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ABSTRACT

We show that compactly generated t-structures in the derived category of

a commutative ring R are in a bijection with certain families of compactly

generated t-structures over the local rings Rm where m runs through the

maximal ideals in the Zariski spectrum Spec(R). The families are pre-

cisely those satisfying a gluing condition for the associated sequence of

Thomason subsets of Spec(R). As one application, we show that the com-

pact generation of a homotopically smashing t-structure can be checked

locally over localizations at maximal ideals. In combination with a result

due to Balmer and Favi, we conclude that the ⊗-Telescope Conjecture

for a quasi-coherent and quasi-separated scheme is a stalk-local property.

Furthermore, we generalize the results of Trlifaj and Şahinkaya and es-

tablish an explicit bijection between cosilting objects of cofinite type over

R and compatible families of cosilting objects of cofinite type over all

localizations Rm at maximal primes.

1. Introduction

The notion of a t-structure was introduced by Bĕılinson, Bernstein and Deligne

[13] in their study of perverse sheaves on an algebraic or analytic variety as a

tool for constructing cohomological functors. Later, t-structures turned out to

be a natural framework for tilting theory of triangulated categories; see [4], [6]

and [30]. Such t-structures usually satisfy some kind of finiteness condition; see,

e.g., [28]. The compactly generated t-structures have been studied in depth and

in some cases are known to allow for a full classification. For derived categories

of commutative noetherian rings, a bijective correspondence between compactly

generated t-structures and filtrations of the Zariski spectrum by supports was

established by Alonso Tarŕıo, Jeremı́as López and Saoŕın [1]. This was fur-

ther generalized by the first author to arbitrary commutative rings [20] using

filtrations by Thomason sets.

Silting theory can be viewed as an adaptation of tilting theory to triangulated

categories, and the modern versions of silting theory rely heavily on the notion

of a t-structure. Indeed, any cosilting object C is up to equivalence determined

by the cosilting t-structure (⊥≤0C,⊥>0C). A strong relation between cosilting t-

structures and compactly generated t-structures follows from a result by Laking

[26, Theorem 4.6]. In particular, any compactly generated t-structure is induced

by a cosilting object if and only if it is non-degenerate. As a consequence, we

call a cosilting object C of cofinite type if the t-structure induced by it is
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compactly generated; see [3]. Such cosilting objects are abundant; for example,

any bounded cosilting complex over a commutative noetherian ring is of cofinite

type [21, Corollary 2.14]. Recently, Trlifaj and Şahinkaya [38] constructed a

bijective correspondence between (equivalence classes of) n-cotilting modules

over a commutative noetherian ring R and (equivalence classes of) compatible

families of their colocalizations in all maximal ideals of R. This result is the

starting point of our inquiry to gluing properties of compactly generated t-

structures. The notion of colocalization in Mod-R is due to Melkerson and

Schenzel (cf. [40, p. 118]) with similar constructions already used in [15], and

a derived version of colocalization will play an essential role in our approach

as well.

A Bousfield localization of a triangulated category is called smashing if it com-

mutes with all coproducts. The Telescope Conjecture (TC) originates from the

work of Ravenel in algebraic topology [32] and asks whether any such smash-

ing localization is generated by compact objects. It is a landmark result of

Neeman [29] that (TC) holds in the derived category D(R) of a commutative

noetherian ring R. On the other hand, Keller [24] established examples of non-

noetherian commutative rings for which (TC) fails. For non-stable t-structures,

a generalization of the smashing property was introduced by Saoŕın, Šťov́ıček

and Virili [35]. This class of homotopically smashing t-structures encompasses

both the smashing Bousfield localizations and the t-structures induced by pure-

injective cosilting objects; this follows from the work of Krause [25] and Lak-

ing [27]. Recently, the first author and Nakamura showed in [21] that any

homotopically smashing t-structure in the derived category of a commutative

noetherian ring is compactly generated, which generalizes the validity of (TC)

for commutative noetherian rings. As a consequence, we say that the derived

category D(R) of a (not necessarily noetherian) ring R satisfies the Semistable

Telescope Conjecture (STC) if any homotopically smashing t-structure is com-

pactly generated.

The aim of this paper is to glue compactly generated t-structures and cosilt-

ing objects of cofinite type over all (co)localizations at maximal ideals, and to

study the stalk-local properties of the (Semistable) Telescope Conjecture. For

this purpose, we use the description of these t-structures of [1] and [20] by topo-

logical invariants and first introduce the “compatibility” condition for the family

{X(m) | m ∈ mSpec(R)} of Thomason filtrations, which we then demonstrate to

correspond precisely to the case in which this collection naturally glues over the
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cover of Spec(R) by the subsets homeomorphic to Spec(Rm) (see Definition 3.9

and Proposition 3.11). We remark that our gluing condition Definition 3.9 is

nothing but a suitable generalization of the condition used in [38] to the setting

of rings which are not necessarily noetherian, see Remark 3.10.

Let us briefly list the highlights of the present paper, which are all obtained

using the gluing technique described above.

(1) In Theorem 3.15 we glue (non-degenerate) compactly generated t-struc-

tures over all localizations at maximal ideals which is based on the

gluing of the corresponding Thomason filtrations via Proposition 3.11.

More specifically, it is proved that there is a bijective correspondence be-

tween (non-degenerate) compactly generated t-structures (U ,V) inD(R)

and compatible families {(U(m),V(m)) | m ∈ mSpec(R)} of (non-dege-
nerate) compactly generated t-structures.

(2) In Theorem 4.5 we obtain a stalk-local criterion for the (Semistable)

Telescope Conjecture by applying the local-global property of compact

generation established in Proposition 3.13. More precisely, for any com-

mutative ring R, it is proved that the (Semistable) Telescope Conjecture

holds inD(R) if and only if the (Semistable) Telescope Conjecture holds

inD(Rm) for any maximal idealm of R. One corollary is that both (TC)

and (STC) hold for any commutative ring R all of which stalks Rm are

noetherian. Examples of such rings include non-noetherian rings like

von Neumann regular rings, recovering a result of Bazzoni–Šťov́ıček;

see [11, §7]. Our result also has consequences for non-affine schemes.

Indeed, in combination with the result of Balmer and Favi we obtain

that the ⊗-Telescope Conjecture (⊗TC) for a quasi-coherent and quasi-

separated scheme is not just affine-local, but even a stalk-local property;

see §4.1.
(3) We establish a bijective correspondence between cosilting objects

in D(R) of cofinite type up to equivalence and compatible families

{C(m) | m ∈ mSpec(R)} of cosilting objects of cofinite type up to equiv-

alence (see Theorem 5.15). We give applications to pure-injective cosilt-

ing objects, n-term cosilting objects, cotilting modules, and cosilting

modules over commutative noetherian rings (see Corollaries 5.18, 5.19

and 5.23). It should be noted that our correspondence here restricts to

one of [38, Corollary 3.6], and the notions of equivalence and compatible
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condition on families here restrict perfectly well to the notions used in

[38]. In Section 6, we obtain a similar result for silting objects under

slightly stronger assumptions. Unlike in the cosilting setting however,

the gluing of a local silting object to form a global one is not explicit;

see Remark 6.5.

Notation. All subcategories are always considered to be full and closed under

isomorphisms. Complexes are written using the cohomological notation, mean-

ing that the degree increases in the direction of differential maps. The n-th

power of the suspension functor of any triangulated category will be denoted

as [n] for n ∈ Z.

Acknowledgement. We would like to thank the anonymous referee for a

thoughtful report.

2. Preliminaries

In this section, T will always denote a compactly generated triangulated cat-

egory with an enhancement which allows us to compute homotopy limits and

colimits. Our choice of such enhancement comes in the form of a (strong and

stable) Grothendieck derivator. We refer the reader to [21, Appendix] for a

source of references and basic terminology about such categories well-suited

for our objectives. In particular, this assumption implies that T has all set-

indexed products and coproducts. In fact, we will be mostly interested in the

case when T = D(R) is the unbounded derived category of the module category

Mod-R of a (not necessarily noetherian) commutative ring R. Also, the only

homotopy construction we will be interested in computing is that of directed

homotopy colimits. In the case of D(R), the directed homotopy colimits

are precisely the direct limits (= directed colimits) constructed in C(R), the

Grothendieck category of cochain complexes of R-modules. In particular, a

subcategory C of D(R) is closed under directed homotopy colimits if it is closed

under direct limits computed in C(R).

Recall that an object S ∈ T is compact if the covariant functor

HomT (S,−) : D(R)→ Ab

preserves coproducts. The symbol T c will denote the subcategory of T con-

sisting of all compact objects of T . Recall that an object S ∈ D(R) belongs
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to D(R)c if and only if S is isomorphic in D(R) to a bounded complex of finitely

generated projective R-modules.

2.1. t-structures. A t-structure is a pair (U ,V) of full subcategories of T
which satisfy the following axioms:

(t1) HomT (U ,V) = 0,

(t2) U [1] ⊆ U (and V [−1] ⊆ V),
(t3) for any X ∈ T there is a triangle

U → X → V → U [1]

with U ∈ U and V ∈ V .
The class U is called the aisle and V is called the coaisle of the t-structure.

We recall the well-known fact that the triangle in axiom (t3) is uniquely deter-

mined (up to unique isomorphism) and functorial—indeed, it follows from the

axioms that U is a coreflective subcategory of T and the map U → X is precisely

the U-coreflection of X ; see [23]. The dual statement is valid for the coaisle V
and the map X → V as well—in particular, V is a reflective subcategory of T .
A t-structure (U ,V) is called:
• stable if U [−1] ⊆ U (or equivalently, V [1] ⊆ V);
• non-degenerate if

⋂
n∈Z
U [n] = 0 and

⋂
n∈Z
V [n] = 0.

The aisles of stable t-structures are precisely the kernels of Bousfield local-

ization functors. The non-degeneracy condition holds precisely when the coho-

mological functor induced by the t-structure detects a zero object. Clearly, the

two conditions are mutually exclusive whenever T contains non-zero objects.

2.2. Purity and definable subcategories in triangulated setting.

We briefly recall the theory of purity in T , first introduced by Beligiannis [12]

and Krause [25]. We call a map f in T a pure monomorphism (resp. pure

epimorphism) provided that HomT (S, f) is a monomorphism (resp. an epi-

morphism) for any S ∈ T c. Note that, in the triangulated world, a pure

monomorphism does not have to be a categorical monomorphism. An ob-

ject E ∈ T is called pure-injective provided that any pure monomorphism

starting in E is a split monomorphism in T . Let C be a full subcategory of T .
We say that C is closed under pure monomorphisms if for any pure monomor-

phism f : X → Y with Y ∈ C we also have X ∈ C and we define the analogous

notion of subcategory closed under pure epimorphisms similarly.
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A subcategory C is definable provided that there is a set Φ of maps between

objects of T c such that

C = {X ∈ T | HomR(f,X) is surjective for any f ∈ Φ}.

Similarly to their more classical counterparts in module categories, definable

subcategories of T can be characterized by their closure properties. Indeed, we

have the following result due to Laking and Laking–Vitória.

Theorem 2.1 ([27, Theorem 3.11], [26, Theorem 4.7]): The following are equiv-

alent for a subcategory C of T :
(i) C is definable.

(ii) C is closed under products, pure monomorphisms, and pure epimor-

phisms.

(iii) C is closed under products, pure monomorphisms, and directed homo-

topy colimits.

2.3. Homotopically smashing t-structures. A t-structure (U ,V) is called
smashing if the coaisle V is closed under coproducts. The aisles of stable

smashing t-structures are precisely the kernels of smashing localization functors

of T ; see [21, A.5]. For t-structures which are non-stable, a stronger condition

is often needed; here we follow [35]. A t-structure (U ,V) is called homotopi-

cally smashing if V is closed under directed homotopy colimits. For stable

t-structures, this is equivalent to the smashing property [25]. A priori, this is

a weaker condition than requiring the coaisle V to be a definable subcategory.

However, a recent result due to Saoŕın and Šťov́ıček [34] shows that at least in

the algebraic setting (in particular, in the case T = D(R)), these two condi-

tions coincide. Furthermore, Angeleri Hügel, Marks and Vitória [5] showed that

coaisles of such t-structures are fully determined by their closure properties.

Recall that a subcategory C of T is suspended (respectively, cosuspended)

if C is closed under extensions and C[1] ⊆ C (respectively, C[−1] ⊆ C). Then we

can summarize the two above mentioned results about homotopically smashing

t-structures in derived categories.

Theorem 2.2 ([34, 5]): The following conditions are equivalent for a subcate-

gory V of D(R):

(i) V is the coaisle of a homotopically smashing t-structure (U ,V),
(ii) V is definable and cosuspended.
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Proof. Any coaisle is clearly a cosuspended subcategory. If (U ,V) is a homo-

topically smashing t-structure, then V is definable by [34, Remark 8.9]. On the

other hand, if V is a definable and cosuspended subcategory then it is a coaisle of

a t-structure by [5, Lemma 4.8], and such a t-structure is clearly homotopically

smashing.

2.4. Orthogonal subcategories. Let C be a subcategory of T . We write

HomT (C, X) = 0 as a shorthand for the statement HomT (C,X) = 0 for all

C ∈ C. Given a subset I of Z, we also use the following notation for subcategories

degreewise orthogonal to C:

C⊥I = {X ∈ T | HomT (C, X [i]) = 0 ∀i ∈ I}.

The role of I will be played by the symbols 0, ≤ 0, < 0, ≥ 0, > 0, or Z with

their obvious interpretations as subsets of Z. The symbols HomT (X, C) = 0

and ⊥IC are defined analogously, in particular:

⊥IC = {X ∈ T | HomT (X, C[i]) = 0 ∀i ∈ I}.

If C = {C} is a singleton for some object C ∈ T , we will omit the brackets and

write just C⊥0 et cetera.

2.5. Compactly generated t-structures. We say that a t-structure (U ,V)
in T is compactly generated if there is a set S ⊆ T c of compact objects such

that V = S⊥0 . Any compactly generated t-structure is homotopically smashing;

see [35, Proposition 5.6].

The compactly generated t-structures in D(R) admit a topological classifica-

tion in terms of invariants coming from the dual topology on Spec(R), which we

recall now. A subset X of Spec(R) is called Thomason provided that there is

a set I of finitely generated ideals of R such that X =
⋃

I∈I V (I). We remark

that a subset of the spectrum is Thomason precisely if it is an open subset with

respect to the Hochster dual topology on Spec(R), as explained in the discus-

sion [22, §2]. Also note that if R is noetherian, Thomason subsets are precisely

the specialization closed subsets of Spec(R), that is, the upper subsets of the

poset (Spec(R),⊆). A Thomason filtration is a sequence X = (Xn | n ∈ Z) of

Thomason subsets of Spec(R) which is decreasing in the sense that Xn ⊇ Xn+1

for each n ∈ Z.

It turns out that any compactly generated t-structure in D(R) is generated

by distinguished compact objects of D(R), the Koszul complexes. Recall that
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if x ∈ R is an element, then the Koszul complex of x is the complex of the

form

K(x) = (R
·x−→ R)

concentrated in degrees -1 and 0. If x̄ = (x1, x2, . . . , xn) is a finite sequence of

elements then we define the Koszul complex

K(x̄) =

n⊗
i=1

K(xi).

Let I be a finitely generated ideal of R. Then we will abuse the notation and

write K(I) for the Koszul complex on any fixed finite sequence x̄ of generators

of I. Recall that K(I) is always a compact object in D(R) and also that its

cohomology modules are supported on V (I). Although the change of choice

of generators may alter K(I) even when considered as an object of D(R) up

to isomorphism, these complexes generate the same t-structure regardless of

the choice of generators, and therefore the abuse in notation is harmless in our

application. The following results generalize the classification in the noetherian

case considered in [1].

Theorem 2.3 ([20, Theorem 5.1]): Let R be a commutative ring. There is a

bijective correspondence between the following collections:

(i) compactly generated t-structures (U ,V) in D(R), and

(ii) Thomason filtrations X = (Xn | n ∈ Z) on Spec(R).

This correspondence assigns to a Thomason filtration X the coaisle of the form

V = {K(I)[−n] | V (I) ⊆ Xn, n ∈ Z}⊥0 .

2.6. Hereditary torsion pairs in Mod-R. Recall that a torsion pair in

Mod-R is a pair of full subcategories (T ,F) of Mod-R which are maximal with

respect to the property HomR(T ,F) = 0. A torsion pair (T ,F) is called hered-

itary if the torsion class T is closed under submodules, or equivalently, if the

torsion-free class F is closed under taking injective envelopes. A hereditary tor-

sion pair (T ,F) is of finite type if F is closed under direct limits. Hereditary

torsion pairs of finite type in Mod-R were proved by Garkusha and Prest to be

in bijection with Thomason subsets of Spec(R).
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Theorem 2.4 ([16], see also [22, Proposition 2.11]): There is a bijection

{Hereditary torsion pairs (T ,F)in Mod-R}
1−1←−→ {Thomason subsets X of Spec(R)}

provided by the mutually inverse assignments

T �→ X =
⋃
{V (I) | R/I ∈ T }

and

X �→ T = {M ∈Mod-R | Supp(M) ⊆ X}.

3. (Co)localization and t-structures

Definition 3.1: For every object X ∈ D(R) and every prime ideal p of R, we

denote by Xp the object X ⊗L
R Rp = X ⊗R Rp, the localization of X at p and

by Xp the object

RHomR(Rp, X);

we call it the colocalization of X at p. Similarly, for a subcategory C of D(R)

we consider the following subcategories of D(Rp):

Cp = {Xp | X ∈ C} and Cp = {Xp | X ∈ C}.

Remark 3.2: Recall that for any prime ideal p, the derived category D(Rp) is

naturally a (full) subcategory of D(R). By the same token, we can naturally

consider any subcategory Cp of D(Rp) as a subcategory of D(R). Moreover,

there is a (stable) TTF-triple (L,D(Rp),K) in D(R), which amounts to say-

ing that there are two adjacent t-structures (L,D(Rp)) and (D(Rp),K) (both of

which are necessarily stable). It follows that the inclusion of D(Rp) into D(R)

admits both the left and the right adjoint, and these are realized by the func-

tors−⊗L
RRp andRHomR(Rp,−), respectively. For details see, e.g., [3, Theorem

4.3] and references therein.
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Lemma 3.3: Let p be a prime ideal of R. We have the following natural iso-

morphisms:

(i) For every X ∈ D(Rp) and Y ∈ D(R), we have

HomD(Rp)(X,Y p) ∼= HomD(R)(X,Y ).

(ii) For every Y ∈ D(Rp) and X ∈ D(R), we have

HomD(Rp)(Xp, Y ) ∼= HomD(R)(X,Y ).

(iii) For X,Y ∈ D(R), we have

HomD(R)(Xp, Y ) ∼= HomD(R)(X,Y p).

Proof. For any object X ∈ D(Rp), we have

Xp = X ⊗R Rp
∼= X ⊗L

R Rp
∼= X ⊗L

Rp
Rp
∼= X

and

Xp = RHomR(Rp, X) ∼= RHomRp(Rp, X) ∼= X.

The isomorphism in (i) follows by

HomD(Rp)(X,Y p) ∼= HomD(Rp)(X,RHomR(Rp, Y ))

∼= HomD(R)(X ⊗L
R Rp, Y ) ∼= HomD(R)(X,Y ).

Similarly, the isomorphism in (ii) follows by

HomD(Rp)(Xp, Y ) ∼= HomD(R)(X,RHomR(Rp, Y )) ∼= HomD(R)(X,Y ).

Applying the isomorphisms from (i) and (ii), we obtain

HomD(R)(Xp, Y ) ∼= HomD(Rp)(Xp, Y
p) ∼= HomD(R)(X,Y p).

Lemma 3.4: Let (U ,V) be a t-structure in D(R) and p ∈ Spec(R). Then:

(i) Up = U ∩D(Rp) and Vp = V ∩D(Rp).

(ii) (Up,Vp) is a t-structure in D(Rp).

(iii) If (U ,V) is in addition homotopically smashing then Vp = Vp.

Proof. (i): By [20, Proposition 2.2], we have that Up ∈ U for any U ∈ U
and V p ∈ V for any V ∈ V , which easily yields the desired equalities.

(ii): The only non-trivial step is to check the existence of canonical triangles

with respect to (Up,Vp). Let X be an object of D(Rp) ⊆ D(R) and consider

the canonical triangle

U → X
r−→ V → U [1]
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with respect to the t-structure (U ,V) in D(R). Consider the natural colocal-

ization morphism c : V p → V . Recall from Remark 3.2 that c is the D(Rp)-

coreflection of V . Together with X ∈ D(Rp) this yields that the morphism r

factors through c by a map f : X → V p. On the other hand, as V p belongs to V
by (i), the map f factors through the V-reflection map r by a map g : V → V p.

The situation is captured in the following commutative diagram:

X V

V p

r

f
gc

By the construction, we have cgr = cf = r. Since r is the V-reflection
morphism of X , the map cg has to be the identity on V , and so g is a split

monomorphism. It follows that V ∈ D(Rp), which implies also U ∈ D(Rp).

We conclude that U → X
r−→ V → U [1] is already the desired approximation

triangle in D(Rp).

(iii): If (U ,V) is homotopically smashing then V is closed under the localiza-

tion functor − ⊗R Rp, and therefore Vp = V ∩D(Rp). By (i), Vp = Vp.

Lemma 3.5: Let V be a definable subcategory of D(R). Then the following

conditions are equivalent for any object X ∈ D(R):

(i) X ∈ V ,
(ii) Xm ∈ Vm for any m ∈ mSpec(R),

(iii) Xm ∈ V for any m ∈ mSpec(R).

Proof. (i) =⇒ (ii): This is just the definition of the subcategory Vm.
(ii) =⇒ (iii): Since V is definable, it is closed under directed homotopy colim-

its. But since Xm = X ⊗R Rm, Xm can be represented as a directed homotopy

colimit of a coherent diagram consisting of finite coproducts of copies of X .

Therefore, Vm is a subcategory of V .
(iii) =⇒ (i): Consider the natural map f :X→

∏
m∈mSpec(R) Xm. If S∈D(R)c

is a compact object, we have that

HomD(R)(S, f) : HomD(R)(S,X)→HomD(R)

(
S,

∏
m∈mSpec(R)

Xm

)

∼=
∏

m∈mSpec(R)

HomD(R)(S,X)m
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is a monomorphism in Mod-R, and therefore f is a pure monomorphism inD(R).

Since V contains Xm for any m ∈ mSpec(R) and is closed under products and

pure monomorphisms, we conclude that X ∈ V .

3.1. Aisles of compactly generated t-structures. If R is noetherian, a

more explicit description of the compactly generated t-structure (U ,V) in terms

of the associated Thomason filtration is available in [1, Theorem 3.11]. In this

case, the aisle is described cohomologically as

U = {X ∈ D(R) | SuppHn(X) ⊆ Xn ∀n ∈ Z}.

For a general commutative ring and general Thomason filtration, such a de-

scription seems currently unavailable apart from special cases [33, Proposition

6.6], [22, Lemma 3.10]. However, we can extract the following slightly weaker

structural information even in the general situation which we record here for

later use.

Let X = (Xn | n ∈ Z) be a Thomason filtration of Spec(R) inducing a

compactly generated t-structure (U ,V). Let D+(R) denote the subcategory

of D(R) consisting of all objects X with Hi(X) = 0 for i� 0.

Lemma 3.6: Let (U ,V) be a compactly generated t-structure in D(R) corre-

sponding to a Thomason filtration X = (Xn | n ∈ Z). Put

U# = {X ∈ D(R) | SuppHn(X) ⊆ Xn ∀n ∈ Z}.

Then:

(i) There is a set E of shifts of stalks of injective R-modules such

that U# = ⊥0E .
(ii) The category U# is an aisle of a t-structure (U#,V#).
(iii) U ⊆ U# and V# ⊆ V .
(iv) U ∩D+(R) = U# ∩D+(R) and V ∩D+(R) = V# ∩D+(R).

Proof. (i): Recall from §2.6 that Tn = {M ∈ Mod-R | Supp(M) ⊆ Xn} is a

torsion class of a hereditary torsion pair (Tn,Fn), which amounts to saying that

there is a set En of injective R-modules such that

Tn = {M ∈Mod-R | HomR(M,E) = 0 ∀E ∈ En}.

Then U# = ⊥0E , where E =
⋃

n∈Z
En[−n] (see [20, Lemma 3.2]).

(ii): This follows from (i), [26, Corollary 5.4], and the easy observation

that U# is a suspended subcategory of D(R).
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(iii): Since V = U⊥0 and V# = U⊥0

# , it is clearly enough to show the first

claim. Recall from [1, §1.2] that U is the smallest suspended subcategory of U
containing all objects K(I)[−n] where V (I) ⊆ Xn, n ∈ Z closed under co-

products. Since SuppHn(K(I)) ⊆ V (I) for any finitely generated ideal I and

any n ∈ Z, we see that all the objects K(I)[−n] belong to U#. Finally, since U#
is an aisle, we conclude that U ⊆ U#.
(iv): By (iii) we already have inclusions

U ∩D+(R) ⊆ U# ∩D+(R) and V ∩D+(R) ⊇ V# ∩D+(R).

Let X ∈ U# ∩D+(R). Since the subcategory U# is defined by cohomology, we

clearly have that any soft (cohomological) truncation τ<n(X) belongs to U#.
Also, the aisle U is closed under extensions and homotopy colimits [35, Propo-

sition 4.2]. Since X can be expressed as a directed homotopy colimit of its soft

truncations, X ∼= hocolimn>0τ
<n(X), it is enough to show that τ<n(X) ∈ U

for each n > 0. Since X ∈ D+(R), τ<n(X) is obtained by a finitely iterated

extension of the cohomology stalks Hk(X)[−k]. Therefore, it is enough to con-

sider the case of a stalk complex X = M [−k] for an R-module M satisfying

Supp(M) ⊆ Xk. The latter condition implies that any annihilator I of an el-

ement of M satisfies V (I) ⊆ Xk ([22, Proposition 2.12]). Therefore, M can

be constructed from cyclic modules R/I satisfying V (I) ⊆ Xk using extensions

and direct limits, and so M [−k] ∈ U by [20, Lemma 5.3].

For any R-module M , let us denote by E(M) the injective envelope of M in

Mod-R.

Lemma 3.7: Let (U ,V) be a compactly generated t-structure in D(R) corre-

sponding to a Thomason filtration X = (Xn | n ∈ Z). Then the following

statements hold true:

(i) For any p ∈ Spec(R), κ(p)[−n] ∈ U if and only if p ∈ Xn.

(ii) For any X ∈ V ∩D+(R) we have

E(H inf(X)(X))[− inf(X)] ∈ V ,

where

inf(X) = min{k ∈ Z | Hk(X) �= 0}.
(iii) Let En be the subcategory of Mod-R consisting of all injective R-

modules E such that E[−n] ∈ V . Then for any p ∈ Spec(R) we have

HomR(κ(p), En) = 0 if and only if p ∈ Xn.
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Proof. (i): By Lemma 3.6(iv), κ(p)[−n] ∈ U if and only if κ(p)[−n] ∈ U#, or
equivalently, Supp(κ(p)) = {p} ⊆ Xn.

(ii): This follows from [20, Lemma 3.3].

(iii): If E[−n] belongs to V then

HomR(κ(p), E) = HomD(R)(κ(p)[−n], E[−n]) = 0

for any p ∈ Xn because κ(p)[−n] ∈ U by (i). For the converse, assume

that p �∈ Xn and let X ∈ U . Since E(κ(p)) is injective, we have

HomD(R)(X,E(κ(p))[−n]) = HomR(H
n(X), E(κ(p)))

by [20, Lemma 3.2]. By Lemma 3.6(iii), SuppHn(X) ⊆ Xn, and so

HomR(H
n(X), E(κ(p))) = 0.

This shows that E(κ(p))[−n] ∈ U⊥0 = V , and therefore E(κ(p)) ∈ En. Then

clearly HomR(κ(p), En) �= 0.

3.2. Compatible families of Thomason sets. Our next step is to show

how Thomason sets can be glued together from local data over all localizations

at maximal ideals. Let X(m) be a Thomason subset of Spec(Rm) for each

m ∈ mSpec(R). If Y is any subset of Spec(Rm), we will denote by Y ∗ its image

under the natural inclusion Spec(Rm) ↪−→ Spec(R) induced by the localization

map (the choice of maximal ideal m will always be clear from the context). Note

that Y = {pm | p ∈ Y ∗} ⊆ Spec(Rm). We consider the following condition for

the family {X(m) | m ∈ mSpec(R)}:

(†) ∀m,m′ ∈ mSpec(R) : {p ∈ X(m)∗ | p ⊆ m′} = {p ∈ X(m′)∗ | p ⊆ m}.

Lemma 3.8: In the setting as above, put X =
⋃

m∈mSpec(R) X(m)∗. Then the

following conditions are equivalent:

(i) The set {X(m) | m ∈ mSpec(R)} satisfies condition (†) and X is a

Thomason subset of Spec(R),

(ii) X =
⋃

I∈I V (I) where I is the set of all finitely generated ideals of R

such that V (Im) ⊆ X(m) for all m ∈ mSpec(R).

Proof. (i) =⇒ (ii): Set X ′ =
⋃

I∈I V (I) and let us show X = X ′. Fix I ∈ I,
p ∈ V (I), and m ∈ mSpec(R) such that p ⊆ m. Since V (Im) ⊆ X(m),

we clearly have pm ∈ X(m), showing that X ′ ⊆ X . Conversely, assume

that p ∈ X(m)∗ ⊆ X and let m′ be another maximal ideal of R. Then there are
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two possibilities. Either p ⊆ m′, and then p ∈ X(m′)∗ by the condition (†). The
other possibility is that p �⊆ m′, and then pm′ = Rm′ . Together we proved that

X = {p ∈ Spec(R) | V (pm) ⊆ X(m) ∀m ∈ mSpec(R)}.

SinceX is Thomason, for any p ∈ X there is a finitely generated ideal I ofR such

that p ∈ V (I) ⊆ X . For any m ∈ mSpec(R) we have V (Im) = {pm | p ∈ V (I)},
and so V (Im) ⊆ X(m), as desired.

(ii) =⇒ (i): First, the condition (ii) clearly implies that X is Thomason. We

are left with proving that the set {X(m) | m ∈ mSpec(R)} satisfies condition (†).
Let p ∈ X(m)∗ satisfy p ⊆ m′ and let us show that p ∈ X(m′)∗. By (ii)

there is a finitely generated ideal of R such that p ∈ V (I) ⊆ X and such

that V (Im′) ⊆ X(m′). This already testifies that p ∈ X(m′)∗.

Definition 3.9: Let X(m) be a Thomason subset of Spec(Rm) for each

m ∈ mSpec(R). The family {X(m) | m ∈ mSpec(R)} is called compatible

if it satisfies the equivalent conditions of Lemma 3.8.

Let X(m) = (X(m)n | n ∈ Z) be a Thomason filtration of Spec(Rm) for

each m ∈ mSpec(R). The family {X(m) | m ∈ mSpec(R)} is called compatible

if {X(m)n | m ∈ mSpec(R)} is a compatible family of Thomason subsets for

each n ∈ Z.

Remark 3.10: If R is noetherian then the assumption of X being a Thomason

set in condition (i) of Lemma 3.8 is superfluous. Indeed, the proof of the

lemma shows that X = {p ∈ Spec(R) | V (pm) ⊆ X(m) ∀m ∈ mSpec(R)}
holds even without such an assumption, and this is enough to see that X is

a specialization closed subset of Spec(R), which for noetherian rings amounts

to X being Thomason. It follows that our compatibility condition generalizes

the one used in [38, Definition 2.3]. Indeed, as we just observed, for noetherian

rings our compatibility condition for a family of Thomason sets boils down

to (†), which is precisely the condition used by Trlifaj and Şahinkaya.

On the other hand, the condition of X being Thomason is not superfluous for

rings which are not noetherian, in general. Indeed, let R = kω be the countably

infinite product of a field k and choose a non-principal maximal ideal m of R.

Set X(m) = {mm} and X(m′) = ∅ for any maximal ideal m′ �= m. Clearly,

this family satisfies (†). However X =
⋃

n∈mSpec(R) X(n)∗ = {m}, which is

well-known not to be a Thomason set, as there is no idempotent e of R with

V (e) = {m}. In particular, the condition (ii) of Lemma 3.8 does not hold for X .
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Proposition 3.11: There is a bijective correspondence

{Thomason subsets X of Spec(R)}
1−1←−→ {Compatible families {X(m) | m∈mSpec(R)} of Thomason subsets}

induced by the mutually inverse assignments

X �→ X(m) = Xm = {pm | p ∈ X ∩ Spec(Rm)
∗} ∀m ∈ mSpec(R)

and

{X(m) | m ∈ mSpec(R)} �→ X =
⋃

m∈mSpec(R)

X(m)∗.

This bijection naturally extends to a bijection

{Thomason filtrations X of Spec(R)}
1−1←−→ {Compatible families {X(m) | m∈mSpec(R)} of Thomason filtrations}.

Proof. Let X be a Thomason subset of Spec(R) and put

Xm = {pm | p ∈ X ∩ Spec(Rm)
∗}

for each maximal ideal m. Clearly, X∗
m = X ∩ Spec(Rm)

∗ and so the condi-

tion (†) is satisfied. Also, X =
⋃

m∈mSpec(R) X
∗
m is Thomason, showing that the

family {Xm | m ∈ mSpec(R)} satisfies the condition (i) of Lemma 3.8 and so it

is compatible. On the other hand, if a given family {X(m) | m ∈ mSpec(R)}
is compatible then it satisfies the condition (ii) of Lemma 3.8, and therefore

X(m) = Xm = {pm | p ∈ X ∩ Spec(Rm)
∗}. This establishes that the assign-

ments are well-defined and mutually inverse.

For the claim about Thomason filtrations, it is enough to notice that for

two Thomason subsets X,Y we have X ⊆ Y if and only if Xm ⊆ Ym for

each maximal ideal m, as the sets Spec(Rm)
∗,m ∈ mSpec(R) form a cover

of Spec(R).

3.3. Local-global property of compact generation. The gluing condi-

tion on Thomason sets allows us to prove the following useful local character-

ization of when a homotopically smashing t-structure is compactly generated.

Indeed, it allows us to construct a family of compact generators out of a family

of compact generators for each localization at maximal ideal. Before that, we

need a relatively straightforward observation on the injective R-modules living

in torsion-free classes of hereditary torsion pairs.
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Let Inj-R denote the subcategory of all injective R-modules. We will con-

sider subcategories E of Inj-R which reflect the closure properties of torsion-free

classes of hereditary torsion pairs of finite type. Two obvious conditions are

that E needs to be closed under products and direct summands. Furthermore,

the fact that the torsion-free class is closed under direct limits will be reflected

by the following condition on the subcategory E ⊆ Inj-R:

(††)
For any direct system (Ei | i ∈ I) in E ,
the injective envelope of its colimit belongs to E .

Lemma 3.12: There is a bijection

{Hereditary torsion pairs (T ,F) in Mod-R}
1−1←−→{Subcategories E of Inj-R closed under products and direct summands}

provided by the mutually inverse assignments

F �→ E = Inj-R ∩ F

and

E �→ T = {M ∈Mod-R | HomR(M, E) = 0}.
Furthermore, the torsion pair (T ,F) is of finite type (that is, F is closed under

direct limits) if and only if the corresponding subcategory E satisfies condi-

tion (††).

Proof. First, it is routine to check that both the assignments are well-defined.

If (T ,F) is a hereditary torsion pair then F is closed under injective envelopes,

and therefore T = {M ∈ Mod-R | HomR(M, E) = 0}. To establish that the

assignments are mutually inverse, the only non-trivial step is to check that if E
is closed under products and direct summands then the corresponding torsion

pair (T ,F) satisfies F ∩ Inj-R ⊆ E . To see this, it is enough to prove that F =

Sub(E), the subcategory of all submodules of modules from E . Since F is the

smallest torsion-free class containing E , it is further enough to show that Sub(E)
is a torsion-free class in Mod-R. Clearly, Sub(E) is closed under subobjects, and

since E is closed under products, so is Sub(E). Therefore, we only need to see

that Sub(E) is closed under extensions. Let 0 → A0 → B → A1 → 0 be an

exact sequence with Ai ⊆ Ei where Ei belongs to E for both i = 0, 1. The

injectivity of E0 allows to extend the inclusion A0 ⊆ E0 to a map B → E0,

which easily yields an embedding of B into E0 ⊕ E1. Since E is closed under

products, this shows B ∈ Sub(E), as desired.
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Finally we show that F is closed under direct limits if and only if E satis-

fies (††). If F is closed under direct limits then for any direct system Ei, i ∈ I

in E we have lim−→i∈I
Ei ∈ F . Since F is closed under injective envelopes,

the injective envelope of this direct limit belongs to E . Conversely, let E sat-

isfy (††). To establish that F is closed under direct limits, it suffices to show

that it is closed under direct limits of well-ordered systems [17, Lemma 2.14].

Let (Fα | α < λ) be such a direct system in F and denote its direct limit

by F = lim−→α<λ
Fα. By [20, Lemma 3.5], there is a direct system Eα, α < λ

such that Eα is the injective envelope of Fα for each α < λ, and such that the

envelope embeddings Fα ⊆ Eα induce a map between the two direct systems.

Since E satisfies (††), the injective envelope E of the direct limitM = lim−→α<λ
Eα

belongs to E . By the properties of the direct systems constructed and by exact-

ness of the direct limit functor, we have a natural limit monomorphism F →M ,

and therefore F embeds into E. We conclude that F ∈ F as desired.

We are ready to prove a key result of this section showing that the property

of a homotopically smashing t-structure being compactly generated is a local-

global property with respect to the cover Spec(R) =
⋃

m∈mSpec(R) Spec(Rm)
∗.

Proposition 3.13:Let (U ,V) be a homotopically smashing t-structure inD(R).

For each maximal ideal m, let (Um,Vm) be the localized t-structure in D(Rm)

of Lemma 3.4. Then:

(i) The t-structure (U ,V) is compactly generated in D(R) if and only if

the t-structure (Um,Vm) is compactly generated in D(Rm) for each

m ∈ mSpec(R).

(ii) Assume that (U ,V) is compactly generated and corresponds to a

Thomason filtration X. Let X(m) be a Thomason filtration corre-

sponding to the t-structure (Um,Vm) for each m ∈ mSpec(R). Then

{X(m) | m ∈ mSpec(R)} is a compatible family of Thomason filtrations

corresponding via Proposition 3.11 to the Thomason filtration X on

Spec(R).

Proof. (i): If (U ,V) is compactly generated then there is a set S of compact

objects such that V = S⊥0 . By Lemma 3.3 it is easy to see that

Vm = {Sm | S ∈ S}⊥0 .

Since Sm is a compact object ofD(Rm) for any S ∈ D(R)c, we see that (Um,Vm)
is compactly generated.
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For the converse, let X(m) = (X(m)n | n ∈ Z) be a Thomason filtration

corresponding via Theorem 2.3 to the compactly generated t-structure (Um,Vm)
for each m ∈ mSpec(R). Put

Xn =
⋃

m∈mSpec(R)

(X(m)n)
∗ for each n ∈ Z.

By Lemma 3.7(i), X(m)n = {p ∈ Spec(Rm) | κ(p)[−n] ∈ Um}. Since

Um = U ∩D(Rm)

by Lemma 3.4, we have

(X(m)n)
∗ = {p ∈ Spec(R) | p ⊆ m and κ(p)[−n] ∈ U}.

Then it easily follows that the family {X(m)n | m ∈ mSpec(R)} satisfies condi-
tion (†) for each n ∈ Z. Next, let

En = {E ∈Mod-R | E[−n] ∈ V and E is injective} for each n ∈ Z.

Clearly, En is closed under direct summands and products as a subcategory

of Inj-R. We claim that En satisfies condition (††) for each n ∈ Z. Indeed,

let (Ei | i ∈ I) be a direct system of modules from En. Denote its direct limit

by M = lim−→i∈I
Ei. Since Eα ∈ En, we have Eα[−n] ∈ V for each n ∈ V .

Therefore, M [−n] = hocolimα<λEα[−n] belongs to V , as V is closed under

directed homotopy colimits. Let E be the injective envelope of M , we need to

show that E[−n] ∈ V . For any m ∈ mSpec(R), Mm[−n] belongs to Vm, and so

the injective envelopeGm ofMm in Mod-Rm also satisfiesGm[−n] ∈ Vm, here we
use Lemma 3.7(ii). Since Gm is also injective as an R-module, we have Gm ∈ En.
Finally, observe that E is a direct summand of

∏
m∈mSpec(R) Gm, and so E ∈ En.

Let (Tn,Fn) be the hereditary torsion pair of finite type in Mod-R corre-

sponding to En via Lemma 3.12, and let X ′
n be the Thomason set in Spec(R)

corresponding to (Tn,Fn) via Theorem 2.4. Note that since

Tn = {M ∈Mod-R | HomR(M, En) = 0} and Supp(κ(p)) = {p},

we have

X ′
n = {p ∈ Spec(R) | HomR(κ(p), En) = 0}.

We claim that X ′
n = Xn. The inclusion Xn ⊆ X ′

n is clear as En[−n] ⊆ V . On

the other hand, if p ∈ X ′
n then consider any maximal ideal m which contains p.

Since HomR(κ(p), En) = 0, we have in particular that HomR(κ(p), En(m)) = 0

where En(m) consists of all injective Rm-modules E such that E[−n] ∈ Vm. But
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since the t-structure (Um,Vm) is compactly generated, this implies pm ∈ Xm
n ,

and so p ∈ (Xm
n )∗ ⊆ Xn by Lemma 3.7(iv).

We have proved that {X(m) | m ∈ mSpec(R)} is a compatible family of

Thomason filtrations corresponding to a Thomason filtration X = {Xn | n ∈ Z}
via Proposition 3.11. Put S = {K(I)[−n] | V (I) ⊆ Xn, n ∈ Z}. It follows from
Theorem 2.3 that

Sm = {K(I)[−n]⊗R Rm | V (I) ⊆ Xn, n ∈ Z}
= {K(Im)[−n] | V (Im) ⊆ X(m)n, n ∈ Z}

is a set of compact generators for (Um,Vm) in D(Rm), and thus satisfies

(Sm)⊥0 = Vm.

By Lemma 3.3, we have (S⊥0)m = (Sm)⊥0 = Vm. But since both S⊥0 and V are

definable subcategories of D(R), Lemma 3.5 shows that S⊥0 = V , and so (U ,V)
is compactly generated.

(ii): This follows easily either from the proof of (i) or directly from Lem-

ma 3.7(i).

3.4. Gluing of compactly generated t-structures.

Definition 3.14: Let (U(m),V(m)) be a compactly generated t-structure inD(Rm)

for each m ∈ mSpec(R) corresponding to a Thomason filtration X(m) in

Spec(Rm). The family {(U(m),V(m)) | m ∈ mSpec(R)} is said to be compati-

ble if the family {X(m) | m ∈ mSpec(R)} of Thomason filtrations is compatible.

We say that a Thomason filtration X = (Xn | n ∈ Z) is non-degenerate if⋂
n∈Z

Xn = ∅ and
⋃
n∈Z

Xn = Spec(R).

Theorem 3.15: Let R be a commutative ring. There is a bijective correspon-

dence between

(i) compactly generated t-structures (U ,V) in D(R), and

(ii) compatible families {(U(m),V(m)) | m ∈ mSpec(R)} of compactly gen-

erated t-structures,

which restricts to a bijective correspondence between

(i′) non-degenerate compactly generated t-structures (U ,V) in D(R), and

(ii′) compatible families {(U(m),V(m)) | m ∈ mSpec(R)} of non-degenerate
compactly generated t-structures.
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Proof. The bijection between (i) and (ii) follows from Theorem 2.3, Propo-

sition 3.11, and Proposition 3.13(ii). Recall that (U ,V) is a non-degenerate

t-structure if it satisfies
⋂

n∈Z
U [n] = 0 =

⋂
n∈Z
V [n]. To prove the equivalence

of (i′) and (ii′), by the bijection between (i) and (ii), it suffices to show that

a compactly generated t-structure (U ,V) is non-degenerate if and only if the

corresponding Thomason filtration X corresponding to (U ,V) is non-degenerate.
Let U# = {X ∈ D(R) | SuppHn(X) ⊆ Xn, n ∈ Z} be the aisle of Lemma 3.6;

recall that U ⊆ U#. Now if
⋂

n∈Z
Xn = ∅ then

⋂
n∈Z

U#[n] = {X ∈ D(R) | SuppH∗(X) = ∅} = 0,

which imples
⋂

n∈Z
U [n] = 0. On the other hand, assume that

⋂
n∈Z

Xn contains

a prime ideal p. Then U [n] contains κ(p)[0] for each n ∈ Z by Lemma 3.7(i),

and so
⋂

n∈Z
U [n] �= 0.

Now we consider the second non-degeneracy condition. Put S = U ∩D(R)c.

Since the t-structure is compactly generated we have S⊥0 = V . Observe

that
⋂

n∈Z
V [n] = 0 is equivalent to S⊥Z = (

⋃
n∈Z
S[n])⊥0 = 0. We let (L, C)

be the t-structure generated by the set
⋃

n∈Z
S[n], so that C = S⊥Z . The t-

structure (L, C) is compactly generated and so it corresponds to a Thomason

filtration Y = (Yn | n ∈ Z) via Theorem 2.3. Since the t-structure (L, C) is

stable (recall that this means that L is closed under the cosuspension func-

tor [−1]), the Thomason filtration Y is constant in the sense that there is a

single Thomason set Y such that Yn = Y for all n ∈ Z, cf. [20, Theorem 5.3].

It also follows from Theorem 2.3 that Y =
⋃

n∈Z
Xn, as L is generated by all

shifts of the Koszul complexes of the form K(I) with V (I) ⊆ Xn for any n ∈ Z.

Finally, we have that C = 0 if and only if L = D(R), which happens if and only

if the Thomason set Y is equal to Spec(R).

4. Stalk-locality of the Telescope Conjecture

Definition 4.1: A triangulated category T satisfying the assumptions of §2 is

said to

• satisfy the Telescope Conjecture (TC) if any stable (homotopically)

smashing t-structure in T is compactly generated.

• satisfy the Semistable Telescope Conjecture (STC) if any homo-

topically smashing t-structure in T is compactly generated.
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Remark 4.2: The formulation (TC) of Definition 4.1 is equivalent to a more

customary form of the Telescope Conjecture which asks for any kernel of a

smashing localization of the triangulated category D(R) to be generated by

compact objects. More precisely, a stable t-structure (U ,V) is homotopically

smashing if and only if U is a smashing subcategory,that is, if U is a localizing

subcategory of D(R) such that U⊥0 = V is closed under coproducts; see, e.g.,

[21, Appendix] for details and further references.

Clearly, the validity of (STC) in D(R) implies (TC).

The fact that (TC) holds in the derived category of a commutative noetherian

ring was established by Neeman [29]. The following recent development shows

that also (STC) is valid in the same setting.

Theorem 4.3 ([21, Theorem 1.1]): Let R be a commutative noetherian ring.

Then D(R) satisfies (STC).

We are ready to formulate the local-global property of Proposition 3.13 in

terms of telescope properties of D(R).

Lemma 4.4: Let R be a commutative ring and p ∈ Spec(R). Then:

(i) If (TC) holds in D(R) then (TC) holds in D(Rp).

(ii) If (STC) holds in D(R) then (STC) holds in D(Rp).

Proof. Assume that (STC) holds in D(R) and let p ∈ Spec(R). Let (U ,V) be

a homotopically smashing t-structure in D(Rp). Consider V as a subcategory

of D(R). Since V is a cosuspended definable subcategory of D(Rp) (see [34,

Remark 8.9]) and D(Rp) is a cosuspended definable subcategory of D(R), we

infer that V is a cosuspended definable subcategory of D(R), and so there is

a homotopically smashing t-structure (U ′,V) in D(R); see [5, Proposition 4.5].

Since D(R) satisfies (STC), there is a set of compact objects S of D(R) such

that V = S⊥0 in D(R). By Lemma 3.3, we have the equality V = S⊥0
p in D(Rp),

and so (U ,V) is compactly generated in D(Rp). The version of this implication

for (TC) follows easily as the closure of V under suspensions is also checked

equivalently in D(Rp) and D(R).

Theorem 4.5: Let R be a commutative ring.

(i) (TC) holds in D(R) if and only if (TC) holds in D(Rm) for any maximal

ideal m of R.

(ii) (STC) holds in D(R) if and only if (STC) holds in D(Rm) for any

maximal ideal m of R.
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Proof. By Lemma 4.4, we only need to prove the backward implication of both

statements. If a t-structure (U ,V) is homotopically smashing in D(R) then

clearly so is (Um,Vm) in D(Rm). Therefore, if (STC) holds for each localiza-

tion Rm at maximal ideals then (STC) holds in D(R) by Proposition 3.13(i).

Also, if (U ,V) is in addition stable then so is clearly (Um,Vm). As a conse-

quence, we also get that if (TC) holds for each localization Rm then it holds

in D(R).

Corollary 4.6: Let R be a commutative ring such that Rm is noetherian for

any m ∈ mSpec(R). Then (STC) holds in D(R). In particular, (TC) holds

in D(R).

Proof. Combine Proposition 3.13 and the main result of [21].

Remark 4.7: There are many examples of non-noetherian commutative rings

which are locally noetherian in the sense of Corollary 4.6; see, e.g., [18], [8]. A

well-known class of examples of such rings consists of the (commutative and not

semi-simple) von Neumann regular rings — indeed, these can be characterized

as rings R such that Rm is a field for any m ∈ Spec(R). In this way, our local-

global criterion recovers some recent results for von Neumann regular rings [11,

§7], [37], [10, Corollary 3.12].

4.1. Stalk-locality of the ⊗-Telescope Conjecture for schemes.

Here we follow the setting of [9, Examples 1.2(2)]; for basic terminology about

schemes we adhere to [39]. Let X be a quasi-compact and quasi-separated

scheme X and let D(X) denote the derived category of complexes of OX -

modules with quasi-coherent cohomology. Then D(X) together with the usual

derived tensor product ⊗L
X is a compactly generated tensor triangulated cate-

gory. If X is in addition separated then D(X) is naturally equivalent

to D(Qcoh(X)), the usual derived category of the category of quasi-coherent

sheaves over X . For non-affine schemes, one can only expect good local be-

havior from localizations which respect the tensor structure. The following

formulation of the tensor-friendly Telescope Conjecture is a special case of the

general formulation for tensor triangulated categories of Balmer and Favi [9,

Definition 4.2], building on previous work of Hovey, Palmieri and Strickland

[19].
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Definition 4.8: Let X be a quasi-compact and quasi-separated scheme. We

say that D(X) satisfies the ⊗-Telescope Conjecture (⊗TC) if any stable

(homotopically) smashing t-structure (L, C) such that L is a ⊗-ideal, meaning

that L satisfies in addition the condition

(4.1) L⊗L
X M ∈ L for all L ∈ L,M ∈ D(X),

is compactly generated. It is well-known that in case X is an affine scheme the

tensor condition (4.1) is vacuous, and so for affine schemes, (⊗TC) is equivalent
to (TC) by taking the ring of global sections.

Balmer and Favi [9, Theorem 6.6] showed that (⊗TC) is a local-global prop-

erty with respect to any cover X =
⋃

i∈I Ui by open and quasi-compact sets. In

particular, one can check (⊗TC) locally on any cover of X by open affine sets.

We remark that Balmer and Favi worked in a much broader generality of com-

pactly generated tensor triangulated categories in terms of Balmer spectra. This

was further generalized by Stevenson [36] to the relative setting of a suitable ac-

tion triangulated categories. In an algebro-geometric context, Antieau [7] estab-

lished the local-global criterion for étale covers of (derived) schemes. Note these

results do not include the case of the cover Spec(R) =
⋃

m∈mSpec(R) Spec(Rm)
∗

we consider in Theorem 4.5(i)—indeed, this cover is not even fpqc whenever

mSpec(R) is an infinite set.

Given a scheme X and x ∈ X , we denote the stalk of X at x by OX,x, recall

that OX,x is always a local commutative ring. Combining Theorem 4.5(i) with

the Balmer and Favi result, we obtain that (⊗TC) for D(X) is a stalk-local

property in the following sense.

Theorem 4.9: Let X be a quasi-compact and quasi-separated scheme. Then

the following statements are equivalent:

(i) (⊗TC) holds in D(X),

(ii) (⊗TC), or equivalently (TC), holds in D(OX,x) for all x ∈ X ,

(iii) (⊗TC), or equivalently (TC), holds in D(OX,x) for all closed points

x ∈ X .

Proof. LetX=
⋃

i∈I Ui be a cover ofX by open affine sets, let λi : Ui
∼=Spec(Ri)

be isomorphisms where Ri is an appropriate commutative ring for each i ∈ I.

By [9, Theorem 6.6], (⊗TC) holds in D(X) if and only if (⊗TC) holds in D(Ui)

for each i ∈ I. Then (⊗TC) holds in D(X) if and only if (TC) holds in D(Ri)
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for each i ∈ I. By Theorem 4.5(i) we know that (TC) holds in D(Ri) if and

only if it holds in D((Ri)p) for any p ∈ Spec(Ri). But

D((Ri)p) ∼= D(OUi,λi(p))
∼= D(OX,λi(p)).

This establishes the equivalence (i)⇐⇒ (ii).

It remains to prove the implication (iii) =⇒ (ii). Let x ∈ X be any point.

Since X is quasi-compact, there is a closed point c contained in the closure

of x in X . By the assumption, (TC) holds in D(OX,c). Since the ring OX,x

is isomorphic to a localization of OX,c at some prime ideal, Lemma 4.4 implies

that (TC) holds in D(OX,x).

As a consequence, (⊗TC) holds if X is stalk-noetherian in the following sense.

As mentioned already in Remark 4.7, the property of a scheme being noetherian

is not a stalk-local property, even for affine schemes [18], [8].

Corollary 4.10: Let X be a quasi-compact and quasi-separated scheme such

that the stalk OX,x is noetherian for any point x ∈ X (equivalently, for any

closed point x ∈ X). Then D(X) satisfies (⊗TC).

Proof. This is a direct consequence of Theorem 4.9 together with validity

of (TC) in derived categories of commutative noetherian rings [29].

5. Cosilting and cotilting objects

The goal of this section is to refine the (co)localization results for t-structures

that are induced by cosilting objects.

Definition 5.1: We say that an object T ∈ D(R) is silting if the pair

(T⊥>0 , T⊥≤0)

is a t-structure, which we call the silting t-structure induced by T . Two silting

objects T, T ′ ∈ D(R) are equivalent if they induce the same t-structure.

An object C ∈ D(R) is cosilting if the pair (⊥≤0C,⊥>0C) forms a t-structure,

which we call the cosilting t-structure induced by C. Two cosilting ob-

jects C,C′ are equivalent if they induce the same t-structure. By [31, Lem-

ma 4.5], C and C ′ are equivalent if and only if Prod(C) = Prod(C′), where

Prod(C) is the subcategory of all direct summands of set-indexed direct prod-

ucts of copies of C.
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A silting object is called a bounded silting complex if it is quasi-isomorphic

to a bounded complex of projective R-modules, and a cosilting object is called

a bounded cosilting complex if it is quasi-isomorphic to a bounded complex

of injective R-modules.

It is an easy consequence of the definition that both silting and cosilting t-

structures are always non-degenerate. If C is a pure-injective cosilting object

then the induced t-structure (U ,V) is homotopically smashing. Indeed, the

pure-injectivity of C ensures that the coaisle V = ⊥>0C is closed under both

pure monomorphisms and pure epimorphisms.

Definition 5.2: We say that a silting object T inD(R) is of finite type if there is

a set of compact objects S such that T⊥>0 = S⊥0 . Similarly, we call a cosilting

object C in D(R) of cofinite type if there is a set of compact objects S such

that ⊥>0C = S⊥0 . Note that the cosilting object is cofinite type precisely when

the induced cosilting t-structure (U ,V) is compactly generated.

Theorem 5.3 ([28, Theorem 3.6, Proposition 3.10]): Any bounded silting ob-

ject is of finite type. Any bounded cosilting object is pure-injective.

Theorem 5.4 ([21, A.8, Corollary 2.14]): If D(R) satisfies (STC) then any

pure-injective cosilting object is of cofinite type. In particular, this is the case

if R is a commutative noetherian ring.

Lemma 5.5: Let C ∈ D(R). Then C is a cosilting object if and only if all the

following conditions hold:

(i) C cogenerates D(R), that is, ⊥ZC = 0,

(ii) C ∈ ⊥>0C,

(iii) ⊥>0C is closed under products,

(iv) ⊥>0C is a coaisle of a t-structure.

Furthermore, the condition (iv) follows from the other three conditions pro-

vided that C is pure-injective.

Proof. Using condition (iv) the proof is dual to that of [31, Proposition 4.13].

If C is pure-injective, ⊥>0C is closed under both pure monomorphisms and

pure epimorphisms. Since ⊥>0C is clearly cosuspended and by (iii) it is closed

under products, we infer by [5, Lemma 4.8] that V = ⊥>0C is a coaisle of a

t-structure.
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We are ready to investigate colocalization properties of cosilting objects

in D(R).

Lemma 5.6: Let C be a cosilting object in D(R) and p a prime ideal of R.

Then Cp is a cosilting object in D(Rp). Furthermore, if (U ,V) is the t-structure
induced by C then Cp induces the cosilting t-structure (Up,Vp) in D(Rp).

Proof. By Lemma 3.3, for any object X ∈ D(Rp) we have

HomD(Rp)(X,Cp) ∼= HomD(R)(X,C).

From this we easily derive the property (i) and (iii) of Lemma 5.5 applied to the

object Cp of the category D(Rp). Also, we can infer from [20, Proposition 2.2]

that Cp ∈ ⊥>0C, and so the adjunction formula of Lemma 3.3 also yields condi-

tion (ii). We are left to show the condition (iv), that is, the subcategory ⊥>0Cp

is a coaisle in D(Rp).

We denote V = ⊥>0C and U = ⊥0V so that (U ,V) is the t-structure induced

by the cosilting object C in D(R). Recall from Lemma 3.4 that Vp = V∩D(Rp)

and note that Vp is equal as a subcategory of D(Rp) to ⊥>0Cp. But Vp is a

coaisle of a t-structure by Lemma 3.4, as desired.

Lemma 5.7: Let C be a pure-injective cosilting object in D(R). Then

D =
∏

m∈mSpec(R)

Cm

is a cosilting object in D(R) which is equivalent to C.

Proof. We will again use Lemma 5.5 to show that D is a cosilting object.

Set V = ⊥>0C. The main observation we make is that for any X ∈ D(R) we

have X ∈ ⊥>0D if and only if Xm ∈ V for each maximal ideal m. This already

shows that D is a cogenerator in D(R). Because V is definable, Lemma 3.5

yields that X ∈ V whenever Xm ∈ V for all m ∈ mSpec(R), and so V = ⊥>0D.

Because C is pure-injective, so is Cm for each maximal ideal m, and therefore D

is pure-injective. Finally, Cm ∈ V for each maximal ideal m by [20, Proposi-

tion 2.2], and thus D ∈ V . Now we can apply Lemma 5.5 to infer that D is a

cosilting object, and since V = ⊥>0D, we have that D is equivalent to C.

Definition 5.8: A cosilting object C is cotilting if Prod(C) ⊆ ⊥<0C.
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Remark 5.9: The importance of the last definition comes from derived equiv-

alences, here we follow [31]. Let (U ,V) be the t-structure induced by C and

let

H = V ∩ U [−1]

be the heart of the t-structure. Assume that C is a bounded cosilting com-

plex. Then H is a Grothendieck category [5], and there is a realization functor

realC : Db(H) → Db(R) between the bounded derived categories [31]. Then

the cosilting object C is cotilting if and only if realC is an equivalence [31,

Corollary 5.2].

Lemma 5.10: If C is a pure-injective cotilting object in D(R) then Cm is a

cotilting object for any m ∈ mSpec(R) and
∏

m∈mSpec(R) C
m is a cotilting object

in D(R) equivalent to C.

Proof. By Lemma 5.7, the cosilting object C is equivalent to

D =
∏

m∈mSpec(R) C
m, which means that Prod(C) = Prod(D). Therefore,

Prod(Cm) ⊆ ⊥<0C,

which by the usual adjunction argument translates to Prod(Cm) ⊆ ⊥<0Cm

in D(Rm).

If C is pure-injective then
∏

m∈mSpec(R) C
m is cosilting inD(R) by Lemma 5.7.

Then it remains to note that the equivalence between cosilting objects clearly

preserves the cotilting property. Indeed, if C ′ and C′′ are two equivalent cosilt-

ing objects then Prod(C) = Prod(C′), and therefore Prod(C) ⊆ ⊥<0C if and

only if Prod(C ′) ⊆ ⊥<0C′.

However, it is not true in general that if Cm is a cotilting object for any

m ∈ mSpec(R) then the cosilting object C has to be cotilting as demonstrated

in the following example.

Example 5.11: Let k be a field and R = kω be the countably infinite product

of k. Recall that R is a von Neumann regular ring, and therefore in particular

every simple R-module is injective. Let m be any maximal ideal of R such

that HomR(R/m, R) = 0. Such maximal ideals are plentiful — recall that

maximal ideals of R are in a natural bijection with ultrafilters on ω and the

desired property of m is satisfied if and only if the corresponding ultrafilter is

not principal. We also setM = mSpec(R) \ {m}.
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Put

C = R/m[0]⊕
∏
n∈M

R/n[−1]

and we claim that C is a cosilting object in D(R). Since C is a product of two

shifted stalk complexes of injective R-modules, we infer that C is a pure-injective

object of D(R). By the injectivity, the orthogonal V = ⊥>0C is determined on

cohomology and can be easily computed:

V = {X ∈ D≥0 | H0(X) ∈ F},

where

F =

{
M ∈Mod-R | HomR

(
M,

∏
n∈M

R/n

)
= 0

}
.

It is easy to see that F = Add(R/m) = Prod(R/m). It follows that C ∈ V and

that V is product-closed. By Lemma 5.5, C is a cosilting object.

Next we show that C is not a cotilting object. From HomR(R/m, R) = 0

it follows that the intersection of all maximal ideals belonging to M is zero.

Therefore,
∏

n∈M R/n contains a copy of R as a submodule. Since R/m is

injective, this yields

HomR

( ∏
n∈M

R/n, R/m

)
�= 0,

and therefore there is a non-zero map C → C[−1] in D(R), witnessing that C

is not cotilting.

Finally, let n be a maximal ideal. Then the colocalization Cn is equal either

to R/m[0] in case n = m or to R/n[−1] in case n �= m. In either case, Cn is

a shift of the injective cogenerator of the category of vector spaces over the

field R/n = Rn, and so Cn is a cotilting object in D(Rn).

5.1. Cofinite type and compatible families of Thomason filtrations.

We start by generalizing [3, Theorem 3.8] and characterize the Thomason fil-

trations which are induced by a cosilting object.

Proposition 5.12: Let R be a commutative ring. There is a bijective corre-

spondence between the following families:

(i) equivalence classes of cosilting objects of cofinite type in D(R), and

(ii) non-degenerate Thomason filtrations X = (Xn | n ∈ Z) on Spec(R).
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The correspondence assigns to a cosilting object C of cofinite type the Thoma-

son filtration associated to the compactly generated t-structure induced by C

via Theorem 2.3.

Proof. Let (U ,V) be a compactly generated t-structure in D(R) corresponding

to a Thomason filtration X. By [26, Theorem 4.6], the t-structure (U ,V) is

induced by a cosilting object if and only if it is non-degenerate. In this way,

cosilting objects of cofinite type in D(R) correspond up to equivalence to non-

degenerate compactly generated t-structures in D(R). So the result holds by

the proof Theorem 3.15.

Lemma 5.13: The bijection of Proposition 3.11 restricts to a bijection

{Non-degenerate Thomason filtrations X of Spec(R)}
1−1←−→{Compatible families {X(m) |m∈mSpec(R)}

of non-degenerate Thomason filtrations}.

Proof. The condition (†) (see §3.2) ensures that

Xn =
⋃

m∈mSpec(R)

X(m)∗n

and

X(m)∗n = Xn ∩ Spec(Rm)
∗

for each n ∈ Z. This already implies that
⋃

n∈Z
Xn = Spec(R) if and only if⋃

n∈Z
X(m)n = Spec(Rm) for each m ∈ mSpec(R) as well as that

⋂
n∈Z

Xn = ∅
if and only if

⋂
n∈Z

X(m)n = ∅ for each m ∈ mSpec(R).

Definition 5.14: Let C(m) be a cosilting object of cofinite type in D(Rm) for

eachm∈mSpec(R) corresponding to a non-degenerate Thomason filtration X(m)

in Spec(Rm). The family {C(m) | m ∈ mSpec(R)} is said to be compatible if

the family

{X(m) | m ∈ mSpec(R)}

is compatible. We say that two compatible families {C(m) | m ∈ mSpec(R)}
and {D(m) | m ∈ mSpec(R)} of cosilting objects of cofinite type are equivalent

if the cosilting objects C(m) and D(m) are equivalent for each m ∈ mSpec(R).
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Theorem 5.15: There is a bijection

{Cosilting objects C in D(R) of cofinite type up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of cosilting objects of cofinite type up to equivalence}

induced by the assignment

C �→ {Cm | m ∈ mSpec(R)}

and

{C(m) | m ∈ mSpec(R)} �→
∏

m∈mSpec(R)

C(m).

Proof. The assignment C �→ {Cm | m ∈ mSpec(R)} clearly preserves the ap-

propriate equivalence classes and so is well-defined. Since C is equivalent to

the cosilting object
∏

mCm in D(R) by Lemma 5.7, the assignment is injective

on equivalence classes. Let {C(m) | m ∈ mSpec(R)} be a compatible family

of cosilting objects of cofinite type which by the definition corresponds to a

compatible family {X(m) | mSpec(R)} of non-degenerate Thomason filtrations.

Let X be the corresponding non-degenerate Thomason filtration on Spec(R)

via Lemma 5.13, which further corresponds to a cosilting object C in D(R) via

Proposition 5.12. Let (U ,V) be the t-structure induced by C, then Cm induces

the t-structure (Um,Vm) by Lemma 5.6 and Lemma 3.4. By Proposition 3.13(ii)

we see that (Um,Vm) corresponds to the Thomason filtration X(m) via Proposi-

tion 3.11. Then (Um,Vm) is the t-structure induced by C(m) and therefore the

cosilting objects Cm and C(m) are equivalent in D(Rm) for each m ∈ mSpec(R).

Finally, let us use this to show that D =
∏

m∈mSpec(R) C(m) is a cosilting ob-

ject in D(R) which is equivalent to C. We have Prod(Cm) = Prod(C(m)) for

any m ∈ mSpec(R). By Lemma 5.7, C is equivalent to
∏

m∈mSpec(R) C
m, and

so Prod(C) = Prod(
∏

m∈mSpec(R) C
m). Together, we showed that

Prod(C) = Prod

( ∏
m∈mSpec(R)

Cm

)
= Prod

( ∏
m∈mSpec(R)

C(m)

)
= Prod(D).

From this, it follows easily that for any X ∈ D(R) and i ∈ Z we have

HomD(R)(X,C[i]) = 0 if and only if HomD(R)(X,D[i]) = 0,

and so (⊥≤0C,⊥>0C) = (⊥≤0D,⊥>0D), establishing that D is a cosilting object

equivalent to C.
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We also have this auxiliary result using the local-global criterion for compact

generation from Section 3.

Proposition 5.16: Let C be a pure-injective cosilting object in D(R). Then C

is of cofinite type if and only if Cm is of cofinite type for each m ∈ mSpec(R).

Proof. Follows directly from Proposition 3.13.

We say that a cosilting object C is n-term for some n ≥ 0 if C is iso-

morphic in D(R) to a complex of injective R-modules concentrated in de-

grees 0, 1, . . . , n− 1.

Corollary 5.17: Let C be a cosilting object in D(R) and n ≥ 0. Then C is

n-term if and only if Cm is n-term for any m ∈ mSpec(R). In particular, the

bijection of Theorem 5.15 restricts for any n ≥ 0 to a bijection

{n-term cosilting objects C in D(R) of cofinite type up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of n-term cosilting objects of cofinite type up to equivalence}.

Proof. Let us assume that C is already a complex of injective R-modules con-

centrated in degrees 0, 1, . . . , n− 1. In particular,

Cm = RHomR(Rm, C) ∼= HomR(Rm, C).

As HomR(Rm,−) sends injective R-modules to injective Rm-modules, this es-

tablishes that Cm is n-term.

For the converse, recall from Lemma 5.7 that C is equivalent to∏
m∈mSpec(R)C

m. Since any injective Rm-module is also injective as an R-

module, we conclude that C is n-term provided that Cm is n-term for

any m ∈ mSpec(R).

Corollary 5.18: If R is noetherian, we have bijections

{Pure-injective cosilting objects C in D(R) up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of pure-injective cosilting objects up to equivalence}
and

{n-term cosilting objects C in D(R) up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of n-term cosilting objects up to equivalence}.
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Proof. Follows immediately by recalling Theorem 5.4 and Theorem 5.3.

Recall that an R-module C is n-cotilting if and only if it is an n-term cosilting

complex when considered as an object D(R) by taking its stalk complex in

degree zero. Then our correspondence also restricts to the one of [38]. Recall

from Remark 3.10 that our notions of equivalence and compatible condition on

families restrict perfectly well to the notions used in [38].

Corollary 5.19: If R is noetherian, we have bijections for any n > 0

{n-cotilting modules C in Mod-R up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of n-cotilting modules up to equivalence}.

Proof. The only non-trivial task is to show that if C is an n-cotilting module

then RHom(Rm, C) is isomorphic to the R-module HomR(Rm, C) in D(R). For

this, it is sufficient to show that ExtiR(Rm, C) = 0 for all i > 0. But this follows

from the well-known fact that any cotilting class in Mod-R contains all flat

R-modules.

5.2. Cosilting modules over noetherian rings. Given an R-module M ,

we use Cogen(M) to denote the subcategory of all R-modules cogenerated

by M , that is, all R-modules admitting a monomorphism into an arbitrary

direct product of copies of M . Given a map Q0
η→ Q1 between injective R-

modules we define a subcategory

Bη = {M ∈Mod-R | HomR(M, η) is an epimorphism}.

We say that an R-module C is a cosilting module if there is an injective

copresentation 0→ C → Q0
η→ Q1 such that

Bη = Cogen(C).

We say that two cosilting modules C,C′ are equivalent if they induce the same

cosilting class, that is, Cogen(C) = Cogen(C′). It is well-known that cosilting

modules C and C ′ are equivalent if and only if Prod(C) = Prod(C′).

The cosilting modules were introduced as module-theoretic shadows of 2-term

cosilting complexes in [14], dualizing results of [4]. As proved in [41], we have

the following result.
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Theorem 5.20 ([41, Theorem 1.3]): Let R be a ring. Then there is a bijection

{ 2-term cosilting complexes up to equivalence}
1−1←−→ {cosilting R-modules up to equivalence}.

This correspondence assigns to a 2-term cosilting complex σ the R-moduleH0(σ).

Now let R be a commutative noetherian ring. Then the equivalence classes

of cosilting modules are in natural bijection with Thomason sets [2]. Let

0→ C → Q0
η→ Q1

be an injective copresentation for an R-module C. If C is cosilting with respect

to η then it will induce a unique torsion pair (⊥C,Cogen(C)) up to equivalence,

see [14, Corollary 3.5], where

⊥C = {M ∈Mod-R | HomR(M,C) = 0}.

We know that over a commutative ring R, there is a bijective correspondence be-

tween hereditary torsion pairs of finite type, and Thomason subsets of Spec(R);

see Theorem 2.4. Note that the cosilting class Cogen(C) is a definable class

in Mod-R, so it is closed under direct limits. Therefore, since R is noetherian,

(⊥C,Cogen(C)) is a hereditary torsion pair of finite type; see [2, Lemma 4.2].

The Thomason subset corresponding to (⊥C,Cogen(C)) is

Y =
⋃
{V (I) | I f.g. ideal such that R/I ∈ ⊥C}.

In Proposition 5.22, we show that this Thomason set coincides with the one

obtained from the cosilting module by passing to the 2-term cosilting complex

with Theorem 5.20, and then extracting the zero term Thomason set of the

filtration associated via Proposition 5.12.

Definition 5.21: Let C(m) be a cosilting Rm-module for each m ∈ mSpec(R)

corresponding to a Thomason subset X(m) in Spec(Rm). The family

{C(m) | m ∈ mSpec(R)}

is said to be compatible if the family

{X(m) | m ∈ mSpec(R)}

is compatible. We say that two compatible families {C(m) | m ∈ mSpec(R)}
and {D(m) | m ∈ mSpec(R)} of cosilting objects of cofinite type are equivalent

if the cosilting modules C(m) and D(m) are equivalent for each m ∈ mSpec(R).
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Proposition 5.22: Let R be a commutative noetherian ring. Then there is a

bijection

{Compatible families {σ(m) | m ∈ mSpec(R)}
of 2-term cosilting complexes up to equivalence}

1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}
of cosilting Rm-modules up to equivalence}.

This correspondence assigns to a 2-term cosilting complex σ(m) the R-module

H0(σ(m)).

Proof. The assignment σ(m) → H0(σ(m)) clearly preserves the equivalence

and so is well-defined. By Theorem 5.20, it remains to prove that the class

{σ(m) | m ∈ mSpec(R)} is compatible if and only if {C(m) | m ∈ mSpec(R)} is
compatible. Let X(m) = (X(m)n | n ∈ Z) be the non-degenerate Thomason fil-

tration of Spec(Rm) corresponding to σ(m) for each m ∈ mSpec(R). Recall that

the family {X(m) | m ∈ mSpec(R)} is compatible if {X(m)n | m ∈ mSpec(R)}
is a compatible family of Thomason subsets for each n ∈ Z. Let Y (m) be the

Thomason subset of Spec(Rm) corresponding to C(m) for each m ∈ mSpec(R).

First, we claim that X(m)0 = Y (m). In fact, by [20, Theorem 5.1], we have

X(m)0 =
⋃
{V (Im) | I is an ideal of R such that Rm/Im ∈ ⊥≤0σ(m)},

Y (m) =
⋃
{V (Jm) | J is an ideal of R such that Rm/Jm ∈ ⊥H0(σ(m))}.

Since σ(m) is a 2-term cosilting complex concentrated in degree 0 and 1, we see

that Hi(σ(m)) = 0 for all i < 0. Then the claim follows by

HomD(Rm)(Rm/Im, σ(m)[< 0]) = 0

and the isomorphism

HomD(Rm)(Rm/Im, σ(m)) ∼= HomRm(Rm/Im,H
0(σ(m))).

Again using that σ(m) is a 2-term cosilting complex concentrated in degree 0

and 1, one can check directly that

X(m)n =
⋃
{V (Im) | I is an ideal of R such thatRm/Im[−n] ∈ ⊥≤0σ(m)}

= Spec(Rm)

for all n < 0 and X(m)n = ∅ for all n ≥ 1. Therefore, we easily get that

{X(m) | m ∈ mSpec(R)} is compatible if and only if {Y (m) | m ∈ mSpec(R)} is
compatible.
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Corollary 5.23: Let R be a commutative noetherian ring. Then there is a

bijection

{cosilting R-modules up to equivalence}
1−1←−→ {Compatible families {C(m) | m ∈ mSpec(R)}

of cosilting Rm-modules up to equivalence}

induced by the assignment

C �→ {Cm | m ∈ mSpec(R)}

and

{C(m) | m ∈ mSpec(R)} �→
∏

m∈mSpec(R)

C(m).

Proof. By Corollary 5.18, we know that there are bijections between 2-term

cosilting complexes C in D(R) up to equivalence and compatible families

{C(m) | m ∈ mSpec(R)} of 2-term cosilting complexes up to equivalence. Thus

the result follows by Theorem 5.20 and Proposition 5.22.

6. Silting objects

Let us fix an injective cogeneratorW in Mod-R, and denote by (−)+ the duality

functor (−)+ = RHomR(−,W ) : D(R) → D(R). The following result extends

the well-known explicit duality between n-tilting R-modules and n-cotilting R-

modules of cofinite type.

Theorem 6.1 ([3, Theorem 3.3, Theorem 3.8]): Let us consider the assignment

Φ : T �→ T+ on objects of D(R). Then:

(i) Φ induces an injective map from the set of equivalence classes of silting

objects in D(R) of finite type to cosilting objects in D(R) of cofinite

type.

(ii) Φ induces a bijective map from the set of equivalence classes of bounded

silting complexes in D(R) to bounded cosilting complexes in D(R) of

cofinite type.

(iii) If R is commutative noetherian, then Φ induces an bijective map from

the set of equivalence classes of silting objects in D(R) of finite type to

pure-injective cosilting objects in D(R).
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Definition 6.2: Let T (m) be a silting object of finite type in D(Rm) for each

m ∈ mSpec(R), C(m) = T (m)+ the cosilting object of cofinite type obtained via

Theorem 6.1, which further corresponds to a non-degenerate Thomason filtra-

tion X(m) in Spec(Rm) via Proposition 5.12. The family {T (m) |m∈mSpec(R)}
is said to be compatible if the family {X(m) | m ∈ mSpec(R)} is com-

patible. We say that two compatible families {T (m) | m ∈ mSpec(R)} and

{U(m) | m ∈ mSpec(R)} of silting objects of finite type are equivalent if the

silting objects T (m) and U(m) are equivalent for each m ∈ mSpec(R).

Lemma 6.3: Let T ∈ D(R) be a silting object and p ∈ Spec(R). Then Tp is a

silting object in D(Rp). If T is of finite type in D(R) then so is Tp in D(Rp).

Proof. The proof is completely dual to that of Lemma 5.6. The second claim

is straightforward to check.

A silting object T in D(R) is n-term for some n ≥ 0 if T is isomor-

phic in D(R) to a complex of projective R-modules concentrated in degrees

−(n− 1),−(n− 2), . . . ,−1, 0. In view of Theorem 6.1, if T is an n-term silting

object then T+ is clearly an n-term cosilting object of D(R).

For any maximal ideal m, let us denote

(−)+m = RHomRm(−,Wm)

and note that Wm is an injective cogenerator for the category Mod-Rm. By the

adjunction, we have for any X ∈ D(R) the simple formula (X+)m = (Xm)
+m .

Theorem 6.4: For any n ≥ 0, there is a bijection

{n-term silting objects T in D(R) up to equivalence}
1−1←−→ {Compatible families {T (m) | m ∈ mSpec(R)}

of n-term silting objects up to equivalence}.

If R is commutative noetherian, there is also a bijection

{Silting objects T in D(R) of finite type up to equivalence}
1−1←−→ {Compatible families {T (m) | m ∈ mSpec(R)}

of silting objects of finite type up to equivalence}.

Both bijections are induced by the assignment

T �→ {Tm | m ∈ mSpec(R)}.
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Proof. Let T be a silting object in D(R), m ∈ mSpec(R), C = T+ and let

{C(m) | m ∈ mSpec(R)} be the compatible family of cosilting objects corre-

sponding to C via Proposition 5.12. Note that we can choose C(m) = Cm for

allm ∈ mSpec(R). By the formula above, we see that C(m) = (T+)m = (Tm)
+m .

Together with Lemma 6.3, this yields that {Tm | mSpec(R)} is a compatible

family of silting objects and so both the assignments are well-defined. By The-

orem 6.1, the assignment (−)+ is injective on equivalence classes on silting

objects, and therefore so is the assignment T �→ {Tm | m ∈ mSpec(R)}.
It remains to show that the assignment T �→ {Tm | m ∈ mSpec(R)} is sur-

jective. Let {Tm | m ∈ mSpec(R)} be a compatible family of silting objects of

finite type and let

C(m) = T (m)+ = T (m)+m

for each m ∈ mSpec(R). Then {C(m) | m ∈ mSpec(R)} is a compatible family

of cosilting objects of cofinite type, so there is a corresponding cosilting object

C ∈ D(R) via Theorem 5.15. If either C is n-term, or R is commutative

noetherian, then Theorem 6.1 yields a silting object T of finite type such that T+

is equivalent to C as a cosilting object. Now for each m ∈ mSpec(R),

(Tm)
+m = (T+)m

is a cosilting object in D(Rm) equivalent to C(m). Therefore, Theorem 6.1

again implies that Tm is equivalent to T (m) as silting object for each m ∈
mSpec(R).

Remark 6.5: In view of Theorem 5.15, it would be tempting to express the

converse assignment of the bijection of Theorem 6.4 in terms of the coprod-

uct
⊕

m∈mSpec(R) T (m). However, given a silting object T the coproduct

⊕
m∈mSpec(R)

Tm

is often not a silting object anymore; see [38, Remark 2.9]. It is instructive to see

where the proof of Lemma 5.7 breaks in the dual setting—the silting aisle T⊥>0

is usually not closed under taking colocalization. This is in contrast with cosilt-

ing coaisles, which are closed both under localization and colocalization, which

is used in an essential way in obtaining results of Section 5.
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