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ABSTRACT

For the exactly solvable model of exponential last passage percolation

on Z2, consider the geodesic Γn joining (0, 0) and (n, n) for large n.

It is well known that the transversal fluctuation of Γn around the line

x = y is n2/3+o(1) with high probability. We obtain the exponent gov-

erning the decay of the small ball probability for Γn and establish that

for small δ, the probability that Γn is contained in a strip of width δn2/3

around the diagonal is exp(−Θ(δ−3/2)) uniformly in high n. We also ob-

tain optimal small deviation estimates for the one point distribution of

the geodesic showing that for t
2n

bounded away from 0 and 1, we have

P(|x(t) − y(t)| ≤ δn2/3) = Θ(δ) uniformly in high n, where (x(t), y(t)) is

the unique point where Γn intersects the line x+ y = t. Our methods are

expected to go through for other exactly solvable models of planar last

passage percolation and also, upon taking the n → ∞ limit, expected to

provide analogous estimates for geodesics in the directed landscape.
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1. Introduction and statement of main results

Small ball probabilities are fundamental objects associated to stochastic pro-

cesses where one asks the following question: what is the probability that a

stochastic process remains within a ball of small radius (in an appropriate

norm) of a fixed function? One extensively studied case in the literature is

that of the small ball probabilities of C[0, 1] valued Gaussian processes in the

sup norm, of which Brownian motion and Brownian bridge are paradigm ex-

amples. If {Bt}t∈[0,1] denotes a standard Brownian motion or the standard

Brownian Bridge, it is well known [16] that

logP( sup
t∈[0,1]

|B(t)| ≤ δ) ∼ −π
2

8
δ−2 as δ → 0.

Our objective in this paper is to investigate the corresponding question for the

geodesics in planar last passage percolation models in the Kardar–Parisi–Zhang

(KPZ) universality class.

We primarily work with the exactly solvable model of exponential last pas-

sage percolation on Z2. Let {ωv}v∈Z2 be a configuration of independent and

identically distributed rate one exponentials associated with the vertices of Z2.

For any u, v ∈ Z2 such that u is co-ordinate wise smaller than v, and an up-right

path γ from u to v, we define the passage time of the path γ, denoted �(γ), by

�(γ) :=
∑

w∈γ\{u,v}
ωw;
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i.e., the passage time of a path is the sum of the weights on it excluding the

weight of the initial and final vertices.1 The last passage time between u and v,

denoted Tu,v, is the maximum of �(γ) where the maximum is taken over all up-

right paths from u to v. The last passage time from 0 to n (we shall denote the

vertex (r, r) by r for r ∈ Z) will be denoted by Tn. Note that by the continuity of

the exponential distribution, almost surely, between any two (ordered) vertices

u and v, there exists a unique path attaining the last passage time Tu,v; this

path, denoted Γu,v, will be called the geodesic between u and v. The geodesic

between 0 and n will be denoted by Γn.

Observe that Γn defines a stochastic process on �0, 2n� (�a, b� will denote the

discrete interval [a, b] ∩ Z) in the following way: For t ∈ �0, 2n�, define

Γn(t) := x(t)− y(t),

where (x(t), y(t)) is the unique point where Γn intersects the line Lt :={x+y= t};
note that the same definition also allows us to define Γu,v(t) for any u ∈ L0

and v ∈ Ln. Clearly, Γn(·) is an integer valued stochastic process on �0, 2n�

pinned to 0 at either end and having ±1 increments, i.e., taking the same real-

izations as a simple random walk bridge on the same interval. The distribution

of Γn(·), however, is very different. Unlike the n1/2 fluctuations in the case of

the SRW bridge, Γn(·) has fluctuations of the order n2/3 [32, 14], 2/3 being the

characteristic KPZ scaling exponent for correlation length. Hence it is natural

to consider the small ball probability that sup |Γn(·)|, usually referred to as the

transversal fluctuation of the geodesic, is upper bounded by δn2/3 for some

small positive δ. Our first main theorem identifies the exponent governing the

decay of this probability.

Theorem 1: There exists δ0 > 0 and positive constants C1, C2, c1, c2 such that

for all 0 < δ < δ0 and for all n ≥ n0(δ), we have

C2e
−c2δ

−3/2 ≤ P( sup
t∈�0,2n�

|Γn(t)| ≤ δn2/3) ≤ C1e
−c1δ

−3/2

.

1 Note that we are excluding both the initial and final vertices in the computation of �(γ)

contrary to the more standard definition that includes both the endpoints. This is done

for certain technical reasons explained later and our main results remain valid under the

standard definition. Indeed, one can note that all paths γ : u → v share the vertices u

and v. Hence, the geodesic is not dependent on whether we include the weights at u and

v in the definition of �(γ). In fact, for our purposes, we shall also briefly need to consider

a variant of the definition that excludes only the weight of the last vertex.
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Our second main result concerns small deviations of the one point distribu-

tion Γn(·). As mentioned before, it is known that if t
2n is bounded away from 0

and 1, then Γn(t) has fluctuations of the order n2/3 (if t is close to 0 or 2n, the

fluctuation is of the order t2/3 or (2n− t)2/3 respectively, see [13, Theorem 3])

and the following theorem addresses the small deviation question for such values

of t.

Theorem 2: There exists δ0 > 0 such that for all ε ∈ (0, 1) and 0 < δ < δ0,

there exist positive constants C3, c3 depending on ε such that for all n ≥ n0(δ, ε)

and t ∈ �εn, (2− ε)n�, we have

c3δ ≤ P(|Γn(t)| ≤ δn2/3) ≤ C3δ.

Notice that it is not necessary to take δ < δ0 in the statements of Theorems 1

and 2; indeed, one can simply adjust the constants to ensure that the estimates

hold for all δ. Further, although we have stated the theorems for a fixed δ

and n→ ∞, one can also get similar results if δ → 0 sufficiently slowly with n.

For Theorem 1, it should suffice to assume δn2/3 → ∞; see Section 6.2 for

a more detailed discussion on this point. It will be clear from our proofs that

Theorem 2 holds for any δ ≥ 2n−2/3 for all n sufficiently large (depending on ε).

The factor 2 is needed to handle the case of odd t; for even t, one gets the same

statement for δ ≥ n−2/3 (indeed, for t odd, P(|Γn(t)| ≤ 1) = 0). Furthermore,

for each L > 0 and any interval I ⊆ [−Ln2/3, Ln2/3] with |I| ≥ 2 (the lower

bound of 2 is imposed to make sure that the corresponding probability is not 0

as before), we have that for some positive constants c3, C3 depending on ε and L,

P(|Γn(t)| ∈ I) ∈ n−2/3|I|[c3, C3] for n sufficiently large. See Corollary 6.1 for a

precise statement.

The n2/3 fluctuation suggests the following scaling for Γn akin to the scaling

taking simple random walk to Brownian motion: we define a C[0, 1] valued

stochastic process πn by setting

πn(s) := n−2/3Γn(2ns)

for s ∈ [0, 1] if 2ns ∈ Z and extending πn by linear interpolation to all of [0, 1].

One can show using the estimates in [14, 11, 13] that πn is tight in the topology

of uniform convergence (see e.g. [30, Theorem 1.1 (a)] for the corresponding

result in Poissonian LPP) and one would expect that there exists a C[0, 1]

valued stochastic process π such that πn ⇒ π weakly in C[0, 1], where the
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limit π corresponds to a geodesic in the universal space-time scaling limit of the

last passage percolation landscape.

Corollary 3: Let π denote any subsequential weak limit of πn defined above

in C[0, 1] equipped with the topology of uniform convergence. Then we have

the following.

(i) There exists δ0 > 0 and positive constants C1, C2, c1, c2 such that for

all 0 < δ < δ0, we have

C2e
−c2δ

−3/2 ≤ P( sup
s∈[0,1]

|π(s)| ≤ δ) ≤ C1e
−c1δ

−3/2

.

(ii) There exists δ1 > 0 such that for all s ∈ (0, 1) and 0 < δ < δ1 there

exists C3(s), c3(s) (bounded away from 0 and ∞ as long as s is bounded

away from 0 and 1) with

c3δ ≤ P(|π(s)| ≤ δ) ≤ C3δ.

The universal space-time scaling limit for the passage time landscape men-

tioned above has been recently established where the limiting object, a four

parameter random field encoding the (scaled) last passage time between the

space-time points (x, s) and (y, t) for s < t, is called the directed landscape.

This was initially done in the set-up of the exactly solvable model of Brownian

LPP in [17]; we would not define the directed landscape precisely, see [17] for

details. Roughly speaking, the directed landscape is obtained from LPP under

an affine scaling that scales the time direction by n, the space direction is scaled

by n2/3, the origin is fixed and the point (n, n) is scaled to (0, 1). Under this

scaling the geodesic from (0, 0) to (n, n) becomes a geodesic from (0, 0) to (0, 1).

The existence of the geodesic in the directed landscape between (0, 0) and (0, 1)

in the directed landscape (a random continuous path moving vertically upwards)

was shown in [17], and several of its properties (including weak convergence of

geodesics in Brownian LPP to the geodesic in the directed landscape) was stud-

ied in [17, 18]. The weak convergence of the geodesics in exponential LPP to

the geodesic in directed landscape was established in [20, Theorem 1.8]. Using

this, one should get the variants of Corollary 3 for geodesics in the directed

landscape. However, the space-time scaling considered in [20] is slightly differ-

ent from the one considered above; we shall therefore refrain from making a

precise statement in that set-up.
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1.1. Background and related results. Planar last passage percolation

models are believed to belong to the KPZ universality class for a very general

class of passage time distributions and are predicted to exhibit the universal

scaling exponents 1/3 and 2/3 for the passage time and the transversal fluc-

tuation of the geodesic respectively. Starting with the breakthrough work of

Baik–Deift–Johansson [2] which established the exponent 1/3 (and the Tracy–

Widom limit) for Poissonian LPP, this area has seen a great flurry of activity

which has led to a similar analysis of a number of other exactly solvable mod-

els of planar last passage percolation including exponential and geometric LPP

[31], and Brownian LPP [7]. Using the connection of exponential LPP with the

Totally Asymmetric Simple Exclusion process, the first order behaviour of Tm,n

was already identified by Rost in [38] who established that for γ bounded away

from 0 and ∞, almost surely,

n−1T0,(n,γn) → (1 +
√
γ)2.

In [31], it was shown that Tm,n has the same law as the largest eigenvalue of a

certain random matrix ensemble (Laguerre Unitary Ensemble (LUE)) and that

for γ bounded away from 0 and ∞, one has that

(1) γ1/6(1 +
√
γ)−4/3n−1/3(T0,(n,γn) − (1 +

√
γ)2n)

converges weakly to the GUE Tracy–Widom distribution as n → ∞. For our

purposes, we shall need finite n quantitative results, namely, uniform moderate

deviation estimates for n−1/3(T0,(n,γn)−(1+
√
γ)2n). These are provided in [34]

using the tridiagonal form of LUE (a non-optimal estimate is also available

in [4]).

Using the understanding of the fluctuation of the passage times, one can

study the transversal fluctuations of the geodesic. Under some unproven as-

sumptions, an upper bound on the transversal fluctuation exponent was proved

for first passage percolation by Newman and co-authors (see e.g. [37]) and a

rigorous lower bound was proved in [42, 41] for the related model of Brownian

motion in a Poissonian potential; a general argument proving both conditional

upper and lower bounds for FPP later appeared in [15]. Using similar argu-

ments together with the moderate deviation estimates from [2], Johansson [32]

first proved the 2/3 exponent for geodesics in Poissonian LPP. In particular, he

proved that for every ε > 0, the probability that either supt |Γn(t)| ≥ n2/3+ε

or supt |Γn(t)| ≤ n2/3−ε goes to 0 as n → ∞ (here |Γn(·)| is defined similarly
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as before, but for Poissonian LPP). The same result was proved for Geometric

LPP [33] and the same argument would also provide the same result for expo-

nential LPP using the moderate deviation estimates from [34]. The transversal

fluctuation exponent of 2/3 for exponential LPP was also established in [5] using

a very different approach involving stationary LPP.

One point of note regarding [32] (and other similar results, e.g., [15]) is that

the argument for the upper bound for the transversal fluctuation can be made

quantitative, while the lower bound cannot. That is, one can tighten the argu-

ment in [32] and write down an upper bound for P(|Γn(t)| > xn2/3) for some

large but fixed x (indeed, one would even get the optimal result if one uses the

optimal moderate deviation estimates from [32], see [11]). However, the lower

bound typically involves a union bound over a discretization that is polynomi-

ally large in n, and hence the same argument cannot be used to get a bound for

P(supt |Γn(t)| < δn2/3) for a small but fixed δ (a quantitative but non optimal

upper bound for P(supt |Γn(t)| ≤ n2/3−ε) appeared in [9]). Theorem 1 therefore

requires a somewhat different approach.

This paper falls within the general program of understanding the geodesic

geometry in integrable models of last passage percolation using one point mod-

erate deviation estimates together with percolation techniques. This program

was initiated in [14] and has been followed up in [13, 12, 30, 43, 10, 24, 22].

Consequences of understanding the geodesic geometry have been further ex-

plored in [8, 11]. In [14], among other results, quantitative upper tail bounds

for the transversal fluctuation of geodesics in Poissonian LPP were proved us-

ing moderate deviation estimates and a chaining argument. Although [14] used

sub-optimal moderate deviation estimates from [4], the same argument together

with the optimal moderate deviation estimates lead to the optimal upper tail

bound for large transversal fluctuations:

(2) P(sup
t

|Γn(t)| > xn2/3) ≤ e−cx3

.

See [11, Proposition C.9] for the corresponding result (obtained by the same

argument) written out in the exponential LPP setting. In the set-up of Poisso-

nian LPP, [30] proved a matching lower bound P(supt |Γn(t)| > xn2/3) ≥ e−c′x3

establishing that the exponent is indeed optimal. As far as we are aware, this

result does not explicitly appear in the literature for exponential LPP, but the

arguments are robust and are expected to go through.
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There is a separate line of works relevant for the current paper involving the

related semi-discrete model of Brownian last passage percolation. Using the one

point moderate deviation estimates and a special resampling property (Brow-

nian Gibbs property) exhibited by a line ensemble associated with Brownian

LPP, Hammond [29, 28, 27, 26] developed a deep understanding of geodesic ge-

ometry in Brownian LPP. Using similar techniques, [17] constructed the scaling

limit– the directed landscape, as mentioned before.

1.2. Outline of the proofs and new contributions in this paper. As

mentioned before, this paper continues the general program of understanding

the geodesic geometry in integrable planar last passage percolation models using

the one point moderate deviation estimates. We shall have occasion to use

some of the estimates obtained and techniques developed in the prior works

in this program, in particular from [14, 13, 12, 11] while also requiring several

new ideas and technical ingredients. We provide a sketch of our arguments

proving Theorems 1 and 2 in this subsection and point out the primary new

contributions of our work. We discuss the upper and lower bounds in each case

separately below. In each case, the upper bound turns out to be significantly

easier than the lower bound.

1.2.1. Theorem 1, upper bound. The basic idea for the upper bound in Theorem

1 is rather simple: we first obtain upper tail estimates for the weight of best

path from 0 to n constrained to be in the δn2/3 strip and show that for small δ,

the probability that it is competitive with Tn has the desired upper bound.

Namely, if we let T δ
n denote the weight of the best path from 0 to n that does

not exit the strip {|x− y| ≤ δn2/3}, then we have the following proposition:

Proposition 1.1: There exists C, c > 0 such that for all δ sufficiently small

and all n sufficiently large (depending on δ), we have

P
(
T δ
n ≥ 4n− C

δ
n1/3

)
≤ e−cδ−3/2

.

The idea behind Proposition 1.1 is the following: one can approximate T δ
n

by a sum of Θ(δ−3/2) many i.i.d. variables, each of which roughly corresponds

to the passage time across the two smaller sides of a δ3/2n × δn2/3 rectangle.

Owing to the negativity of the mean of the GUE Tracy–Widom distribution,

each of these variables have mean 4δ3/2n− c′δ1/2n1/3 and have sub-exponential

tails at the scale δ1/2n1/3. Once this is established, the proof of Proposition 1.1
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is a simple application of a Bernstein type inequality for i.i.d. sub-exponential

variables. With Proposition 1.1 at our disposal, completing the proof of the

upper bound in Theorem 1 is easy by using the lower tail estimate for Tn.

The argument proving Proposition 1.1 has already been used in the literature

several times, sometimes with sub-optimal tails (see e.g. [8, 11, 12], and also [10,

Proposition 4.2], where the optimal exponent was obtained in a related setting),

but its consequence for the upper bound of small ball probability had not been

noted before as far as we are aware. In the setting of Poissonian LPP, another

relevant work is [21], where the mean, fluctuation and central limit behaviour

is studied for an off-scale analogue of T δ
n , where the strip {|x − y| ≤ δn2/3} in

the definition of T δ
n is replaced by the off-scale strip {|x− y| ≤ n2/3−ε}.

The proofs of Proposition 1.1 and the upper bound in Theorem 1 are provided

in Section 3.

1.2.2. Theorem 1, lower bound. This is the most technical part of our arguments

and also the heart of major new technical achievements of this paper. Recall

that we are trying to show that on an event of probability at least e−cδ−3/2

,

the geodesic Γn does not exit the strip {|x − y| ≤ δn2/3}. As we only require

to prove this for sufficiently small δ, we shall instead consider the following

reparametrization for notational convenience. We shall show that there exists

an absolute constant M ≥ 1 such that with probability at least e−cδ−3/2

, the

geodesic does not exit the strip {|x− y| ≤Mδn2/3}.
The main idea is to construct two favourable events. The first one, called

Inside, shall depend on the inside of the strip {|x − y| ≤ δn2/3} and shall

ensure that:

• T δ
n ≥ 4n+ C

δ n
1/3.

• The passage time for any points (not necessarily well-separated) inside

the strip {|x − y| ≤ δn2/3} is not too much smaller compared to its

expectation.

Both these conditions can be shown to hold with probability at least e−cδ−3/2

,

and as they are both increasing events, the FKG inequality ensures that

P(Inside) satisfies a desired probability lower bound.

The second event is a barrier event, called Bar, which ensures that there is

a barrier straddling both of the longer sides of the rectangle

{0 ≤ x+ y ≤ 2n} ∩ {|x− y| ≤ δn2/3}
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such that any path that spends a lot of time inside this barrier region incurs a

penalty. Though the event Bar, as defined, will depend on the entire comple-

ment of the above-mentioned rectangle, it essentially puts constraints only in a

region of width O(δn2/3) around the rectangle. One can show that the barrier

event Bar holds with probability at least e−cδ−3/2

, and since, by definition, this

is independent of Inside, the intersection of the two favourable events have the

desired probability lower bound of e−cδ−3/2

.

The rest of the argument is to show that on these favourable events, one in-

deed has that Γn does not exit the strip {|x−y| ≤Mδn2/3}, which is achieved by

ruling out both short and long excursions outside this strip. Indeed, if the geo-

desic has a short excursion (i.e., the starting and ending point of the excursion is

separated by O(δ3/2n) in the time direction) outside the strip {|x− y| ≤ δn2/3}
during which it also exits the wider strip {|x− y| ≤Mδn2/3} this segment will

then have a very high transversal fluctuation which would make it uncompeti-

tive with the best path between the excursion endpoints restricted to be within

the strip {|x − y| ≤ δn2/3}. Long excursions are ruled out using the definition

of the barrier event and the fact that the best path inside the strip is ensured

to be longer than typical.

A superficially similar scheme was adapted in [8, 11] to lower bound correla-

tions between last passage times; however here we are faced with significant new

technical challenges. Among other issues, the barrier event has to be suitably

defined so that its probability can be appropriately lower bounded as a function

of δ, which requires the introduction of a number of new geometric ingredients.

This is one of the primary new contributions in this work.

1.2.3. Theorem 2, upper bound. This follows quite easily from existing results

in the literature, with the idea going back to [12]. In fact, the special case

of t = n and δn2/3 = 1 of Theorem 2 was alluded to in [12, Remark 3.13] in

connection with the so-called midpoint problem where it was remarked that

the probability that Γn passes through n
2 is O(n−2/3). A sketch for the upper

bound was provided there, and we adapt the same argument for our purposes.

Let us fix t ∈ �εn, (2 − ε)n� and without loss of generality let us assume t

is even. We consider the points ui = (iδn2/3,−iδn2/3) and vi = n + ui

for i ∈ �− δ−1

2 , δ
−1

2 �. Let I0 denote the line segment on Lt between the

points ( t2 + δ
2n

2/3, t
2 − δ

2n
2/3) and ( t

2 − δ
2n

2/3, t
2 + δ

2n
2/3) and let Ii = I0 + ui.

Clearly by translation invariance, for each i, P(|Γn(t)| ≤ δn2/3) = p is equal to
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the probability pi that Γui,vi intersects Ii. Now clearly,
∑

i pi = δ−1p is upper

bounded by the expected number of distinct points at which the geodesics Γui,vi

can intersect the line Lt. We shall show in Lemma 5.2, following an argument in

[12], that the latter number is upper bounded independent of δ, and this would

provide the required upper bound for p. This proof is completed in Section 5.1.

1.2.4. Theorem 2, lower bound. The idea here is similar to the upper bound,

but requires several different ingredients. Using the same notations as above,

we need to show that
∑
pi is bounded below away from 0 independently of δ.

It suffices to show that with probability bounded away from 0 independently

of δ, there exists an i such that the geodesic Γui,vi intersects Ii. By planarity,

and the ordering of geodesics, it is enough to show the following.

Proposition 1.2: Given ε ∈ (0, 1) and t ∈ �εn, (2 − ε)n�, there exists a con-

stant c > 0 and a large enough positive choice of M depending on ε such that

for all n > n0(ε), we have

P({Γa1,b1(t) = Γa2,b2(t)} ∩ {|Γa1,b1(t)| ≤ 2Mn2/3}) ≥ c

where a1, a2 denote the points (−Mn2/3,Mn2/3) and (Mn2/3,−Mn2/3) respec-

tively and bi = ai + n for i = 1, 2.

The proof of Proposition 1.2 hinges on constructing favourable geometric

events which force the geodesics to coalesce. Several new ideas and ingredi-

ents are required to ensure that a common point on the geodesic is located

in a restricted region in both space and time (on the line segment

Lt ∩ {|x− y| ≤ 2Mn2/3}), which requires strong control on the geometry of

the geodesics. A related, albeit simpler, result showing coalescence (without

control of the coalescence point) was obtained before in [13, Proposition 3.1].

We use Proposition 1.2 to complete the proof of the lower bound of Theorem 2

in Section 5.2 and the proof of Proposition 1.2 is provided in Section 5.3.

Organization of the paper. The rest of this paper is organised as follows.

In Section 2, we collect the basic inputs we use in this work including the one

point moderate deviation estimates and their consequences that have appeared

in the literature. In Sections 3 and 4, we complete the proofs of the upper

and lower bounds of Theorem 1 respectively. Section 5 contains the proof of

Theorem 2. We finish with a discussion of potential extensions in Section 6.
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2. Moderate deviation estimates and consequences

In this section, we recall some of the fundamental estimates about exponential

LPP and their consequences that have appeared in the literature. These include

moderate deviation estimates for the passage times, and estimates on controlling

passage times across parallelograms and transversal fluctuations of geodesics.

We shall heavily rely on these estimates throughout this paper.

Before starting, we introduce some notation. For a path γ : u→v, where u ≤ v

(i.e., u is coordinate-wise smaller than v), we use the notation

�(γ) =
∑

w∈γ\{u,v}
ωw,(3)

�(γ) =
∑

w∈γ\{v}
ωw.(4)

For a point (x1, y1) ∈ R2, we will often use the change of co-ordinates

φ((x1, y1)) = x1 + y1,(5)

ψ((x1, y1)) = x1 − y1.(6)

Keeping in line with the literature, φ(·) and ψ(·) will be called the time coor-

dinate and the space coordinate of a point respectively. For points u, v ∈ Z2

with u ≤ v, we use Tu,v to denote the last passage time from u to v, calculated

by using weights given by �, i.e.,

Tu,v = max
γ:u→v

�(γ).



Vol. TBD, 2024 SMALL BALL PROBABILITIES FOR LPP 13

We shall also have brief occasions to use a variant of the above definition of

last passage time defined by replacing � by � in the above display: this will be

denoted by Tu,v. Clearly, Tu,v ≥ Tu,v; in fact, we have that Tu,v = Tu,v + ωu,

and this implies that ET u,v = ETu,v + 1.

We shall use centered passage times; in general, we use a ·̃ symbol over a

variable to denote a centered (by its mean) variable, e.g.,

(7) T̃u,v = Tu,v − ETu,v.

We will use Lt to denote the line {x+ y = t} ⊆ Z2.

2.1. One point moderate deviation estimates and passage times

across parallelograms. As already mentioned, the correspondence be-

tween point to point passage times and the largest eigenvalue of LUE was ob-

tained in [31]. The following sharp moderate deviation estimate for the latter

has been obtained in [34].2

Proposition 2.1 ([34, Theorem 2]): For each η > 1, there exist C, c > 0

depending on η such that for all m,n sufficiently large with η−1 < m
n < η and

all y > 0, we have the following:

(i) P(T0,(m,n) − (
√
m+

√
n)2 ≥ yn1/3) ≤ Ce−cmin{y3/2,yn1/3}.

(ii) P(T0,(m,n) − (
√
m+

√
n)2 ≤ −yn1/3) ≤ Ce−cy3

.

Observe that for m,n as above, Proposition 2.1 implies that

(8) |ET0,(m,n) − (
√
m+

√
n)2| ≤ Cn1/3

for some positive constant C (depending only on η). A similar statement holds

for ET 0,(m,n) simply because ET 0,(m,n) = ET0,(m,n) + 1.

Proposition 2.1 can be used to control passage times across an on-scale paral-

lelogram (i.e., a parallelogramwhose dimensions in the time and space directions

are n and n2/3 respectively). Such estimates were first obtained in [14] in the

context of Poissonian LPP, and the details for the exponential LPP were worked

out in [11]; we shall quote the latter source. We need to set up some further

notation before stating the results.

2 The correspondence to LUE holds when the last passage time includes the weights of the

endpoints. However, for m,n large the contribution of the endpoints is negligible and

Proposition 2.1 holds for our definition of T0,(m,n) (and also T0,(m,n)).
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We use Un
δ for the rectangle which is defined by

(9) Un
δ = {−δn2/3 ≤ ψ(u) ≤ δn2/3} ∩ {0 ≤ φ(u) ≤ 2n}.

In general, we suppress the dependence on n and simply write Uδ for Un
δ . We

will still use the latter notation in case we need to use the notation with some

parameter other than n. We shall use notations Un,L
δ and Un,R

δ to denote the

left and right line segments of Un
δ respectively.3 That is, we define

(10)
Un,L
δ = Un

δ ∩ {ψ(u) = −δn2/3},

Un,R
δ = Un

δ ∩ {ψ(u) = δn2/3}.

To reduce clutter, we usually abbreviate these to just U L
δ and U R

δ . Similarly, the

two short sides of the parallelogram Un
δ are denoted by Un

δ and U
n

δ respectively.

That is, we define

(11)
Un

δ = Un
δ ∩ L0,

U
n

δ = Un
δ ∩ L2n.

These are similarly abbreviated to U δ and U δ respectively.

We will in general be quoting results from [11] for passage times across the

parallelograms UΔ for any fixed Δ > 0. These results were originally written

for Δ = 1 but all the proofs straightforwardly generalize for any Δ (see [11,

Lemma C.3, Lemma C.15]). Thus, we will directly quote such results for gen-

eral Δ and not comment further. The following result controlling the tails of

the maximum and minimum passage time from UΔ to UΔ for any fixed Δ > 0

will be crucial for us.

Proposition 2.2 ([11, Theorem 4.2]): For any Δ > 0, there exist constants

C1, C2, c1, c2 depending on Δ such that for all r, n large enough, we have:

(1) P(supu∈UΔ,v∈UΔ
T̃u,v ≥ rn1/3) ≤ C1e

−c1 min{r3/2,rn1/3}.

(2) P(infu∈UΔ,v∈UΔ
T̃u,v ≤ −rn1/3) ≤ C2e

−c2r
3

.

We would like to point out that there is another slight discrepancy between

Proposition 2.2 stated as above and the corresponding statement in [11], and

the same is true for the other results below quoted from the same source. In-

deed, [11] proves Proposition 2.2 with T above replaced by T . As we have

3 The standard convention of rotating the picture by 45 degrees counter-clockwise so that

time direction moves vertically upwards will often guide our choice of defining “left” and

“right”.
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pointed out above, the exclusion of one of the endpoints does not change the

estimates. For the sake of completeness, we shall explain, just this once, how to

get Proposition 2.2 from the corresponding result in [11]. We shall ignore this

issue for the subsequent results quoted in this section with the understanding

that similar minor adaptations can be made to work in each of the cases.

As mentioned earlier, observe first that for any u, v ∈ Z2, Tu,v = Tu,v+ωu and

hence ETu,v = ETu,v +1. It therefore follows that supu,v T̃u,v ≤ supu,v T̃u,v +1

and item (1) of Proposition 2.2 is immediate from the corresponding result

for T . For item (2), let U∗ denote the line segment

{u : φ(u) = 1, |ψ(u)| ≤ Δn2/3 + 1}.

By using (8), one has that ET u,v,ETu,v ∈ (4n − Cn1/3, 4n + Cn1/3) for large

enough n and all u ∈ U∗ ∪ UΔ, v ∈ UΔ. Clearly, this implies the crude bound

inf
u∈UΔ,v∈UΔ

T̃u,v ≥ inf
u∈U∗,v∈UΔ

T̃u,v − 2Cn1/3

and applying [11, Theorem 4.2] to the RHS above immediately gives item (2).

We will also require a version of Proposition 2.2 for passage times of highest

weight paths restricted to be in some parallelogram. For any u ≤ v and a

region G ⊆ Z2 satisfying u, v ∈ G∪ ∂G, we define the constrained passage time

(12) TG
u,v = sup

γ:u→v,γ\{u,v}⊆G

�(γ).

For constrained last passage times, we define the centered version

T̃G
u,v = TG

u,v − ETu,v.

Note that this notation is a slight deviation from (7): the centering here is

done with the mean of the unrestricted passage time Tu,v instead of TG
u,v. We

similarly define TG
u,v and T̃

G

u,v = TG
u,v − ETu,v. Since we will be using the

terms T
Un

δ
u,v and T̃

Un
δ

u,v very often, to reduce notational clutter, we introduce the

shorthand notations

T δ
u,v = T

Un
δ

u,v ,

T̃ δ
u,v = T̃

Un
δ

u,v .

We need the following tail estimates for constrained passage times between

well separated points in an n× n2/3 rectangle.
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Proposition 2.3 ([11, Theorem 4.2]): For any Δ > 0, there exist constants

C1, C2, c1, c2 depending on Δ such that for any L > 0 and all r, n large enough

depending on L, we have:

(1) P(supu,v∈UΔ,φ(v)−φ(u)≥ n
L
T̃Δ
u,v ≥ rn1/3) ≤ C1e

−c1 min{r3/2,rn1/3}.

(2) P(infu,v∈UΔ,φ(v)−φ(u)≥ n
L
T̃Δ
u,v ≤ −rn1/3) ≤ C2e

−c2r.

In Proposition 2.2, we allowed the two points u, v to vary on the shorter sides

of the parallelogram UΔ. We now state an analogous result from [11] where the

points u, v vary on the long sides of UΔ (i.e., U L
Δ or U R

Δ), and are thus allowed

to be arbitrarily close to each other in the time direction.

Proposition 2.4 ([11, Lemma C.16]): For any Δ > 0, there exist constants

C, c depending on Δ such that for all r, n large enough, we have

P( inf
u,v∈UL

Δ,φ(u)≤φ(v)
T̃Δ
u,v ≤ −rn1/3) ≤ Ce−cr.

The same holds if U L
Δ is replaced by U R

Δ.

2.2. Transversal fluctuation estimates. For both the small ball and the

one point estimates, we will require strong estimates on the upper tail of the

transversal fluctuation of the point-to-point geodesic. The following result

from [11] states that paths from 0 to n with a transversal fluctuation larger

than Mn2/3 incur a loss of order M2n1/3 in weight with large probability.

Proposition 2.5 ([11, Proposition 4.7]): There exist constants ξ, c1 > 0 such

that for all M sufficiently large, and all n sufficiently large, the event (de-

noted by G) that there exists a path γ from 0 to n satisfying γ � UM and

�(γ) ≥ 4n− ξM2n1/3 satisfies

P(G) ≤ e−c1M
3

.

2.3. Lower bounds. To obtain the lower bounds in Theorem 1 and Theo-

rem 2, one needs to show that the probability of certain unlikely events are

nonetheless uniformly bounded away from 0. We need two results: one for the

upper tail and one for the lower tail. The first result, which is a strengthening of

[11, Lemma 4.9], shows that with probability bounded away from 0, last passage

times (and constrained last passage times) can be arbitrarily larger than typical

at the fluctuation scale. Although it is a rather straightforward consequence
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of [11, Lemma 4.9], we believe that it can be potentially useful in other settings

and hence state the following lemma separately.

Lemma 2.6: For any Δ > 0, there exist constants C, c > 0 depending on Δ

such that for every x > 0, we have for all sufficiently large n (depending on x)

P( inf
u∈UΔ,v∈UΔ

TΔ
u,v ≥ 4n+ xn1/3) ≥ Ce−cx3/2

.

Proof. We will define three independent events A1, A2, A3 such that the event

in question is a sub-event of A1 ∩ A2 ∩ A3 and P(A1 ∩ A2 ∩ A3) ≥ Ce−cx3/2

.

Define

A1 =
{

inf
u∈UΔ

TΔ
u,n/4 ≥ n− x

2
n1/3

}
,

A2 =
{
TΔ
n/4,3n/4 ≥ 2n+ 2xn1/3

}
,

A3 =
{

inf
v∈UΔ

TΔ
3n/4,v ≥ n− x

2
n1/3

}
.

The independence of A1, A2, A3 is clear by definition. Also, by [11, Lemma 4.9]

we have P(A2) ≥ C1e
−c1x

3/2

for n large enough depending on x. Observe now

that by (8), we have that there exists a large enough constant C2 such that

A1 ⊇
{

inf
u∈UΔ

T̃Δ
u,n/4 ≥ −

(x
2
− C2

)
n1/3

}
and analogously

A3 ⊇
{

inf
v∈UΔ

T̃Δ
3n/4,v ≥ −

(x
2
− C2

)
n1/3

}
.

Now on using Proposition 2.3, we get high probability lower bounds for P(A1)

and P(A3). Combining this with the independence of A1, A2, A3 along

with P(A2) ≥ Ce−cx3/2

, we get the required lower bound for the probability

of P(A1 ∩A2 ∩A3). The fact that A1 ∩ A2 ∩ A3 is a sub-event of the event in

question is straightforward. Indeed, we have that

TΔ
u,v ≥ TΔ

u,n/4 + TΔ
n/4,3n/4 + TΔ

3n/4,v

deterministically for any u, v in the respective line segments due to the exclusion

of the endpoints in the definition of �.

The next result, quoted from [11], provides a lower bound for unlikely events

in the lower tail.
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Lemma 2.7 ([11, Lemma 4.10]): For any Δ,M > 0, we have that there exists

a constant c > 0 (depending on Δ,M) such that for all n sufficiently large

depending on Δ,M , we have

P( sup
u∈UΔ,v∈UΔ

Tu,v ≤ 4n−Mn1/3) ≥ c.

3. Upper bound for the small ball probability

In this section, we provide the proof of Proposition 1.1 and use it to establish

the upper bound in Theorem 1. The first step of the proof of Proposition 1.1

is to divide the rectangle Uδ into sub-rectangles of size O(δ3/2n)× δn2/3.4

Define for any A > 0 and for all i ∈ Z,

(13) Un
δ,A,i = {−δn2/3 ≤ ψ(u) ≤ δn2/3}∩{2iAδ3/2n ≤ φ(u) ≤ 2(i+1)Aδ3/2n}.

Note that Uδ =
⋃δ−3/2/A−1

i=0 Un
δ,A,i. The abbreviations Uδ,A,i, U δ,A,i, Uδ,A,i are

defined analogously to the abbreviations for the corresponding quantities of the

parallelogram Un
δ .

The basic idea for the proof of Proposition 1.1 is that for small δ, T δ
n can be

approximated by sums of passage times across Uδ,A,i. Indeed, for A sufficiently

large, to be chosen appropriately later, we define

(14) Yi = sup
u∈Uδ,A,i, v∈Uδ,A,i

TUδ,A,i
u,v .

Clearly, the Yi are i.i.d. across i. Let us define i.i.d. variables

Zi =
Yi − 4Aδ3/2n

A1/3δ1/2n1/3
.

The next result gives information about the mean and upper tail of Zi.

Lemma 3.1: For A sufficiently large, there exist positive constants c2, c3, C3

(independent of δ) such that for all n sufficiently large depending on δ, we have:

(i) EZi ≤ −c2.
(ii) P(Zi ≥ r) ≤ C3e

−c3r for each r > 0.

4 Throughout the paper, we shall assume without loss of generality that δn2/3 and δ3/2n

are even integers and ignore rounding issues arising from this, and also several other

divisibility issues. This is done merely to reduce notational overhead and the reader can

verify that the same arguments go through in the general case, with appropriate additions

of floor and ceiling signs.
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Proof. Observe first that in the expression (14), each of the terms

satisfy TUδ,A,i
u,v ≤ Tu,v. In view of this, (ii) is an immediate consequence of

Proposition 2.2, (i) and (8). Note that Proposition 2.2, as stated, is for the

variables T and not the variables T . However, as remarked in a footnote ear-

lier, the effect of the endpoints is negligible and Proposition 2.2 (and also (8))

also hold for the variables T .

To prove (i), we show that (Aδ3/2n)−1/3(EYi − ETAδ3/2n) can be made arbi-

trarily small by taking A sufficiently large. Since

ETAδ3/2n ≤ 4Aδ3/2n− cA1/3δ1/2n1/3

(this is a consequence of the distributional convergence as in (1) and the fact

that GUE Tracy–Widom distribution has negative mean, see [10, Lemma A.4])

for some c > 0 and n sufficiently large, (i) follows by choosing A appropriately

large. See [10, Lemma 4.1] or [12, Lemma 2.4] for a complete argument.

We can now give the proof of Proposition 1.1.

Proof of Proposition 1.1. Notice first that

(15) T δ
n ≤

δ−3/2/A−1∑
i=0

Yi.

Indeed, this is the reason we used T instead of T in the definition of Yi. Thus,

it suffices to show that for some constant c1, we have

(16) P

( δ−3/2/A−1∑
i=0

Yi ≥ 4n− c1
δ
n1/3

)
≤ Ce−cδ−3/2

.

Recalling the definition of Zi, (16) is equivalent to showing

(17) P

(
1

δ−3/2/A

∑
Zi ≥ −c1A2/3

)
≤ Ce−cδ−3/2

for some choice of the constants A, c1. We now use Lemma 3.1, by first

fixing A to be large enough and then choosing c1 small enough to ensure

that c1A
2/3 = c2/2 where c2 is as in Lemma 3.1. This yields that the vari-

ables Zi + c1A
2/3 are subexponential with negative mean. Now, (17) is an easy

consequence of a Bernstein type concentration inequality for sums of i.i.d. vari-

ables with sub-exponential tails; see e.g. [40, Corollary 2.8.3]. This completes

the proof of the proposition.
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In view of Proposition 1.1, the proof of the upper bound in Theorem 1 is

almost immediate.

Proof of Theorem 1, upper bound. With c1 as in the statement of Proposi-

tion 1.1, we know that for some constants C, c, C′, c′ (independent of δ), we

have

(18)
P(Γn ⊆ Uδ) ≤ P

(
T δ
n ≥ 4n− c1

δ
n1/3

)
+ P

(
Tn ≤ 4n− c1

δ
n1/3

)
≤ Ce−cδ−3/2

+ C′e−c′δ−3 ≤ 2Ce−cδ−3/2

where in the second inequality above, we have used Proposition 1.1 along with

the second part of Proposition 2.1. This completes the proof of the upper bound

in Theorem 1.

Before completing this section, let us give a sketch of an alternative proof

of the upper bound in Theorem 1. This argument hinges on having a lower

bound of the probability that geodesics have large transversal fluctuation (at the

scale n2/3). Such a result is known in Poissonian LPP; see [30, Proposition 1.4].

Even though the same argument should work for exponential LPP with minor

modifications, we did not find the result in the literature for exponential LPP

and hence will not attempt to write down a complete proof.

For i ∈ {0, 1, . . . , δ−3/2}, define the points

ai = iδ3/2n− δn2/3(1,−1).

Let Γai,ai+1 denote the geodesic joining ai and ai+1. On the event {Γn ⊆ Uδ},
by the planar ordering of the geodesics, we know that each Γai,ai+1 lies to the

left of the geodesic Γn, and hence we have

(19)

{Γn ⊆ Uδ} ⊆
δ−3/2−1⋂

i=0

{ sup
u∈Γai,ai+1

ψ(u) ≤ δn2/3}

=

δ−3/2−1⋂
i=0

{ sup
u∈Γai,ai+1

ψ(u)− (−2δn2/3) ≤ 3δn2/3}.

Note that the events on the right hand side are independent across i and each

event has probability bounded away from 1 by [30, Proposition 1.4] adapted to

the exponential case. The upper bound in Theorem 1 follows.



Vol. TBD, 2024 SMALL BALL PROBABILITIES FOR LPP 21

4. Lower bound for the small ball probability

In this section, we will obtain the lower bound in Theorem 1. As discussed in the

introduction, the strategy is to construct a favourable event with the requisite

lower bound on its probability, on which the small ball event holds. We first

define the favourable events, and state the probability lower bounds for them.

Then we complete the proof of the lower bound in Theorem 1 assuming these.

The proofs of the probability bounds are provided at the end of the section.

4.1. Construction of favourable events. Before coming to the construc-

tion of the needed events, we introduce the following notation:

(20)
Leftnδ = {u ∈ Z2 : ψ(u) < −δn2/3},

Rightnδ = {u ∈ Z2 : ψ(u) > δn2/3}.

We shall use Leftδ and Rightδ as shorthands for the above, but in case we need

to make use of the notations for something other than n, we shall use the more

general notation.

We define three independent events BarL, Inside and BarR (we use Bar to

denote the event BarR ∩BarL) measurable with respect to the vertex weights

in the regions Leftδ, Uδ and Rightδ respectively. As already alluded to in

the introduction, for some fixed large constant M , we shall show that on

the event E = BarL ∩ Inside ∩ BarR, we have that Γn ⊆ UMδ, and obtain

P(E) ≥ Ce−cδ−3/2

by lower bounding the probabilities of each constituent event

separately; see Figure 1 for an illustration.

4.1.1. Choice of parameters. We shall fix δ to be sufficiently small throughout

this section. Note that K, k0, k1, β,M > 0 will be constants which will appear

in the definitions and will be fixed later in this section; all of them will be

independent of δ.

We now explicitly point out how the constants are fixed to prevent confusion

later.

• K, a large positive constant is obtained by invoking Lemma 4.1.

• k0, a large positive constant is fixed by invoking Lemma 4.8.

• k1 is now defined to be max{K, k0}+ 2.

• β is an absolute constant not depending on any of the other parameters

and is obtained from the statement of Lemma 4.9. In fact, we have

β = 2−2/3ξ, where ξ appears in the statement of Proposition 2.5.
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0

n

x+ y = 0

x+ y = 2n

Un
δ

δn2/3

Leftnδ

Rightnδ

γ γ′

Figure 1. The basic set-up for the proof of the lower bound in

Theorem 1: The region Uδ is shaded in green. The event Inside

is a function of the vertex weights in Uδ and ensures that any

two points u, v in Uδ that differ in the time co-ordinate by a

large constant times δ3/2n have large T̃ δ
u,v, and even for points

u, v that are not very well separated in the time coordinate, T̃ δ
u,v

is not too small. The eventsBarL andBarR are functions of the

vertex weights on the strips to the left and right of Uδ (denoted

Leftδ and Rightδ) respectively and ensure that for any path γ

(marked in red) that has either a short or a long excursion

outside Uδ that exits UMδ also, the excursion can be replaced

by a path in the interior of Uδ (marked in blue) that has higher

weight. Thus we ensure that on BarL∩Inside∩BarR, one has

Γn ⊆ UMδ.

• The constant M is fixed to be large enough compared to all the other

parameters fixed so far so that the conclusion of Lemma 4.9 holds and

(53) in the proof of Lemma 4.2 holds.

Note that all the above constants will be independent of δ, and n will be taken

to be sufficiently large depending on δ (and all the other parameters). Actually,

it will be clear from the proofs that it suffices to take n � δ−3/2; we will

comment more about this in Section 6. For the rest of this section, we shall

work with a fixed choice of parameters as described above, δ sufficiently small

and n sufficiently large.
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4.1.2. The event Inside. The event Inside is composed of two parts: (i) Far,

which asks that for any two points u, v ∈ U L
δ (resp. U R

δ ) which are well separated

in the time direction, T δ
u,v is sufficiently larger than typical; and (ii) Close,

which asks that for any two points u, v in U L
δ (resp. U R

δ ) (not necessarily well

separated) the constrained centered passage time T̃ δ
u,v is not much smaller than

typical. Let us now move towards defining the events formally.

Definition of Far: For any positive integer K, let Far denote the event that for

any two points u, v ∈ U L
δ (or both in U R

δ ) satisfying φ(v) − φ(u) ≥ Kδ3/2n, we

have

(21) T δ
u,v ≥ 2(φ(v)− φ(u)) +

φ(v) − φ(u)

δ3/2n
(
√
δn1/3).

The following lemma provides a lower bound for P(Far).

Lemma 4.1: For all δ sufficiently small, there exists a positive integer K (in-

dependent of δ) and positive constants C, c (independent of δ) such that

P(Far) ≥ Ce−cδ−3/2

for all n large enough depending on δ.

The proof of Lemma 4.1 has been postponed to Section 4.3.

Definition of Close: The event Close, as described above, will control the T δ
u,v

where both u and v are close by points either on U L
δ or on U R

δ . This will be

defined as the intersection of several events indexed by L or R depending on

which of the boundaries are being considered and also by i, which controls the

location of the points in the time direction. For k1 sufficiently large (com-

pared to K obtained from Lemma 4.1), a positive absolute constant β and

i ∈ {0, 1, . . . , 1
k1δ3/2

− 2}, we define the events CloseLi and CloseRi by setting

(CloseLi )
c = { inf

u,v∈UL
δ,

2ik1δ
3/2n≤φ(u)≤φ(v)≤2(i+2)k1δ

3/2n

{T δ
u,v − 2(φ(v)− φ(u))}

≤ −βM2(2k1δ
3/2n)1/3},

(22)

(CloseRi )
c = { inf

u,v∈UR
δ,

2ik1δ
3/2n≤φ(u)≤φ(v)≤2(i+2)k1δ

3/2n

{T δ
u,v − 2(φ(v)− φ(u))}

≤ −βM2(2k1δ
3/2n)1/3}.

(23)
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We set Closei = CloseLi ∩CloseRi and define

(24) Close =

1

k1δ3/2
−2⋂

i=0

Closei.

We have the following lower bound on P(Close).

Lemma 4.2: There exist positive constants C, c (independent of δ) such that for

all δ sufficiently small, and for the parameters being chosen as in Section 4.1.1,

we have

P(Close) ≥ Ce−cδ−3/2

.

The proof of Lemma 4.2 has been postponed to the end of Section 4.3.

Finally, we define the event Inside by

(25) Inside = Far ∩Close.

The following lower bound on P(Inside) easily follows from Lemma 4.1 and

Lemma 4.2.

Lemma 4.3: For all δ sufficiently small, and for the parameters chosen as in

Section 4.1.1, we have that there exist positive constants C, c (independent of δ)

such that for all n large enough (depending on δ),

P(Inside) ≥ Ce−cδ−3/2

.

Proof. Observe that both Far and Close are increasing events (i.e., for two

weight configurations that are point-wise ordered, the event being satisfied for

the smaller weight configuration implies that it is also satisfied for the larger

one), and hence by the FKG inequality,

P(Inside) ≥ P(Far)P(Close).

The lemma immediately follows from Lemma 4.1 and Lemma 4.2.

4.1.3. The event Bar. Before proceeding, we first remark that the events BarL

and BarR will be defined symmetrically about the line {ψ(u) = 0}. Hence, it

suffices to give the details of the construction of BarL. Our motivation while

defining BarL is to obtain an environment where paths from 0 to n which enter

the region Leftδ incur a loss in weight. To achieve this, BarL will consist of

two events ShortL and LongL which will give the necessary weight deficits for

short and long excursions into the region Leftδ respectively.
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Definition of LongL: For k1 as before, we define the event LongL as

(26)
LongL={ sup

u,v∈UL
δ :

φ(v)−φ(u)≥k1δ
3/2n

{T Leftδ
u,v −2(φ(v)−φ(u))}< (φ(v)−φ(u))

δ3/2n
(
√
δn1/3)}.

We have the following lower bound of the probability of the above event.

Lemma 4.4: For all δ sufficiently small, and for the parameters chosen as in

Section 4.1.1, we have that there exist constants C, c (independent of δ) such

that for all large enough n (depending on δ),

P(LongL) ≥ Ce−cδ−3/2

.

The proof of Lemma 4.4 is postponed to Section 4.4.1.

Definition of ShortL: Similar to the definition of CloseL, ShortL will also be

defined as the intersection of ShortLi , where i shall index the location of the

short excursion.

For i ∈ {0, 1, . . . , 1
k1δ3/2

− 2}, we define ShortLi by setting (ShortLi )
c to be

the event that for some u, v ∈ U L
δ with

2ik1δ
3/2n ≤ φ(u) ≤ φ(v) ≤ 2(i+ 2)k1δ

3/2n,

there exists γ : u → v satisfying γ \ {u, v} ⊆ Leftδ and γ �⊆ (LeftMδ)
c such

that

(27) �(γ) > 2(φ(v)− φ(u)) − βM2(2k1δ
3/2n)1/3.

Having defined the events ShortLi , we simply define

(28) ShortL =

1

k1δ3/2
−2⋂

i=0

ShortLi .

We have the following lower bound for P(ShortL).

Lemma 4.5: For all δ sufficiently small, and for the parameters chosen as in

Section 4.1.1, we have that there exist positive constants C, c (independent of δ)

such that for n large enough depending on δ,

P(ShortL) ≥ Ce−cδ−3/2

.

The proof of Lemma 4.5 is postponed to Section 4.4.2.
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Having completed the construction of BarL by setting

BarL := LongL ∩ ShortL

we define BarR by symmetry about the line {ψ(u) = 0}. We will not repeat the

details for BarR, but would like to record that just in the same way as BarL,

we also have

(29) BarR = LongR ∩ ShortR

for analogously defined events LongR and ShortR.

We have the following lower bound for the probability of Bar := BarL∩BarR.

Lemma 4.6: For all δ small enough, and for the parameters chosen as in Sec-

tion 4.1.1, we have that there exist positive constants C, c (independent of δ)

such that for all n large enough (depending on δ),

P(Bar) ≥ Ce−cδ−3/2

.

Proof. Since BarL = ShortL ∩ LongL, where both the events are decreasing,

by Lemma 4.4, Lemma 4.5 and the FKG inequality, we have that for n large

enough depending on δ,

P(BarL) ≥ C1e
−c1δ

−3/2

.

By the symmetry about the line {ψ(u) = 0}, we also obtain that

P(BarR) ≥ C1e
−c1δ

−3/2

.

The lemma now follows immediately by using the independence of BarL

and BarR.

4.2. Proofs of Theorem 1, lower bound and Corollary 3(i). As men-

tioned before, our main interest is in the event E defined by

(30) E = Inside ∩Bar.

We first show that a small ball event is indeed satisfied on the event E .

Lemma 4.7: We have the deterministic inclusion E ⊆ {Γn ⊆ UMδ}, where the

parameters are chosen as in Section 4.1.1.

Proof. We prove by contradiction. Clearly if Γn ⊆ Uδ, we are done, so let us

suppose that for some weight configuration in the event E , we have that Γn �⊆Uδ.
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First consider the case that Γn∩Leftδ �=∅. In this case, there must exist t1, t2∈N

satisfying 0 ≤ t1 < t2 ≤ 2n such that

Γn|[t1+1,t2−1] ⊆ Leftδ and Γn(t1) = Γn(t2) = −δn2/3.

Let us define the points u, v by

(φ(u), ψ(u)) = (t1,Γn(t1)) and(φ(v), ψ(v)) = (t2,Γn(t2)),

that is, u and v are the locations of the geodesics at times t1 and t2 respectively.

We need to consider two separate cases (refer to Figure 1).

Case 1: (φ(v) − φ(u)) ≥ k1δ
3/2n.

In this case we reach a contradiction due to the definitions of the events

LongL and Far. Indeed, LongL implies that

(31) �(Γn|[t1,t2]) < 2(φ(v) − φ(u)) +
φ(v) − φ(u)

δ3/2n
(
√
δn1/3)

while Far implies (note that k1 > K due to our choice of the parameters) that

there exists a path γ : u→ v such that γ ⊆ Uδ satisfying

(32) �(γ) ≥ 2(φ(v) − φ(u)) +
φ(v) − φ(u)

δ3/2n
(
√
δn1/3).

It is clear that (31) and (32) contradict the fact that Γn|[t1,t2] is a geodesic

from u to v.

Case 2: (φ(v) − φ(u)) < k1δ
3/2n.

In this scenario, there exists an i0 ∈ {0, 1, . . . , 1
k1δ3/2

− 2} satisfying

2i0k1δ
3/2n ≤ φ(u) ≤ φ(v) ≤ 2(i0 + 2)k1δ

3/2n.

Now, the definition of the event ShortLi0 and Close forces Γn|[t1,t2] ⊆ UMδ.

Indeed, if we had Γn|[t1,t2] ∩ LeftMδ �= ∅, the event ShortLi0 would imply that

(33) �(Γn|[t1,t2]) ≤ 2(φ(v) − φ(u))− βM2(2k1δ
3/2n)1/3.

On the other hand, the event CloseLi0 would imply that there exists γ : u → v

satisfying γ ⊆ Uδ along with

(34) �(γ) > 2(φ(v)− φ(u)) − βM2(2k1δ
3/2n)1/3,

thereby contradicting that Γn|[t1,t2] is a geodesic between u and v. In effect, we

have shown that Γn|[t1,t2] ⊆ UMδ.

By an identical reasoning and the symmetric definition of the event BarR, we

can handle the case Γn ∩ Rightδ �= ∅, and this completes the proof.
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We are now ready to complete the proof of the lower bound in Theorem 1.

Proof of Theorem 1, lower bound. In view of Lemma 4.7 (we are using that M

is a fixed constant), we need only show that for all δ small enough, we have that

there exist positive constants C, c (independent of δ) such that for all n large

enough depending on δ,

(35) P(E) ≥ Ce−cδ−3/2

,

where all the parameters are obtained as described in Section 4.1.1. By the

definition of the event E and the independence of Bar and Inside, we have

that

(36) P(E) = P(Bar)P(Inside).

The lower bound for P(Inside) follows from Lemma 4.3 and the lower bound

for P(Bar) follows from Lemma 4.6. Piecing these ingredients together, we

obtain that for n large enough depending on δ, (35) holds.

Before completing the proofs postponed earlier in this section, we quickly

complete the straightforward proof of Corollary 3(i) using Theorem 1.

Proof of Corollary 3(i).By using the definition πn(s):=n
−2/3Γn(2ns) for 2ns∈Z

along with Theorem 1, we have

C2e
−c2δ

−3/2

≤ P( sup
s∈[0,1],2ns∈Z

|πn(s)| ≤ δ) ≤ C1e
−c1δ

−3/2

.

Since πn(s) is linearly interpolated to all values s ∈ [0, 1] by using the values

of πn(s) for s ∈ [0, 1] ∩ 1
2nZ, the above immediately implies

C2e
−c2δ

−3/2

≤ P( sup
s∈[0,1]

|πn(s)| ≤ δ) ≤ C1e
−c1δ

−3/2

.

Now, we just need to pass to the limit. To do this, first note that the map-

ping f �→ sups∈[0,1] f(s) is a continuous map from C[0, 1] to R+, where the

former is equipped with the topology of uniform convergence and the latter

is equipped with the Euclidean topology. Consider π, a subsequential weak

limit π of πn, that is, πni ⇒ π as i → ∞ (⇒ denotes weak convergence) for

some subsequence {ni}. Then by the continuous mapping theorem, we have

that

sup
s∈[0,1]

πni(s) ⇒ sup
s∈[0,1]

π(s)

as i→ ∞, and we get the result by applying the Portmanteau theorem.
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The rest of this section is devoted to the proofs of Lemma 4.1, Lemma 4.2,

Lemma 4.4 and Lemma 4.5. Before proceeding with the proofs, we introduce

the notation Un
δ,i for the ith rectangle when the strip Un

δ divides into δ−3/2

many smaller rectangles. That is, let

(37) Un
δ,i = {−δn2/3 ≤ ψ(u) ≤ δn2/3} ∩ {2iδ3/2n ≤ φ(u) ≤ 2(i+ 1)δ3/2n}.

For convenience, we make the above definition for all i ∈ Z instead of just

i ∈ {0, . . . , δ−3/2 − 1}, though only the values in {0, . . . , δ−3/2 − 1} correspond

to subrectangles in Un
δ . Again, we will simply write Un

δ,i as Uδ,i. Similar to the

definitions (10) for the left and right sides of Un
δ , we denote the left and right

sides of Un
δ,i by U

n,L
δ,i and Un,R

δ,i respectively. These will be abbreviated to U L
δ,i

and U R
δ,i.

4.3. Lower bounds for events inside Uδ. This subsection is devoted to

the proofs of Lemma 4.1 and Lemma 4.2, i.e., we prove the lower bounds for

the probabilities of the events Far and Close. The first one is more involved

and will take up most of this subsection.

Proof of Lemma 4.1. We locally define Farα to be the event that for any two

points u, v ∈ U L
δ (or both in U R

δ ) satisfying φ(v) − φ(u) ≥ Kδ3/2n, we have

T δ
u,v ≥ 2(φ(v)− φ(u)) +

φ(v)− φ(u)

δ3/2n
(α

√
δn1/3).

It suffices to prove that there exists a positive integer K, positive constants C, c

and some α > 1 (all independent of δ) such that

P(Farα) ≥ Ce−cδ−3/2

.

Indeed, this is because P(Farα) is decreasing in α, and P(Far) corresponds

to α = 1. We shall construct an event C with the requisite probability lower

bound such that C implies Farα for some large α whose value will be chosen

later.

To illustrate our strategy, let us consider two points u, v on U L
δ which sat-

isfy φ(v)−φ(u) ≥ Kδ3/2n, whereK will be chosen large later (the case u, v ∈ U R
δ

can be handled by an identical argument). It is immediate that we have

(38)
⌊φ(v) − φ(u)

2δ3/2n

⌋
≥ K/2− 1,
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Thus, there exists a positive integer Ku,v such that

(39) Ku,v ≥ K/2− 3

and a positive integer a depending on u, v satisfying

(40)

2(a− 1) ≤ φ(u)

δ3/2n
≤ 2a

≤ 2(a+ 1)

...

≤ 2(a+Ku,v) ≤
φ(v)

δ3/2n

≤ 2(a+Ku,v + 1).

Let wi denote the point iδ3/2n. This gives that

(41) T δ
u,v ≥ T δ

u,wa+1
+

Ku,v−1∑
j=2

T δ
wa+j−1,wa+j

+ T δ
wa+Ku,v−1,v.

Our aim now is to construct an event having probability at least Ce−cδ−3/2

,

on which we have that the right-hand side in (41) is larger than typical for

each pair u, v satisfying the conditions in the statement of the lemma. We will

do this by ensuring that the terms T δ
wa+j−1,wa+j

in (41) are larger than typical

for j = 2 to Ku,v−3 while the terms T δ
u,wa+1

and T δ
wa+Ku,v−3,v are not too small

compared to their typical value; see Figure 2.

For each i ∈ {0, . . . , δ−3/2 − 2}, define the events

(42) Ai = {T δ
wi,wi+1

≥ 2(2δ3/2n) + 4(α
√
δn1/3)}.

Note that the Ai satisfy

(43) P(Ai) ≥ Ce−cα3/2

> c3

for some C, c (independent of δ) coming from Lemma 2.6.

We now define the events Bi as follows:

(44) Bi = { inf
u,v∈Uδ,i∪Uδ,i+1,φ(v)−φ(u)≥2δ3/2n

T̃ δ
u,v ≥ −α

√
δn1/3}.

Note that by an application of Proposition 2.3, we have that for some con-

stants C2, c2,

(45) P(Bi) ≥ 1− C2e
−c2α >

1

2
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u

v

wa+1

wa+Ku,v−1

δ3/2n

δn2/3

wi

wi+1

UL
δ

Figure 2. Proof of Lemma 4.1: for u, v ∈ U L
δ with φ(v)−φ(u) ≥

Kδ3/2n, we lower bound T δ
u,v by the weight of the concate-

nated path showed in the figure. The initial and final segments

(marked in blue) denote the paths attaining weights T δ
u,wa+1

and T δ
wa+Ku,v−1,v respectively; both these paths are ensured to

be not too small compared to typical. The intermediate green

segments denote the paths attaining T δ
wi,wi+1

and these are

ensured to be larger than typical. For Ku,v large, these two

conditions ensure that T δ
u,v is larger than typical, as required.

for all α sufficiently large. Finally, we define the event C by

(46) C =

δ−3/2−2⋂
i=0

(Ai ∩ Bi).

Notice now that the events Ai and Bi are all increasing events measurable with

respect to the vertex weights in Uδ. By using the FKG inequality along with (43)

and (45), we have

(47)

P(C) ≥
(∏

i

P(Ai)
∏
i

P(Bi)

)

≥ (c3/2)
δ−3/2−2

≥ e−c5δ
−3/2

for some c5 > 0.
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It remains to prove that C ⊆ Farα for some α sufficiently large. We shall

only consider the case of u, v ∈ U L
δ , the case of u, v ∈ U R

δ can be handled by an

identical argument. On the event C, we have that in (41), for any u, v satisfying

the conditions in the statement of the lemma,

(48) T δ
wa+j−1,wa+j

≥ 2(2δ3/2n) + 4(α
√
δn1/3)

for all j ∈ {2, . . . ,Ku,v − 1}. This is a straightforward consequence of the

definition of the events Ai. By using the definition of Bi, we have that on C,

(49) T δ
u,wa+1

≥ ETu,wa+1 − α
√
δn1/3.

By using (8), we have that for all α large enough, on C,

(50) T δ
u,wa+1

≥ 2(φ(wa+1)− φ(u)) − 3α

2

√
δn1/3.

By an analogous argument, we obtain that on C, we have for all α large enough,

(51) T δ
wa+Ku,v−1,v ≥ 2(φ(v)− φ(wa+Ku,v−1))−

3α

2

√
δn1/3.

On combining (48), (50) and (51) with (41), we deduce that on C, for all α large

enough

(52)

T δ
u,v − 2(φ(v)− φ(u)) ≥ (4Ku,v − 11)α

√
δn1/3

≥ 3Ku,vα
√
δn1/3

≥ φ(v)− φ(u)

δ3/2n
(α

√
δn1/3),

and we now fix α to be one such value which in addition satisfies α > 1. Note

that we have used (39) along with the fact that K can be fixed to be large

to obtain the last two inequalities. Thus, we have established that C ⊆ Farα,

which together with (47) completes the proof.

We shall now prove Lemma 4.2.

Proof of Lemma 4.2. Recall the parameter M which we have been using; it

appears in the definitions of CloseLi and CloseRi in (22), (23) and in Lemma 4.7.

Using Proposition 2.4 along with the fact that M is fixed to be much larger

than all the other parameters in Section 4.1.1, it is clear that for n large enough

depending on δ, we have

(53)
P(CloseLi ) ≥ 1− C1e

−c1M
2 ≥ 1/2,

P(CloseRi ) ≥ 1− C1e
−c1M

2

≥ 1/2.
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Since CloseLi and CloseRi are increasing events, we have by the FKG inequality

(54) P(Closei) ≥ 1/4.

Again, the Closei are all increasing events, and by the FKG inequality, we have

(55) P(Close) ≥ (1/4)
δ−3/2

k1
−1 ≥ C2e

−c2δ
−3/2

,

completing the proof of the lemma.

4.4. Lower bounds for the barrier events. This subsection is devoted

to the proofs of Lemma 4.4 and Lemma 4.5, i.e., we prove the lower bounds for

the probabilities of the events LongL and ShortL.

4.4.1. Lower bound for the event LongL. We need the following result to prove

Lemma 4.4. Recall the notation Uδ,i and U
L
δ,i for all i ∈ Z from (37).

Lemma 4.8: For all δ sufficiently small, there exist constants C, c (independent

of δ) and a positive integer k0 (independent of δ) such that for any integers i, j

with j − i = k ≥ k0, for all n large enough depending on δ, we have that

P
(

sup
u∈UL

δ,i ,v∈UL
δ,j

{T Leftδ
u,v −2(φ(v)−φ(u))} ≥ (φ(v)−φ(u))

δ3/2n
(
√
δn1/3)

)
≤ Ce−ck<1.

Proof. Observe that the event in question is measurable with respect to the

vertex weights in the region Leftδ (indeed, this is one of the reasons we chose

the definition of T to exclude the weights of the endpoints). Condition on the

occurrence of the event in question and refer to it locally in this proof as A.

Thus on A, there exist u ∈ U L
δ,i, v ∈ U L

δ,j such that

T Leftδ
u,v − 2(φ(v)− φ(u)) ≥ (φ(v) − φ(u))

δ3/2n
(
√
δn1/3).

Define the points

w1 = ((i − 1)δ3/2n, (i− 1)δ3/2n) and w2 = ((j + 2)δ3/2n, (j + 2)δ3/2n).

Let A1 be defined by

A1 =
{
T (Leftδ)

c

w1,u − 2(φ(u)− φ(w1)) ≥ −1

4

(φ(v) − φ(u))

δ3/2n
(
√
δn1/3)

}
and define A2 by

A2 =
{
T (Leftδ)

c

v,w2
− 2(φ(w2)− φ(v)) ≥ −1

4

(φ(v) − φ(u))

δ3/2n
(
√
δn1/3)

}
.
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Note that A1 and A2 are independent of each other and the vertex weights in

the region Leftδ. Also, A1 and A2 together with the conditioning imply the

event A3 which is defined by

(56) A3 =
{
Tw1,w2 − 2(φ(w2)− φ(w1)) ≥

1

2

(φ(v) − φ(u))

δ3/2n
(
√
δn1/3)

}
.

Indeed, this is simply a consequence of Tw1,w2 ≥ T
(Leftδ)

c

w1,u + T Leftδ
u,v + T

(Leftδ)
c

v,w2 ,

which holds because both the endpoints are excluded in the definition of �. Note

that φ(w2)− φ(w1) = 2(k + 3)δ3/2n. From this discussion, it is clear that

(57)
min

u∈UL
δ,i

P(A1) min
v∈UL

δ,j

P(A2)P(A) ≤ P(A3) ≤ Ce
−c( 1

(k+3)1/3
φ(v)−φ(u)

δ3/2n
)3/2

≤ C1e
−c1k.

The second inequality follows by using Proposition 2.1 and the third inequality

follows by taking k0 large, observing that φ(v) − φ(u) ≥ 2(k − 2)δ3/2n.

It remains to establish good lower bounds for minu P(A1) and minv P(A2);

by symmetry, we only deal with the former. Note that by translation invariance

and Proposition 2.3, we have that for n large enough depending on δ and for

some constants C2, c2 (independent of u and δ),

(58) P(Ac
1) ≤ C2e

−c2
φ(v)−φ(u)

δ3/2n

√
δn1/3

(φ(u)−φ(w1))1/3 ≤ C3e
−c3k ≤ 1

2

by taking k0 to be large enough. Indeed, (58) is obtained by using Proposi-

tion 2.3 on the parallelogram Uδ,i−1 ∪ Uδ,i, using (8) to change the centering

from ETw1,u to 2(φ(u)− φ(w1)) and noting that

(59) T (Leftδ)
c

w1,u ≥ T
Uδ,i−1∪Uδ,i
w1,u .

The second inequality in (58) follows by using that (φ(v)−φ(u)) ≥ 2(k−2)δ3/2n

along with 2δ3/2n ≤ φ(u)−φ(w1) ≤ 4δ3/2n. Thus, (57), (58) and an analogous

lower bound on minv P(A2) immediately yields

(60) P(A) ≤ 4C1e
−c1k

if we take k0 to be large enough.

We are now ready to prove Lemma 4.4.
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Proof of Lemma 4.4. Denote by Ai,j the event whose probability is considered

in Lemma 4.8. By the choice of k1 and k0 in Section 4.1.1, we have that for u, v

as in the definition of LongL we have φ(v)−φ(u) ≥ k1δ
3/2n ≥ (k0+2)δ3/2n, and

this implies that u ∈ U L
δ,i, v ∈ U L

δ,j for some i, j satisfying 0 ≤ i ≤ j ≤ δ−3/2 − 1

and j − i ≥ k0. Thus, we have that

(61)

P
(

sup
u,v∈UL

δ :

φ(v)−φ(u)≥k1δ
3/2n

{T Leftδ
u,v −2(φ(v)−φ(u))}<(φ(v)−φ(u))

δ3/2n
(
√
δn1/3)

)

≥ P

( ⋂
i,j:j−i≥k0

Ac
i,j

)
.

It thus suffices to show that the latter expression is at least C ′e−c′δ−3/2

for

some constants C′, c′. If we let k be the variable for j − i, observe that for

a fixed value of k, there are δ−3/2 − k pairs of (i, j) satisfying j − i = k

and 0 ≤ i ≤ j ≤ δ−3/2 − 1. Also, by translation invariance, we have that P(Ai,j)

depends only on k = j−i. By the FKG inequality for the decreasing events Ac
i,j ,

we have

(62)

P

( ⋂
i,j:j−i≥k0

Ac
i,j

)
≥

∏
i,j:j−i≥k0

P(Ac
i,j)

≥
∏

k0≤k≤δ−3/2−1

(1− Ce−ck)δ
−3/2−k

≥
∏
k≥k0

(1 − Ce−ck)δ
−3/2

.

Noting that
∏

k≥k0
(1 − Ce−ck) > 0 because

∑
k≥1 e

−ck < ∞, we have the

needed result on using (61).

4.4.2. Lower bound for the event ShortL. In this subsection, we will obtain the

required lower bound for P(ShortL) in Lemma 4.5. We first need the following

result.

Lemma 4.9: For any k1 > 0 fixed, all δ sufficiently small, and all

i ∈ {0, 1, . . . , 1
k1δ3/2

− 2}, we have that there exists an absolute constant β

and positive constants C, c (independent of δ) such that for M large enough

(independent of δ) and for n large enough depending on δ,

P((ShortLi )
c) ≤ Ce−cM3

< 1/2.
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Proof. By translation invariance, we can restrict to i = 0. Define

w1 =
(
− 1

2
δn2/3,

1

2
δn2/3

)
− k1δ

3/2n

and

w2 = 2k1δ
3/2n+

(
− 1

2
δn2/3,

1

2
δn2/3

)
+ k1δ

3/2n;

see Figure 3. Now, condition on the occurrence of the event (ShortL0)
c. Thus,

there exist u, v ∈ U L
δ along with a path γ : u → v satisfying (27) along with

0 ≤ φ(u) ≤ φ(v) ≤ 4k1δ
3/2n. Analogous toA1 andA2 in the proof of Lemma 4.8,

consider the events

B1 = {T (Leftδ)
c

w1,u − 2(φ(u)− φ(w1)) ≥ −M
2

2
β(2k1δ

3/2n)1/3}

and

B2 = {T (Leftδ)
c

v,w2
− 2(φ(w2)− φ(v)) ≥ −M

2

2
β(2k1δ

3/2n)1/3}.

Note that B1 and B2 are independent of each other and the vertex weights in

Leftδ. Also, B1 and B2 together with the conditioning imply the event B3 which

is defined by

(63)
B3={∃γ1:w1→w2 with γ1 ∩ LeftMδ �= ∅

and �(γ1)− 2(φ(w2)−φ(w1))≥−2βM2(2k1δ
3/2n)1/3}.

Indeed, if χ1 : w1 → u is the path attaining T
(Leftδ)

c

w1,u and χ2 : v → w2 is the

path attaining T
(Leftδ)

c

v,w2 , then we can define γ1 : w1 → w2 as the concatenation

of χ1, γ, χ2 and use �(γ1) ≥ �(χ1) + �(γ) + �(χ2) which holds because both the

endpoints were excluded in the definition of �.

Since k1 is some fixed constant (independent of δ), we can invoke Proposi-

tion 2.5 to say that there exists an absolute constant β such that we have

(64) P(B3) ≤ Ce−cM3

for large enough n. Indeed, we can just define β = 2−2/3ξ, where ξ is in the

statement of Lemma 2.5. Using this, we have that

(65) min
u

P(B1)min
v

P(B2)P((Short
L
0)

c) ≤ P(B3) ≤ Ce−cM3

,

where both the minimum’s in the above equation are taken over the set

{z ∈ U L
δ : φ(z) ∈ [0, 4k1δ

3/2n]}.
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δn2/3

Mδn2/3

u

vγ

x+ y = 0

x+ y = 4k1δ
3/2n

w1

w2

k1δ
3/2n

Figure 3. Proof of Lemma 4.9: we show that it is unlikely for

there to be a short excursion γ (marked in red) between u and v

outside Uδ that exits UMδ and has weight not too small. To

show this, on the event of existence of such a γ, we construct a

path γ1 (the concatenation of the paths marked in blue with γ)

such that γ1 is a path between two fixed points, well separated

in the time direction, such that �(γ1) is not too small. Notice

that γ1 has large transversal fluctuation and hence the latter

event is shown to be unlikely using Proposition 2.5.

By the symmetry of the setting, we only prove a lower bound for minu P(B1)

and omit the proof of the corresponding lower bound for minv P(B2) . Note that

for all possible points u, we have that 2k1δ
3/2n ≤ φ(u) − φ(w1) ≤ 6k1δ

3/2n,

and thus (φ(u)−φ(w1))
1/3

2β(2k1δ3/2n)1/3
is bounded away from 0 and ∞. Hence, on noting

that T
(Leftδ)

c

w1,u ≥ T V
w1,u for the rectangle V defined by

V = {−δn2/3 ≤ ψ(u) ≤ δn2/3} ∩ {−2k1δ
3/2n ≤ φ(u) ≤ 6k1δ

3/2n}

and by using Proposition 2.3 for V , along with (8) to change the centering from

ETw1,u to 2(φ(u)− φ(w1)), we get that for M large enough (independent of δ),

(66) min
u

P(B1) ≥ 1− C2e
−c2M

2 ≥ 1

2
.

On combining this and the analogous lower bound of minv P(B2) with (65), we

get that for large enough M (independent of δ), we have

(67) P((ShortL0)
c) ≤ 4Ce−cM3

provided that n is large enough depending on δ.
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Instead of the conditioning argument presented above, another slightly dif-

ferent way to prove Lemma 4.9 would be to define B by

B =
{

inf
u′,v′∈V L,

φ(v′)−φ(u′)≥2k1δ
3/2n

{T V
u′,v′ − 2(φ(v′)− φ(u′))} ≥ −M

2

2
β(2k1δ

3/2n)1/3
}
,

where V L refers to the left long side of the rectangle V . One can now observe

that (ShortL0)
c∩B ⊆ B3, where the events on the left hand side are independent.

P(B) can be lower bounded by Proposition 2.3 and (8), and the rest of the proof

follows similarly.

We end this section by proving Lemma 4.5.

Proof of Lemma 4.5. Note that the ShortLi are all decreasing events. Using

the FKG inequality along with Lemma 4.9 immediately gives that for n large

enough depending on δ,

(68) P(ShortL) ≥ (1 − C1e
−c1M

3

)
δ−3/2

k1
−1 ≥ (1/2)c2δ

−3/2

= Ce−cδ−3/2

.

Note that as mentioned in Section 4.1.1,M is fixed to be large enough compared

to the other parameters so as to satisfy the conclusion of Lemma 4.9.

5. One point small deviation estimates for the geodesic

In this section, we will provide the proof of Theorem 2 and the proof of Corol-

lary 3(ii). We start with the upper bound in Theorem 2, which is easier.

5.1. Proof of Theorem 2, upper bound. As already mentioned in the in-

troduction, we shall complete the proof of the upper bound using the idea

outlined in [12, Remark 3.13]. The main ingredient that we require, an es-

timate of the number of disjoint geodesics between two intervals of size n2/3

on L0 and L2n, is quoted from [12]. Recall that we use Lt to denote the

line {x+ y = t} ⊆ Z2. Also, recall from (9) that for any Δ > 0, we use the

notation UΔ for the rectangle

{−Δn2/3 ≤ ψ(u) ≤ Δn2/3} ∩ {0 ≤ φ(u) ≤ 2n}.

We also recall the notation UΔ and UΔ from (11) for the lower and upper short

sides of UΔ.
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Proposition 5.1 ([12, Proposition 3.1]): For any Δ > 0, let Ml denote the

event that there exist points {f1, f2, . . . , fl} on UΔ and points {g1, g2, . . . , gl}
on UΔ satisfying ψ(f1) > ψ(f2) > · · · > ψ(fl) and ψ(g1) > ψ(g2) > · · · > ψ(gl)

such that the geodesics Γfi,gi are all pairwise disjoint. Then there exist positive

constants n0, l0 such that for all n > n0 and all l0 ≤ l ≤ n0.01, we have

P(Ml) ≤ e−c1l
1/4

for some positive constant c1 depending on Δ.

Now fix an ε > 0 and let t ∈ [[εn, (2 − ε)n]] as in the setting of Theo-

rem 2. Let Lt denote the maximum number of points {h1, h2, . . . , hl} on Lt∩U1

strictly decreasing in ψ(·) such that there exist points {f1, f2, . . . , fl} on U1 and

points {g1, g2, . . . , gl} on U1 strictly decreasing in ψ(·) such that hi ∈ Γfi,gi . We

now use Proposition 5.1 to show that ELt is upper bounded uniformly in n.

Lemma 5.2: Fix an ε ∈ (0, 1). There exists a constant C > 0 such that for all

n large and all t ∈ �εn, (2− ε)n�, we have

ELt ≤ C.

Proof. For a collection {f1, f2, . . . , fl}, {g1, g2, . . . , gl} and {h1, h2, . . . , hl} satis-
fying the conditions in the definition of Lt, we have that any two geodesics Γfi,gi

and Γfj ,gj must be disjoint when restricted to at least one of the time inter-

vals [0, εn] and [(2− ε)n, 2n]. Indeed, this follows by the ordering (and unique-

ness) of geodesics along with the fact that hi �= hj . Let F be the size of the

largest subset of {1, . . . , l} such that all the geodesics {Γfi,gi}i∈I1 are pairwise

disjoint when restricted to the time interval [0, εn]. Let G be defined analogously

for the time interval [(2−ε)n, 2n]. It is easy to see that max{F,G} ≥ l/2. Hence,

by a union bound along with Proposition 5.1, we have

(69) P(Lt ≥ l) ≤ e−c2l
1/4

for all l ≤ n0.01 and some constant c2 depending on ε. The far end of the tail

of Lt can be bounded by using that

(70) Lt ≤ |Lt ∩ Un
1 | = n2/3 + 1

deterministically, and on using (69) with l = n0.01, this yields

(71) E[�Lt≥n0.01Lt] ≤ e−c2n
0.01/4

(n2/3 + 1) < C2

for some positive constant C2 for all n. The proof is completed using (69)

and (71).
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We now complete the proof of the upper bound in Theorem 2 by using

Lemma 5.2.

Proof of Theorem 2, upper bound. We consider the points ui=(iδn2/3,−iδn2/3)

and vi = n + ui for i ∈ �− δ−1

2 , δ
−1

2 �. By translation invariance, we have that

the probability

(72) P(|Γui,vi(t)− ψ(ui)| < δn2/3)

is independent of i. Also, by looking at the definition of Lt in Lemma 5.2, we

can deduce that

(73)

δ−1/4∑
i=−δ−1/4

P(|Γui,vi(t)− ψ(ui)| < δn2/3)

= E

[ δ−1/4∑
i=−δ−1/4

�(|Γui,vi(t)− ψ(ui)| < δn2/3)

]
≤ E[Lt] ≤ C,

where C2 is obtained from Lemma 5.2. (72) and (73) together imply

(74) P(|Γu0,v0(t)− ψ(u0)| < δn2/3) = P(|Γn(t)| < δn2/3) ≤ 2Cδ,

and the result follows immediately.

5.2. Proof of the lower bound in Theorem 2. We shall prove the lower

bound in Theorem 2 in this subsection. We first complete the proof of the lower

bound using Proposition 1.2 and prove the latter result, which is the heart of

the technical content in this section, in the next subsection.

We recall the notation from the statement of Proposition 1.2: for someM > 0

which will be taken to be large later, we define the points a1, a2 by

(75)
a1 = (−Mn2/3,Mn2/3),

a2 = (Mn2/3,−Mn2/3),

and let b1 = a1 + n and b2 = a2 + n. Note that the parameter M used in

this section is completely independent of the parameter M used in Section 4.

Proposition 1.2 roughly states that the geodesics Γa1,b1 and Γa2,b2 coalesce with

positive probability, while not straying more than Mn2/3 distance away in the

transversal direction.
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0

n

Mn2/3

Mn2/3

x+ y = 0

x+ y = 2na1

a2

b1

b2

x+ y = t

Γa1,b1

Γa2,b2

Γa1,b1(t) = Γa2,b2(t)

Figure 4. Proof of the lower bound in Theorem 2: Proposi-

tion 1.2 implies that with probability bounded away from 0,

the geodesics Γa1,b1 and Γa2,b2 intersect the line x + y = t

at the same point with the point’s ψ-coordinate bounded by

Mδn2/3 in the absolute value. By the planar ordering of

geodesics, this implies that for every point u between a1 and

a2 and for every point v between b1 and b2, Γu,v intersects the

line x + y = t at the same point. In particular, this implies

that there exists ui = (iδn2/3,−iδn2/3) and vi = ui + n such

that |Γui,vi − ψ(ui)| ≤ δn2/3, and hence the expected number

of such i is bounded away from 0. The proof of the lower bound

in Theorem 2 follows by a translation invariance argument.

Proof of the lower bound in Theorem 2. The basic strategy is similar to the

proof of the upper bound. We consider points ui = (iδn2/3,−iδn2/3)

and vi = n+ ui for i ∈ �−Mδ−1,Mδ−1�. By the same reasoning as in (72), we

have that

(76) P(|Γui,vi(t)− ψ(ui)| ≤ δn2/3)

is independent of i. Similarly, we also have that

(77)

M/δ∑
i=−M/δ

P(|Γui,vi(t)−ψ(ui)|≤δn2/3)=E

[ M/δ∑
i=−M/δ

�(|Γui,vi(t)−ψ(ui)|≤δn2/3)

]
.
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We locally refer to the event defined in the statement of Proposition 1.2 as A.

Note that by the ordering of geodesics, we have that the value Γui,vi(t) is equal

for all i on the event A. This in turn implies that on the event A, the expression

�(|Γui,vi(t)− ψ(ui)| ≤ δn2/3)

must be 1 for at least one i. Thus, we have

(78)

E

[ M/δ∑
i=−M/δ

�(|Γui,vi(t)− ψ(ui)| ≤ δn2/3)

]

≥ E

[ M/δ∑
i=−M/δ

�(|Γui,vi(t)− ψ(ui)| ≤ δn2/3);A
]

≥ P(A) ≥ c,

where c comes from Proposition 1.2. Finally, by combining (76), (77) and (78),

we obtain

(79) P(|Γn| ≤ δn2/3) = P(|Γu0,v0(t)− ψ(u0)| ≤ δn2/3) ≥ c

2M
δ,

which finishes the proof since c
2M is a constant.

Before moving onto the proof of Proposition 1.2, we quickly finish the proof

of Corollary 3 (ii) by using Theorem 2.

Proof of Corollary 3(ii). We use Theorem 2 along with the definition

πn(s) = n−2/3Γn(2ns) for 2ns ∈ Z. Indeed, for n large enough, we have that

for any fixed s ∈ (0, 1), 
2ns�
2n is bounded away from 0 and 1 and now Theorem 2

implies that for some constants c, C, we have

cδ ≤ P(|Γn(�2ns�)| ≤ δn2/3) ≤ Cδ.

Using that Γn(·) has ±1 increments, and that πn(s) is defined for all s ∈ [0, 1]

by interpolating the values on [0, 1] ∩ 1
2nZ, we obtain that

c

2
δ ≤ P(|πn(s)| ≤ δ) ≤ 2Cδ

for all n large enough. The mapping f �→ |f(s)| is continuous as a map

from C[0, 1] to R+ with the uniform convergence topology and Euclidean topol-

ogy respectively. Thus by the continuous mapping theorem, if πni ⇒ π as i→ ∞
for a subsequence {ni}, we have that |πni(s)| ⇒ |π(s)|. We can now use the
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Portmanteau theorem in the same way as in the Proof of Corollary 3 (i) to

obtain
c

4
δ ≤ P(|π(s)| ≤ δ) ≤ 4Cδ

for any fixed s ∈ (0, 1). The uniformity of c, C as long as s is bounded away

from 0 and 1 is evident from the proof.

5.3. Proof of Proposition 1.2. To prove Proposition 1.2, we shall again

construct a host of favourable events whose intersection holds with positive

probability and on which the geodesics are forced to coalesce at the required

location. These events will be defined with a parameter M (note that this M

has nothing to do with the parameter used in the proof of the lower bound in

Theorem 1 from the previous sections). We start by outlining how the choice

of M is fixed, and then define the relevant events.

5.3.1. Choice of the parameter M . All the constructions will be made with a

parameter M which will be fixed to be a large constant at the end, and this

fixed constant is the one appearing in the statement of Proposition 1.2. The

specific choice ofM is fixed large enough to satisfy the conclusions of Lemma 5.3,

Lemma 5.4 and Proposition 5.9. Using this value of M in Lemma 5.7 provides

us with a corresponding value of β and the final probability lower bound in (105)

is in terms of β.

Observe that if we fix Δ and take n large depending on Δ, then the slope of

all lines joining points in UΔ to those in UΔ can be made arbitrarily close to 1.

Thus as a consequence of (8) along with ETu,v = ETu,v + 1, we have that for

all Δ large, for all n large depending on Δ, and for all u ∈ UΔ and v ∈ UΔ,

(80)
−CΔ2n1/3 − C′n1/3 ≤ ETu,v − 4n ≤ C′n1/3,

−CΔ2n1/3 − C′n1/3 ≤ ET u,v − 4n ≤ C′n1/3

for some constants C,C′ not depending on Δ. We will repeatedly use (80)

with Δ being equal toM3/4,M andM2 to change the centering in the estimates.

5.3.2. Events favourable for coalescence. Recall from (9) that for any Δ > 0,

we use the notation UΔ for the rectangle

{−Δn2/3 ≤ ψ(u) ≤ Δn2/3} ∩ {0 ≤ φ(u) ≤ 2n}.
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Recall the fixed parameter ε ∈ (0, 1) from the statement of Proposition 1.2. Let

the rectangles R1 and R2 be defined by

R1 = UM2 ∩
{ ε
4
n ≤ φ(u) ≤ 3ε

4
n
}
,(81)

R2 = UM2 ∩
{
2n− 3ε

4
n ≤ φ(u) ≤ 2n− ε

4
n
}
.(82)

Let R1 and R1 denote the short sides of R1 lying on the lines L εn
4

and L 3εn
4

respectively. Similarly, let R2 and R2 denote the short sides of R2 lying on the

lines L2n− 3εn
4

and L2n− εn
4

respectively; see Figure 5. We now define some high

probability events which will be used later. For a point u ∈ L0, and any x > 0,

define the event Restru,x by

(83)

Restru,x =
{
All γ : u→ u+ n satisfying γ ∩ (Ux)

c �= ∅

have �(γ) ≤ 4n− ξ

2
x2n1/3

}
,

where in this section, ξ always denotes the constant from Proposition 2.5.

We define the event Restr by

(84) Restr = Restr0,2M ∩Restra1,M2 ∩Restra2,M2 ,

where a1 = (−Mn2/3,Mn2/3) and a2 = (Mn2/3,−Mn2/3) as defined in (75).

Also, recall that we have defined b1 = a1 + n and b2 = a2 + n.

We now define some more events which will be used in our construction.

• W1: the event that for any u ∈ L0 ∩ UM2 and v ∈ R1, we have

|T̃u,v| ≤Mn1/3.

• W2: the event that for any u ∈ R1 and v ∈ R2, we have |T̃u,v| ≤Mn1/3.

• W3: the event that for any u ∈ R2 and v ∈ L2n ∩ UM2 , we have

|T̃u,v| ≤Mn1/3.

• S1: the event that for any u ∈ R1 and v ∈ R1, we have |T̃
R1

u,v| ≤Mn1/3.

• S2: the event that for any u ∈ R2 and v ∈ R2, we have |T̃
R2

u,v| ≤Mn1/3.

• S ′
1: the event that for any u ∈ R1 and v ∈ R1, we have T̃

R1

u,v ≤Mn1/3.

• S ′
2: the event that for any u ∈ R2 and v ∈ R2, we have T̃

R2

u,v ≤Mn1/3.

Note that both T and T are used to define the above events, and the minor

technical reason for doing this will become clear in the proof of Proposition 5.9.
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x+ y = t

R1
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εn
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M
2
n 2/3

γ1

γ2

x+ y = 0

x+ y = 2n

R1

R1

R2
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Figure 5. The basic elements for constructing favourable events

to force coalescence of geodesics in the proof of Proposition 1.2:

The rectangles R1 and R2, marked in grey, act as barriers, on

either side of the lines x+y = t. All paths acrossR1 and R2 (ex-

cept for those that intersect two specially designated paths γ1

and γ2, marked in red) are forced to be much shorter than typ-

ical. This is the content of the event Pγ1,γ2 . The other events

S, S ′ and W are typical; W ensures that the paths through the

regions below R1, between R1 and R2, and above R2 (some in-

stances of such paths are marked in green) have typical weights,

whereas S ′ ensures that any path through R1 and R2 does not

have atypically large weight. The event Restr, not shown in

the figure, ensures that paths have typical transversal fluctua-

tion.

We will be using the events

W = W1 ∩W2 ∩W3,(85)

S = S1 ∩ S2,(86)

S′ = S ′
1 ∩ S ′

2.(87)

Note that the reason for defining S ′ and S separately is that S′ is a decreasing

event, and this will allow us to apply the FKG inequality in Proposition 5.8.

We now show that all the above events occur with high probability.
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Lemma 5.3: For all M large, and all n large depending on M , we have

P(W) ≥ 0.99, P(S) ≥ 0.99, P(S ′) ≥ 0.99 and P(Restr) ≥ 0.99.

Thus, we have

P(S ′ ∩Restr ∩W) ≥ 0.97.

Proof. The lower bounds for P(W),P(S) and P(S ′) are very simple consequences

of a union bound, Proposition 2.2 and Proposition 2.3. We just illustrate the

proof by proving the bound for P(S). By symmetry and a union bound, we

only need to lower bound P(S1). Now, divide R1 into M2 disjoint segments

of length n2/3, and call these segments (R1)i where i ∈ {1, . . . ,M2}; do the

same for R1 and call the segments (R1)j . Let Pi,j denote the parallelogram

with (R1)i and (R1)j as the short sides. By using a slightly generalized version

of Proposition 2.3 for parallelograms whose long sides have slopes other than 1

(see [11, Theorem 4.2(ii)]), we have

(88)
P( inf

u∈(R1)i,v∈(R1)j

T̃R1
u,v ≥ −Mn1/3) ≥ P( inf

u∈(R1)i,v∈(R1)j

T̃Pi,j
u,v ≥ −Mn1/3)

≥ 1− Ce−cM .

By Proposition 2.2, we have

(89)

P( sup
u∈(R1)i,v∈(R1)j

T̃R1
u,v ≤Mn1/3) ≥ P( sup

u∈(R1)i,v∈(R1)j

T̃u,v ≤Mn1/3)

≥ 1− C1e
−c1M

3/2

.

To complete the proof, one just needs to take a union bound over the polyno-

mially many (in M) choices of i, j, and we are done by choosing M sufficiently

large because of the stretched exponential decay in the probability.

The lower bound for P(Restr) is an immediate application of Proposition 2.5

and a union bound. Finally, we obtain

(90) P(S ′ ∩Restr ∩W) ≥ 0.97

by another union bound.

We now use the events that we have defined to show that with high probabil-

ity, the geodesic Γn is constrained inside UM3/4 while ensuring that its different

segments have weights close to typical.
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Lemma 5.4: On the event Restr0,M3/4 ∩ W ∩ S, we have that the geodesic

Γn ⊆ UM3/4 for all M large, and n large depending on M . We also have

P(Restr0,M3/4 ∩W ∩ S) ≥ 0.97.

Proof. On W ∩ S, we have that for some constant C,

(91)
T0,n ≥ T0, ε8n + TR1

ε
8n,

3ε
8 n

+ T 3ε
8 n,(1− 3ε

8 )n + TR2

(1− 3ε
8 )n,(1− ε

8 )n
+ T(1− ε

8 )n,n

≥ 4n− (5M + 5C)n1/3,

where the constant C comes from switching the centering by using (8).

Using the definition of Restr0,M3/4 and the fact that ξM3/2/2 > M + C

for M large, it is clear from (91) that Γn ⊆ UM3/4 .

The probability lower bound is an easy consequence of Proposition 2.5 and

Lemma 5.3. Indeed, we just need to individually bound fro below P(Rest0,M3/4),

P(W) and P(S) by 0.99 and use a union bound.

At this point, we introduce some notation. For a given path γ : u → v, we

define

(92)
�̃(γ) = �(γ)− ETu,v,

�̃(γ) = �(γ)− ETu,v.

From now on, for a fixed M , we say that a path γ is θ-typical if it satis-

fies γ ⊆ Uθ and |̃�(γ)| ≤Mn1/3.

Lemma 5.5: Let T be the event that Γn|R1 and Γn|R2 are M3/4-typical. Then

P(T ) ≥ 0.97

for all M large, and n large depending onM as in the statement of Lemma 5.4.

Proof. By Lemma 5.4, on the event Restr0,M3/4 ∩ W ∩ S, we have that the

geodesic Γn ⊆ UM3/4 , which in particular implies that Γn|R1 ,Γn|R2 ⊆ UM3/4 .

Also, the definition of the event S ensures that on Restr0,M3/4 ∩ W ∩ S, we
have |̃�(Γn|R1)| ≤Mn1/3 and |̃�(Γn|R2)| ≤Mn1/3. Thus, we have that

P(T ) ≥ P(Restr0,M3/4 ∩W ∩ S) ≥ 0.97

by Lemma 5.4.
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Let I1 and I2 denote the set of all M3/4-typical paths from R1 to R1 and

R2 to R2 respectively. By Lemma 5.5, it is clear that

(93) P(Γn|R1 ∈ I1,Γn|R2 ∈ I2) ≥ 0.97.

Let I denote the set of pairs of paths (γ1, γ2) such that γ1 ∈ I1, γ2 ∈ I2 and

(94) P(S ′ ∩Restr ∩W|Γn|R1 = γ1,Γn|R2 = γ2) ≥
1

2
.

Notice that I1,I2, I depend both on the path and the weights on the path;

for notational convenience, in the following, whenever we fix γ1, γ2, it will be

assumed that both the path and its weight has been fixed, similar convention will

also be adapted whenever conditioning on events such as {Γn|R1 =γ1,Γn|R2=γ2}
as above. In view of Lemma 5.3, we have the following lower bound.

Lemma 5.6: P((Γn|R1 ,Γn|R2) ∈ I ) ≥ 0.9 for allM large and n large depending

on M as in the statement of Lemma 5.4.

Proof. Let P be the set of pairs of paths (γ1, γ2) such that γ1 ∈ I1 and γ2 ∈ I2.

Note that we have

P(S ′ ∩Restr ∩W)

= 1− P((S ′ ∩Restr ∩W)c)

≤ 1− Eγ1,γ2 [P((S ′ ∩Restr ∩W)c|Γn|R1 = γ1,Γn|R2 = γ2)�(γ1,γ2)∈P\I )]

≤ 1− 1

2
P((Γn|R1 ,Γn|R2) ∈ P \ I )

by using the definition of I as in (94). Using (90) along with the above, we

obtain

(95) P((Γn|R1 ,Γn|R2) ∈ P \ I ) ≤ 0.06.

Finally, we have that

P((Γn|R1 ,Γn|R2) ∈ I ) = P((Γn|R1 ,Γn|R2) ∈ P)− P((Γn|R1 ,Γn|R2) ∈ P \ I )

≥ 0.97− 0.06 = 0.91

by using (93) and (95) and this completes the proof.

We will finally want to condition on the event {(Γn|R1 ,Γn|R2) = (γ1, γ2)}
for some (γ1, γ2) ∈ I , and then show that in this conditional environment, we

have that both the geodesics Γa1,b1 and Γa2,b2 meet γ1 and γ2 with positive

probability. We will ensure this by “decreasing” the background vertex weights

in the region R1 \ γ1 and R2 \ γ2, and we define some more events which will

help us in achieving this.
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For any path γ1 ⊆ R1 from R1 to R1, and any path γ2 ⊆ R2 from R2 to R2,

we will consider the following events:

• Pγ1 : the event that any path γ ⊆ R1 from R1 to R1 disjoint from γ1

satisfies �̃(γ) ≤ −M4n1/3.

• Pγ2 : the event that any path γ ⊆ R2 from R2 to R2 disjoint from γ2

satisfies �̃(γ) ≤ −M4n1/3.

In the above setting, we define the event Pγ1,γ2 by

Pγ1,γ2 = Pγ1 ∩ Pγ2 .

Note that the event Pγ1,γ2 depends only on the vertex weights inside

(R1 \ (γ1 ∪R1)) ∪ (R2 \ (γ2 ∪R2)).

Note that by using (80) along with Lemma 2.7, we have that once we fix

some large constant M , then for some constant c not depending on γ1 or γ2,

we have that the probabilities of each of the above events are lower bounded

by some constant c for all n large enough. Using the independence between the

vertex weights in R1 and R2, we have that Pγ1 and Pγ2 are independent and

this immediately implies the following lemma:

Lemma 5.7: For any path γ1 ⊆ R1 from R1 to R1 and any path γ2 ⊆ R2

from R2 to R2, we have that for any M > 0, there exists a positive constant β

(depending on the choice of M , independent of the choice of γ1, γ2) such that

for all n large enough,

(96) P(Pγ1,γ2) ≥ β.

Proof. The lemma follows by using (80), Lemma 2.7, and the independence

of Pγ1 and Pγ2 as explained above. Indeed, by (80), we have that for any

path γ ⊂ R1 from R1 to R1, and for some positive constants C1, C2 not de-

pending on M ,

{�̃(γ) ≤ −M4n1/3} ⊇ {�(γ)− εn ≤ (−C1 − 1)M4n1/3 − C2n
1/3},

and the M -dependent lower bound for P(Pγ1) now follows by using Lemma 2.7

for the rectangle R1. Similar considerations for R2 yield the lower bound

for P(Pγ2).

Again, note that the β and M in this section have no relation to the ones in

Section 4.1.1.
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Proposition 5.8: For anyM > 0 fixed, let β = β(M) be the constant obtained

from Lemma 5.7. For any path γ1 ⊆ R1 from R1 to R1 and any path γ2 ⊆ R2

from R2 to R2, we have

P(Pγ1,γ2 |S ′ ∩Restr ∩W ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2}) ≥ β

for all n large enough.

Proof. Note that after conditioning on the configuration in

((R1 \ (γ1 ∪R1)) ∪ (R2 \ (γ2 ∪R2)))
c,

we have that S ′,Restr,Pγ1,γ2 and {Γn|R1 = γ1}∩ {Γn|R2 = γ2} are decreasing

events on (R1 \ (γ1 ∪R1)) ∪ (R2 \ (γ2 ∪R2)). Let Fγ1,γ2 denote the σ-algebra

generated by the vertex weights in ((R1 \ (γ1 ∪R1))∪ (R2 \ (γ2 ∪R2)))
c. Using

the FKG inequality and the dependence of Pγ1,γ2 only on the vertex weights in

(R1 \ (γ1 ∪ R1)) ∪ (R2 \ (γ2 ∪ R2)) (thus, Pγ1,γ2 is independent of Fγ1,γ2), we

have that

(97)
P(Pγ1,γ2∩S ′ ∩Restr ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2}|Fγ1,γ2)

≥ P(Pγ1,γ2)P(S ′∩Restr ∩ {Γn|R1 =γ1}∩{Γn|R2 =γ2}|Fγ1,γ2).

Noting that the event W is measurable with respect to Fγ1,γ2 , we have

(98)
P(Pγ1,γ2∩S ′ ∩Restr ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2}|W)

≥ P(Pγ1,γ2)P(S ′ ∩Restr ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2}|W)

and this in turn yields

(99) P(Pγ1,γ2 |S ′∩Restr∩W∩{Γn|R1 = γ1}∩{Γn|R2 = γ2}) ≥ P(Pγ1,γ2) ≥ β,

thereby completing the proof.

5.3.3. Forcing the geodesics to coalesce on the favourable events. We shall now

show that the positive probability event constructed above implies that Γa1,b1

and Γa2,b2 coincide between R1 and R2.

Proposition 5.9: Take any (γ1, γ2) ∈ I . On the event

Pγ1,γ2 ∩ S ′ ∩Restr ∩W ,

for M large enough, and n large depending on M we have that

Γa1,b1 ,Γa2,b2 ⊆UM2 , Γn ⊆ U2M and both Γa1,b1 and Γa2,b2 intersect both γ1

and γ2.
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Proof. Let u1, v1 (resp. u2, v2) be the starting and ending points of γ1 (resp. γ2).

Let χ1 be the concatenation of the paths Γa1,u1 , γ1,Γv1,u2 , γ2 and Γv2,b1 . By

using that the paths γ1 and γ2 areM3/4-typical along with the definition of the

events Restr and W , we have that for some absolute constant c,

(100) �(χ1)− 4n ≥ −cM2n1/3.

Here, we have used that �(χ1) = �(Γa1,u1)+ �(γ1)+ �(Γv1,u2)+ �(γ2)+ �(Γv2,b1).

The recentering in (100) with respect to 4n is done by using (80) for the end-

points of each of the five segments making up χ1, and using that all the end-

points lie inside U2M . Indeed, this recentering leads to the M2 term in (100).

Now, using that ξM4/2 > cM2 for large M , we have that χ1 ⊆ UM2 and con-

sequently Γa1,b1 ⊆ UM2 since Restra1,M2 ⊇ Restr. By a symmetric argument,

one also obtains that Γa2,b2 ⊆ UM2 .

Now, let χ2 be the concatenation of the paths Γ0,u1 , γ1,Γv1,u2 , γ2 and Γv2,n.

By using that γ1 and γ2 areM3/4-typical along with the definition of the events

Restr and W , we have that for some absolute constant c1,

(101) �(χ2)− 4n ≥ −c1M3/2n1/3.

Again, we have used (80) for the endpoints of the five segments of χ2 along with

�(χ2) = �(Γ0,u1) + �(γ1) + �(Γv1,u2) + �(γ2) + �(Γv2,n). Here, we obtained M3/2

since 0, u1, v1, u2, v2,n ⊆ UM3/4 and this is because γ1 and γ2 are M3/4-typical

as in the definition of I . Using that ξ(2M)2/2 > c1M
3/2 for large M , and the

definition of the event Restr0,2M ⊇ Restr, we obtain that Γn ⊆ U2M .

Now, consider any path γ ⊆ UM2 from a1 to b1 which does not intersect at

least one of γ1 and γ2. By the definition of the event Pγ1,γ2 , W and S ′, we have
that

(102) �(γ)− 4n ≤ 4Mn1/3 −M4n1/3 + c2n
1/3.

Here, one divides γ into five segments which we call σ1, σ2, . . . , σ5 and uses that

�(γ) = �(σ1)+ �(σ2)+ �(σ3)+ �(σ4)+ �(σ5). The recentering in (102) is done by

using the right hand side part of (80) and this leads to c2, a positive constant.

Indeed, one uses (80) once for each segment of γ, and c2 is the cumulative

effect of these five applications. By noting that M4 − 4M − c2 > cM2 for

largeM and by using (100) along with (102), we have that Γa1,b1 must intersect

both γ1 and γ2. By entirely analogous arguments, one observes that Γa2,b2 must

intersect both γ1 and γ2; see Figure 6 for an illustration of this argument.
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x+ y = 2n

a1

a2

b1

b2

γ1

γ2

Γ0,n

Γa2,b2

Γa1,b1

Figure 6. Coalescence of geodesics Γa1,b1 ,Γa2,b2 on the

favourable events: we show that for a pair of paths γ1 and

γ2 across R1 and R2 respectively satisfying the required reg-

ularity conditions, on the intersection of event Pγ1,γ2 and the

typical event S ′ ∩Restr ∩W , Γa1,b1 and Γa2,b2 each intersect

both γ1 and γ2. This is done by using the definition of Pγ1,γ2

which ensures that any path crossing R1 or R2 and disjoint

with γ1 or γ2 respectively incurs a heavy penalty in weight.

Finally, the event {Γn|R1 = γ1} ∩ {Γn|R2 = γ2} ensures the

required coalescence.

We are finally ready to prove Proposition 1.2.

Proof of Proposition 1.2. We first show that we can fix M large enough such

that if we take any (γ1, γ2) ∈ I , we have

(103)
Pγ1,γ2 ∩ S ′∩Restr ∩W ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2}

⊆ {Γa1,b1(t) = Γa2,b2(t)} ∩ {|Γa1,b1(t)| ≤ 2Mn2/3}

for all n large enough. As mentioned in Section 5.3.1, fix M large so as to

satisfy the conclusions of Lemma 5.3, Lemma 5.4 and Proposition 5.9 for all

large n. By using Proposition 5.9, we have that Γa1,b1 intersects γ1 and γ2.

Since Γn is a geodesic, this implies that Γa1,b1 = Γn in the region between R1

and R2. Using an analogous argument, we have that Γa1,b1 = Γa2,b2 = Γn in

the region between R1 and R2, and note that the line Lt lies in this region.
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Since Γn ⊆ U2M by Proposition 5.9, it is clear that |Γn(t)| ≤ 2Mn2/3. This

proves (103).

We now use Lemma 5.7 to obtain β = β(M) for the M which was just fixed.

Now, by using (103), we have that for any (γ1, γ2) ∈ I ,

(104)

P({Γa1,b1(t)=Γa2,b2(t)}∩{|Γa1,b1(t)|≤2Mn2/3}|{Γn|R1=γ1}∩{Γn|R2=γ2})
≥ P(Pγ1,γ2 ∩ S ′ ∩Restr ∩W|{Γn|R1 = γ1} ∩ {Γn|R2 = γ2})
≥ P(Pγ1,γ2 |S ′ ∩Restr ∩W ∩ {Γn|R1 = γ1} ∩ {Γn|R2 = γ2})

× P(S ′ ∩Restr ∩W|Γn|R1 = γ1,Γn|R2 = γ2)

≥ β/2.

Note that we used Proposition 5.8 and the definition of I (as in (94)) to obtain

the last inequality. Now, observe that

(105)

P({Γa1,b1(t) = Γa2,b2(t)} ∩ {|Γa1,b1(t)| ≤ 2Mn2/3})

≥P({Γa1,b1(t)=Γa2,b2(t)}∩{|Γa1,b1(t)|≤2Mn2/3}∩{(Γn|R1 ,Γn|R2)∈I })

= Eγ1,γ2 [P({Γa1,b1(t) = Γa2,b2(t)} ∩ {|Γa1,b1(t)| ≤ 2Mn2/3}∣∣{Γn|R1 = γ1} ∩ {Γn|R2 = γ2})�(γ1,γ2)∈I ]

≥ β

2
P((Γn|R1 ,Γn|R2) ∈ I )

≥ 0.9β

2
.

Note that we have used (104) and Lemma 5.6 to obtain the last two inequalities.

This completes the proof of the proposition.

6. Concluding remarks and possible extensions

As we have remarked throughout, our objective in this paper was to focus on one

of the simplest settings to maintain maximum clarity of exposition. However,

we expect that the methods illustrated here have broader applicability and we

conclude with a discussion of possible extensions of the results presented in this

paper. We shall not attempt to make this discussion precise; working out these

details will be taken up elsewhere.
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There are primarily two directions of possible generalizations we will discuss:

the first one will focus on applicability of our results beyond the exponential

LPP model. The other will focus on the set up of exponential LPP itself but

will look at the geometry of parts of the geodesics at macroscopic or mesoscopic

scales.

6.1. Beyond exponential LPP. As alluded to before, we recall the reader’s

attention to the fact that even though we worked with the specific model of expo-

nential LPP, our arguments depended only on the one-point estimates (Propo-

sition 2.1) and its consequences about passage times across the parallelogram

(primarily Proposition 2.2, Proposition 2.3) together with some basic tools of

percolation like the FKG inequality. An attempt to formalize this axiomatic

study of last passage percolation on Z2 was made in [10], and one expects that

the results in this paper will continue to hold under the same set of assumptions

(see [10, Section 1.1, page 1245 and Appendix A]). In particular, the analogues

of Proposition 2.2 and Proposition 2.3 for Geometric LPP were verified in [10]

based on the one point convergence and moderate deviation estimates from

[31, 3] (see [10, Sections B.1 and B.3]). Hence, one expects straightforward

modifications of Theorem 1 to hold for Geometric LPP, after one modifies the

statement to deal with the non-uniqueness of the geodesic (by, e.g., fixing the

left most geodesic). Note that our proof of Theorem 2 used the uniqueness of

the geodesic in a slightly more crucial way, and hence a direct adaptation of the

same to the geometric LPP setting would not work. Even though we believe

that an appropriate variant of Theorem 2 would hold for geometric LPP, we

shall not comment on this here.

One point convergence and moderate deviation estimates are known for two

non-lattice exactly solvable models of planar last passage percolation as well.

The first of these is Poissonian LPP on R2, where the underlying randomness is

a homogeneous rate one Poisson point process on R2 and the last passage time

between two ordered points is the maximum number of Poisson points that can

be collected in an up/right journey from the “smaller” to the “larger” point.

The analogue of Proposition 2.1 for Poissonian LPP was established in [35, 36]

and using these, the parallelogram estimates (analogues of Propositions 2.2

and 2.3) were established in [14]. Using these, we expect that our arguments

could be used to extend Theorem 1 to Poissonian LPP as well (dealing with the

non-uniqueness issue as before).
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The second model, the semi-discrete Brownian LPP is defined as follows: let

{Bi(·)}i∈Z denote a sequence of two sided standard Brownian motions on R. For

a non-decreasing function φ : [0, n]→{0, 1, 2, . . . , n} with φ(0)=0 and φ(n)=n,

let us define

E(φ) :=

n∑
i=0

Bi(φi+1)−Bi(φi)

where [φi, φi+1] is the smallest closed interval containing the set {x : φ(x) = i}.
The last passage time from (0, 0) to (n, n) is defined to be the maximum of E(φ)

over all φ. Using the correspondence between passage times in Brownian LPP

and the largest eigenvalue of Gaussian Unitary Ensemble (GUE) [7], the one

point estimates for passage times in Brownian LPP can be obtained from [34]

(see also [1]), and the convergence to the GUE Tracy–Widom distribution is

proved in [25]. An inspection of the arguments in [14, 11] shows that the

arguments are sufficiently robust and use only the curvature of limit shape and

one point moderate deviation estimates, and hence one expects to establish

analogues of Proposition 2.2 and Proposition 2.3 for Brownian last passage

percolation as well. Although the parallelogram estimates for Brownian LPP

has not been worked out anywhere in the literature as far as we are aware, some

similar estimates have appeared in the works [29, 28, 27, 17, 19, 18, 39, 23] using

the Brownian Gibbs property of a line ensemble associated to Brownian LPP.

Recall that we also needed the FKG inequality. An appropriate variant of the

FKG inequality on Wiener space that is applicable in the Brownian LPP set-up

can be found in [6, Theorem 4].

Again, we shall not work out the details, but for the above explained reasons,

we believe that the analogue of Theorem 1 can be proved for Brownian LPP as

well.

6.2. Geometry of geodesics at a finer scale. Here we shall bring our

focus back to the exponential LPP model and discuss the applicability of our

results to (i) parts of the geodesic Γn (both macroscopic and mesoscopic), (ii)

the scenario when δ is allowed to go to 0 with n.

6.2.1. Macroscopic segments of the geodesic. Notice that in Theorem 1, we only

considered the small ball probability for the whole geodesic Γn. However, by

following our arguments, one can easily also derive the same result for any

macroscopic segment of the geodesic. More precisely, for ε > 0 fixed, let �t1, t2�
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denote a sub-interval of �0, 2n� such that t2 − t1 ≥ εn. We have the following

analogue of Theorem 1:

(106) C2e
−c2δ

−3/2

≤ P( sup
t∈�t1,t2�

|Γn(t)| ≤ δn2/3) ≤ C1e
−c1δ

−3/2

.

Notice that the lower bound here is immediate from Theorem 1 whereas for the

upper bound, one needs to redo the argument restricted to the interval �t1, t2�.

6.2.2. Mesoscopic segments of the geodesic at either end. A more interesting

question is to consider the segment of geodesic Γn restricted to the interval �0, r�

or �2n − r, 2n� for some 1 � r � n. One of the advantages of working with

a pre-limiting model, rather than a limiting model such as the directed land-

scape, is that these mesoscopic statistics cannot be read off from the limiting

model. It is known that the transversal fluctuation of Γn at scale r is O(r2/3)

(see [13, Theorem 3]), hence the natural question is to ask for the probability

that supt∈[0,r] |Γn(t)| ≤ δr2/3. We believe that the argument in this paper to-

gether with [13, Theorem 3] and [8, Theorem 3] can be used to show that for r

sufficiently large and δ small, we have

(107) C2e
−c2δ

−3/2 ≤ P( sup
t∈[0,r]

|Γn(t)| ≤ δr2/3) ≤ C1e
−c1δ

−3/2

.

One also expects a similar estimate to hold for the semi-infinite geodesic from 0

in the direction (1, 1).

The analogue of Theorem 2 is expected to hold at the scale r � n as well.

In particular, one expects that appropriate modifications of our estimates will

yield that

(108) cδ ≤ P(|Γn(r)| ≤ δr2/3) ≤ Cδ.

The translation invariance in the proof of the upper bound in Theorem 2 will

directly give the upper bound in (108), but the lower bound requires significant

modifications in the argument for it to work and would be taken up elsewhere.

6.2.3. The case of vanishing δ and small deviations away from the diagonal.

Finally, we want to point out that even though for the sake of notational conve-

nience we have stated our results for a fixed but small δ while letting n become

arbitrarily large, our arguments are sufficiently robust to handle the case when δ

is allowed to go to 0 with n sufficiently slowly. This is rather transparent for

Theorem 2, where the key estimates Proposition 5.1 and Proposition 1.2 did

not depend on δ at all and the role of δ was merely in setting up the appropriate
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translations. A moment’s thought should convince the reader that Theorem 2

holds for all δ such that δn2/3 ≥ 1 which ensures that the translations can be

made sense of in the lattice.

As already mentioned in the introduction, Theorem 2 can also be strength-

ened by considering P(Γn(·) ∈ I) for any compact interval I of length δn2/3 ≥ 2

(the lower bound is imposed to make sure that {Γn(·) ∈ I} is not vacuously

empty).

Corollary 6.1: For each L ≥ 0 and for all ε ∈ (0, 1), there exist positive

constants C3, c3 depending on ε and L such that for all n ≥ n0(ε, L) and

t ∈ �εn, (2− ε)n�, and for all intervals I ⊆ [−Ln2/3, Ln2/3] with |I| = δn2/3 ≥ 2,

we have

c3δ ≤ P(Γn(t) ∈ I) ≤ C3δ.

Proof. We shall discuss only the case of even t, an identical argument works

for t odd. For f ∈ �−Ln2/3, Ln2/3�, it is easy to check that for t even, i ∈ Z

and ui := (i,−i) we have P(Γn(t) = 2f) = P(Γui,ui+n(t)−ψ(ui) = 2f). Clearly

it suffices to show that for some L′ (which will be chosen to be a large but fixed

number depending on L′) we have

(109)
∑

|i|≤L′n2/3

P(Γui,ui+n(t)− ψ(ui) = 2f)

is bounded away from 0 and ∞ uniformly in n. Let L(t) denote the number of

points in Lt ∩ UL′+2L that lie on some geodesic Γui,ui+n for some |i| < L′n2/3.

The same argument as in Lemma 5.2 shows that ELt is bounded above. The

same argument as in the proof of the upper bound of Theorem 2 now shows

a uniform (in n) upper bound of (109). The lower bound for (109) follows by

observing that Proposition 1.2 is true for arbitrarily large choices of M and

repeating the proof of the lower bound in Theorem 2.

Working through the steps of the proof of Theorem 1 in the case of δ → 0

requires a little more work, but observe that whenever we have applied estimates

like Proposition 2.2 or Proposition 2.3 to a rectangle or parallelogram whose

dimensions involved δ, it was applied to a parallelogram of size O(δ3/2n)×δn2/3.

Application of these parallelogram estimates only requires that the dimensions

of the parameters be sufficiently large and hence it is expected that the proofs

will all go through as long as δn2/3 → ∞.
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[35] M. Löwe and F. Merkl, Moderate deviations for longest increasing subsequences: The

upper tail, Communications in Pure and Applied Mathematics 54 (2001), 1488–1519.

https://arxiv.org/abs/2104.08210
https://doi.org/10.1007/s11856-023-2603-8


60 R. BASU AND M. BHATIA Isr. J. Math.
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