will sometimes be easier to work with.
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The point is that, in a coloring following one code protocol (x0, c) for b′, c(k)
is the color received by the edge (k · x0, (k + b′) · x0) for each k ∈ Z.

We are interested in using the n′-edges to transition between protocols for

the b′ edges. Because of Proposition 1, we should not expect arbitrary transi-

tions to be possible. We do however still have:

Lemma 22: In the above setting, if the b′-codes c, c′ : Z/b′ → {5, 6} differ in an

even number of entries, we can transition from the odd protocol x0 for n′ and
the one code protocol (x0, c) for b′ to the odd protocol x0 for n′ and the one

code protocol (x0, c
′) for b′.

We first note the following special case of the lemma:

Lemma 23: Suppose k ∈ Z/(2b′) is such that c(k) = c(k+n′). Let c′ = ¬c at k
and k + n′, and c′ = c everywhere else. Then Lemma 22 holds for these values

of c and c′.

Proof. Let f be the b′-orbit of k · x0. We want to apply Lemma 4 to change

parity for f and n′ · f . Observe that since b′ is even and n′ is odd and we use

an odd protocol for the n′-edges, all edges of the form (x, n′ · x) for x ∈ f have

the same color. This will give condition (5) of the lemma. Our hypothesis on

the double code gives condition (3).

Figure 12 shows the technique used in Lemma 23. Now we can establish

Lemma 22:

Figure 12. A demonstration of the transition described in

Lemma 23 with n′ = 1, b′ = 2. Note that on the left side of

the figure, we follow one code protocol (x0, {0 �→ 5, 1 �→ 5})
for b′, while on the the right, we follow one code protocol

(x0, {0 �→ 6, 1 �→ 6}) for b′. Here the k from the lemma would

be 0.



38 F. WEILACHER Isr. J. Math.

Proof. Of course it suffices to consider the case where c and c′ differ in exactly

two entries, say at r1, r2 ∈ Z/b′.
We first find a sequence k0, . . . , kl ∈ Z/(2b′) with the following properties:

(1) The ki’s are distinct mod b′.
(2) {k0, kl} = {r1, r2} (mod b′).
(3) ki+1 = ki + n′ (mod 2b′) for each i.

(4) c(k0) = c(kl) if and only if l is odd.

To do so, first consider the sequence j0, . . . , jb′ ∈Z/(2b′) defined by ji = r1 + in′.
Since n′ is coprime to b′, there must be some 0<i0<b′such that ji0=r2 (mod b′).
Our sequence of ki’s will either be the sequence j0, . . . , ji0 or the sequence

ji0 , . . . , jb′ . In either case, conditions (2) and (3) will hold by construction, and

condition (1) will hold since n′ is coprime to b′.
For condition (4), we use the fact that jb′ = j0 + b′ (mod 2b′), and so

c(jb′ ) = ¬c(j0).
Thus, whatever the value of c(ji0), one of our two options above will give

c(k0) = c(kl) and the other will give c(k0) = ¬c(kl). Since b′ is even, i0 and b′−i0

have the same parity, so one of these options will give us condition (4).

Now, by Lemma 23, we can make a transition to change the entries c(ki)

and c(ki+1) for some adjacent pair of elements ki and ki+1 in our sequence

if they are assigned the same value by our double code. This is exactly the

type of move we are allowed to make in the game from Lemma 21, though.

Condition (4) is exactly the hypothesis from that lemma, so we can find a

sequence of transitions which, cumulatively, change the code entry at k0 and kl,

but nowhere else. By condition (2), this is exactly what we wanted.

Before leaving the Z-action setting, we define a generalization of the one code

protocol which will be used below. Let b′′ be a divisor of b′ such that b′/b′′ is
odd. Let c0 : Z/b′′ → {5, 6} be a b′′-code. The short code protocol (x0, c0)

for b′ will be the one code protocol (x0, c) for b′, where c is the b′-code given

by c(k) = c0(k) for k ∈ [0, b′′) ∪ [2b′′, 3b′′) ∪ · · · ∪ [b′ − b′′, b′) and c(k) = ¬c0(k)
elsewhere. The point of requiring b′/b′′ to be odd is that it implies c(k) = c0(k)

for each k ∈ Z/(2b′).
We now return to our original situation with Γ = Z/2 × Z. Fix b even. Fix

(0, n) and (1,m) as in previous sections (so n is odd). Let q = gcd(b, n), b′ = b/q

and n′ = n/q. Also let b′′ be the largest power of 2 dividing b′ (equivalently b).
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If b′′ | m, then by working separately on each Z/2 × b′′Z-orbit, we can treat

the (0, b) as (0, b/b′′). Since b/b′′ is odd, Lemma 17 will turn out to be enough

to handle this. See Lemma 25 later. Thus assume b′′ � m.

Let c, d : Z/b′′ → {5, 6} be b′′-codes. The two code protocol (x0, c, d) for

(0, b) will dictate that the short code protocols (x0, c) and ((1, 0) · x0, d) for b

are followed on the Z-orbits Z ·x0 and Z · (1, 0) ·x0 respectively. Note that b/b′′

is indeed odd.

Let c0 : Z/b′′ → {5, 6} be the b′′-code taking the constant value 5. An

example of the two code protocol (x0, c0, c0) for (0, b) is shown in part (a) of

Figure 13. We would like to transition between the basepoints x0 and (0, 1) ·x0

for such protocols. Note that the protocol ((0, 1) ·x0, c0, c0) for (0, b) is the same

as the protocol (x0, c
′
0, c

′
0), where c

′
0 is the b′′-code given by c′0(0) = 6 but c′0 = 5

everywhere else.

Lemma 24: We can transition from the parallel protocol x0 for (0, n), the two

sided protocol x0 for (1,m), and the two code protocol (x0, c0, c0) for (0, b) to

the parallel protocol x0 for (0, n), the two sided protocol x0 for (1,m), and the

two code protocol (x0, c
′
0, c

′
0) for (0, b).

Likewise if the parallel protocols for (0, n) are replaced with alternating pro-

tocols.

Proof. Recall we have assumed b′′ � m. Further assume m ∈ (0, b′′) (mod 2b′′),
as the argument in the case m ∈ (b′′, 2b′′) (mod 2b′′) will be similar.

Our procedure will involve two steps. In step 1, we apply Lemma 4 with

γ1 = (0, b) and γ2 = (1,m) to swap parity along pairs f , (1,m) · f of (0, b)-

orbits for which f contains a point of the form (0, kb′′)·x0. Condition (5) follows

from our use of a two sided protocol for (1,m). Condition (3) for these pairs

follows from our assumption m ∈ (0, b′′) (mod 2b′′). The set up for this step is

shown in part (a) of Figure 13 and the result in part (b). The conclusion is that

we can transition from the two sided protocol x0 for (1,m) and the two code

protocol (x0, c0, c0) for (0, b) to the two sided protocol x0 for (1,m) and the two

code protocol (x0, c
′
0, c

′′
0) for (0, b), where c′′0 is the b′′-code given by c′′0(m) = 6

but c′′0 = 5 everywhere else. Note for later that c′0 and c′′0 differ in two places:

at 0 and at m.

Thus, after this step, the short code protocol for b followed on the orbit Z ·x0

is the correct one. In step 2, then, we will work within the orbit Z · (1, 0) · x0

to correct things. We need to show that if y0 is a point in a Z-orbit, we can
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Figure 13. A demonstration of step 1 in the procedure in the

proof of Lemma 24 when b = b′ = b′′ = 4 and m = 1, in

the style of Figure 10. As in that figure, the label of a vertex

x denotes the color of the edge (x, (0, b) · x). (a) A coloring

following two code protocol (x0, c0, c0) for (0, b), along with the

setup for step 1. The dashed vertices are those included in one

of the (0, b)-orbits along which parity is changed. The edges

drawn are the (0, b)- and (1,m)-edges involved in making that

change for these orbits. (b) The effects of step 1. Observe that

in the orbit Z · x0, the b-edges now follow short code protocol

(1 · x0, c0) = (x0, c
′
0), while in the other Z-orbit, they follow

short code protocol ((1, 0) · x0, c
′′
0 ).

transition from the odd protocol y0 for n and the short code protocol c′′0 for b

to the odd protocol y0 for n and the short code protocol c′0 for b. (So in our

application, y0 is (1, 0) · x0.)

For this, we will work separately within each qZ-orbit. Fix one, say qZ · z0,
where z0 = r · y0 for some 0 ≤ r < q. Within this orbit, the generators b and n

behave like b′ and n′, and these satisfy the hypotheses used for the b′ and n′

from the setting of Lemma 22.

Under this identification, since q is odd, our odd protocol for n turns into an

odd protocol for n′. The short code protocol (y0, c
′′
0 ) for b turns into the one

code protocol (z0, c
′′) for b′, where c′′ is the b′-code whose double code is given
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by

c′′(k) = c′′0(r + kq) for k ∈ Z/(2b′).

Likewise, the short code protocol (y0, c
′
0) for b turns into the one code protocol

(z0, c
′), where c′ is the b′-code defined from c′0, in the same way c′′ is from c′′0 .

So, by Lemma 22, it suffices to show that c′ and c′′ differ in an even number

of entries. Now q is coprime to 2b′′ since the former is odd and the latter is a

power of 2. Therefore, as k ranges over Z/(2b′), r + kq will take every value

mod 2b′′ b′/b′′ times. Therefore, since c′0 and c′′0 differ in 4 places, c′ and c′′

differ in 4b′/b′′ places, and so c′ and c′′ differ in 2b′/b′′ places. This is indeed

even.

Finally, we address the case b′′ | m mentioned earlier. Let d0 be the b′′-code
taking constant value 6.

Lemma 25: If m/b′′ is even, we can transition from the two sided protocol x0

for (1,m) and the two code protocol (x0, c0, c0) for (0, b) to the two sided pro-

tocol x0 for (1,m) and the two code protocol ((0, 1) · x0, c0, c0) for (0, b).

If m/b′′ is odd, we can transition from the two sided protocol x0 for (1,m)

and the two code protocol (x0, c0, d0) for (0, b) to the two sided protocol x0

for (1,m) and the two code protocol ((0, 1) · x0, c0, d0) for (0, b).

Proof. We work separately in each (Z/2 × b′′Z)-orbit. Observe that in every

orbit other than the one containing x0, no change needs to occur.

In that orbit, identifying Z/2 × b′′Z with Z/2 × Z by identifying b′′ with 1,

the two sided protocol x0 for (1,m) turns into the two sided protocol x0

for (1,m/b′′), the two code protocol (x0, c0, c0) for (0, b) turns into the par-

allel protocol x0 for (0, b/b′′) (note b/b′′ is odd), and the two code protocol

((0, 1) ·x0, c0, c0) for (0, b) turns into the parallel protocol (0, 1) ·x0 for (0, b/b′′).
Likewise for the two code protocols using c0 and d0 if “parallel” is replaced by

“alternating”. In all cases, we are done by Lemma 17.

Note that being able to transition to the basepoint (0, 1) · x0 here is enough

to be able to transition between any pair of basepoints for our two-code proto-

cols since the two code protocol ((1, 0) · x0, c0, c0) for (0, b) is the same as the

two code protocol (x0, c0, c0) for (0, b), and likewise for ((1, 0) · x0, c0, d0) and

((0, b′′) · x0, c0, d0).
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4.3.4. Combining the cases. Recall that at the beginning of Subsection 4.3, we

defined a set S′ ⊂ S of generators, and assumed (1, 0) �∈ S. In this final

subsubsection, we give a way of choosing protocols for all the elements of S′

so that, by the work of the previous subsubsections, we can transition between

any two sequences of basepoints for these protocols. Thus we will conclude:

Lemma 26: If (1, 0) /∈ S, χ′
B(Γ, S) = |S|.

Of course, Lemmas 16 and 26 together complete our proof of statement (2)

of Theorem 2, and hence of Theorem 2.

Our proof will be a little messier than the corresponding proof at the end of

Subsection 4.2 thanks to the lack of a suitable analog of the ∼ relation used

there.

Let us begin. There must be some element (ε, n) ∈ S′ for which n is odd.

Note that there is an automorphism of Γ exchanging (1, 1) and (0, 1). This will

send (ε, n) to (1− ε, n), so we may assume S′ has an element of the form (0, n)

for n odd. Then it must also have an element of the form (1,m). Fix such

elements for the rest of the argument.

We will use two sided protocols for (1,m), and for (0, n) we will use parallel

protocols if m is even and alternating protocols if it is odd. By Lemma 17, we

will be able to transition between any two pairs of basepoints here.

For other elements of S′ of the form (0, n′) for n′ odd, we will also use the

parallel protocols ifm is even and alternating protocols if it is odd. Again by the

lemma, we can use the (1,m)-edges to transition between different basepoints

for (0, n′).
Similarly, we will use two sided protocols for (1,m′) for all elements of that

form in S′. If for such an element, m′ = m (mod 2), then again by the lemma

we can use the (0, n)-edges to transition between different basepoints for (1,m′).
If S′ has elements of the form (1,m′) for both odd and even m, let us choose

our fixed m to be even (so that we use parallel protocols for (0, n)). Then in

the previous paragraph we have taken care of all generators of the form (1,m′)
for m′ even. If (1, b) ∈ S′ with b odd, then Lemma 18 tells us we can use

the (0, n) and (1,m) edges to transition between different basepoints for (1, b).

It remains to deal with elements of S′ of the form (0, b) for b even. Fix such

a b. As in the previous subsubsection, let b′′ be the largest power of 2 dividing b,

c0 be the b′′-code taking constant value 5, and d0 the b′′-code taking constant

value 6.
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If b′′ | m, we will use for (0, b) two code protocols of the form (x0, c0, c0) or

(x0, c0, d0) according to the parity of m/b′′ as prescribed by Lemma 25. By

that lemma and the comment after its proof, we can use the (1,m)-edges to

transition between different basepoints for (0, b).

If b′′ � m, we will use for (0, b) two code protocols of the form (x0, c0, c0).

By Lemma 24, we can use the (0, n) and (1,m) edges together to transition

between different basepoints for (0, b).
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