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ABSTRACT

Let T : X → X be a bounded operator on Banach space, whose spectrum

σ(T ) is included in the closed unit disc D. Assume that the peripheral

spectrum σ(T ) ∩ T is finite and that T satisfies a resolvent estimate

‖(z − T )−1‖ � max{|z − ξ|−1 : ξ ∈ σ(T ) ∩ T}, z ∈ D
c
.

We prove that T admits a bounded polygonal functional calculus, that is,

an estimate ‖φ(T )‖ � sup{|φ(z)| : z ∈ Δ} for some polygon Δ ⊂ D and

all polynomials φ, in each of the following two cases: (i) either X = Lp

for some 1 < p < ∞, and T : Lp → Lp is a positive contraction; or

(ii) T is polynomially bounded and for all ξ ∈ σ(T ) ∩ T, there exists a

neighborhood V of ξ such that the set {(ξ − z)(z − T )−1 : z ∈ V ∩ D
c}

is R-bounded (here X is arbitrary). Each of these two results extends

a theorem of de Laubenfels concerning polygonal functional calculus on

Hilbert space. Our investigations require the introduction, for any finite

set E ⊂ T, of a notion of RittE operator which generalizes the classical

notion of Ritt operator. We study these RittE operators and their natural

functional calculus.
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1. Introduction

Let X be a Banach space, let T : X → X be a bounded operator and let Ω ⊂ C

be an open set whose closure contains σ(T ), the spectrum of T . In various situa-

tions, an important issue is to determine whether there exists a constant K ≥ 1

such that:

(1) For all polynomial φ, ‖φ(T )‖ ≤ K sup{|φ(z)| : z ∈ Ω}.
The search for such functional calculus estimates stemmed from the famous von

Neumann inequality which asserts that ifX = H is a Hilbert space and ‖T ‖ ≤ 1,

then (1) holds true with Ω = D, the unit disc of C, and K = 1. In Hilbertian

operator theory, several important topics are related to von Neumann’s inequal-

ity and to the search for inequalities of the form (1). This includes the study

of polynomial boundedness, K-spectral sets and similarity problems, for which

we refer to [4, 5, 7, 9, 23, 24] and the references therein.

We recall that T : X → X is called polynomially bounded if there exists a

constant K ≥ 1 such that (1) holds true with Ω = D. In this paper we are

interested in the case when the open set Ω ⊂ C in (1) is a polygon. More

explicitly, we say that T : X → X admits a bounded polygonal functional cal-

culus if there exist a (convex, open) polygon Δ ⊂ D such that σ(T ) ⊂ Δ, and

a constant K ≥ 1 such that (1) holds true with Ω = Δ.

Let

T = {z ∈ C : |z| = 1}.
For any T such that σ(T ) ⊂ D, call σ(T )∩T the peripheral spectrum of T . It is

easy to check (see Remark 3.2) that if T : X → X admits a bounded polygonal

functional calculus, then σ(T ) ∩ T is finite and one has an estimate

(2) ‖(z − T )−1‖ � max{|z − ξ|−1 : ξ ∈ σ(T ) ∩ T}, z ∈ D
c
.

In the Hilbertian case, the following converse was established by de Laubenfels

[8, Theorem 4.4, (a) ⇒ (b)].

Theorem 1.1: Let H be a Hilbert space and let T : H → H be a polynomially

bounded operator. Assume that T has a finite peripheral spectrum and that (2)

holds true. Then T admits a bounded polygonal functional calculus.

This remarkable result also follows from [10, Theorem 5.5]. Note that it is

already significant when T : H → H is a contraction.
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The motivation for this paper is to understand polygonal functional calculus

in the Banach space setting.

Our first main result is a Banach space version of Theorem 1.1 relying on

the notion of R-boundedness (for which we refer, e.g., to [13, Chapter 8]).

We prove (see Corollary 3.10 and Remark 3.8) that if a polynomially bounded

operator T : X → X has a finite peripheral spectrum and if for any ξ ∈ σ(T )∩T,
there exists a neighborhood V of ξ such that the set

{(ξ − z)(z − T )−1 : z ∈ V ∩ D
c}

is R-bounded, then T admits a bounded polygonal functional calculus. We will

see that such a bounded functional calculus holds with respect to a polygon

Δ ⊂ D such that Δ ∩ T = σ(T ) ∩ T (see Remark 4.5). In the case when

the peripheral spectrum σ(T ) ∩ T is a singleton, this result reduces to [18,

Proposition 7.7], established for Ritt operators.

Our second main result concerns positive contractions on Lp-spaces.

Let 1 < p <∞, let (S, μ) be a measure space and let T : Lp(S) → Lp(S) be a

positive contraction. We show (see Theorem 4.7) that if T has a finite peripheral

spectrum and if (2) holds true, then T admits a bounded polygonal functional

calculus. Note that in this result, we do not need to assume that T is polyno-

mially bounded. The latter comes as a consequence of the bounded polygonal

functional calculus. This result, which holds as well if T : Lp(S) → Lp(S) is a

contractively regular operator, should be regarded as an Lp-version of the case

when ‖T ‖ ≤ 1 in Theorem 1.1.

In order to study operators with finite peripheral spectrum and to obtain

the aforementioned results, it is relevant to introduce, for a finite

set E = {ξ1, . . . , ξN} ⊂ T, the notion of RittE operator; see Definition 2.1 below.

This is a natural generalization of Ritt operators, the latter having attracted

a lot of attention recently; see, e.g., [2, 3, 6, 11, 14, 18, 19, 20, 21, 22, 27].

Section 2 is devoted to the study of RittE operators. In particular we establish

an analogue of the well-known theorem which asserts that T : X → X is a Ritt

operator if and only if the two sets

{T n : n ≥ 0} and {n(T n − T n−1) : n ≥ 1}
are bounded. This is achieved in Theorem 2.10. In Sections 3 and 4, we relate

the polygonal functional calculus to a natural functional calculus associated

with RittE operators, and prove our main results.
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2. RittE operators

Let X be a Banach space. We let B(X) denote the Banach algebra of all

bounded operators on X , equipped with its usual norm. We denote by IX the

identity operator on X . For any T ∈ B(X), we let σ(T ) denote the spectrum

of T and we let R(z, T ) = (z − T )−1 denote the resolvent operator, when z

belongs to the resolvent set C \ σ(T ).
For any a ∈ C and any r > 0, we let D(a, r) ⊂ C denote the open disc of

radius r centered at a. We recall that we use the notations D = D(0, 1) and T

for the the open unit disc and for its boundary, respectively.

2.1. Definition and basic facts. We consider distinct complex numbers

ξ1, . . . , ξN of modulus 1, for some N ≥ 1, and we let

(3) E = {ξ1, . . . , ξN} ⊂ T.

Definition 2.1: Let X be a Banach space and let T ∈ B(X). We say that T

is RittE (or is a RittE operator) if σ(T ) ⊂ D and there exists a constant c > 0

such that

(4) ‖R(z, T )‖ ≤ c∏N
j=1|ξj − z|

, z ∈ C, 1 < |z| < 2.

Note that when N = 1 and E = {1}, RittE operators coincide with the usual

Ritt operators, for which we refer, e.g., to [2, 3, 6, 11, 14, 18, 19, 20, 21, 22, 27].

Lemma 2.2: If T ∈ B(X) is a RittE operator, then σ(T ) ⊂ D ∪E.

Proof. Let z ∈ σ(T ) ∩ T. For any λ ∈ C with |λ| > 1, we have

‖R(λ, T )‖ ≥ 1

dist(λ, σ(T ))
.

Further, for any integer t > 0, dist((1 + t)z, σ(T )) ≤ t. Hence assuming (4), we

have

N∏
j=1

|ξj − (1 + t)z| ≤ ct, t > 0.

Letting t→ 0, this implies that z = ξj for some j ∈ {1, . . . , N}.
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Remark 2.3: Let T ∈ B(X) such that σ(T ) ⊂ D.

(a) For any R > 1, (4) is equivalent to the existence of some constant cR > 0

such that

‖R(z, T )‖ ≤ cR∏N
j=1|ξj − z|

, z ∈ C, 1 < |z| < R.

(b) We have ‖R(z, T )‖ = O(|z|−1) when |z| → ∞, hence (4) is equivalent to

the existence of some constant C > 0 such that

‖R(z, T )‖ ≤ C max
j∈{1,...,N}

1

|ξj − z| , z ∈ D
c
.

(c) Using Lemma 2.2, we see that the existence of a finite subset E ⊂ T such

that T is RittE is equivalent to the following:

- The peripheral spectrum σ(T ) ∩T is finite and there exists C > 0 such

that

‖R(z, T )‖ ≤ Cmax
{ 1

|ξ − z| : ξ ∈ σ(T ) ∩ T

}
, z ∈ D

c
.

2.2. Auxiliary tools. For any ω ∈ (0, π), we let

Σω = {λ ∈ C
∗ : |Arg(λ)| < ω}

be the open sector of angle 2ω around the positive real axis.

Given any A ∈ B(X), we say that A is sectorial of type ω if σ(A) ⊂ Σω and

for any ν ∈ (ω, π), there exists a constant Kν > 0 such that

‖λR(λ,A)‖ ≤ Kν, λ ∈ Σν
c
.

It is well-known that if A∈B(X) is such that σ(A)⊂Σπ
2
and {λR(λ,A) :λ∈Σπ

2

c}
is bounded, then there exists ω ∈ (0, π2 ) such that A is sectorial of type ω. We

will use this property in the next proof. We refer, e.g., to [13, Section 10] for

information on sectorial operators.

Lemma 2.4: Assume that T ∈ B(X) is a RittE operator. Then for any

j = 1, . . . , N , the operator

(5) Aj = IX − ξjT

is a sectorial operator of type < π
2 .

Proof. Let λ ∈ Σπ
2

c
. Then ξj(1 − λ) ∈ D

c
and an elementary computation

shows that λ belongs to the resolvent set of Aj , with

(6) λR(λ,Aj) = −λξjR(ξj(1− λ), T ).
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Hence assuming (4), we have

‖λR(λ,Aj)‖ ≤ c|λ|∏N
k=1|ξk − ξj(1− λ)| =

c∏
1≤k≤N
k �=j

|ξk − ξj(1− λ)| .

Now observe that for any k �= j, the set {|ξk − ξj(1− λ)| : λ ∈ Σπ
2

c} is bounded

away from 0. We deduce that {λR(λ,Aj) : λ ∈ Σπ
2

c} is bounded, which implies

that Aj is sectorial of type < π
2 .

Remark 2.5: For T as above, (6) is valid for any λ in the resolvent set of Aj .

Equivalently, for any z in the resolvent set of T , we have

(7) (ξj − z)R(z, T ) = −ξj(ξj − z)R(ξj(ξj − z), Aj).

When one studies Ritt operators and their functional calculus, it is useful to

consider, for any angle ω ∈ (0, π2 ), the Stolz domain Bω ⊂ 1 − Σω defined as

the interior of the convex hull of 1 and the disc D(0, sin(ω)) (see, e.g., [3, 18]).

We will introduce similar domains adapted to the study of RittE operators.

Definition 2.6: Let E = {ξ1, . . . , ξN} as in (3) and let r ∈ (0, 1). We let Er

denote the interior of the convex hull of D(0, r) ∪ E; see Figure 1.

Figure 1. The “generalized” Stolz domain Er.

Remark 2.7: Assume that N ≥ 2 and that the sequence (ξ1, ξ2, . . . , ξN ) is ori-

ented counterclockwise on T. Set ξN+1 = ξ1. We note that if r ∈ (0, 1) is such

that [ξj , ξj+1]∩D(0, r) �= ∅ for all j = 1, . . .N (as shown on Figure 1), then for

all r ≤ u < s < 1, we have ∂Eu \ E ⊂ Es. In this case we will say that r is

E-large enough.

If N = 1, any r ∈ (0, 1) will be called E-large enough.
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For any ξ ∈ C∗ and ω ∈ (0, π2 ), we set

(8) Σ(ξ, ω) = ξ(1 − Σω).

This is the open sector with vertex ξ and angle 2ω around the semi-axis [ξ, 0);

see Figure 5.

Lemma 2.8: An operator T ∈ B(X) is RittE if and only if there exists r ∈ (0, 1)

which is E-large enough (in the sense of Remark 2.7), such that the following

two conditions are satisfied:

(i) σ(T ) ⊂ Er.

(ii) For all s ∈ (r, 1), there exists a constant c > 0 such that

‖R(z, T )‖ ≤ c∏N
j=1|ξj − z| , z ∈ D(0, 2) \ Es.

Proof. The ‘if’ part is obvious. To prove the ‘only if’ part, let us assume that T

is a RittE operator. For any j = 1, . . . , N , consider Aj given by (5). According

to Lemma 2.4, we may find ω ∈ (0, π2 ) such that Aj is sectorial of type ω for

all j = 1, . . . , N . We derive that

σ(T ) ⊂
N⋂
j=1

Σ(ξj , ω).

Choosing ω close enough to π
2 , we may assume that we also have

E ⊂ Σ(ξj , ω), j = 1, . . .N.

Choose η > 0 small enough to ensure that D(ξj , 2η) ∩ Σ(ξj , ω) ⊂ D for

all j = 1, . . . , N . Since σ(T ) is compact, the set

F = σ(T ) \
[ N⋃
j=1

D(ξj , η)

]

is compact as well. Hence there exists r ∈ (0, 1) such that F ⊂ D(0, r). We

may and do assume that r ≥ sin(ω). This ensures that σ(T ) ⊂ Er and that r

is E-large enough.

We set

h(z) = R(z, T )

N∏
k=1

(ξk − z), z ∈ C \ σ(T ).

Let s ∈ (r, 1) and let β = arcsin(s). Then β ∈ (ω, π2 ). For any j = 1, . . . , N ,

Aj is sectorial of type ω hence by (7), (ξj − z)R(z, T ) is bounded on Σ(ξj , β)
c
.
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Figure 2. Set containing the spectrum of T .

This implies that h is bounded on D ∩ Σ(ξj , β)
c
. Thus if we let

F0 =

N⋃
j=1

Σ(ξj , β)
c
,

we obtain that h is bounded on D ∩ F0.

Now observe that by construction,

F1 =

[( N⋂
j=1

Σ(ξj , β)

)⋂
{s ≤ |λ| ≤ 1}

]
\

N⋃
j=1

D(ξj , cos(β)).

is a compact subset of C \ σ(T ). Thus h is bounded on F1. Finally, we

have D \ Es ⊂ F0 ∪ F1, hence h is bounded on D \ Es. Since T is RittE , this

implies (ii).

Remark 2.9: It follows from Lemmas 2.2 and 2.4 and from the proof of Lem-

ma 2.8 that an operator T∈B(X) is RittE if and only if the operatorsA1, . . . , AN

defined by (5) are all sectorial of type < π
2 , and σ(T ) ⊂ D ∪ E.

2.3. A characterization of RittE operators. It is well-known that an

operator T ∈ B(X) is a Ritt operator if and only if the two sets {T n : n ≥ 0}
and {n(T n−T n−1) : n ≥ 1} are bounded; see [20, 21, 22, 27]. The next theorem

is an extension of this result to RittE operators.
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Theorem 2.10: An operator T ∈ B(X) is RittE if and only if the following

two conditions hold:

(i) T is power bounded, that is, there exists a constant c0 ≥ 1 such that

‖T n‖ ≤ c0, n ≥ 0.

(ii) There exists a constant c1 > 0 such that

∥∥∥∥T n−1
N∏
j=1

(ξj − T )

∥∥∥∥ ≤ c1
n
, n ≥ 1.

In order to prove the ‘if’ part, we will need the following algebraic factoriza-

tion property, which is a generalization of a formula used in the proof of [26,

Theorem 2.4].

Lemma 2.11: There exists a two-variable complex polynomial Q such that for

all T ∈ B(X), all λ ∈ C∗ and all n ≥ 1,

λn
N∏
j=1

(ξj − λ)− T n
N∏
j=1

(ξj − T )

= (λ− T )

N∏
j=1

(ξj − λ)λn−1
n−1∑
k=0

λ−kT k + T n(λ− T )Q(λ, T ).

Proof. We have

λn
N∏
j=1

(ξj − λ)− T n
N∏
j=1

(ξj − T )

= λn
N∏
j=1

(ξj − λ)− T n
N∏
j=1

(ξj − λ) + T n
N∏
j=1

(ξj − λ)− T n
N∏
j=1

(ξj − T )

= (λn − T n)

N∏
j=1

(ξj − λ) + T n

( N∏
j=1

(ξj − λ)−
N∏
j=1

(ξj − T )

)
.

Set

P (λ, z) =

N∏
j=1

(ξj − λ)−
N∏
j=1

(ξj − z), λ, z ∈ C.

Then we have

P (λ, z) = (λ− z)Q(λ, z)
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for some polynomial Q. Then

N∏
j=1

(ξj − λ)−
N∏
j=1

(ξj − T ) = (λ− T )Q(λ, T ).

We deduce that

λn
N∏
j=1

(ξj − λ)− T n
N∏
j=1

(ξj − T )

= (λn − T n)

N∏
j=1

(ξj − λ) + T n(λ− T )Q(λ, T )

= (λ − T )
N∏
j=1

(ξj − λ)
n−1∑
k=0

λn−1−kT k + T n(λ− T )Q(λ, T ),

which yields the desired identity.

Proof of Theorem 2.10. ⇒: We assume that the operator T is RittE and we

will show (i) and (ii). The argument is an adaptation of the one used for Ritt

operators in [27].

Let r ∈ (0, 1) such that T satisfies Lemma 2.8. Let s ∈ (r, 1), let α = arcsin(s)

and note that

|1− cos(α)e±iα| = sin(α) = s.

For convenience we assume that the sequence (ξ1, ξ2, . . . , ξN ) is oriented coun-

terclockwise on T and we set ξN+1 = ξ1. Let n ≥ 1. For any j = 1, . . . , N , we

define the following four paths (whose definitions depend on n, although this is

not reflected by the notation), see Figure 3:

- γj+ is the oriented segment [ξj(1 − cos(α)
n e−iα), ξj(1 − cos(α)e−iα)];

- γj− is the oriented segment [ξj(1− cos(α)eiα), ξj(1− cos(α)
n eiα)];

- γj,j+1 is the simple path going from ξj(1 − cos(α)e−iα) to

ξj+1(1 − cos(α)eiα) counterclockwise along the circle of center 0 and

radius s;

- γj is the simple path going from ξj(1 − cos(α)
n eiα) to ξj(1− cos(α)

n e−iα)

counterclockwise along the circle of center ξj and radius cos(α)
n .

For s close enough to 1 and n large enough, the concatenation of these 4N

paths, that we denote by Γn, is a Jordan contour enveloping σ(T ), and the

support of Γn is included in Ec
s .
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Figure 3. Integration contour.

We fix s < 1 and n0 ≥ 1 such that we are in the above case for all n ≥ n0.

Then applying the Dunford–Riesz functional calculus, we have

T n =
1

2πi

∫
Γn

λnR(λ, T )dλ,

for all n ≥ n0. The upper bound in Lemma 2.8(ii), provides an estimate

‖T n‖ ≤ 1

2π

∫
Γn

|λn|‖R(λ, T )‖|dλ| ≤ c

2π

∫
Γn

|λ|n∏N
j=1|λ− ξj |

|dλ|.

We will show that the integral in the right-hand side is uniformly bounded

for n ≥ n0.

Fix j0 ∈ {1, . . . , N}. For any λ ∈ γj0,j0+1, we have |λ| = s and hence

|λ− ξj | ≥ 1− s

for all j = 1, . . . , N . Consequently,

∫
γj0,j0+1

|λ|n∏N
j=1 |λ− ξj |

|dλ| ≤
∫
γj0,j0+1

sn

(1− s)N
|dλ| −→ 0,

when n→ ∞.



12 O. BOUABDILLAH AND C. LE MERDY Isr. J. Math.

Next observe that

K = sup

{
1∏

1≤j≤N
j �=j0

|λ− ξj | : |λ− ξj0 | ≤
cos(α)

n

}
<∞.

For all λ ∈ γj0 , we have |λ− ξj0 | = cos(α)
n and hence |λ| ≤ 1+ 1

n . Consequently,∫
γj0

|λ|n∏N
j=1 |λ− ξj |

|dλ| = 1

cos(α)

∫
γj0

n|λ|n∏
1≤j≤N
j �=j0

|λ− ξj | |dλ|

≤ K

cos(α)

∫
γj0

n
(
1 +

1

n

)n

|dλ|

≤ 2πeK.

Let us now focus on the integral over γj0,+. We may assume that ξj0 = 1

(otherwise, change T into ξj0T .) Observe that

C = sup

{
1∏

1≤j≤N
j �=j0

|λ− ξj | : λ ∈ [1, 1− cos(α)e−iα]

}
<∞.

For all t ∈ [0, cos(α)], we have t2 ≤ t cos(α), hence

|1− te−iα|2 = 1 + t2 − 2t cos(α) ≤ 1− t cos(α).

We derive the estimate∫
γj0,+

|λ|n∏N
j=1 |λ− ξj |

|dλ| ≤ C

∫ cos(α)

cos(α)
n

(1− t cos(α))
n
2

t
dt.

Using the change of variable t → tcos(α) and the inequality 1 − t ≤ e−t, we

have ∫ cos(α)

cos(α)
n

(1 − t cos(α))
n
2

t
dt ≤

∫ +∞

cos2(α)
n

e−
nt
2

t
dt =

∫ +∞

cos2(α)
2

e−t

t
dt.

This proves that the integrals
∫
γj0,+

|λ|n
∏N

j=1 |λ−ξj | |dλ| are uniformly bounded

for n ≥ n0. The same holds true if we replace γj0,+ by γj0,−. Thus we have

proved that

sup
n≥n0

∫
Γn

|λ|n∏N
j=1|λ− ξj |

|dλ| <∞.

This implies that {T n : n ≥ 0} is bounded, hence (i) is proved.
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Let us now prove (ii), using Γn as above. Applying the Dunford–Riesz func-

tional calculus again, we have

nT n−1
N∏
j=1

(ξj − T ) =
n

2πi

∫
Γn

λn−1
N∏
j=1

(ξj − λ)R(λ, T )dλ,

for all n ≥ n0. This implies

∥∥∥∥nT n−1
N∏
j=1

(ξj − T )

∥∥∥∥ ≤ cn

2π

∫
Γn

|λ|n−1|dλ|.

Thus it suffices to show that the integrals in the right-hand side are uniformly

bounded for n ≥ n0.

As before we fix j0 ∈ {1, . . . , N}. For all λ ∈ γj0,j0+1, we have |λ| = s hence

n

∫
γj0,j0+1

|λ|n−1|dλ| ≤ 2πnsn−1 −→ 0,

when n→ ∞.

Next for all λ ∈ γj0 , we have |λ| ≤ 1 + 1
n hence

n

∫
γj0

|λ|n−1|dλ| ≤ n
(
1 +

1

n

)n−1

|γj0 | ≤ 2πe.

Finally assume as before that ξj0 = 1. Then arguing as above we have

n

∫
γj0,+

|λ|n−1|dλ| ≤ n

∫ cos(α)

cos(α)
n

(1 − t cos(α))
n−1

2 dt

≤ n

cos(α)

∫ ∞

cos2(α)
n

(1− t)
n−1
2 dt

≤ n

cos(α)

∫ ∞

cos2(α)
n

e
−t(n−1)

2 dt

≤ 4

cos(α)

∫ ∞

0

e−tdt =
4

cos(α)
.

We obtain that n
∫
γj0,+

|λ|n−1|dλ| has a uniform bound. The same holds true

with γj0,− in place of γj0,+. These estimates imply (ii).

⇐: Assume (i) and (ii). The fact that T is power bounded implies that

σ(T ) ⊂ D. For any λ ∈ C, with 1 < |λ| < 2, we multiply the identity of
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Lemma 2.11 by R(λ, T ) to obtain

λn
N∏
j=1

(ξj − λ)R(λ, T )

= T n
N∏
j=1

(ξj − T )R(λ, T ) +

N∏
j=1

(ξj − λ)λn−1
n−1∑
k=0

λ−kT k + T nQ(λ, T ).

This implies

|λ|n
N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤
∥∥∥∥T n

N∏
j=1

(ξj − T )

∥∥∥∥‖R(λ, T )‖

+

N∏
j=1

|ξj − λ||λ|n−1
n−1∑
k=0

|λ|−k‖T k‖+ ‖Q(λ, T )‖‖T n‖.

By continuity of polynomials, there exists a constant c > 0 such that

‖Q(λ, T )‖ ≤ c, λ ∈ D(0, 2).

We derive the following estimate:

|λ|n
N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤ c1
n
‖R(λ, T )‖+ c0

N∏
j=1

|ξj − λ||λ|n−1
n−1∑
k=0

|λ|−k + cc0.

Dividing both sides by |λ|n, and using the fact that |λ| > 1, we derive

(9)

N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤ c1
n
‖R(λ, T )‖+ c0

(
n

N∏
j=1

|ξj − λ|+ c

)
.

Now for a given λ ∈ D(0, 2) \D, we apply this estimate with n− 1 equal to the

integer part of 2c1∏
N
j=1|ξj−λ| . Thus

c1
n

≤ 1

2

N∏
j=1

|ξj − λ| and n

N∏
j=1

|ξj − λ| ≤ 2c1 +

N∏
j=1

|ξj − λ| ≤ 2c1 + 3N .

Then (9) implies that

N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤ 1

2

N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤ +c0

(
n

N∏
j=1

|ξj − λ|+ c

)
,

and hence
N∏
j=1

|ξj − λ|‖R(λ, T )‖ ≤ 2c0

(
n

N∏
j=1

|ξj − λ|+ c

)
≤ 2c0(2c1 + 3N + c).

This proves that T is RittE .
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3. Polygonal functional calculus and R-RittE operators

In this section we define polygonal functional calculus and H∞(Es) functional

calculus, as well as R-RittE operators. Our main results, Theorem 3.9 and

Corollary 3.10, assert that for any R-RittE operator, polynomial boundedness

implies (and hence is equivalent to) either bounded polygonal functional calculus

or a bounded H∞(Es) functional calculus. The proofs rely on a decomposition

principle that we establish in Subsection 3.2.

3.1. Functional calculi. For any non-empty open set Ω ⊂ C, we let H∞(Ω)

denote the Banach algebra of all bounded holomorphic functions φ : Ω → C,

equipped with

‖φ‖∞,Ω = sup{|φ(λ)| : λ ∈ Ω}.
Let P denote the algebra of all one-variable complex polynomials.

Let X be a Banach space and let T ∈ B(X) such that σ(T ) ⊂ D. Following

classical terminology, we say that T is polynomially bounded if there exists a

constant K ≥ 1 such that

(10) ‖φ(T )‖ ≤ K‖φ‖∞,D, φ ∈ P .
We recall the obvious fact that any polynomially bounded operator is power

bounded.

In the sequel, the name “polygon” is reserved for open convex polygons, that

is, bounded finite intersections of open half-planes.

Definition 3.1: We say that T admits a bounded polygonal functional calculus

if there exist a polygon Δ ⊂ D such that σ(T ) ⊂ Δ, and a constant K ≥ 1 such

that

(11) ‖φ(T )‖ ≤ K‖φ‖∞,Δ, φ ∈ P .
It is plain that T is polynomially bounded if it admits a bounded polygonal

functional calculus. It essentially follows from [16] that the converse is wrong

(see Remark 4.6).

Remark 3.2: Assume that T satisfies Definition 3.1 for some polygon Δ ⊂ D.

Let E = Δ∩T. This is a finite set, containing the peripheral spectrum σ(T )∩T.
Assume that σ(T ) ∩ T �= ∅. Let

D1,2 = {z ∈ C : 1 < |z| < 2}
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and define

h(z, λ) = (z − λ)−1
∏
ξ∈E

(ξ − z), z ∈ D1,2, λ ∈ D.

For any ξ ∈ E, the quotient ξ−z
z−λ is bounded when z, λ are close to ξ, z ∈ D1,2

and λ ∈ Δ.

Figure 4. Positions of ξ, z, λ.

This implies that C = sup{‖h(z, · )‖∞,Δ : z ∈ D1,2} < ∞. Then we derive

from (11) that h(z, T ) = R(z, T )
∏

ξ∈E(ξ − z) satisfies ‖h(z, T )‖ ≤ KC for

all z ∈ D1,2. This implies that T is RittE . Equivalently (see Remark 2.3(b)) T

satisfies a resolvent estimate

(12) ‖R(z, T )‖ � max{|z − ξ|−1 : ξ ∈ E}, z ∈ D
c
.

Since R(z, T ) is bounded in the neighborhood of any ξ ∈ E not belonging

to σ(T ), this implies an estimate (2) as well.

Of course if σ(T ) ∩ T = ∅, then R(z, T ) is bounded on D
c
.

Let E = {ξ1, . . . , ξN} ⊂ T as in Section 2. Assume that T is a RittE operator.

In the sequel we will say that T is a RittE operator of type r ∈ (0, 1) provided

that it satisfies the conclusion of Lemma 2.8.

For any s ∈ (0, 1), we let H∞
0 (Es) be the subspace of all φ ∈ H∞(Es) for

which there exist positive real numbers c, s1, . . . , sn > 0 such that

(13) |φ(λ)| ≤ c

N∏
j=1

|ξj − λ|si ,

for all λ ∈ Es.
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Assume that T is a RittE operator of type r ∈ (0, 1) and let s ∈ (r, 1). For

any φ ∈ H∞
0 (Es), we set

φ(T ) =
1

2πi

∫
∂Eu

φ(λ)R(λ, T )dλ,

where u ∈ (r, s) and the boundary ∂Eu of Eu is oriented counterclockwise. Ac-

cording to Remark 2.7, we have ∂Eu \E ⊂ Es hence integration of φ(λ)R(λ, T )

along ∂Eu makes sense. This integral is therefore absolutely convergent, hence

well-defined. Indeed this follows from (13) and the estimate (ii) in Lemma 2.8.

Furthermore by Cauchy’s theorem, the value of this integral does not depend

on the choice of u. It is easy to check that H∞
0 (Es) is a subalgebra of H∞(Es)

and that the mapping

H∞
0 (Es) −→ B(X), φ �→ φ(T ),

is a homomorphism.

Definition 3.3: Let T be a RittE operator of type r ∈ (0, 1) and let s ∈ (r, 1)

We say that T admits a bounded H∞(Es) functional calculus if there exists a

constant K ≥ 1 such that

(14) ‖φ(T )‖ ≤ K‖φ‖∞,Es, φ ∈ H∞
0 (Es).

The above definitions are natural extensions of the ones considered in [18]

for Ritt operators. In this spirit, the following is an analogue of [18, Proposi-

tion 2.5].

Proposition 3.4: Let T be a RittE operator of type r ∈ (0, 1) and let s ∈ (r, 1).

Then T has a bounded H∞(Es) functional calculus if and only if there exists a

constant K ≥ 1 such that

‖φ(T )‖ ≤ K‖φ‖∞,Es , φ ∈ P .
Proof. The proof of the ‘if’ part is identical to that of [18, Proposition 2.5] so

we skip it.

For the ‘only if’ part, assume (14). Consider (Lagrange) polynomials

L1, . . . , LN ∈ P satisfying Li(ξj) = δi,j , for all 1 ≤ i, j ≤ N . Let ψ ∈ P
and write ψ = ψ0 + ψ1, with

ψ0 =

N∑
j=1

ψ(ξj)Lj and ψ1 = ψ −
N∑
j=1

ψ(ξj)Lj .
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Then

ψ1(ξj) = 0 for all j = 1, . . . , N,

hence ψ1 ∈ H∞
0 (Es). Writing ψ(T ) = ψ0(T ) + ψ1(T ), and using

ψ0(T ) =
∑
j

ψ(ξj)Lj(T ),

we infer

‖ψ(T )‖ ≤ ‖ψ0(T )‖+ ‖ψ1(T )‖ ≤
N∑
j=1

|ψ(ξj)|‖Lj(T )‖+K‖ψ1‖∞,Es .

Further, ‖ψ1‖∞,Es ≤ ‖ψ‖∞,Es + ‖ψ0‖∞,Es and

‖ψ0‖∞,Es ≤
N∑
j=1

|ψ(ξj)|‖Lj‖∞,Es ≤
( N∑

j=1

‖Lj‖∞,Es

)
‖ψ‖∞,Es .

We derive that

‖ψ(T )‖ ≤
(
K

(
1 +

N∑
j=1

‖Lj‖∞,Es

)
+

N∑
j=1

‖Lj(T )‖
)
‖ψ‖∞,Es ,

which proves the result.

Definitions 3.1 and 3.3 are connected by the following property. See also

Remark 4.5 for more on this.

Proposition 3.5: For any T ∈ B(X), the following assertions are equivalent:

(i) The operator T admits a bounded polygonal functional calculus.

(ii) There exist a finite subset E ⊂ T and s ∈ (0, 1) such that T is RittE

and T admits a bounded H∞(Es) functional calculus.

Proof. Assume (i), that is, T satisfies Definition 3.1 for some polygon Δ ⊂ D.

We may assume that E = Δ∩T is non-empty. Then T is RittE by Remark 3.2.

Furthermore for s ∈ (0, 1) large enough, we have Δ ⊂ Es. Hence by Proposi-

tion 3.4, the estimate (11) implies that T admits a bounded H∞(Es) functional

calculus.

Assume (ii). It is plain that there exists a polygon Δ ⊂ D such that

Es ⊂ Δ ⊂ D.

Hence applying Proposition 3.4, we obtain that T satisfies an estimate (11).



Vol. TBD, 2024 OPERATORS WITH FINITE PERIPHERAL SPECTRUM 19

3.2. Decomposition of unity. We fix E = {ξ1, . . . , ξN} ⊂ T as in Section 2.

We let H∞
0,E(D) be the space of all φ ∈ H∞(D) for which there exist positive

real numbers c, s1, . . . , sn > 0 such that (13) holds true for all λ ∈ D.

Proposition 3.6: There exist three sequences (θi)i≥1, (φi)i≥1 and (ψi)i≥1

of H∞
0,E(D) such that:

sup
z∈D

∞∑
i=1

|φi(z)| <∞ and sup
z∈D

∞∑
i=1

|ψi(z)| <∞;(i)

sup
i≥1

sup
z∈D

|θi(z)| <∞;(ii)

∀r ∈ (0, 1), sup
i≥1

∫
∂Er

|θi(z)|∏N
k=1 |ξk − z| |dz| <∞;(iii)

∀z ∈ D, 1 =

∞∑
i=1

θi(z)φi(z)ψi(z).(iv)

Proof. Let H∞
00 (Σπ

2
) be the space of all Φ ∈ H∞(Σπ

2
) for which there ex-

ist c, s > 0 such that

(15) |Φ(λ)| ≤ c|λ|s, λ ∈ Σπ
2
.

Then according to [1, Proposition 6.3], there exist three sequences (Θi)i≥1,

(Φi)i≥1 and (Ψi)i≥1 of H∞
00 (Σπ

2
) such that

sup
λ∈Σπ

2

∞∑
i=1

|Φi(λ)| <∞ and sup
λ∈Σ π

2

∞∑
i=1

|Ψi(λ)| <∞,(16)

sup
i≥1

sup
λ∈Σπ

2

|Θi(λ)| <∞,(17)

∀ν ∈ (0, π2 ), sup
i≥1

∫
∂Σν

|Θi(λ)| |dλ||λ| <∞,(18)

and

∀λ ∈ Σπ
2
, 1 =

∞∑
i=1

Θi(λ)Φi(λ)Ψi(λ).(19)

For any multi-index ι = (i1, i2, . . . , iN ) ∈ NN , define θι, φι, ψι : D → C by

θι(z) = Θi1(1 − ξ1z)Θi2(1 − ξ2z) · · ·ΘiN (1− ξNz),
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and similarly

φι(z) =

N∏
j=1

Φij (1− ξjz) and ψι(z) =

N∏
j=1

Ψij (1 − ξjz).

This is well-defined since for any z ∈ D, we have ξjz ∈ D hence 1 − ξjz ∈ Σπ
2
.

Moreover

|θι(z)| ≤ cN
N∏
j=1

|1− ξjz|s = cN
N∏
j=1

|ξj − z|s

for any z ∈ D, by (15). Hence all the functions θι belong to H∞
0,E(D). Likewise,

all the functions φι and ψι belong to H∞
0,E(D). Since we can re-index the

families (θι)ι∈NN , (φι)ι∈NN and (ψι)ι∈NN as sequences, it suffices to show that

they satisfy the properties (i)–(iv) of the statement.

For any z ∈ D,

∑
ι=(i1,...,iN )∈NN

|φι(z)| =
N∏
j=1

( ∞∑
ij=1

|Φij (1 − ξjz)|
)

≤
(

sup
λ∈Σ π

2

∞∑
i=1

|Φi(λ)|
)N

.

Hence by (16), the family (φι)ι∈NN satisfies (i). Likewise, the family (ψι)ι∈NN

satisfies (i), and (θι)ι∈NN satisfies (ii), by (17). Further (iv) holds true by (19),

since we have

1 =

N∏
j=1

( ∞∑
ij=1

Θij (1− ξjz)Φij (1− ξjz)Ψij (1− ξjz)

)

=
∑

ι=(i1,...,iN )∈NN

θι(z)φι(z)ψι(z),

for all z ∈ D.

It therefore remains to check (iii). We fix r ∈ (0, 1). It follows from Defini-

tion 2.6 that there existC, δ > 0, ρ∈(0, 1), as well as 2N angles ν1, ν
′
1, . . . , νN , ν

′
N

in (0, π2 ) so that the following holds true:

(a) For all j = 1, . . . , N , ∂Er ∩D(ξj , δ) is the concatenation of the oriented

segments [ξj(1− δeiνj ), ξj ] and [ξj , ξj(1 − δe−iν′
j )].

(b) For all z ∈ ∂Er \ ∪N
j=1D(ξj , δ), we have |z| ≤ ρ.

(c) For all 1 ≤ j �= k ≤ N , for all z ∈ D(ξj , δ), we have |z − ξk| ≥ C.



Vol. TBD, 2024 OPERATORS WITH FINITE PERIPHERAL SPECTRUM 21

Let ι = (i1, . . . , iN) ∈ NN . Using (b), we have

∫
∂Er

|θι(z)|∏N
k=1 |ξk − z|

|dz|

≤ 1

(1 − ρ)N

∫
∂Er

|θι(z)||dz|+
N∑
j=1

∫
∂Er∩D(ξj ,δ)

|θι(z)|∏N
k=1 |ξk − z| |dz|.

By (ii), the first term in the right-hand side is uniformly bounded. According

to (a), it therefore suffices to show that for any j = 1, . . . , N , the integrals

(20)

∫
[ξj(1−δeiνj ),ξj ]

|θι(z)|∏N
k=1|ξk−z|

|dz| and

∫
[ξj ,ξj(1−δe

−iν′
j )]

|θι(z)|∏N
k=1|ξk−z|

|dz|

are uniformly bounded. Let Jι,j be the first of these two integrals. Let

K = sup
i
‖Θi‖∞,π

2
,

given by (17). Then by (c), we have

Jι,j ≤
(K
C

)N−1
∫
[ξj(1−δeiνj ),ξj ]

|Θij (1 − ξjz)|
|ξj − z| |dz|.

Moreover the change of variable λ = 1− ξjz leads to

∫
[ξj(1−δeiνj ),ξj ]

|Θij (1− ξjz)|
|ξj − z| |dz| ≤

∫
∂Σνj

|Θij (λ)|
|dλ|
|λ| .

Property (18) ensures that these integrals are uniformly bounded, hence the Jι,j

are uniformly bounded. Likewise, the second integrals in (20) are uniformly

bounded, which concludes the proof.

3.3.From polynomial boundedness to bounded polygonal functional

calculus. In the sequel we will use R-boundedness. We refer to [13, Chapter 8]

for general information on this notion. We only recall basic notations and the

main definition. We let (εi)i≥1 be a family of independent Rademacher variables

of some probability space (M,P). For any finite family x1, . . . , xn in X , we set

∥∥∥∥
n∑

i=1

εi ⊗ xi

∥∥∥∥
Rad(X)

=

(∫
M

∥∥∥∥
n∑

i=1

εi(t)xi

∥∥∥∥
2

X

dP(t)

) 1
2

.
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Then we say that a subset F ⊂ B(X) is R-bounded if there exists a constant

K ≥ 0 such that, for any n ≥ 1, any T1, . . . , Tn in F and any x1, . . . , xn in X ,∥∥∥∥
n∑

i=1

εi ⊗ Ti(xi)

∥∥∥∥
Rad(X)

≤ K

∥∥∥∥
n∑

i=1

εi ⊗ xi

∥∥∥∥
Rad(X)

.

In this case, we let R(F ) denote the smallest possible K ≥ 0 verifying this

property.

In the sequel we fix again E = {ξ1, . . . , ξN} ⊂ T as in Section 2.

Definition 3.7: We say that an operator T ∈ B(X) is R-RittE if σ(T ) ⊂ D and

the set {
R(z, T )

N∏
j=1

(ξj − z) : z ∈ C, 1 < |z| < 2

}

is R-bounded.

Remark 3.8: Let T ∈ B(X) such that σ(T ) ⊂ D.

(a) For each j = 1, . . . , N , let Vj be an open neighborhood of ξj such

that Vj ∩ Vk = ∅ if j �= k. If σ(T ) ∩ T ⊂ E, then the set

W = {z ∈ C : 1 ≤ |z| ≤ 2} \
N⋃
j=1

Vj

is compact and W ∩ σ(T ) = ∅. Hence
{
R(z, T )

N∏
j=1

(ξj − z) : z ∈ W

}

is R-bounded, by [28, Proposition 2.6]. Thus T is R-RittE if and only if for

all j = 1, . . . , N , the set

{(ξj − z)R(z, T ) : 1 < |z| < 2, z ∈ Vj}
is R-bounded. Furthermore by [28, Proposition 2.8], the sets

{(ξj − z)R(z, T ) : |z| ≥ 2}
are R-bounded. (Here we use the disjointness of the Vj .) Hence T is R-RittE

if and only if the sets

{(ξj − z)R(z, T ) : z ∈ Vj ∩ D
c}, j = 1, . . . , N,

are R-bounded.
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(b) Arguing as in Lemma 2.8, one also obtains that T is R-RittE if and only

if there exists r ∈ (0, 1) such that

σ(T ) ⊂ Er

and for all s ∈ (r, 1), the set

{
R(z, T )

N∏
j=1

(ξj − z) : z ∈ D(0, 2) \ Es

}

is R-bounded.

Theorem 3.9: Let T ∈ B(X) be an R-RittE operator. If T is polynomi-

ally bounded, then T admits a bounded H∞(Es) functional calculus for

some s∈(0, 1).

Combining this theorem with Proposition 3.5, we immediately deduce the

following result.

Corollary 3.10: Let T ∈ B(X) be an R-RittE operator. If T is polynomially

bounded, then T admits a bounded polygonal functional calculus.

Proof of Theorem 3.9. Let r ∈ (0, 1) such that T satisfies Remark 3.8(b), and

fix some s ∈ (r, 1). Consider the three sequences (θi)i≥1, (φi)i≥1 and (ψi)i≥1

provided by Proposition 3.6. Let h ∈ H∞
0 (Es). Applying part (iv) of Proposi-

tion 3.6, we have

h(z) =

∞∑
i=1

h(z)θi(z)φi(z)ψi(z), z ∈ D.

Fix some u ∈ (r, s). According to parts (i) and (ii) of Proposition 3.6, and the

fact that h ∈ H∞
0 (Es), we have

∞∑
i=1

∫
∂Eu

|h(z)θi(z)φi(z)ψi(z)|‖R(z, T )‖|dz| <∞.

Hence

h(T ) =
∞∑
i=1

(hθiφiψi)(T ) =
∞∑
i=1

h(T )θi(T )φi(T )ψi(T ).
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For any i ≥ 1, we may write

h(T )θi(T ) =
1

2πi

∫
∂Eu

h(z)θi(z)R(z, T )dz

=
1

2πi

∫
∂Eu

(
h(z)θi(z)∏N
j=1(ξj − z)

) N∏
j=1

(ξj − z)R(z, T )dz.

Further we have an estimate∫
∂Eu

∣∣∣∣ h(z)θi(z)∏N
j=1(ξj − z)

∣∣∣∣|dz| � ‖h‖∞,Es,

by part (iii) of Proposition 3.6. Applying [13, Theorem 8.5.2], we deduce that

the set of all h(T )θi(T ) is R-bounded, with

(21) R({h(T )θi(T ) : i ≥ 1}) � ‖h‖∞,Es .

Fix x ∈ X and y ∈ X∗. Set hn =
∑n

i=1 hθiφiψi for any n ≥ 1. Then we have

〈hn(T )x, y〉 =
n∑

i=1

〈h(T )θi(T )φi(T )x, ψi(T )
∗y〉

×
∫
M

〈 n∑
i=1

εi(t)h(T )θi(T )φi(T )x,

n∑
i=1

εi(t)ψi(T )
∗y
〉
dP(t).

Applying the Cauchy–Schwarz inequality, we deduce the inequality

|〈hn(T )x, y〉| ≤
∥∥∥∥

n∑
i=1

εi ⊗ h(T )θi(T )φi(T )x

∥∥∥∥
Rad(X)

∥∥∥∥
n∑

i=1

εi ⊗ ψi(T )
∗y
∥∥∥∥
Rad(X∗)

.

Now applying (21), this implies

|〈hn(T )x, y〉| � ‖h‖∞,Es

∥∥∥∥
n∑

i=1

εi ⊗ φi(T )x

∥∥∥∥
Rad(X)

∥∥∥∥
n∑

i=1

εi ⊗ ψi(T )
∗y
∥∥∥∥
Rad(X∗)

.

By assumption, T satisfies (10) for some K ≥ 1. Arguing as in [18, Proposi-

tion 2.5], this implies that

‖φ(T )‖ ≤ K‖φ‖∞,D, φ ∈ H∞
0 (Es).

Hence applying part (i) of Proposition 3.6, we have an estimate

∥∥∥∥
n∑

i=1

εi(t)φi(T )

∥∥∥∥ � 1, t ∈ M, n ≥ 1.
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This readily implies

∥∥∥∥
n∑

i=1

εi ⊗ φi(T )x

∥∥∥∥
Rad(X)

� ‖x‖.

Similarly we have ∥∥∥∥
n∑

i=1

εi ⊗ ψi(T )
∗y
∥∥∥∥
Rad(X∗)

� ‖y‖.

Thus we have an estimate

|〈hn(T )x, y〉| � ‖h‖∞,Es‖x‖‖y‖.

Since hn(T ) → h(T ) when n→ ∞, we deduce the estimate

‖h(T )‖ � ‖h‖∞,Es ,

which proves the bounded H∞(Es) functional calculus.

Theorem 3.9 above was stated and proved for Ritt operators in [18, Proposi-

tion 7.7]. The multi-point version considered here required a different proof.

Remark 3.11: Recall that if X = H is a Hilbert space, any bounded subset

of B(H) is automatically R-bounded. Hence any RittE operator T ∈ B(H) is

automatically R-RittE . It therefore follows from Corollary 3.10 that if T ∈B(H)

is a polynomially bounded RittE operator, then it admits a bounded polygonal

functional calculus. This Hilbertian case, which was the motivation to under-

take this work, is due to de Laubenfels [8, Theorem 4.4, (a)⇒(b)]. It is also

implicit in the Franks–McIntosh result [10, Theorem 5.5]. Note that Proposition

3.6 relies on [1, Proposition 6.3], which is itself a consequence of a construction

devised in [10]. Thus in spirit, the proof of Corollary 3.10 is closer to [10] than

to [8].

Remark 3.12: Let T be a RittE operator and recall the operators Aj defined

by (5). For s ∈ (0, 1) close enough to 1, we have an inclusion

Es ⊂ Σ(ξj , arcsin(s))

for all j = 1, . . . , N . It easily follows that if T admits a bounded H∞(Es)

functional calculus, then each Aj admits a bounded H∞(Σarcsin(s)) functional

calculus.
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Assume that X has the triangular contraction property, in the sense of

[13, Section 7.5.b]. If T admits a bounded H∞(Es) functional calculus for

some s ∈ (0, 1), it follows from above and from [15, Theorem 5.3] that the Aj

are R-sectorial of R-type < π
2 . Using (7) and applying Remark 3.8, we deduce

that T is R-RittE .

Combining the above paragraph and Theorem 3.9, we deduce that ifX has the

triangular contraction property, then T admits a bounded H∞(Es) functional

calculus for some s ∈ (0, 1) if and only if T is both polynomially bounded

and R-RittE .

4. RittE contractively regular operators on Lp-spaces

Our aim is to show that for any 1 < p < ∞, contractively regular opera-

tors on Lp admit a bounded polygonal functional calculus if they are RittE for

some E. This will be achieved in Subsection 4.2. In the previous Subsection 4.1,

we establish a result of independent interest (valid on all Banach spaces) con-

necting H∞(Es) functional calculus to the classical H∞ functional calculus of

sectorial operators.

4.1. Intersection of sectorial functional calculi. In Subsection 2.2

we recalled the definition of a sectorial operator A of type ω ∈ (0, π) in the

case when A is bounded (we will not need unbounded sectorial operators in this

paper). We will now use the notion of bounded H∞(Σθ) functional calculus for

any A as above and θ ∈ (ω, π). We refer to [29, Section 2], [12, Chapter 5] or

[13, Section 10.2.b] for the relevant definitions. These three references provide

comprehensive information on the H∞ functional calculus of sectorial operators.

The following simple fact is given by [13, Proposition 10.2.21].

Lemma 4.1: Let A ∈ B(X) and assume that σ(A) ⊂ Σω for some ω ∈ (0, π).

Then A is sectorial of type ω and for any θ∈(ω, π), A admits a boundedH∞(Σθ)

functional calculus.

For the next statement, we note that if A∈B(X) is sectorial of type ω∈(0, π),

then for all ρ ∈ (0, 1), we have

σ((1 − ρ)IX + ρA) ⊂ Σω.

Hence for all g ∈ H∞(Σω), the operator g((1 − ρ)IX + ρA) is well-defined by

the Dunford–Riesz functional calculus.
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Lemma 4.2: Let A ∈ B(X) be a sectorial operator and assume that A admits

a bounded H∞(Σθ) functional calculus for some θ ∈ (0, π). Then there exists a

constant K > 0 such that for all g ∈ H∞(Σθ) and for all ρ ∈ (0, 1),

(22) ‖g((1− ρ)IX + ρA)‖ ≤ K‖g‖∞,Σθ
.

Proof. Let Ratθ ⊂ H∞(Σθ) be the algebra of all rational functions with non-

positive degree and poles off Σθ. Since A admits a bounded H∞(Σθ) functional

calculus, there exists a constant K > 0 such that

‖φ(A)‖ ≤ K‖φ‖∞,Σθ
, φ ∈ Ratθ.

Let ρ ∈ (0, 1). Set

ϕρ(z) = (1− ρ) + ρz

and observe that ϕρ(Σθ) ⊂ Σθ. We set Aρ = ϕρ(A). For any ψ ∈ Ratθ, we

have ψ(Aρ) = (ψ ◦ ϕρ)(A), hence

‖ψ(Aρ)‖ ≤ K‖ψ ◦ ϕρ‖∞,Σθ
≤ K‖ψ‖∞,Σθ

.

Thus (22) is satisfied by any element of Ratθ. By an entirely classical argument

(see [17] or [12, Section 5.3.4]) , we deduce (22) for all g ∈ H∞(Σθ).

In the sequel, we fix a finite set E = {ξ1, . . . , ξN} ⊂ T as in Section 2.

Theorem 4.3: Let T ∈ B(X) be a RittE operator. For any j = 1, . . . , N ,

let Aj = IX − ξjT and assume that there exists θj ∈ (0, π2 ) such that Aj admits

a bounded H∞(Σθj ) functional calculus. Then,

(i) There exists s ∈ (0, 1) such that T admits a boundedH∞(Es) functional

calculus.

(ii) T admits a bounded polygonal functional calculus.

Proof. We are going to build a (convex, open) polygon Δ ⊂ D with the following

three properties:

(•) There exists a finite set E′ ⊂ D such that the set of vertices of Δ is

equal to E ∪ E′.
(••) σ(T ) ⊂ Δ.

(• • •) There exists a constant K ≥ 1 such that ‖φ(T )‖ ≤ K‖φ‖∞,Δ for all

φ ∈ P .

This will obviously prove part (ii) of the statement. This will also prove part (i),

since for any polygon Δ satisfying (•), there exists s ∈ (0, 1) such that Δ ⊂ Es.
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Recall Σ(ξ, ω) defined by (8) for any ξ ∈ C∗ and any ω ∈ (0, π2 ). We introduce

∂Σ(ξ, ω)+ = {ξ(1− te−iω) : t > 0}

and

∂Σ(ξ, ω)− = {ξ(1− teiω) : t > 0};

see Figure 5.

Figure 5. The set Σ(ξ, ω) and its boundary.

Assume that N ≥ 2 (it is easy to adapt the proof to the case N = 1). For

convenience we assume that the sequence (ξ1, ξ2, . . . , ξN ) is oriented counter-

clockwise on T and we set ξN+1 = ξ1. We may choose θ ∈ (0, π2 ) close enough

to π
2 so that: for all j = 1, . . . , N , the operators Aj have a bounded H∞(Σθ)

functional calculus; for all 1 ≤ j �= j′ ≤ N , ξj′ ∈ Σ(ξj , θ); for all j = 1, . . . , N ,

the half-lines ∂Σ(ξj , θ)+ and ∂Σ(ξj+1, θ)− do not meet in D.

Let us momentarily focus on the couple (ξ1, ξ2); see Figure 6. Let Γ1,2 be the

closed arc of T joining the points where Σ(ξ1, θ)+ and Σ(ξ2, θ)− meet T. Then

dist(Γ1,2, σ(T )) > 0 hence by compactness, we can find r ∈ (0, 1), θ′ ∈ (0, π2 )

and points z1, . . . , zp on rΓ1,2, ordered counterclockwise, such that:

- For all i = 1, . . . , p, σ(T ) ⊂ Σ(zi, θ
′).

- The half-lines ∂Σ(ξ1, θ)+ and ∂Σ(z1, θ
′)− meet in D \ {0}.

- The half-lines ∂Σ(zp, θ
′)+ and ∂Σ(ξ2, θ)− meet in D \ {0}.

- For all i = 1, . . . , p− 1, ∂Σ(zi, θ
′)+ and ∂Σ(zi+1, θ

′)− meet in D \ {0}.
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Figure 6. Construction of the polygon.

Then we apply the same process to the couples (ξ2, ξ3), . . . , (ξN , ξ1). Putting

together the points ξj and the intermediate points zi, we therefore obtain a finite

sequence (ζ1, ζ2, . . . , ζm) of distinct elements of D \ {0}, ordered counterclock-

wise, as well as angles μ1, . . . , μm in (0, π2 ), verifying the following properties:

(a) We have

{ζ1, ζ2, . . . , ζm} ∩ T = E.

(b) For any i = 1, . . . ,m:

(b1) If there exists j ∈ {1, . . . , N} such that ζi = ξj , then μi = θ.

(b2) If ζi /∈ E, then σ(T ) ⊂ Σ(ζi, μi).

(c) Setting ζm+1 = ζ1, the half-lines ∂Σ(ζi, μi)+ and ∂Σ(ζi+1, μi+1)− meet

exactly at one point ci ∈ D \ {0}, for all i = 1, . . . ,m.

Finally we set

di =
1

2
(ci + ci|ci|−1), i = 1, . . . ,m.

We let Δ0 be the open polygon with vertices {ζ1, c1, ζ2, c2, . . . , ζm, cm}. We

may assume that it is convex. Likewise, we let Δ be the open polygon with
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vertices {ζ1, d1, ζ2, d2, . . . , ζm, dm}. By construction we have

Δ0 =

m⋂
i=1

Σ(ζi, μi)

and

Δ0 ⊂ Δ.

According to (c), all the di belong to D. Hence it follows from (a) that the

polygon Δ satisfies (•). It further satisfies (••), by (b).

Let us now show that the polygon Δ satisfies (• • •). We set d0 = dm

for convenience. For all i = 1, . . . ,m, we let γi be the path obtained as the

concatenation of the oriented segments [di−1, ζi] and [ζi, di]. Next we fix ε > 0

small enough so that the sets Vi = Δ0 ∩ D(ζi, ε) are pairwise disjoint; see

Figure 7.

Figure 7. Polygons Δ0 and Δ with E = {z1, z3} and additional

points z2, z4.

Let φ be a polynomial. For all i = 1, . . . ,m, we define φi : C \ γi → C by

setting

φi(z) =
1

2πi

∫
γi

φ(λ)

λ− z
dλ.
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These functions are holomorphic. Moreover by Cauchy’s theorem, we have

(23) ∀z ∈ Δ, φ(z) =
m∑
i=1

φi(z).

Since the distance from γi to Σ(ζi, μi) \ Vi is positive, we have an estimate

(24) |φi(z)| � ‖φ‖∞,Δ, z ∈ Σ(ζi, μi) \ Vi,
for all i = 1, . . . ,m. Next, observe that since the set V1 is disjoint from each Vi,

with i ≥ 2, we also have estimates

|φi(z)| � ‖φ‖∞,Δ, z ∈ V1, i ≥ 2.

We have V1 ⊂ Δ hence by (23),

φ1(z) = φ(z)−
m∑
i=2

φi(z) for all z ∈ V1.

We deduce an estimate

|φ1(z)| � ‖φ‖∞,Δ, z ∈ V1.

Combining with (24) for i = 1, we obtain that φ1 belongs to H∞(Σ(ζ1, μ1))

and satisfies an estimate

‖φ1‖∞,Σ(ζ1,μ1) � ‖φ‖∞,Δ.

A similar argument shows that for all i = 1, . . . ,m,

(25) φi ∈ H∞(Σ(ζi, μi)) and ‖φi‖∞,Σ(ζi,μi) � ‖φ‖∞,Δ.

Now let ρ ∈ (0, 1). Since (••) holds true, we have σ(ρT ) ⊂ Δ. We can

therefore define operators φi(ρT ) by the Dunford–Riesz functional calculus and

we have

(26) φ(ρT ) =

m∑
i=1

φi(ρT ),

by (23). (Here we use ρT instead of T because the φi(T ) are a priori not

defined.)

We shall now apply (b). Let i ∈ {1, . . . ,m} and assume first that there

exists j ∈ {1, . . . , N} such that ζi = ξj . Let g : Σθ → C be defined by

g(z) = φi(ξj(1− z)).
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This function is well defined, holomorphic and bounded, by (25). We further

have

‖g‖∞,Σθ
= ‖φi‖∞,Σ(ξj ,θ) = ‖φi‖∞,Σ(ζi,μi).

Since Aj = IX − ξjT , we have

g((1− ρ)IX + ρAj) = φi(ρT ).

Applying Lemma 4.2, we obtain an estimate

‖φi(ρT )‖ � ‖φi‖∞,Σ(zi,μi).

Appealing to (25), we deduce an estimate

(27) ‖φi(ρT )‖ � ‖φ‖∞,Δ.

Otherwise, ζi /∈ E hence σ(T ) ⊂ Σ(zi, μi). Arguing as above and using

Lemma 4.1 instead of Lemma 4.2, we obtain an estimate (27) as well.

We have ‖φ(ρT )‖ ≤ ∑m
i=1 ‖φi(ρT )‖, by (26), hence the estimates (27),

for i = 1, . . . ,m, yield

‖φ(ρT )‖ � ‖φ‖∞,Δ.

Since this estimate does not depend on ρ and φ(ρT ) → φ(T ) when ρ → 1, we

obtain property (• • •).
Remark 4.4: It follows from the first paragraph of Remark 3.12 and Theorem 4.3

that given a RittE operator T ∈ B(X), there exists s ∈ (0, 1) such that T admits

a bounded H∞(Es) functional calculus if and only if for each j = 1, . . . , N , there

exists θj ∈ (0, π2 ) such that Aj admits a bounded H∞(Σθj ) functional calculus.

Remark 4.5: We give here a complement to Proposition 3.5. Let T ∈ B(X) be

a RittE operator. It follows from the previous remark and the proof of Theo-

rem 4.3 that if T admits a bounded H∞(Es) functional calculus for

some s ∈ (0, 1), then there exists a polygon Δ ⊂ D such that T admits a

bounded functional calculus with respect to Δ and the set of vertices of Δ

belonging to T coincides with E. This new condition on vertices is sharp.

Remark 4.6: As a complement to Corollary 3.10 and Remark 3.11, we mention

that there exist a Banach spaceX and a RittE operator T ∈ B(X) such that T is

polynomially bounded but T does not admit any bounded polygonal functional

calculus. To check this, assume (as we may do) that 1 ∈ E. Recall the Stolz

domains

Bω =
◦

Conv(1, D(0, sin(ω))),
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for ω ∈ (0, π2 ). According to [16, Theorem 3.2], there exists a Ritt operator T

on some X which is polynomially bounded although it does not admit any

bounded H∞(Bω) functional calculus. The operator T is RittE . Assume that T

admits a bounded functional calculus with respect to some polygon Δ ⊂ D.

Then 1 ∈ Δ and the argument in Remark 4.4 implies that IX − T admits a

bounded H∞(Σθ) functional calculus for some θ ∈ (0, π2 ). This implies, by

[18, Proposition 4.1], that T admits a bounded H∞(Bω) functional calculus for

some ω ∈ (0, π2 ), whence a contradiction.

4.2. RittE contractively regular operators on Lp
spaces. We consider

a measure space (S, μ), we let 1 < p < ∞ and we consider operators acting

on Lp(S).

We recall that a bounded operator T : Lp(S) → Lp(S) is called regular if there

exists a constant C ≥ 0 such that for all n ≥ 1 and all x1, . . . , xn in Lp(S), we

have

‖ sup
1≤i≤n

|T (xi)|‖p ≤ C‖ sup
1≤i≤n

|xi|‖p.

In this case, the smallest C ≥ 0 verifying this property is called the regular

norm of T and is denoted by ‖T ‖r. We say that T is contractively regular if

‖T ‖r ≤ 1.

If T : Lp(S) → Lp(S) is positive, then T is regular and ‖T ‖r = ‖T ‖. Thus

positive contractions are contractively regular.

It is plain that the set Breg(L
p(S)) of all regular operators equipped with ‖· ‖r

is a Banach algebra.

We refer, e.g., to [25, Section 1] for information on regular operators.

Theorem 4.7: Let T : Lp(S) → Lp(S) be a RittE contractively regular opera-

tor, with 1 < p <∞. Then:

(i) There exists s ∈ (0, 1) such that T admits a boundedH∞(Es) functional

calculus;

(ii) T admits a bounded polygonal functional calculus.

Proof. Consider Aj = IX − ξjT for all j = 1, . . . , N and define Tj,t := e−tAj for

all t ≥ 0. These operators are all contractively regular. Indeed,

‖Tj,t‖r = e−t‖etξjT ‖r ≤ e−t
∞∑
k=0

tk‖ξjT ‖kr
k!

≤ e−tet‖ξjT‖r ≤ 1.
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Then, according to [19, proposition 2.2], there exists, for all j = 1, . . . , N ,

some θj ∈ (0, π2 ) such that Aj admits a H∞(Σθj ) bounded functional calculus.

We conclude by applying Theorem 4.3.
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