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ABSTRACT

In this paper, we are concerned with the tempered fractional operator

−(Δ + λ)
α
2 with α ∈ (0, 2) and λ is a sufficiently small positive constant.

We first establish various maximum principle principles and develop the

direct moving planes and sliding methods for anti-symmetric functions in-

volving tempered fractional operators. And then we consider tempered

fractional problems. As applications, we extend the direct method of

moving planes and sliding methods for the tempered fractional problem,

and discuss how they can be used to establish symmetry, monotonicity,

Liouville-type results and uniqueness results for solutions in various do-

mains. We believe that our theory and methods can be conveniently ap-

plied to study other problems involving tempered fractional operators.
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1. Introduction

1.1. Background. In this paper, we are concerned with the tempered frac-

tional Laplacian operator −(Δ + λ)
α
2 , which is defined as

(1.1) (Δ + λ)
α
2 u(x) := −cn,αP.V.

∫
Rn

u(x)− u(y)

eλ|x−y||x− y|n+α
dy,

where P.V. stands for Cauchy principal value, and

(1.2) cn,α =

⎧⎨
⎩

αΓ(n+α
2 )

21−απ
n
2 |Γ(1−α

2 )| , for λ = 0 or α = 1,

Γ(n
2 )

2π
n
2 |Γ(−α)| , for λ > 0 and α �= 1,

and Γ denotes the Gamma function.

To ensure that the right-hand side of the definition (1.2) is well-defined, we

require that u ∈ Lα(R
n) ∩ C1,1

loc (R
n \ {0}) with

(1.3) Lα(R
n) :=

{
u : Rn → R |

∫
Rn

e−λ|x||u(x)|
1 + |x|n+α

dx < +∞
}
.

It should be pointed out that the nonlocal operator −(Δ + λ)
α
2 can also be

defined equivalently through Caffarelli and Silvestre’s extension method; we

refer to [5] and references therein for more details.

When λ → 0+, the tempered fractional operator −(Δ + λ)
α
2 degenerates

into the familiar fractional Laplacian (−Δ)
α
2 , which is also a nonlocal integro-

differential operator given by

(−Δ)
α
2 u(x) = CN,α P.V.

∫
RN

u(x)− u(y)

|x− y|N+α
dy,(1.4)

where 0 < α < 2,

CN,α =

(∫
RN

1− cos(2πy1)

|y|N+α
dy

)−1

.

The fractional Laplacian (−Δ)
α
2 is well-defined for any u ∈ C1,1

loc (R
N )∩ L̇α(R

N )

with the function spaces

L̇α(R
N ) :=

{
u : RN → R |

∫
RN

|u(x)|
1 + |x|N+α

dx < +∞
}
.

It can also be defined equivalently through Caffarelli and Silvestre’s extension

method (see [5]).

In recent years, problems involving fractional operators have attracted more

attention due to their various applications in mathematical modeling, such as
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fluid mechanics, molecular dynamics, relativistic quantum mechanics of stars

(see, e.g., [6, 21]), in conformal geometry (see, e.g., [15]) and in probability,

and also finance (see [3, 4]) etc. In 1996, Bertoin [3] interpreted the fractional

Laplacian as an infinitesimal generator for a stable Lévy diffusion process. The

scaling limit of Lévy flight is the α-stable Lévy process, generated by the frac-

tional Laplacian (−Δ)
α
2 . In order to make the Lévy flight a more suitable

physical model, the concept of the tempered Lévy flight was introduced. The

scaling limit of the tempered Lévy flight is called the tempered Lévy process,

which is generated by the tempered fractional Laplacian.

From the viewpoint of mathematics, the nonlocal nature of the fractional

operator makes the nonlocal problem more challenging than the local prob-

lem. The pioneering work in the literature can be traced back to Caffarelli

and Silvestre (see, e.g., [5]). They define the nonlocal operators via the ex-

tension method and reduce the nonlocal problem to a local problem in higher

dimensions. Then, variational theory can be applied to study the existence

and other related properties of the solutions to the nonlocal problem; we refer

to [4,5,9–11,17,27,29,30,37,39,40,42] and references therein for a series of fruit-

ful results in elliptic equations and systems. Later on, Chen and Li (see [15,17])

give another approach, which considers the equivalent IEs instead of PDEs by

deriving the integral representation formulae of solutions to the equations in-

volving fractional operators (see e.g. [16, 22–24, 29, 35, 42, 43]). However, these

two approaches can not work directly for the problem with tempered fractional

Laplacian operator (Δ + λ)
α
2 .

Many results have been achieved for fractional Laplacian (−Δ)
α
2 , but very

few results for tempered fractional Laplacian (Δ + λ)
α
2 . Now let us recall the

work achieved on tempered fractional Laplacian. For instance, Zhang, Deng

and Karniadakis [45] developed numerical methods for the tempered fractional

Laplacian in the Riesz basis Galerkin framework. Zhang, Deng and Fan [44]

designed the finite difference schemes for the tempered fractional Laplacian

equation with the generalized Dirichlet type boundary condition. Duo and

Zhang [28] proposed a finite difference method to discretize the n-dimensional

(for n ≥ 1) tempered integral fractional Laplacian and applied it to study the

tempered effects on the solution of problems arising in various applications.

Shiri, Wu and Baleanu [41] proposed a collocation methods for terminal value

problems of tempered fractional differential equations. For more works on tem-

pered fractional Laplacian, refer to [26, 36, 46] and the references therein.
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1.2. Main results. In this paper, the main purpose is to establish various

maximum principles for the tempered fractional Laplacian operator (Δ + λ)
α
2 .

Motivated by the direct methods for (−Δ)s and (−Δ)sp established in [12–

14, 18, 20, 38], we will develop direct moving planes and sliding methods for

various tempered fractional problems, and then we illustrate how the maximum

principles we obtained can be used in the method of moving planes and sliding

to establish symmetry, monotonicity and uniqueness results for solutions in

various domains. We believe that our method can be used to deal with other

problems involving tempered fractional Laplacian operator (Δ + λ)
α
2 .

First, we give some useful notation. Let T be any given hyper-plane in R
n

and Σ be the half-space on one side of the plane T . Denote the reflection of a

point x with respect to T by x̃ and

(1.5) w(x) = u(x̃)− u(x).

Our first result is to establish various maximal principles for the fractional

tempered Laplacian operator (Δ + λ)
α
2 .

Theorem 1.1 (Narrow region principle): Assume that Ω is a bounded narrow

region in Σ, such that it is contained in the region between T and TΩ, where TΩ

is a hyper-plane that is parallel to T . Denote d(Ω) := dist(T, TΩ). Suppose

that w ∈ Lα(R
n) ∩ C1,1

loc (Ω) and is lower semi-continuous on Ω, and satisfies⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω.
w(x̃) = −w(x), in Σ,

where c(x) is uniformly bounded from below in {x ∈ Ω | w(x) < 0}. Then we

have w(x) ≥ 0 in Ω.

Furthermore, assume that

(Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) = 0.

Then if w = 0 at some point in Ω, we have w = 0 almost everywhere in R
n.

These conclusions hold for an unbounded open set Ω if we further assume

that

lim inf
|x|→∞

w(x) ≥ 0.
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Theorem 1.2 (Decay at infinity (I)): Suppose 0 /∈ Σ. Let Ω be an unbounded

open set in Σ. Assume w ∈ Lα(R
n) ∩ C1,1

loc (Ω) and satisfies⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω,
w(x̃) = −w(x), in Σ,

with

lim inf
x∈Σ, w(x)<0

|x|→+∞
|x|αeλ|x|c(x) ≥ −cn,α,λ

6
,

where cn,α,λ is defined in (2.11). Then there exists a constantR0 > 0 (depending

only on c(x), μ, n and α, but independent of w and Σ) such that, if x̂ ∈ Ω

satisfying w(x̂) = minΩw(x) < 0, then |x̂| ≤ R0.

Theorem 1.3 (maximum principles for anti-symmetric functions in unbounded

domains): Assume that w ∈ Lα(R
n)∩C1,1

loc (Σ) is bounded from below and w(x)

is an anti-symmetric function that is w(x̃) = −w(x) in Σ, where x̃ is the

reflection of x with respect to T . Suppose that, at any point x ∈ Σ such

that w(x) < 0, w satisfies

(Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0,

where c(x) satisfies inf{x∈Σ|w(x)<0} c(x) ≥ 0. Then

w(x) ≥ 0, ∀x ∈ Σ.

Furthermore, assume that

(Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Σ where w(x) = 0.

Then if w = 0 at some point in Σ, we have w = 0 almost everywhere in R
n.

Remark 1.4: One can observe that we allow the function c(x) in Theorem 1.1

and Theorem 1.2 to be negative; our assumptions differ from the corresponding

assumptions for fractional Laplacian (−Δ)s on Chen and Li [14]. From the

proof of Theorem 1.3, we can derive the unbounded narrow region principle

and decay at infinity II, which improved Theorem 1.1 and Theorem 1.2. We

will not describe the content of the theorem here; refer to Section 2 for details.

The literature on maximum principles and the consequential qualitative prop-

erties of solutions (such as symmetry, monotonicity) is currently extensive. Dif-

ferent techniques have been developed to overcome technical difficulties arising
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from the particular nature of the operators under study. The most commonly

used techniques are the moving plane method and the sliding method. Further-

more, the moving plane method can be traced back to the early 1950s. It was

invented by Alexandroff to study surfaces with constant average curvature. An

in-depth understanding of this method has become a potent tool for studying

other fields, such as geometrical analysis, geometrical inequalities, conformal

geometry, and PDEs. For more literature on moving plane (sphere) methods,

refer to [19, 24, 25, 31–33] and the references therein. The sliding method de-

veloped by Berestycki and Nirenberg (see [1, 2]) provides a flexible alternative

to approach symmetry and related issues. It has been adapted to the nonlocal

setting in the earlier cited papers.

Applications of the direct method of moving planes. In Section 3, we

will use several examples to illustrate how the key ingredients in the above can

be used in the method of moving planes to establish symmetry, monotonicity

of solutions to tempered fractional problems.

We first consider the static nonlinear Schrödinger equations involving

the fractional tempered Laplacian operator:

(1.6) − (Δ + λ)
α
2 u(x) + V (x)u(x) = up(x), ∀x ∈ R

n,

where V ∈ C1(Rn,R).

We will prove the following symmetry and monotonicity results for nonnega-

tive solutions to (1.6) via the method of moving planes.

Theorem 1.5: Assume that u ∈ Lα(R
n) ∩C1,1

loc (R
n) is a nonnegative solution

of (1.6) with 1 < p < +∞. Suppose that potential V (x) enjoys the following

conditions:

(i) there exists V0 > 0 such that V (x) ≥ V0 for all x ∈ R
n;

(ii) V (x) is a nonincreasing function, that is, for any x1 < y1,

V (x1, x̄) ≥ V (y1, x̄).

Moreover, if

(1.7) lim sup
|x|→+∞

u(x) = l <
(V0
p

) 1
p−1

,

then u must be radially symmetric and monotone decreasing about some point

in R
n.
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Remark 1.6: In [14], Chen and Li obtained the radial symmetry and uniqueness

of the solution for the equation (−Δ)
α
2 u(x) + u(x) = up(x); they required

lim
|x|→+∞

u(x) = l <
(1
p

) 1
p−1

.

Similar to our proof process, their assumptions can be reduced to

lim sup
|x|→+∞

u(x) = l <
(1
p

) 1
p−1

.

Next, we consider the following tempered fractional Choquard equations:

(1.8) − (Δ + λ)
α
2 u(x) =

( 1

|x|γ ∗ up1

)
uq1 , in R

n,

where p1, q1 ≥ 1. We prove

Theorem 1.7: Assume that u ∈ Lα(R
n) ∩C1,1

loc (R
n) is a nonnegative solution

of problem (1.8) with the following property:

(1.9)

∫
Rn

up1−1(x)

|x|2γ dx < +∞ and u(x) = o(
1

|x|γ ) as |x| → ∞.

Then umust be radially symmetric and monotone decreasing around some point

in R
n.

Applications of the direct sliding methods. In Section 4, we will extend

the direct sliding methods to tempered fractional equations with gradient term:

−(Δ + λ)
α
2 u(x) = f(x, u,∇u).

We shall establish monotonicity and uniqueness of solutions to the above equa-

tion in R
n.

The sliding method was used to establish qualitative properties of solutions

for partial differential equations (mainly involving the regular Laplacian) such

as monotonicity and uniqueness. The main idea of sliding lies in comparing

values of the solution for the equation at two different points, between which

one point is obtained from the other by sliding the domain in a given direction,

and then the domain is slid back to the limiting position. Unlike the previous

work, our nonlinear term f in this section contains a gradient term. This brings

us new challenges, and we need some new techniques and more careful analysis

to deal with this problem. To this end, we give the following notations.
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For any x = (x′, xn) with x′ := (x1, . . . , xn−1) ∈ R
n−1 and τ ∈ R, let

xτ (x) := (x′, xn + τ), uτ (x) := u(x′, xn + τ), wτ (x) := u(x)− uτ (x).

For a bounded domain, we put Ωτ := Ω− τen with en = (0, . . . , 0, 1), which is

obtained by sliding Ω downward τ units.

Our main result is as follows:

Theorem 1.8: Assume that u ∈ Lα(R
n) ∩ C1,1

loc (R
+
n ) ∩ C(R+

n ) is a solution of

(1.10)

⎧⎪⎪⎨
⎪⎪⎩
−(Δ + λ)

α
2 u(x) = f(x, u,∇u), in R

n
+,

0 < u(x) ≤ A, in R
n
+,

u(x) = 0, in Rn \ Rn
+,

with R
n
+ = {x = (x1, . . . , xn)|xn > 0}, ∇u = ( ∂u

∂x1
, ∂u
∂x2

, . . . , ∂u
∂xn

) = (p1, . . . , pn).

Suppose that

lim
x→+∞u(x′, xn) = A, uniformly for all x′ ∈ R

n−1,(1.11)

and the function f(x, u,∇u) is bounded, Lipschitz continuous in all variables

and satisfies

(1.12)

⎧⎨
⎩f(x

′, xn, u, p1, p2, . . . , pn) ≤ f(x′, xn + τ, u, p1, p2, . . . , pn),

f is nonincreasing in u ∈ [A− δ, A] for some δ > 0.

Then u is strictly monotone increasing with respect to xn. Moreover, u depends

on xn and uniqueness.

Remark 1.9: In [13], Chen and Weth develop a direct sliding method for prob-

lems involving �s
p with s ∈ (0, 1) and p ≥ 2. However, their nonlinear term

is f(u). To the best of our knowledge, it is the first time the direct sliding

methods have been applied to nonlocal tempered fractional problems.

Remark 1.10: Similar to our manuscript, one can also develop the direct moving

planes and sliding methods for the following general fully nonlinear nonlocal

operators:

(1.13) Fs,λf
(u)(x) := cn,αP.V.

∫
Rn

G(u(x) − u(y))

eλf |x−y||x− y|n+2s
dy,

where f is nondecreasing with respect to |x−y|, G is a local Lipschitz continuous

function satisfying G(0) = 0 and u belongs to some appropriate function space.



Vol. TBD, 2024 TEMPERED FRACTIONAL OPERATORS 9

This kind of operators were first introduced by Caffarelli and Silvestre in [5]. If

G(t) = |t|p−2t and λf → 0,

Fs,λf
→ Fs,0 = (−Δ)sp.

If G(t) = |t|p−2t and λf > 0, we denote

Fs,λf
:= (−Δ− λf )

s
p.

As a special case, when G(t) = t and f is an identity map, Fs,λf
degenerates

into the general tempered fractional operators −(Δ+λ)
α
2 . We leave these open

problems to interested readers.

The paper is organized as follows. In Section 2, we establish various maxi-

mum principles for anti-symmetric functions involving tempered fractional op-

erators in bounded or unbounded domains. As applications, in Section 3, after

extending the direct method of moving planes, we show the symmetry and

monotonicity of solutions to the tempered fractional problem, which are Theo-

rem 1.5 and Theorem 1.7. Next, we devote ourselves to deriving Liouville-type

results for solutions to the tempered fractional problem. In Section 4, we prove

Theorem 1.8 via the direct sliding methods.

From now on and subsequently in the paper, we always use the same C to

denote a constant whose value may be different from line to line, and only the

relevant dependence is specified.

2. Various maximum principles

In this section, we shall establish various maximum principles in bounded and

unbounded domains for anti-symmetric functions and for the tempered frac-

tional operator, respectively. It is well-known that maximum principles are key

ingredients in applying the method of moving planes. For the reader’s conve-

nience, we restate these theorems before their proofs.

We begin with the following:

Lemma 2.1: Suppose that w ∈ Lα(R
n\{0}), w(x̃) = −w(x) and w ≥ 0 in Σ. If

there exists x0 ∈ Σ such that w(x0)=0, w is C1,1 near x0 and (Δ+λ)
α
2 w(x0)≤0,

then w = 0 a.e. in R
n.
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Proof. Since there exists x0 ∈ Σ such that w(x0) = minx∈Σw(x) = 0, one can

infer from (1.2) that

0 ≥ (Δ + λ)
α
2 w(x0)

= −cn,αP.V.
∫
Rn

w(x0)− w(y)

eλ|x0−y||x0 − y|n+α
dy

= cn,αP.V.

∫
Rn

w(y)

eλ|x0−y||x0 − y|n+α
dy

= −cn,αP.V.
∫
Σ

( 1

eλ|x0−ỹ||x0 − ỹ|n+α
− 1

eλ|x0−y||x0 − y|n+α

)
w(y)dy

≥ 0;

the last inequality holds because

|x0 − ỹ| ≥ |x0 − y|.
Thus we must have w = 0 a.e. in Σ and hence w(x) = 0 a.e. inRn.

2.1. Maximum principles for anti-symmetric functions in bounded

domain.

Theorem 2.2 (A maximum principle for anti-symmetric functions): Let Ω be

a bounded open set in Σ. Assume that the function w ∈ Lα(R
n) ∩ C1,1

loc (Ω) in

(1.5) and is lower semi-continuous on Ω. If

(2.1)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0 at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ \ Ω,
w(x̃) = −w(x), in Σ,

where c(x) ≥ 0 for any x ∈ {x ∈ Ω | w(x) < 0}, then w(x) ≥ 0 in Ω.

Furthermore, assume that

(2.2) (Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) = 0.

Then if w = 0 at some point in Ω, we have w = 0 almost everywhere in R
n.

These conclusions hold for an unbounded open set Ω if we further assume

that lim inf |x|→∞ w(x) ≥ 0.

Proof. If w is not nonnegative, then the lower semi-continuity of w on Ω indi-

cates that there exists a x̂ ∈ Ω such that w(x̂) = minΩw < 0. One can further
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deduce from (2.1) that x̂ is in the interior of Ω. It follows that

(2.3)

(Δ+λ)
α
2 w(x̂)− c(x̂)w(x̂)

= −cn,αP.V.
∫
Rn

w(x̂)− w(y)

eλ|x̂−y||x̂− y|n+α
dy − c(x̂)w(x̂)

= −cn,αP.V.
∫
Σ

w(x̂)− w(y)

eλ|x̂−y||x̂−y|n+α
+

w(x̂)+w(y)

eλ|x̂−y||x̂− ỹ|n+α
dy−c(x̂)w(x̂)

≥ −cn,α
∫
Σ

{ w(x̂)− w(y)

eλ|x̂−y||x̂− ỹ|n+α
+

w(x̂) + w(y)

eλ|x̂−y||x̂− ỹ|n+α

}
dy

= −cn,α
∫
Σ

2w(x̂)

eλ|x̂−y||x̂− ỹ|n+α
dy > 0,

which contradicts (2.1). Hence w(x) ≥ 0 in Ω.

Now we have proved that w(x) ≥ 0 in Σ. If there is some point x̄ ∈ Ω

such that w(x̄) = 0, then from (2.2) and Lemma 2.1 we derive w = 0 almost

everywhere in R
n. This completes the proof of Theorem 2.2.

Theorem 2.3 (Narrow region principle): Assume that Ω is a bounded narrow

region in Σ, such that it is contained in the region between T and TΩ, where TΩ

is a hyper-plane that is parallel to T . Denote d(Ω) := dist(T, TΩ). Suppose that

w ∈ Lα(R
n) ∩ C1,1

loc (Ω) and is lower semi-continuous on Ω, Ω is narrow in the

sense that d(Ω) < min{ 1
2 , λ}, and satisfies

(2.4)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω,
w(x̃) = −w(x), in Σ,

where c(x) is uniformly bounded from below in {x ∈ Ω | w(x) < 0}. Then we

have w(x) ≥ 0 in Ω.

Furthermore, assume that

(2.5) (Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) = 0.

Then if w = 0 at some point in Ω, we have w = 0 almost everywhere in R
n.

These conclusions hold for an unbounded open set Ω if we further assume

that

lim inf
|x|→∞

w(x) ≥ 0.
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Proof. Without loss of generalities, we may assume that

T = {x ∈ R
n | x1 = 0} and Σ = {x ∈ R

n | x1 < 0},
and hence Ω ⊆ {x ∈ R

n | −d(Ω) < x1 < 0}.
If w is not nonnegative in Ω, then the lower semi-continuity of w on Ω indicates

that there exists a x̄ ∈ Ω such that w(x̄) = minΩ w < 0. One can further deduce

from (2.4) that x̄ is in the interior of Ω. A direct computation shows that

(2.6)

(Δ+λ)
α
2 w(x̄) = −cn,αP.V.

∫
Rn

w(x̄)− w(y)

eλ|x̄−y||x̄− y|n+α
dy

= −cn,αP.V.
∫
Σ

w(x̄)− w(y)

eλ|x̄−y||x̄− y|n+α
+

w(x̄) + w(y)

eλ|x̄−ỹ||x̄− ỹ|n+α
dy

≥ −cn,αP.V.
∫
Σ

{ w(x̄)−w(y)
eλ|x̄−ỹ||x̄−ỹ|n+α

+
w(x̄)+w(y)

eλ|x̄−ỹ||x̄−ỹ|n+α

}
dy

= −cn,α
∫
Σ

2w(x̄)

eλ|x̄−ỹ||x̄− ỹ|n+α
dy.

Let

D := {y = (y1, y
′) ∈ R

N | d(Ω) < y1 − (x̄)1 < 2d(Ω), |y′ − (x̄)′| < 1}.
Denote

t := y1 − (x̄)1, τ := |y′ − (x̄)′|.
Then we find |x̄− ỹ| < 2. Through direct calculations, we have

(2.7)

∫
Σ

1

eλ|x̄−ỹ||x̄− ỹ|n+α
dy ≥

∫
D

1

eλ|x̄−y||x̄− y|n+α
dy

≥
∫
D

1

e2λ|x̄− y|n+α
dy

=

∫ 2d(Ω)

d(Ω)

∫ 1

0

ωn−1τ
n−2dτ

e2λ(t2 + τ2)
n+α

2

dt

=

∫ 2d(Ω)

d(Ω)

1

e2λt1+α

∫ 1
t

0

ωn−1ρ
n−2dρ

(1 + ρ2)
n+α+1

2

dt

≥
∫ 2d(Ω)

d(Ω)

1

e2λt1+α

∫ 1

0

ωn−1ρ
n−2dρ

(1 + ρ2)
n+α

2

dt

≥Cn,α,λ

∫ 2d(Ω)

d(Ω)

1

t1+α
dt =

Cn,α,λ

d(Ω)α
,

where we have used the substitution ρ := τ/t and ωn−1 = |B1(0)| in R
n−1.
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Since c(x) is uniformly bounded from below (with respect to d(Ω)) in

{x ∈ Ω | w(x) < 0}, we combine (2.6) and (2.7) and can infer that

(Δ + λ)
α
2 w(x̄)− c(x̄)w(x̄) ≥

[−Cn,α,λ

d(Ω)α
− inf

{x∈Ω|w(x)<0}
c(x)

]
w(x̄) > 0,

as d(Ω) is sufficiently small, which contradicts (2.4).

Now we have proved that w(x) ≥ 0 in Σ. If there is some point x̄ ∈ Ω

such that w(x̄) = 0, then from (2.5) and Lemma 2.1 we derive w = 0 almost

everywhere in R
n. This finishes the proof of Theorem 2.3.

2.2. Maximum principles for anti-symmetric functions in unbounded

domain.

Theorem 2.4 (Decay at infinity (I)): Suppose 0 /∈ Σ. Let Ω be an unbounded

open set in Σ. Assume w ∈ Lα(R
n) ∩ C1,1

loc (Ω) and satisfies

(2.8)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω,
w(x̃) = −w(x), in Σ,

with

(2.9) lim inf
x∈Σ, w(x)<0

|x|→+∞
|x|αeλ|x|c(x) ≥ −cn,α,λ

6
,

where cn,α,λ is defined in (2.11). Then there exists a constantR0 > 0 (depending

only on c(x), μ, n and α, but independent of w and Σ) such that, if x̂ ∈ Ω

satisfying w(x̂) = minΩw(x) < 0, then |x̂| ≤ R0.

Proof. Without loss of generalities, we may assume that, for some λ ≤ 0,

T = {x ∈ R
n | x1 = λ} and Σ = {x ∈ R

n | x1 < λ}.
Since w ∈ Lα ∩ C1,1

loc (Ω) and x̂ ∈ Ω satisfying w(x̂) = minΩw(x) < 0, using

similar calculations as (2.3), we get

(2.10) (Δ + λ)
α
2 w(x̂) ≥ −cn,α,λ

∫
Σ

2w(x̄)

eλ|x̄−ỹ||x̄− ỹ|n+α
dy.

Note that λ ≤ 0 and x̂ ∈ Ω; it follows that

B|x̂|(x̄) ⊂ {x ∈ R
n|x1 > λ},
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where x̄ := (2|x̂|+ (x̂)1, (x̂)
′). Thus we derive that

(2.11)

∫
Σ

1

eλ|x̄−ỹ||x̂− ỹ|n+α
dy ≥

∫
B|x̂|(x̄)

1

eλ|x̄−y||x̂− y|n+α
dy

≥
∫
B|x̂|(x̄)

1

eλ|x̂||x̂− y|n+α
dy

≥
∫
B|x̂|(x̄)

1

3n+α+1eλ|x̂||x̂|n+α
dy

≥ ωn

3n+α+1eλ|x̂||x̂|α =:
cn,α,λ
eλ|x̂||x̂|α ,

where ωn := |B1(0)| denotes the volume of the unit ball in R
n. Then we can

deduce from (2.8), (2.10) and (2.11) that

(2.12) 0 ≥ (Δ + λ)
α
2 w(x̂)− c(x̂)w(x̂) ≥

[
− cn,α,λ
eλ|x̂||x̂|α − c(x̂)

]
w(x̂).

It follows from w(x̂) < 0 and (2.12) that

(2.13) |x̂|αeλ|x̂|c(x̂) ≤ −cn,α,λ.
From (2.9), we infer that there exists an R0 sufficiently large such that, for

any |x| > R0,

(2.14) eλ|x̂||x̂|αc(x̂) > −cn,α,λ
3

.

Combining (2.13) and (2.14), we arrive at |x̂| ≤ R0. Therefore, we must

have |x̂| ≤ R0.

Theorem 2.5 (Maximum principles for anti-symmetric functions in unbounded

domains): Assume that w ∈ Lα(R
n)∩C1,1

loc (Σ) is bounded from below and w(x)

is an anti-symmetric function that is w(x̃) = −w(x) in Σ, where x̃ is the

reflection of x with respect to T . Suppose that, at any points x ∈ Σ such

that w(x) > 0, w satisfies

(2.15) (Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0,

where c(x) satisfies

(2.16) inf
{x∈Σ|w(x)<0}

c(x) > 0.

Then

(2.17) w(x) ≥ 0, ∀x ∈ Σ.
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Furthermore, assume that

(2.18) (Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Σ where w(x) = 0.

Then if w = 0 at some point in Σ, we have w = 0 almost everywhere in R
n.

Proof. Suppose that (2.17) is false. Since w is bounded from below, we have

M := inf
Σ
w(x) < 0.

Hence, there exist sequences xk ∈ Σ and 0 < βk < 1 with βk → 1 as k → ∞
such that

(2.19) w(xk) ≤ βkM.

We may assume that

T = {x ∈ R
n|x1 = 0}, Σ = {x ∈ R

n|x1 < 0}.
Then x̃ = (−x1, x2, . . . , xn). We denote dk := 1

3dist(x
k, T ). Let

ψ(x) =

⎧⎨
⎩e

|x|2
|x|2−1 , |x| < 1,

0, |x| ≥ 1.

It is well known that ψ ∈ C∞
0 (Rn), thus |(Δ + λ)

α
2 ψ(x)| ≤ C for all x ∈ R

n.

Moreover, (Δ + λ)
α
2 ψ(x) is monotone decreasing with respect to |x|.

Set

ψk(x) := ψ
(x− (̃xk)

dk

)
and ψ̃k(x) = ψk(x̃) = ψ

(x− xk

dk

)
.

Then ψ̃k − ψk is anti-symmetric with respect to T , which means that

(ψ̃k − ψk)(x̃) = −(ψ̃k − ψk)(x).

Now pick εk = −(1− βk)M, then w(xk)− εk[ψ̃k − ψk](x
k) ≤M. We denote

wk(x) := w(x) − εk[ψ̃k − ψk](x).

Then wk is also anti-symmetric with respect to T .

Note that for any x ∈ Σ \Bdk
(xk), w(x) ≥M and ψ̃k(x) = ψk(x) = 0. From

the definition of wk(x), we also have

wk(x
k) ≤M ≤ wk(x), ∀x ∈ Σ \Bdk

(xk).
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Hence the infimum of wk(x) in Σ is achieved in Bdk
(xk). Consequently, there

exists a point xk ∈ Bdk
(xk) such that

(2.20) wk(x
k) = inf

x∈Σ
wk(x) ≤M.

By the choice of εk, it is easy to verify that w(x̄k) ≤ βkM < 0.

Next, we will evaluate the upper and lower bounds of (Δ + λ)
α
2 wk(x̄

k).

Since xk ∈ Bdk
(xk) and by the definition of dk, we have 2dk ≤ |xk|. As a

consequence of (2.15), we obtain

(2.21)

(Δ + λ)
α
2 wk(x̄

k) = (Δ + λ)
α
2 {w − εk[ψ̃k − ψk]}(x̄k)

= (Δ + λ)
α
2 w(x̄k)− (Δ + λ)

α
2 {εk[ψ̃k − ψk]}(x̄k)

≤ −c(x̄k)w(x̄k)− (Δ + λ)
α
2 {εk[ψ̃k − ψk]}(x̄k)

≤ −c(x̄k)w(x̄k) + εk|(Δ + λ)
α
2 {[ψ̃k − ψk]}(x̄k)|

≤ −c(x̄k)w(x̄k) + 2Cεk
dαk

≤ 2Cεk
dαk

,

where we have used the fact that

(2.22)

|(Δ + λ)
α
2 ψk(x)| =

∣∣∣∣− cn,αP.V.

∫
Rn

ψk(x)− ψk(y)

eλ|x−y||x− y|n+α
dy

∣∣∣∣
=

∣∣∣∣− cn,αP.V.

∫
Bdk

(x)

ψk(x) − ψk(y)

eλ|x−y||x− y|n+α
dy

∣∣∣∣
+

∣∣∣∣− cn,αP.V.

∫
Bc

dk
(x)

ψk(x)− ψk(y)

eλ|x−y||x− y|n+α
dy

∣∣∣∣
≤
∣∣∣∣
∫
Bdk

(x)

2cn,α||ψ||C1,1(Rn)| x
dk

− y
dk
|2

|x− y|n+α
dy

∣∣∣∣
+

∣∣∣∣
∫
Bc

dk
(x)

cn,α
eλdk |x− y|n+α

dy

∣∣∣∣
≤ C

dαk
+

C

dαk e
λdk

≤ C

dαk
.
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On the other hand, we derive the following:

(2.23)

(Δ + λ)
α
2 wk(x̄

k)

=−cn,αP.V.
∫
Rn

wk(x̄
k)− wk(y)

eλ|x̄k−y||x̄k − y|n+α
dy

=−cn,αP.V.
∫
Σ

[ wk(x̄
k)− wk(y)

eλ|x̄k−y||x̄k − y|n+α
+

wk(x̄
k) + wk(y)

eλ|x̄k−y||x̄k − ỹ|n+α

]
dy

=−cn,α
∫
Σ

( 1

eλ|x̄k−y||x̄k−y|n+α
− 1

eλ|x̄k−ỹ||x̄k−ỹ|n+α

)
(wk(x̄

k)−wk(y))dy

− 2cn,αwk(x̄
k)

∫
Σ

1

eλ|x̄k−ỹ||x̄k − ỹ|n+α
dy

≥−2cn,αwk(x̄
k)

∫
Σ

1

eλ|x̄k−ỹ||x̄k − ỹ|n+α
dy

≥−Cn,α,λ

∫
Hk

wk(x̄
k)

eλdk |x̄k − ỹ|n+α
dy

≥−Cn,α,λwk(x̄
k)

eλdkdαk
,

where Hk := {x = (x1, x
′) ∈ R

n | − dk

2 < x1 < 0, |x′ − (x̄k)′| <
√
3dk

2 }. Here
we also used the following facts: wk(x̄

k) ≤ wk(y), ∀ y ∈ Σ, which can be seen

directly.

Next, we will carry out our proof by discussing two different cases and derive

contradictions in both of these two cases.

Case (i): There exists a k1 such that dk ≥ k1 for all k. Collecting (2.21) and

(2.23), we have

0 < (Δ + λ)
α
2 wk(x̄

k) ≤ −c(x̄k)w(x̄k) + Cεk ≤ −c(x̄k)w(x̄k),

which implies w(x̄k) → 0 as k → +∞, that is impossible.

Case (ii): Up to a subsequence (still denote by dk) such that dk < λ for all k.

In particular, in this case, we need only assume that

inf
{x∈Σ|w(x)<0}

c(x) ≥ 0.

Combining (2.21) and (2.23), we derive

(2.24) − Cn,α,λwk(x̄
k)

eλdkdαk
≤ 2Cεk
dαk e

λdk
.
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Noticing that εk = −(1− βk)M , the above equation is equivalent to

(2.25) Cn,α,λ ≤ 2C(1− βk)e
λ2 ≤ C(1− βk),

which also will lead to a contradiction as k → +∞.

Now we have proved that w(x) ≤ 0 in Σ. If there is some point x̄ ∈ Ω such

that w(x̄) = 0, then from (2.18) we derive immediately that w = 0 almost

everywhere in R
n. This concludes our proof of Theorem 2.5.

Similar to Theorem 2.5, we can deduce the following unbounded narrow region

principle and decay at infinity II. It should be mentioned that in Subsection 2.1,

we assumed that the solution tends to zero near infinity. But in the following

theorem, we deal with the situation where the asymptotic decay of the solutions

is not assumed.

Theorem 2.6 (Unbounded narrow region principle): Let Ω ⊆ Σ be an open set

(possibly unbounded and disconnected) such that it is contained in the region

between T and TΩ, where TΩ is a hyper-plane that is parallel to T . Suppose

that w ∈ Lα(R
n) ∩ C1,1

loc (Ω) is bounded from below and satisfies

(2.26)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω,
w(x̃) = −w(x), in Σ,

where c(x) is uniformly bounded from below (with respect to d(Ω)) in

{x ∈ Ω | w(x) < 0}. If we assume that

(2.27) inf
{x∈Ω |w(x)<0}

c(x) > − 3αCn,α,λ

e
λd(Ω)

3 d(Ω)α
,

where Cn,α,λ is the same as in (2.23),

d(Ω) := dist(T, TΩ) < 3λ.

Then, we have w(x) ≥ 0 in Ω. Furthermore, assume that

(2.28) (Δ + λ)
α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) = 0.

If w = 0 at some point in Ω, then we have w = 0 almost everywhere in R
n.
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Proof. Theorem 2.6 can be proved via similar arguments as in the proof of

Case (ii) in Theorem 2.5, we only mention some key ingredients. Indeed, it is

easy to see that dk <
1
3d(Ω) < λ. Collecting (2.21) and (2.23) we get

(2.29)

( inf
{x∈Ω|w(x)<0}

c(x))wk(x̄
k) +

2Cεk
dαk

≥ 2Cεk
dαk

+ c(x̄k)wk(x̄
k)

≥ −Cn,α,λwk(x̄
k)

eλdkdαk
.

We can choose k sufficiently large such that βk > 1 − Cn,α,λ

4eλ2C
. Recalling that

εk = −(1− βk)M and wk(x̄
k) ≤M , we have

2Cεk
dαk

≤ −Cn,α,λwk(x̄
k)

2dαk e
λ2 ≤ −Cn,α,λwk(x̄

k)

2dαk e
λdk

.

Next, one can infer from (2.29) and 3dk ≤ d(Ω) that

inf
{x∈Ω|w(x)<0}

c(x) ≤ − 3αCn,α,λ

e
λd(Ω)

3 d(Ω)α
,

which contradicts (2.27). This completes the proof of Theorem 2.6.

Remark 2.7: In Theorem 2.6, we do not need the additional assumption

lim inf |x|→+∞ w(x) ≥ 0. Hence, when λ → 0+, Theorem 2.6 extends the nar-

row region principle of the fractional Laplace equation in Chen and Li [14] to

unbounded regions under some weak assumptions.

Theorem 2.8 (Decay at infinity (II)): Let Ω be an unbounded open set in Σ.

Suppose that w ∈ Lα(R
n) ∩ C1,1

loc (Ω \ {0}) is bounded from below and satisfies

(2.30)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 w(x) − c(x)w(x) ≤ 0, at points x ∈ Ω where w(x) < 0,

w(x) ≥ 0, in Σ\Ω,
w(x̃) = −w(x), in Σ,

with

(2.31) lim inf
x∈Ω, w(x)<0

|x|→∞
|x|2sc(x) > − Cn,α,λ

2α+2|x̄k|αeλ|x̄k| ,

where the constant Cn,α,λ is the same as in (2.23). Then there exists an R0 > 0

large enough and β0 ∈ (0, 1) close enough to 1 (R0 and β0 are independent of w

and Σ) such that, if x̂ ∈ Ω satisfying

(2.32) w(x̂) ≤ β0 inf
Ω
w(x) < 0,

then |x̂| ≤ R0.
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Proof. Theorem 2.8 can be proved via similar contradiction arguments as for

Theorem 2.5; we only mention some key ingredients. Suppose on the contrary

that there exist sequences {xk} ∈ Ω and {βk} ∈ (0, 1) such that

(2.33) |xk| → +∞, βk → 1, and w(xk) ≤ βk inf
Ω
w(x) < 0.

One can infer from (2.21) and (2.23) that

2Cεk

dα+1
k

+ c(x̄k)wk(x̄
k) ≥ −Cn,α,λwk(x̄

k)

dαk e
λdk

.(2.34)

Now we take k sufficiently large such that

βk > 1− Cn,α,λ

4C
.

Note that dk := 1
3dist(x

k, T ) and x̄k ∈ Bdk
(xk). We can infer from (2.34) that,

for k large enough,

c(x̄k) ≤ − Cn,α,λ

2dαk e
λdk

≤ − Cn,α,λ

2α+2|x̄k|αeλ|x̄k| ,

which contradicts (2.31) if we let k → +∞.

Remark 2.9: From the proof of Theorem 2.8, we can see that x̂ does not need

to be the minimum point of w, only that x̂ satisfies (2.32). Therefore, we say

decay at infinity (II) Theorem 2.8 improves decay at infinity (I) Theorem 2.4.

3. A Direct method of moving planes for a tempered fractional Lapla-

cian

In this section, applying various maximum principles for anti-symmetric func-

tions established in Section 2, we will extend the direct method of moving planes

to investigate symmetry and monotonicity of solutions to various problems in-

volving the tempered fractional Laplacian operator −(Δ + λ)
α
2 .

3.1. Schrödinger equations in R
n
.

Proof of Theorem 1.5. Choose an arbitrary direction to be the x1-direction. In

order to apply the method of moving planes, we need some notations. For

arbitrary λ ∈ R, let

Tλ := {x ∈ R
n|x1 = λ}
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be the moving planes,

(3.1) Σλ := {x ∈ R
n|x1 < λ}

be the region to the left of the plane, and

xλ := (2λ− x1, x2, . . . , xn)

be the reflection of x about the plane Tλ.

Assume that u is a nonnegative solution of the Schrödinger equations (1.6).

To compare the values of u(x) with u(xλ), we define

wλ(x) := u(xλ)− u(x), ∀ x ∈ Σλ.

Then, for any λ ∈ R, at points x ∈ Σλ where wλ(x) < 0, we have

(3.2)

(Δ + λ)
α
2 wλ(x) = up(x) − up(xλ) + V (xλ)u(xλ)− V (x)u(x)

≤ −pup−1wλ(x) + V (x)wλ(x)

≤ −pup−1wλ(x) + V0wλ(x)

=: c(x)wλ(x),

where c(x) := V0 − pup−1(x). From the assumption (1.7), we infer that, for

any λ ∈ R,

(3.3) lim inf
x∈Σλ, wλ(x)<0

|x|→+∞
c(x) > 0.

We carry out the moving planes procedure in two steps.

Step 1. We use Theorem 2.8 (decay at infinity (II)) to show that, for sufficiently

negative λ,

(3.4) wλ(x) ≥ 0, ∀x ∈ Σλ.

In fact, from assumption (1.7), we know that u is bounded from above and

hence wλ is bounded from below for any λ ∈ R. Suppose that infΣλ
wλ < 0.

By (3.2) and (3.3), we can deduce from Theorem 2.8 (decay at infinity (II)) that

there exist R0 > 0 large and 0 < γ0 < 1 close to 1 (independent of λ) such that,

if x̂ ∈ Σλ satisfying wλ(x̂) ≤ γ0 infΣλ
wλ < 0, then |x̂| ≤ R0. This will lead to

a contradiction provided that λ ≤ −R0. Thus we have, for any λ ≤ −R0,

wλ ≥ 0 in Σλ.

Step 2. Step 1 provides a starting point, from which we can now move the

plane Tλ to the right, to its limiting position, as long as (3.4) holds.



22 Y. GUO AND S. PENG Isr. J. Math.

To this end, let us define

(3.5) λ0 := sup{λ ∈ R | wμ ≥ 0 in Σμ, ∀μ ≤ λ}.
It follows from Step 1 that −R0 ≤ λ0 < +∞. One can easily verify that

(3.6) wλ0(x) ≥ 0, ∀ x ∈ Σλ0 .

Next, we show via contradiction arguments that

(3.7) wλ0(x) ≡ 0, ∀ x ∈ Σλ0 .

Suppose on the contrary that

(3.8) wλ0 ≥ 0 but wλ0 �≡ 0 in Σλ0 ;

then we must have

(3.9) wλ0(x) > 0, ∀ x ∈ Σλ0 .

In fact, if (3.9) is violated, then there exists a point x̂ ∈ Σλ0 such that

wλ0(x̂) = min
Σλ0

wλ0 = 0.

Then it follows from (1.6) that

(3.10) (Δ + λ)
α
2 wλ0(x̂) ≤ 0,

and hence Lemma 2.1 implies that wλ0 ≡ 0 in Σλ0 , which contradicts (3.8).

Thus wλ0(x) > 0 in Σλ0 .

Then we show that the plane Tλ can be moved a little bit further from Tλ0 to

the right. More precisely, there exists an δ > 0, such that for any λ ∈ [λ0, λ0+δ],

we have

(3.11) wλ(x) ≥ 0, ∀ x ∈ Σλ.

In fact, (3.11) can be achieved by using the narrow region principle (Theo-

rem 2.3) and the decay at infinity (II) (Theorem 2.8). First, since

c(x) := V0 − pup−1(x) is uniformly bounded,

we can choose δ1 > 0 small enough such that (Σλ0+δ1 \ Σλ0−δ1) ∩ BR∗(0) is

a narrow region, where R∗ := R0 + |λ0| ≥ R0 with R0 given by decay at

infinity (II) (Theorem 2.8). From (3.9), we deduce that there exists a c0 > 0

such that

(3.12) wλ0 (x) ≥ c0 > 0, ∀x ∈ Σλ0−δ1 ∩BR∗(0).
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As a consequence, due to the continuity of wλ with respect to λ, there exists

a 0 < δ2 < δ1 sufficiently small such that, for any λ ∈ [λ0, λ0 + δ2],

(3.13) wλ(x) > 0, ∀ x ∈ Σλ0−δ1 ∩BR∗(0).

For any λ ∈ [λ0, λ0 + δ2], if we suppose that infΣλ
wλ(x) < 0, then the decay at

infinity (II) (Theorem 2.8) implies that

wλ(x) > γ0 inf
Σλ

wλ(x), ∀ x ∈ Σλ \BR0(0),

and hence the negative minimum infΣλ
wλ(x) can be attained in BR0(0) ∩ Σλ.

Then, from (3.13), we infer that, if infΣλ
wλ(x) < 0, then the negative mini-

mum infΣλ
wλ(x) can be attained in the narrow region (Σλ \Σλ0−δ1)∩BR∗(0).

Therefore, from the narrow region principle (Theorem 2.3), we get, for any

λ ∈ [λ0, λ0 + δ2],

(3.14) wλ(x) > 0, ∀ x ∈ (Σλ \ Σλ0−δ1) ∩BR∗(0),

and hence

(3.15) wλ(x) ≥ 0, ∀ x ∈ Σλ.

Thus (3.11) holds, which contradicts the definition (3.5) of λ0. Hence (3.7) must

be valid.

The arbitrariness of the x1-direction leads to the radial symmetry and mono-

tonicity of u(x) about some point x0 ∈ R
n. This completes the proof of Theo-

rem 1.5.

3.2. Tempered fractional Choquard equations. In this subsection, by

applying the direct method of moving planes and giving some new integral

estimates, we prove the following theorem on symmetry and monotonicity of

nonnegative solutions to problem (1.8), which is Theorem 1.7.

There is a large amount of literature on the qualitative properties of solutions

to Choquard type equations involving fractional Laplacians, or other nonlocal

operators; refer to [7, 22, 31] and references therein for more details.

Proof of Theorem 1.7. Choose an arbitrary direction to be the x1-direction. In

order to apply the direct method of moving planes along the x1-axis, we need

some notations. For any λ ∈ R, let Tλ, Σλ, x
λ and wλ be defined the same as

in subsection 3.1. Define uλ(x) := u(xλ). Set

Σ−
λ := {x ∈ Σλ | wλ(x) < 0}.
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Since the assumption (1.9) implies that u is bounded, so wλ is also bounded.

For x ∈ Σ−
λ , a direct computation shows that

(3.16)

−(Δ+λ)
α
2 wλ(x)=

( 1

|x|γ ∗ up1

)
(xλ)uq1λ (x)−

( 1

|x|γ ∗ up1

)
uq1(x)

=q1

( 1

|x|γ ∗ up1

)
(x)ξq1−1wλ(x)

+

(∫
Rn

up1(y)

|xλ − y|γ dy −
∫
Rn

up1(y)

|x− y|γ dy
)
uq1λ (x)

≥q1uq1−1(x)
( 1

|x|γ ∗ up1

)
(x)wλ(x)

+ uq1λ (x)

∫
Σλ

( 1

|x−y|γ −
1

|xλ−y|γ
)
(up1

λ (y)−up1(y))dy

≥q1uq1−1(x)
( 1

|x|γ ∗ up1

)
(x)wλ(x)

+ p1u
q1(x)

∫
Σ−

λ

( 1

|x−y|γ −
1

|xλ−y|γ
)
up1−1(y)wλ(y)dy

≥q1uq1−1(x)

∫
Rn

up1(y)

|x− y|γ dy wλ(x)

+p1u
q1(x) inf

Σ−
λ

wλ

∫
Σ−

λ

( 1

|x−y|γ −
1

|xλ−y|γ
)
up1−1(y)dy,

where ξ is a value between u(x) and uλ(x).

Now, at points x ∈ Σ−
λ where wλ(x) = infΣ−

λ
wλ, we obtain

(3.17) (Δ + λ)
α
2 wλ(x)− cλ(x)wλ(x) ≤ 0,

with

cλ(x):=−q1uq1−1(x)

∫
Rn

up1(y)

|x−y|γ dy−p1u
q1(x)

∫
Σ−

λ

( 1

|x−y|γ −
1

|xλ−y|γ
)
up1−1(y)dy.

Next, we will prove that

(3.18) lim
x∈Σ−

λ , |x|→+∞
cλ(x) ≥ 0,

which implies, for any λ ≤ 0,

(3.19)

lim
x∈Σ−

λ , |x|→+∞

{
q1u

q1−1(x)

∫
Rn

up1(y)

|x− y|γ dy

+ p1u
q1(x)

∫
Σ−

λ

( 1

|x−y|γ −
1

|xλ−y|γ
)
up1−1(y)dy

}
=0.
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To this end, we first infer from the assumption (1.9) that

∫
Rn

up1(x)

|x|γ dx < +∞,

and for any ε > 0, there exists Rε > 0 large enough such that

u(x) ≤ ε

|x|γ , ∀ |x| ≥ Rε.

Split Rn into A1 ∪A2 ∪A3, where

A1 =
{
y : |y − x| ≥ |x|

2
and |y| <

√
|x|

}
,

A2 =
{
y : |y − x| ≥ |x|

2
and |y| ≥

√
|x|

}
,

A3 =
{
y : |y − x| < |x|

2

}
.

For any λ ≤ 0, taking x ∈ Σ−
λ with |x| > 2Rε sufficiently large, by straightfor-

ward calculations we have

(3.20)

q1u
q1−1(x)

∫
Rn

up1(y)

|x− y|γ dy

≤ q12
γεq1−1

|x| γ2+(q1−1)γ

∫
A1

up1(y)

|y|γ dy

+
3γq1ε

q1−1

|x|(q1−1)γ

∫
A2

up1(y)

|y|γ dy +
2p1εp1+q1−1

|x|p1+(q1−1)γ

∫
A3

1

|x− y|γ dy

≤q12
γεq1−1

|x|q1γ−γ
2

∫
Rn

up1(x)

|x|γ dx

+
3γq1ε

q1−1

|x|(q1−1)γ

∫
|y|≥

√
|x|

up1(y)

|y|γ dy + Cεp1+q1−1

≤Cεq1−1 + Cεq1−1 + Cεp1+q1−1

≤Cεq1−1 + Cεp1+q1−1,
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where we use the fact that of |x − y| ≥ |x|
2 implies |x − y| ≥ |y|

3 . At the same

time, we can also get

(3.21)

p1u
q1(x)

∫
Σ−

λ

( 1

|x− y|γ − 1

|xλ − y|γ
)
up1−1(y)dy

≤p1uq1(x)
∫
Σ−

λ

|xλ − y|γ − |x− y|γ
|x− y|γ · |xλ − y|γ u

p1−1(y)dy

≤p12γ |x|γuq1(x)
∫
Rn

up1−1(y)

|x− y|2γ dy

≤ Cεq1

|x|q1γ
∫
A1

up1−1(y)

|y|2γ dy

+
Cεq1

|x|q1γ−γ

∫
A2

up1−1(y)

|y|2γ dy +
Cεp1+q1−1

|x|(p1+q1−1)γ−γ

∫
A3

1

|x− y|2γ dy

≤ Cεq1

|x|q1γ
∫
Rn

up1−1(x)

|x|2γ dx+ Cεq1 + Cεp1+q1−1

≤Cεq1 + Cεq1 + Cεp1+q1−1

≤Cεq1 + Cεp1+q1−1.

By letting ε→ 0, we obtain

(3.22)

lim
x∈Σ−

λ , |x|→+∞

{
q1u

q1−1(x)

∫
Rn

up1(y)

|x− y|γ dy

+ p1u
q1(x)

∫
Σ−

λ

( 1

|x− y|γ − 1

|xλ − y|γ
)
up1−1(y)dy

}

≤ Cεq1 + Cεq1−1 + Cεp1+q1−1.

This indicates that (3.19) holds and hence (3.18) holds for any λ ≤ 0. Besides,

from (3.20) and (3.21) one can also derive that cλ(x) is uniformly bounded from

below (independent of λ).

We will carry out the direct method of moving planes in two steps.

Step 1. Start moving the plane Tλ from λ sufficiently negative to the right

along the x1-axis.

Apparently, we only prove that for sufficiently negative λ,

(3.23) wλ(x) ≥ 0, ∀ x ∈ Σλ.
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In fact, one can infer from the assumption (1.9) that u is bounded from above

and

lim
|x|→+∞

u(x) = 0,

and hence wλ is bounded from below and

lim
|x|→+∞

wλ(x) = 0.

Suppose that the conclusion (3.23) is false, then there exists x̂ ∈ Σ−
λ such that

wλ(x̂) = inf
Σλ

wλ < 0.

Apply (3.17) and (3.18) and Theorem 2.4 to conclude that there exists R0 > 0

large (independent of λ) such that

|x̂| ≤ R0.

This will lead to a contradiction provided that λ ≤ −R0. Thus we have, for

any λ ≤ −R0, wλ ≥ 0 in Σλ.

Step 2. Step 1 provides a starting point, from which we can now move the

plane Tλ along the x1-axis to its limiting position.

To this end, let us define

(3.24) λ0 := sup{λ ≤ 0 | wμ ≥ 0 in Σμ, ∀μ ≤ λ}.

It follows from Step 1 that −R0 ≤ λ0 ≤ 0. One can easily verify that

(3.25) wλ0(x) ≥ 0, ∀ x ∈ Σλ0 .

We will carry out the proof by discussing two different cases.

Case (i): λ0 < 0. Similar to case (ii) in the proof of Theorem 1.5. We can

easily obtain

(3.26) wλ0(x) ≡ 0, ∀ x ∈ Σλ0 .

Case (ii): λ0 = 0. We can move the plane in the opposite direction along

the x1-direction until the limiting position λ̄0 ≥ λ0 = 0. Again, if λ̄0 > 0,

by using the narrow region principle (Theorem 2.3) and decay at infinity theo-

rem 2.4, we can deduce that uλ̄0
≡ u as in case (ii) in the proof of Theorem 1.5.

If λ̄0 = λ0 = 0, we immediately have u0 ≡ u.
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From the contradictions derived in Case (i) and Case (ii), we conclude that u

is symmetric about the plane Tλ0 or Tλ̄0
. Since the x1-direction is chosen

arbitrarily, we must have that u is radially symmetric and monotone decreasing

around some point x0 ∈ R
n. This concludes our proof of Theorem 1.7.

3.3. Liouville-type results for nonlocal double phase problem. In

this subsection, as a direct application of Maximum Principles in unbounded

domains Theorem 2.5, combined with the method of moving planes, we shall

establish Liouville-type results for the nonlocal double phase problem in R
n

and R
n
+.

As we know, Liouville theorems in conjunction with the blowing up and re-

scaling arguments, are crucial in establishing a priori estimates and hence the

existence of positive solutions to non-variational boundary value problems for

a class of elliptic equations on bounded domains or Riemannian manifolds with

boundaries. For more works on the Liouville-type results for elliptic equations

or systems, refer to [14, 15, 23, 30, 34, 37, 39] and the references therein.

Our main results in this subsection are as follows.

Theorem 3.1 (Liouville Theorem in R
n): Assume that u ∈ Lα(R

n)∩C1,1
loc (R

n)

is a bounded solution to

(3.27) − (Δ + λ)
α
2 u(x) = f(x, u(x)), in R

n,

where the function f(x, u) satisfies

(3.28) sup
t1, t2∈[inf u, supu]

t1>t2

f(x, t1)− f(x, t2)

t1 − t2
< 0

and f(x1, x
′, u) ≤ f(x̄1, x

′, u) with x1 ≤ x̄1. Then

u ≡ C, in R
n.

Proof. Keep the definitions of Tλ, x
λ, Σλ, wλ in Subsection 3.1. Since

u ∈ Lα(R
n) ∩ C1,1

loc (R
n) is bounded, it lead to

wλ ∈ Lα(R
n) ∩ C1,1

loc (R
n) is bounded.

At any points x ∈ Σ where w(x) > 0, one has

(3.29)

(Δ + λ)
α
2 wλ(x) = f(x, u(x))− f(xλ, uλ(x))

≤ f(x, u(x))− f(x, uλ(x))

=: c(x)wλ(x),
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provided that

c(x) :=
f(x, u(x)) − f(x, uλ(x))

uλ(x)
.

It readily follows from (3.28) that

inf
{x∈Σλ|wλ(x)>0}

c(x) > 0.

Therefore, using Theorem 2.5, we arrive immediately at wλ ≥ 0 in Σλ.

By a similar argument we can prove that wλ ≥ 0 in R
n \ Σ. Hence

wλ ≡ 0, in R
n,

and hence u is symmetric with respect to Tλ. Since Tλ is arbitrary, we must

have

u ≡ C, in R
n.

This finishes the proof of Theorem 3.1.

Theorem 3.2 (Liouville Theorem in R
n
+): Assume that u ∈ Lα(R

n)∩C1,1
loc (R

n)

is a nonnegative solution to

(3.30)

⎧⎨
⎩−(Δ + λ)

α
2 u(x) = f(x, u(x)), in R

n
+,

u(x) = 0, x �∈ R
n
+,

where the function f(x, u) satisfies, ∂f
∂u ≥ 0 and f(x, 0) = 0. Suppose that

(3.31) lim
|x|→+∞

u(x) = 0,

then we have

u ≡ 0, in R
n.

Proof. We first claim that if there exists x0 ∈ R
n
+ such that u(x0) = 0, then we

have

(3.32) u(x) ≡ 0, in R
n
+.

Note that u is a nonnegative solution of equation (3.30), which means that x0

is the minimum point of the function u(x), thus ∇u(x0) = 0.

On one hand, if u(x) �≡ 0, we have

(3.33)

−(Δ + λ)
α
2 u(x0) =cn,α,λP.V.

∫
Rn

u(x0)− u(y)

eλ|x0−y||x0 − y|n+α
dy

=cn,α,λP.V.

∫
Rn

−u(y)
eλ|x0−y||x0 − y|n+α

dy < 0.
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On the other hand, since ∂f
∂u ≥ 0, we have

(3.34) − (Δ + λ)
α
2 u(x0) = f(x0, u(x0)) = f(x0, 0) = 0.

This is a contradiction, which implies that u(x) ≡ 0 in R
n
+.

In the following, we always assume that u(x) > 0. Then, we carry out the

moving planes procedure in two steps.

Step 1. We shall show that, for λ > 0 sufficiently close to 0,

(3.35) wλ(x) ≥ 0, x ∈ Σλ.

Combining the assumption of Theorem 3.2 with u > 0, we have

lim
|x|→∞

wλ(x) ≥ 0.

Then similar to the proof of Theorem 1.5, applying narrow region principle 2.3

to functions wλ, we get (3.35).

Step 2. We continue to move the plane Tλ along the xn-axis to its limiting

position as long as (3.35) holds. More precisely, let

(3.36) λ0 := sup{λ > 0 | wμ(x) > 0, x ∈ Σμ, μ ≤ λ}.
Now we show that

(3.37) λ0 = +∞.

Suppose to the contrary that λ0 < +∞. Similar to the proof of Theorem 1.5,

we can derive either

(3.38) wλ0(x) = 0,

or

(3.39) wλ0(x) > 0, x ∈ Σλ0 .

If (3.39) is true, by a similar argument as in the proof of Theorem 1.5, we

will show that the plane Tλ0 can be moved upward a little bit more, which

contradicts the definition (3.37) of λ0. Hence, (3.38) is true. It reveals that

u(x1, x2, . . . , xn−1, 2λ0) = u(x1, x2, . . . , xn−1, 0) = 0,

which is a contradiction to u > 0. So (3.37) holds.

Therefore, u is increasing concerning the xn-axis. In terms of the assump-

tion (3.31) in Theorem 3.2, we know that is impossible. So u(x) ≡ 0 in R
n
+.

We have completed the proof of Theorem 3.2.
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4. Direct sliding methods for a tempered fractional Laplacian

In this section, we will prove Theorem 1.8 via direct sliding methods. Similar to

the direct method of moving planes, the maximum principles is a key ingredient

in the sliding method. Hence, in this paper, we first establish the following

maximum principles for the tempered fractional Laplacian operator −(Δ+λ)
α
2 ,

.

4.1. Maximum principles for the tempered fractional operator

−(Δ + λ)
α
2 . In this subsection, we shall establish various maximum principles

for the tempered fractional Laplacian operator −(Δ + λ)
α
2 in unbounded do-

mains. These maximum principles are key ingredients in applying the sliding

method. We begin with the following elementary lemmas used in various places

in the text.

Lemma 4.1 (Strong maximum principle): Suppose that u ∈ Lα(R
n) and u ≥ 0

in R
n. If there exists x0 ∈ R

n such that,

(4.1)

⎧⎨
⎩(Δ + λ)

α
2 u(x0) ≤ 0,

u(x0) = 0,

and u is C1,1 near x0, then u = 0 a.e. in R
n.

Proof. Since there exists x0 ∈ R
n such that u(x0) = minx∈Rn u(x) = 0, it

follows from the definition of Ls
μ that

0 ≥ (Δ + λ)
α
2 u(x0)

= −cn,α,λP.V.
∫
Rn

u(x0)− u(y)

eλ|x0−y||x0 − y|n+α
dy

= cn,α,λP.V.

∫
Rn

u(y)

eλ|x0−y||x0 − y|n+α
dy ≥ 0.

Thus we must have u = 0 a.e. in R
n. This finishes the proof of Lemma 4.1.

Next, we will prove the maximum principles in unbounded open sets.

Theorem 4.2 (Maximum principles in unbounded open sets): Assume that D

is an open set in R
n, possibly unbounded and disconnected. Let D be disjoint

from an infinite open domain and set Γ ⊂ D
c
such that

(4.2)
|Γ ∩ (Barx(x)\Brx(x))|

|Barx(x)\Brx(x)|
≥ c0 > 0, ∀ x ∈ D,
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for some constants a > 1, c0 > 0, where a, c0 are independent of x and rx > 0

possibly depending on x. Suppose that u ∈ Lα(R
n)∩C1,1

loc (D) is bounded from

below, and solves

(4.3)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 u(x)− c(x)u(x) −∑n

i=1 ci(x)ui(x) ≤ 0,

at points x ∈ D where u(x) < 0,

u(x) ≥ 0, x ∈ R
n \D,

where c(x) ≥ 0 in the set {x ∈ D | u(x) < 0} and ui =
∂u
∂xi

. Then u ≥ 0 inD.

Furthermore, assume that

(4.4) (Δ + λ)
α
2 u(x) ≤ 0, at points x ∈ D where u(x) = 0.

Then we have

(4.5) either u(x) > 0 in D, or u(x) = 0 a.e. in R
n.

Proof. Suppose on the contrary that there exists some x ∈ D such that u(x) < 0.

Then we have

(4.6) −∞ < M := inf
x∈Rn

u(x) < 0.

There exist sequences xk ∈ D and 0 < βk < 1 with βk → 1 as k → ∞ such that

(4.7) u(xk) ≤ βkM.

To this end, let

ψ(x) =

⎧⎨
⎩e

|x|2
|x|2−1 , |x| < 1,

0, |x| ≥ 1.

It is well known that ψ ∈ C∞
0 (Rn), therefore |(Δ + λ)

α
2 ψ(x)| ≤ C0 for any

x ∈ R
n. Now we define

Ψk(x) := ψ
(x− xk

rxk

)
,

where we choose rxk < 1
λ . Take εk := −(1 − βk)M . Since u ≥ M and Ψk = 0

in R
n \Br

xk
(xk), we have

(4.8) u(xk)− εkΨk(x
k) ≤M ≤ u(x)− εkΨk(x),

for any x ∈ R
n \Br

xk
(xk). Consequently, there exists x̄k ∈ Br

xk
(xk) such that

(4.9) u(x̄k)− εkΨk(x̄
k) = inf

x∈Rn
[u(x)− εkΨk(x)] ≤M,
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which implies that

(4.10) u(x̄k) ≤ u(xk)− εkΨk(x
k) + εkΨk(x̄

k) ≤ u(xk) ≤ βkM < 0.

Note that ∇(u(x̄k)− εkΨk(x̄
k)) = 0, and hence

(4.11) ∇u(x̄k) = 0, as k → ∞.

Therefore, through direct computations and recalling (4.9), we derive that

(4.12)

(Δ+λ)
α
2 [u− εkΨk](x̄

k)

=− cn,αP.V.

∫
Rn

u(x̄k)− εkΨk(x̄
k)− u(y) + εkΨk(y)

eλ|x̄k−y||x̄k − y|n+α
dy

=− cn,α

[
P.V.

∫
Br

xk
(xk)

u(x̄k)− εkΨk(x̄
k)− u(y) + εkΨk(y)

eλ|x̄k−y||x̄k − y|n+α
dy

+

∫
(Br

xk
(xk))c

u(x̄k)− εkΨk(x̄
k)− u(y) + εkΨk(y)

eλ|x̄k−y||x̄k − y|n+α
dy

]

≥− cn,α

∫
(Br

xk
(xk))c

u(x̄k)− εkΨk(x̄
k)− u(y) + εkΨk(y)

eλ|x̄k−y||x̄k − y|n+α
dy

=− cn,α

∫
(Br

xk
(xk))c

u(x̄k)− εkΨk(x̄
k)− u(y)

eλ|x̄k−y||x̄k − y|n+α
dy

≥− cn,α

∫
Γ∩(Bar

xk
(xk)\Br

xk
(xk))

u(x̄k)− εkΨk(x̄
k)

eλ|x̄k−y||x̄k − y|n+α
dy

≥−cn,α(u(x̄k)−εkΨk(x̄
k))

∫
Γ∩(Bar

xk
(xk)\Br

xk
(xk))

1

eλ|x̄k−y||x̄k−y|n+α
dy

≥− Cn,α(u(x̄
k)− εkΨk(x̄

k))
1

eλarxk rα
xk

≥−Cn,a,α,λM

eλrxk rα
xk

,

where the last inequality holds due to μ ≥ 0.

On the other hand, we will evaluate the lower bound of (Δ+λ)
α
2 [u−εkΨk](x̄

k).
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Indeed, since (4.10) implies u(x̄k) < 0 and hence x̄k ∈ D, applying (4.3)

and (4.11) we see that

(4.13)

(Δ + λ)
α
2 [u− εkΨk](x̄

k) = (Δ + λ)
α
2 u(x̄k)− (Δ + λ)

α
2 (εkΨk(x̄

k))

≤ c(x̄k)u(x̄k) +

n∑
i=1

ci(x̄
k)ui(x̄

k) +
C0εk
rα
xk

≤ C0εk
rα
xk

.

Putting (4.12) and (4.13) together, we deduce that

(4.14) − Cn,α,a,λM

rα
xke

λr
xk

≤ C0εk
rα
xk

,

which implies

Cn,α,a,λ ≤ C0(1− βk)e
λr

xk ≤ C0e(1− βk).

This will lead to a contradiction for k sufficiently large.

Furthermore, if there exists a point x̃ ∈ D such that u(x̃) = 0, then it follows

from (4.4) and Lemma 4.1 that u = 0 a.e. in R
n. Therefore, we have

either u(x) > 0 in D, or u(x) = 0 a.e. in R
n.

This completes our proof of Theorem 4.2.

From the proof of Theorem 4.2, we can deduce the following:

Theorem 4.3 (Narrow region principle in unbounded open sets): Let D be an

open set in R
n (possibly unbounded and disconnected) and

d(D) := sup
x∈D

dist(x,Dc)

be the width of D, under the assumptions (4.2) and

rx = dist(x,Dc) ≤ d(D).

Suppose that u ∈ Lα(R
n) ∩ C1,1

loc (D) is bounded from above and solves

(4.15)

⎧⎪⎪⎨
⎪⎪⎩
(Δ + λ)

α
2 u(x)− c(x)u(x) −∑n

i=1 ci(x)ui(x) ≤ 0,

at points x ∈ D where u(x) < 0,

u(x) ≥ 0, in Dc,
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where c(x) is uniformly bounded from below in {x ∈ D | u(x) < 0} (with respect

to d(D)) and ui =
∂u
∂xi

. If we assume that

(4.16) inf
{x∈D|u(x)<0}

c(x) > − Cn,α,λ

2d(D)αeλd(D)
,

where Cn,α,λ > 0 is the same constant as in (4.12), then

(4.17) u(x) � 0, in D.

Furthermore, assume that

(4.18) (Δ + λ)
α
2 u(x) ≥ 0, at points u ∈ D where u(x) = 0;

then we have

(4.19) either u(x) > 0 in D, or u(x) = 0 a.e. in R
n.

Proof. The proof is similar to that of Theorem 4.2. We only give a sketch.

One can infer from (4.12) and (4.13) that

(4.20)
−Cn,α,λM

rα
xke

λr
xk

≤ c(x̄k)u(x̄k) +
C0εk

rα
xke

λr
xk
,

which implies

−c(x̄k)u(x̄k) ≤ Cn,a,α,λM

rα
xke

λr
xk

+
C0εk
rα
xk

<
Cn,a,α,λM

2rα
xke

λr
xk
.

With a suitable choice of k sufficiently large such that βk ≥ 1− Cn,α,λ

2C0
, we derive

from (4.6) and (4.20) that

c(x̄k) ≤ − Cn,a,α,λM

2rα
xke

λr
xku(x̄k)

≤ − Cn,α,λ

2rα
xke

λr
xk

≤ − Cn,α,λ

2d(D)αeλd(D)
,

which contradicts (4.16).

Furthermore, if there exists a point x̃ ∈ D such that u(x̃) = 0, then it follows

from (4.4) and Lemma 4.1 that u = 0 a.e. in R
n. Therefore, we have

either u(x) > 0 in D, or u(x) = 0 a.e. in R
n.

This completes our proof of Theorem 4.3.
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4.2. Proof of Theorem 1.8. In this subsection, by employing maximum

principles for a tempered fractional Laplacian operator −(Δ + λ)
α
2 and the

direct sliding methods, we shall investigate the monotonicity and uniqueness of

solutions in half-space R
+
n , which is Theorem 1.8.

Proof. From the definition of wτ we can see that

−(Δ + λ)
α
2 wτ (x) = cτ (x)wτ (x) +

n∑
i=1

cτi (x)w
τ
i (x), in Dτ ,

where cτi (x) =
∂f
∂pi

, wτ
i (x) =

∂uτ

∂xi
− ∂u

∂xi
,

cτ (x) :=

⎧⎨
⎩

f(x,uτ (x),∇u)−f(x,u(x),∇u)
uτ (x)−u(x) , if uτ (x) �= u(x)

0, if uτ (x) = u(x)

is an L∞ function satisfying |cτ (x)| ≤ C, ∀x ∈ Dτ , since f(x, u,∇u) is Lipschitz
continuous in u.

Our goal is to show that

wτ (x) > 0, in Dτ , ∀ 0 < τ < τ0,(4.21)

which indicates that u is strictly increasing in the xn direction.

Step 1. We show that, for τ sufficiently large, we have

(4.22) wτ (x) ≤ 0, in R
n.

Indeed, one can infer from (1.11) that there exists a sufficiently large M1 such

that for any xn > M1, u ∈ [A− δ, A], where δ > 0. Next we only prove that, for

any τ ≥M1.

wτ (x) ≤ 0, in R
n.(4.23)

Suppose that (4.23) is not true, then there exists a constant K > 0 such that

sup
x∈R

n
+

wτ (x) = K > 0,

and hence for some τ1 ≥M1 there exists a sequence xk ∈ R
n
+ such that

(4.24) wτ1(xk) → K, as k → ∞.

We denote D = {x ∈ R
n|wτ1(x) > K

3 }. Since τ1 ≥ M and x ∈ R
n
+, we deduce

that, for any x ∈ D, we have u(x) ≥ uτ1(x) ≥ A− δ.
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Through a simple computation, for any x ∈ D, we get

(4.25)

−(Δ + λ)
α
2

(
wτ1(x)− K

3

)
= −(Δ + λ)

α
2 wτ1(x)

= f(x, u(x), (∇xu)(x))− f(x′, xn + τ1en, u
τ1(x), (∇xu

τ1)(x))

≤ f(x, u(x), (∇xu)(x))− f(x, uτ1(x), (∇xu
τ1)(x))

=: −c(x)wτ1(x) −
n∑

i=1

ci(x)w
τ1
i (x)

≤ −c(x)
(
wτ1(x)− K

3

)
−

n∑
i=1

ci(x)
(
wτ1(x)− K

3

)
i
(x),

and using also (1.12), we see that

c(x) = −f(x, u,∇xu)− f(x, uτ1 ,∇xu)

u− uτ1
≥ 0.

Similar to (4.25), we derive that wτ1(x)− K
3 satisfies⎧⎪⎪⎨

⎪⎪⎩
(Δ + λ)

α
2 (wτ1(x)− K

3 )− c(x)(wτ1 (x)− K
3 )

−∑n
i=1 ci(x)(w

τ1 (x) − K
3 )i(x) ≥ 0, x ∈ D,

wτ1(x) ≤ 0, x ∈ R
n
+ \D.

Again with Theorem 4.2 (by choosing −u instead of u), we derive that

wτ1(x) ≤ 0 in R
n
+, which contradicts (4.24). Therefore, equation (4.23) must

hold.

Step 2. Inequality (4.23) provides a starting point for us to carry out the

sliding procedure. Next, we decrease τ as long as inequality (4.22) holds until

its limiting position. Define

(4.26) τ0 := inf{τ | wτ (x) ≤ 0 in R
n, 0 < τ < M1}.

We aim to prove that τ0 = 0.

Otherwise, suppose that τ0 > 0. We will show that τ0 can be upward a little

bit more, that is, there exists an ε > 0 small enough such that

wτ (x) ≤ 0, in R
n
+, ∀ τ0 − ε < τ ≤ τ0,

which contradicts the definition (4.26) of τ0.
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(I) Firstly, we prove that

(4.27) sup
Rn−1×(0,M1+1]

wτ0(x) < 0.

If not, then

sup
Rn−1×(0,M0+1]

wτ0(x) = 0.

So there exists a sequence {xk} ⊂ R
n−1 × (0,M0 + 1] such that wτ0(xk) → 0,

as k → ∞.

Next we claim that

(4.28) xk �∈ ∂Rn
+.

Without loss of generality, let xkn be the n-th component of xk. The above

equation is equivalent to xkn �= 0. If (4.28) is not true, one can infer from (1.10)

that u(xk) = 0. Therefore, u((xk)′, (xk)n) = u((xk)′, (xk)n + τ0) = 0, which

contradicts the fact that u > 0 in R
n
+. Thus our claim (4.28) is true.

Since xk �∈ ∂Rn
+, then there exists a δ > 0 such that Bδ(x

k) ∈ R
n
+. Set

ψ(x) = η
(x− xk

δ

)
,

where η is defined by

η(x) =

⎧⎨
⎩e

|x|2
|x|2−1 , |x| < 1,

0, |x| ≥ 1.

Now we can pick εk > 0 (→ 0 as k → ∞) such that, for any R
n
+\Bδ(x

k),

(4.29) wτ0(x) + εkψk(x) ≤ 0.

Therefore, there exists x̄k ∈ Bδ(x
k) such that

wτ0(x̄k) + εkψk(x̄
k) = max

Rn
(wτ0 (xk) + εkψk(x)) > 0,

which implies ∇(wτ0(x̄k) + εkψk(x̄
k)) = 0, and hence

(4.30) ∇(wτ0(x̄k)) → 0, as k → ∞.

Since

0 > wτ0(x̄k) ≥ wτ0(xk) + εkψ(x
k)− εkψ(x̄

k) ≥ wτ0(xk) → 0, as k → ∞,

hence wτ0(x̄k) → 0, as k → ∞. By the continuity of f , we have

(4.31)
f(x̄k, u(x̄k),∇u(x̄k))− f((x̄k)′, x̄kn + τ0en, u

τ0(xk),∇uτ0(xk))
≤f(x̄k, u(x̄k),∇u(x̄k))− f(x̄k, uτ0(xk),∇uτ0(xk)) → 0, as k→∞.
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On the one hand, in view of (4.30) and (4.31), we have

(4.32)

−(Δ+λ)
α
2 (wτ0 + εkψ)(x̄

k)

=− (Δ + λ)
α
2 wτ0(x̄k) + (Δ + λ)

α
2 (εkψ)(x̄

k)

=f(x̄k, u(x̄k),∇u(x̄k))− f((x̄k)′, x̄kn + τ0en, u
τ0(xk),∇uτ0(xk))

+ εk(Δ + λ)
α
2 ψ(x̄k)

≤f(x̄k, u(x̄k),∇u(x̄k))− f(x̄k, uτ0(xk),∇uτ0(xk)) + Cεk

=− c(x̄k)wτ0(x̄k)−
n∑

i=1

ci(x̄
k)wτ0

i (x̄k) + Cεk → 0, as k → ∞.

Moreover, it follows from (4.29) that

(4.33)

−(Δ+λ)
α
2 (wτ0 + εkψ)(x̄

k)

= cn,αP.V.

∫
Rn

wτ0(x̄k) + εkψ(x̄
k)− wτ0(y)− εkψ(y)

eλ|x̄k−y||x̄k − y|n+α
dy

≥ C

∫
Bc

δ(x̄
k)

wτ0(x̄k) + εkψ(x̄
k)− wτ0(y)

eλ|x̄k−y||x̄k − y|n+α
dy

≥ C

∫
Bc

δ
(x̄k)

−wτ0(y)

eλ|x̄k−y||x̄k − y|n+α
dy

= C

∫
Bc

δ(x̄
k)

|wτ0(y)|
eλ|x̄k−y||x̄k − y|n+α

dy

→ C

∫
Bc

δ(0)

|wτ0(z + x̄k)|
eλ|z||z|n+α

dz, as k → ∞.

Denote

uk(x) = u(x+ x̄k) and wτ0
k (x) = wτ0(x+ x̄k).

Since f is bounded, one can derive that u(x) is at least uniformly Hölder con-

tinuous, therefore u(x) is uniformly continuous, by the Arzelà–Ascoli theorem,

up to extraction of a subsequence, so one has

uk(x) → u∞(x), x ∈ R
n
+, as k → ∞.

Putting together (4.32) and (4.33), we can deduce that

wτ0
k (x) → 0, x ∈ Bc

δ(0), as k → ∞.

Therefore, it follows that

u∞(x) = uτ0∞(x), x ∈ Bc
δ(0).
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Recalling that u>0 in R
n
+ and u(x)≡0, x∈R

n\Rn
+. Since x

k∈R
n−1×(0,M0+1],

we choose x0 ∈ R
n\Rn

+ (where x0n is sufficiently negative) such that u∞(x0) = 0.

Then by (1.11),

0 = u∞(x0) = uτ0∞(x0) = u∞((x0)′, x0n + τ0)

= u0∞((x0)′, x0n + 2τ0)

...

= lim
k→∞

u∞((x0)′, x0n + kτ0) = A.

which is absurd. Hence (4.27) must hold.

(II) Secondly, we claim that

(4.34) sup
Rn

wτ (x) ≤ 0, ∀τ ∈ (τ0 − ε, τ0].

Equation (4.27) implies that there exists an ε small enough such that

(4.35) sup
Rn−1×(0,M1+1)

wτ (x) < 0, ∀τ ∈ (τ0 − ε, τ0].

Consequently, we only need to prove that

(4.36) sup
Rn−1×(M1+1,+∞)

wτ (x) ≤ 0, ∀τ ∈ (τ0 − ε, τ0].

For convenience, we denote DM =: Rn−1 × (M1 + 1,+∞). Note that DM

is an unbounded domain. Suppose that equation (4.36) is not valid, and then,

through a direct calculation, at points x ∈ DM where wτ (x) > 0, we have

(4.37)

−(Δ+λ)
α
2 wτ (x)=f(x, u(x), (∇xu)(x))−f(x′, xn+τen, uτ(x), (∇xu

τ )(x))

≤ f(x, u(x), (∇xu)(x)) − f(x, uτ (x), (∇xu
τ )(x))

=: −c(x)wτ (x) −
n∑

i=1

ci(x)w
τ
i (x),

provided that

c(x) = −f(x, u,∇xu)− f(x, uτ ,∇xu)

u− uτ
≥ 0,

since u(x) > uτ (x) ≥ A− δ, for any x ∈ DM .

Using (4.35) and (4.37), we can deduce by using Theorem 4.2 that for

any τ ∈ (τ0 − ε, τ0], ∀x ∈ D, we obtain that wτ (x) ≤ 0 Thus we justify

claim (4.34), which again is a contradiction with the definition of τ0, and

hence τ0 = 0.
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Step 3. We claim that u is strictly increasing with respect to xn, u(x) depends

only on xn and uniqueness.

In Step 2, we have already proved that wτ (x) ≤ 0 in R
n
+, ∀ τ > 0. Next, we

shall prove that

(4.38) wτ (x) < 0, in R
n
+, ∀ τ > 0.

If not, then there exists τ2 > 0 and x̄ ∈ R
n
+ such that wτ2(x̄) = 0, which

implies x̄ is the maximum point of w(x), that is ∇wτ2(x̄) = 0. In view of (1.10),

we know that

−(Δ + λ)
α
2 wτ2(x̄) = f(x̄, u(x̄), (∇xu)(x̄))− f(x̄′, x̄n + τ2en, u

τ2(x̄), (∇xu
τ2)(x̄))

≤ f(x̄, u(x̄), (∇xu)(x̄))− f(x̄, uτ1(x̄), (∇xu
τ2)(x̄)) = 0.

On the other hand, due to wτ2 �≡ 0, we have

−(Δ + λ)
α
2 wτ2(x̄) = cn.αP.V.

∫
Rn

w(x̄)− w(y)

eλ|x̄−y||x̄− y|n+α
dy

= −cn,αP.V.
∫
Rn

w(y)

eλ|x̄−y||x̄− y|n+α
dy > 0,

which is clearly a contradiction. Hence u is strictly increasing with respect

to xn.

Next, we claim that u(x) depends only on xn.

In fact, it can be seen from the above process that the argument still holds if

we replace uτ (x) := u(x+ τν), where ν = (ν1, ν2, . . . , νn) with νn > 0 being an

arbitrary vector pointing upward. Applying similar sliding methods as above,

we can get, for each such vector ν,

u(x+ τν) > u(x), in R
n
+, ∀ τ > 0.

Accordingly, taking the limit νn → 0, again with the continuity of u, we deduce

that

u(x+ τν) ≥ u(x),

for arbitrary vector ν with νn = 0. If we replace ν by −ν, we can also obtain

u(x+ τν) = u(x), for arbitrary vector ν with νn = 0.

Finally, we claim uniqueness for u(x).

If not, we assume that u and v are two bounded solutions of system (1.10);

we denote

w̃τ (x) = v(x) − uτ (x).
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After a process similar to Step 1 and Step 2, we can get w̃τ
k (x) → 0 (as k → ∞)

in Bc
δ(0), that is,

v∞(x) − uτ0∞(x) ≡ 0, x ∈ Bc
δ(0).

Now we can choose a point x̂ such that x̂+ xk ∈ Bc
δ(0) ∩ ∂Rn

+ (where xk is the

same as in Step 2), thus for any τ0 > 0, we have x̂+ τ0en+x
k ∈ R

n
+. Therefore,

v∞(x̂) = 0, uτ0∞(x) > 0, and this gives a contradiction.

This concludes our proof of Theorem 1.8.
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