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ABSTRACT

We prove the centrality of K2(F4, R) for an arbitrary commutative ring

R. This completes the proof of the centrality of K2(Φ, R) for any root

system Φ of rank ≥ 3. Our proof uses only elementary localization tech-

niques reformulated in terms of pro-groups. Another new result of the

paper is the construction of a crossed module on the canonical homomor-

phism St(Φ, R) → Gsc(Φ, R), which has not been known previously for

exceptional Φ.

1. Introduction

The aim of this paper is to give a uniform proof of the centrality of the K2-

functor modeled on Chevalley groups for an arbitrary commutative ring. Our

proof is based on the technique of pro-groups introduced by the third-named

author in [32] and [33]. Recall that [32] is dedicated to the centrality of the

linear K2 for not necessarily commutative rings while [33] focuses on the study

of the centrality problem in the context of odd-unitary groups, a large class of

groups generalizing the usual classical groups; see [17].

Let us briefly explain for the reader how our results fit into the general picture.

Recall that Steinberg groups St(Φ, R) are certain groups given by generators

and relations, that were classically introduced by R. Steinberg and J. Milnor

in [23, 15] as combinatorial approximations of the simply-connected Chevalley
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groups. For example, every element of the special linear group SLn(Fq) over

a finite field can be presented as a product of elementary transvections tij(a)

(i �= j, a ∈ Fq). These elements are taken as the generators of the Steinberg

group Stn(Fq). Moreover, any two such presentations of the same element

of SLn(Fq) can be rewritten one into the other via a sequence of the following

“elementary” relations:

• tij(a)tij(b) = tij(a+ b);

• tij(a)thk(b) = thk(b)tij(a) for j �= h and i �= k;

• tij(a)tjk(b)tij(−a)tjk(−b) = tik(ab) for i �= k.

These relations are called Steinberg relations and are taken as the defining

relations of the Steinberg group Stn(Fq). Thus, in the finite field case one

has Stn(Fq) ∼= SLn(Fq).

For an infinite field F the Steinberg group St(Φ, F ) no longer coincides with

the simply-connected Chevalley group Gsc(Φ, F ), but rather is the universal

central extension of the latter. By the classical theory of central extensions the

kernel of the natural homomorphism St(Φ, F ) → Gsc(Φ, F ) coincides with the

Schur multiplier H2(Gsc(Φ, F ), Z). The concrete presentation of this kernel in

the field case was obtained by H. Matsumoto in [14]. Similar presentation for

the special linear group over a skew field also has been obtained by U. Rehmann

in [19].

Recall that the algebraic K2-functor was originally defined by J. Milnor as

the kernel of the homomorphism St∞(R) → GL∞(R), i.e., as the group of

“nontrivial” relations between transvections in the infinite-dimensional general

linear group. Also he showed that the Schur multipliers of the linear Steinberg

group Stn(R) are trivial for n ≥ 5 and an arbitraryR. This shows that Stn(R) is

a good candidate for the role of the universal central extension of the elementary

subgroup En(R) = Im(Stn(R)→ SLn(R)).

Milnor’s approach was followed by M. Stein who defined Steinberg groups

St(Φ, R) in the context of arbitrary Chevalley groups and, by analogy, defined

the functor K2(Φ, R) as the kernel of the natural homomorphism

(1.1) st : St(Φ, R)→ Gsc(Φ, R).

Also M. Stein and W. van der Kallen computed Schur multipliers of St(Φ, R) for

Φ of rank ≥ 3; see [21, 7]. The Schur multipliers in the setting of unitary Stein-

berg groups over noncommutative rings have also been studied in [3, 28, 10, 9].
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The first proof of the centrality of the linear functor

K2,n(R) = Ker(Stn(R)→ SLn(R))

for an arbitrary commutative ring R was obtained byW. van der Kallen in [6] for

n ≥ 4. His proof was influenced by the proof of the Suslin normality theorem,

which asserts that the elementary subgroup En(R) is normal in SLn(R) for an

arbitrary commutative R and n ≥ 3. The latter result is one of the ingredients

in Suslin’s proof of the so-called K1-analogue of the Serre problem; see [26].

The result of van der Kallen was further generalized by M. Tulenbaev to almost

commutative rings, i.e., algebras module finite over their centers; see [29].

While the centrality of K2(Φ, R) has been long known for rings of small Krull

dimension, e.g., for semilocal rings (see [22]), the question whether it holds for

an arbitrary commutative ring has remained open since [6]. On the other hand,

the analogue of Suslin’s normality theorem for Chevalley groups of rank ≥ 2,

i.e., the normality of the subgroup

Esc(Φ, R) := Im(st)

for an arbitrary commutative ring R, was soon obtained by G. Taddei, see [27].

Since then the normality theorem was generalized to even larger classes of

groups, e.g., isotropic reductive groups and odd unitary groups; see [17, 16, 25].

The first advancement in the solution of the centrality problem for arbitrary

commutative rings since [6] was the counterexample of M. Wendt [35] which

showed that the centrality of K2 may fail for root systems of rank 2 (similarly,

there is a counterexample to Suslin’s normality theorem for the rank 1 group

SL2(R)). Soon the papers [11, 20, 13] of the first- and second-named authors

appeared, in which it was shown that the centrality of K2 does, indeed, hold for

all the Chevalley groups of type C�, D�, E� provided � ≥ 3. In [11] a symplec-

tic analogue of the technique of [6] was developed, while in [20, 13] the proof

was based on the amalgamation theorem for relative Steinberg groups which

reduced the problem of centrality to the already-known linear case. Neverthe-

less, neither of these two approaches seemed to work for the root systems B�

and F4. Finally, in [32] the third-named author has developed a novel pro-

group approach, which allowed him not only to generalize [6, 29] to an even

larger class of noncommutative rings, but also to prove the centrality of K2 for

odd unitary groups and, thus, cover all classical groups, including the case B�,
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see [33]. In the present paper these methods are employed to verify the central-

ity of K2 in the case Φ = F4, the only case which has remained open until now.

This is accomplished in Theorem 3 below. Our method of proof also applies to

root systems of type A≥3, D≥4, E6,7,8, and thus gives a proof of the centrality

of K2 independent of the earlier papers [6, 20, 13]. In the course of the proof

we also reprove Taddei’s normality theorem [27] in the aforementioned cases;

see Lemma 5.3. Thus, the main consequence of [33] and our Theorem 3 can be

formulated as follows.

Theorem: Let R be a commutative ring, Φ be an irreducible root system of

rank ≥ 3. Then the map st : St(Φ, R)→ Esc(Φ, R) is a central extension.

In fact, in Theorem 3 we prove a stronger result. More precisely, we endow

the canonical homomorphism (1.1) with the structure of a crossed module;

see Definition 5.1. This is yet another new result of the paper. Notice that no

construction of a crossed module on (1.1) was presented in [11, 20, 13]. Some

of the material of the present paper (e.g., Section 4.1) is required only for this

construction and is not needed for the proof of the centrality of K2.

Using the above theorem we obtain a result comparing Stein’s K2-groups

modeled on Chevalley groups with Quillen’s unstable K2-groups. Recall

that the latter are defined by means of Quillen’s +-construction: for a root

system Φ of rank ≥ 3 take the perfect normal subgroup Esc(Φ, R) � Gsc(Φ, R)

and set

KQ
2 (Φ, R) := π2BGsc(Φ, R)+Esc(Φ,R).

The above group also coincides with the homology group H2(Esc(Φ, R), Z); see,

e.g., [34, §IV.1]. Thus, combining the above theorem with [21, 7] we obtain the

following result.

Corollary: For an arbitrary commutative ring R and a root system Φ of

rank ≥ 3 there is an exact sequence

1 H2(St(Φ, R),Z) KQ
2 (Φ, R) K2(Φ, R) 1,

in which the group H2(St(Φ, R),Z) is trivial in the cases

Φ = A≥4, B≥4, C≥4, D≥5, E6,7,8,
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or is one of the groups in the following list:

H2(St(A3, R),Z) = R/〈2, (t2 − t)(s2 − s) | t, s ∈ R〉,
H2(St(B3, R),Z) = R/〈6, 3(t2 − t)(s2 − s), 2(t3 − t) | t, s ∈ R〉,
H2(St(C3, R),Z) = R/〈t2 − t | t ∈ R〉,
H2(St(D4, R),Z) = (R/〈t2 − t | t ∈ R〉)× (R/〈2, (t2 − t)(s2 − s) | t, s ∈ R〉),
H2(St(F4, R),Z) = R/〈t2 − t | t ∈ R〉.

In particular, for Φ = A3,C3,D4,F4 the equality K2(Φ, R) = KQ
2 (Φ, R) holds

iff R does not have residue fields isomorphic to F2 and K2(B3, R) = KQ
2 (B3, R)

iff R does not have residue fields isomorphic to F2 or F3.

Since the proof of the main theorem is rather long and technical and the

setting of the papers [32, 33] is already rather general, let us briefly sketch

the key ideas of our proof assuming, for simplicity, that the root system Φ is

simply-laced and the ring R is an integral domain.

The proof is based on a variant of Quillen–Suslin’s local-global principle. Con-

sider an arbitrary element g from K2(Φ, R). We want to show that g commutes

with xα(r) for every r ∈ R and α ∈ Φ. For α ∈ Φ consider the set

Iα = {a ∈ R | [g, xα(aR)] = 1},
which is easily seen to be, in fact, an ideal. To prove the centrality of K2(Φ, R)

it suffices to show that Iα = R for all α ∈ Φ. Assume the contrary and consider

an arbitrary maximal ideal M � R containing Iα for some α. By the centrality

of K2(Φ, RM ) one has the identity [λM (g), xα(r)] = 1 for all r ∈ RM (we denote

by λM the localization homomorphism R → RM ). If we were able to show for

some s0 ∈ R \M that the identity

(1.2) [g, xα(s0R)] = 1

holds in St(Φ, R) or, in other words, that s0 ∈ Iα ∩R \M , this would lead to a

contradiction and hence would complete the proof of the centrality of K2(Φ, R).

Unfortunately, formally proving this is not easy.

In the earlier papers the proof went as follows; cf. [29, 20, 13, 12]. First,

a formal variable was thrown in and the original question was reduced to the

question of the triviality of [g, xα(t)] in St(Φ, R[t]), which, in turn, was further

reduced to proving the Dilation principle, an assertion about principal local-

izations similar to (1.2) (see e.g., [20, Lemma 15]). The proof of the Dilation
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principle was based on the isomorphism of relative Steinberg groups

St(Φ, Ra[t], tRa[t]) ∼= St(Φ, R� tRa[t], tRa[t]);

cf. [20, Remark 3.12]. Essentially this isomorphism means that it is possible to

define a conjugation action of St(Φ, Ra) on the group St(Φ, R � tRa[t], tRa[t]).

This last step, however, required finding nontrivial ad hoc presentations of rel-

ative Steinberg groups. For example [12] relied on a variant of van der Kallen’s

“another presentation” [6] for symplectic groups, while [20, 13] were based on

the amalgamation theorem for relative Steinberg groups; see [20, Theorem 9].

However, it was not easy to transfer to all Chevalley groups either of these two

approaches.

A remarkable idea of the third-named author was to abandon relative Stein-

berg groups completely and instead work with sequences of unrelativized

Steinberg groups St(Φ, anR), n ∈ N given by the usual Steinberg presentations.

It turns out that it is possible to naturally define the “conjugation” action of

the Steinberg group St(Φ, Ra) on such a sequence. Naively, for g ∈ St(Φ, Ra)

the automorphism of conjugation by g corresponds to a collection of group

homomorphisms

{St(Φ, ac∗(m)R)→ St(Φ, amR)}m∈N,

where c∗ : N→ N is some function depending on g.

In fact, it is possible to even further generalize this construction to arbitrary

localizations, not just principal ones. Indeed, if S ⊆ R is an arbitrary multi-

plicative subset of a domain R, then one can consider the following diagram.

Its objects are unrelativized Steinberg groups St(Φ, sR), s ∈ S, while its arrows

are the homomorphisms

St(Φ, s2R)→ St(Φ, s1R),

xα(a) �→ xα(a),

which may exist, obviously, only if s1 divides s2. The above diagram is called the

Steinberg pro-group and its arrows are called the structure morphisms.

The key claim is that it is possible to define an action of St(Φ, S−1R) on the

Steinberg pro-group.
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For each xα(a/s), a ∈ R, s ∈ S = R \M the automorphism of conjugation

by xα(a/s) corresponds to a collection of group homomorphisms

(1.3) {conjxα(a/s)(t) : St(Φ, c∗(t)R)→ St(Φ, tR)}t∈S,

where c∗ : S → S is the function t �→ ts, called the index function. The

construction of the homomorphisms conjxα(a/s)(t) will be outlined below.

In fact, a morphism between pro-groups should be defined not just as a col-

lection of group homomorphisms, but as an equivalence class of such collec-

tions. By definition, two pro-group morphisms m1 and m2 with index func-

tions m∗
1,m

∗
2 : S → S are equivalent if for every t one can choose s divisible by

both m∗
1(t) and m∗

2(t) so that the homomorphisms

mi(t) : St(Φ,m∗
i (t)R)→ St(Φ, tR), i = 1, 2

coincide after precomposition with the structure morphisms

St(Φ, sR)→ St(Φ,m∗
i (t)R), i = 1, 2.

We refer the reader to Section 2.1 for a more thorough treatment of the formal-

ism of pro-groups.

After the automorphisms of conjugation by xα(a/s) are defined, we verify that

they satisfy the Steinberg relations defining St(Φ, S−1R) and, moreover, that

the Steinberg symbols {b1, b2}, b1, b2 ∈ S−1R
×

act trivially on the pro-group.

Technically, this is an easier step since it is enough to verify the corresponding

equalities on suitable group generators. Now, for g =
∏

xαi(ai) the pro-group

automorphism conjλM (g) can be defined as the composition of conjxαi
(ai/1). A

key point here is that the resulting pro-group automorphism is compatible with

the usual conjugation action of g ∈ St(Φ, R), i.e., for some s0 ∈ S the group

homomorphism

conjλM (g)(1) : St(Φ, s0R)→ St(Φ, R)

coincides with the obvious homomorphism h �→ ghg−1. Since our conjuga-

tion action factorizes through St(Φ, S−1R) we conclude that the conjugation by

g ∈ K2(Φ, R) acts trivially on xα(s0R), which finishes the proof of (1.2). This

part of the proof is formalized in Sections 4 and 5.

Now let us focus on the construction of the action of St(Φ, S−1R) on the

Steinberg pro-group. In order to construct the automorphism of conjugation

by xα(a/s) we need to introduce the group St(Φ\{−α}, tR) whose presentation

is obtained from the standard presentation of the Steinberg group St(Φ, tR)
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by omitting all the generators x−α(tr), r ∈ R and all the relations involving

such generators. Now the analogues of the homomorphisms (1.3) between such

groups can be constructed fairly easily based on the remaining part of the

Steinberg presentation (below N denotes a sufficiently large natural number):

(1.4) xβ(s
Nb) �→

⎧⎨
⎩
xα+β(Nα,βs

N−1ab)xβ(s
Nb) if α+ β ∈ Φ,

xβ(s
Nb) if α+ β �∈ Φ ∪ {0}.

Notice that there is no simple expression similar to the right-hand side of (1.4)

in the case β = −α, which explains our need to use groups St(Φ \ {−α}, tR) as

domains for the homomorphisms (1.3). It follows from Lemma 4.2 that (1.4)

defines a collection of well-defined homomorphisms:

conj′xα(r/s)(t) : St(Φ \ {−α}, sN tR)→ St(Φ \ {−α}, tR).

The obvious defect of the formula (1.4) is that its correctness depends on the

integrality of R. However, it is easy to fix this using the notion of a homotope

of a ring introduced in [32, 33]. By definition, for t ∈ R the t-homotope R(t)

of R is the ring without unit, multiplication in which is given by the for-

mula x ∗ y = txy. The homotope R(t) is isomorphic to tR as a ring without

unit if R happens to be a domain. Now, replacing everywhere above the group

St(Φ, tR) with St(Φ, R(t)), one can formulate the analogue of (1.4) for not nec-

essarily integral rings. We believe that the proof which works for arbitrary

commutative rings has extra elegance as compared to the proof which first re-

duces to the case of domains. However, the reader not comfortable with the

notion of a ring homotope may follow the latter path and think of R(t) as just

a synonym for tR; see Section 5.2 for an outline of such a proof.

Although, the groups St(Φ, tR) and St(Φ\ {−α}, tR) need not be isomorphic

in general, the pro-groups composed of them turn out to be isomorphic in the

category of pro-groups, see Theorem 1. Notice also that the corresponding

assertion for unital rings, i.e., the isomorphism

St(Φ, R) ∼= St(Φ \ {−α}, R)

is an easy corollary of a much stronger result called Curtis–Tits presentation,

which allows one to omit most of the Steinberg generators from the presentation

of St(Φ, R); see e.g., [2, Corollary 1.3]. In fact, the main difference of the present

paper from [32, 33] is that our proof is based on Steinberg presentations omitting

roots, while [32, 33] rely on computations with relative root systems.
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If written in down-to-earth terms, the aforementioned isomorphism of pro-

groups amounts to the following collection of group homomorphisms in the

“non-obvious” direction (M is a sufficiently large natural number):

{Fα(t) : St(Φ, tMR)→ St(Φ \ {−α}, tR)}t∈S.

Of course, the natural choice for the image of xα(t
Mr) would be the commu-

tator [xα−β(t
M−1b), xβ(±t)] for some β ∈ Φ such that α − β ∈ Φ. The fact

that this definition does not depend on the choice of β can be checked using the

Hall–Witt identity (2.3) (notice that we can further decompose xα−β(t
M−1b)

into a commutator in St(Φ, tR)). Similarly, we can verify that these commuta-

tors satisfy the relations missing from the presentation of St(Φ \ {−α}, tMR).

Keeping track of index functions and individual homomorphisms Fα(t) in such

computations, however, is not very convenient, so, to simplify the proof of The-

orem 1, we prefer to write down all commutator formula calculations inside the

category of pro-groups. In addition, to reduce the number of cases that need to

be considered, we also assume throughout the paper that Φ is not of type B�

or C�. The latter assumption makes it possible to decompose any root of Φ into

a sum of roots having the same length. Now, composing Fα(t) and conj′xα(r/s)(t)

in a suitable way we obtain the sought pro-group morphism conjxα(r/s).
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2. Preliminaries

Throughout this paper all commutators are left normed, i.e., [x, y] = xyx−1y−1.

We denote by xy and yx the elements xyx−1 and yxy−1. In this paper we also

make use of the following commutator identities:

[x, yz] = [x, y] · y[x, z],(2.1)

[xy, z] = x[y, z] · [x, z].(2.2)

Recall that the Hall–Witt identity asserts that

(2.3) [[x, y], yz] · [[y, z], zx] · [[z, x], xy] = 1.

As a corollary we obtain that

(2.4) [x, z] = 1 implies [x, [y, z]] = [[x, y], yz].

Finally, it is not hard to check that

(2.5) [x, y] = 1 implies [x, [y, z]] = [y, xz] [z, y].

2.1. Generalities on pro-objects. Let C be an arbitrary category. In this

section we recall the construction of the pro-completion of C (cf. [8, Section 6.1]).

Recall that a nonempty small category I is called filtered if

• for any two objects i, k ∈ Ob(I) there is a diagram i→ j ← k in I (i.e.,

i and k have an upper bound);

• every two parallel morphisms i ⇒ j are equalized by some morphism

j → k in I.
A pro-object in C is, by definition, a functor X(∞) : IopX → C, i.e., a con-

travariant functor from a filtered category IX , called the category of indices

of X(∞), to the category C.
We denote by X(i) the value of X(∞) on an index i. The values of the

functor X(∞) on the arrows of I are called the structure morphisms of X(∞).

The category of pro-objects is denoted by Pro(C). The hom-sets in this

category are given by the formula

(2.6) Pro(C)(X(∞), Y (∞)) = lim←−
j∈IY

lim−→
i∈IX

C(X(i), Y (j)).

Let us recall a more explicit description of morphisms in Pro(C). By definition,

a pre-morphism f : X(∞) → Y (∞) consists of the following data:

• a set-theoretic function f∗ : Ob(IY)→ Ob(IX );
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• a collection of morphisms f (i) : X(f∗(i)) → Y (i) in C parametrized by

i ∈ Ob(IY ). These morphisms are required to satisfy the following

additional assumption: for every morphism i → j in IY there exists a

sufficiently large index k ∈ Ob(IX ) such that the composite morphisms

X(k) → X(f∗(i)) → Y (i) and X(k) → X(f∗(j)) → Y (j) → Y (i) are equal.

The composition of two pre-morphisms f : X(∞) → Y (∞) and g : Y (∞) → Z(∞)

is defined as the pre-morphism g ◦ f , where

(g ◦ f)∗(i) = f∗(g∗(i)) and (g ◦ f)(i) = g(i) ◦ f (g∗(i)).

Two parallel pre-morphisms f, g : X(∞) → Y (∞) are called equivalent if for

every i ∈ Ob(IY ) there exists a sufficiently large index j ∈ Ob(IX) such that

the composite morphisms X(j) → X(f∗(i)) → Y (i) and X(j) → X(g∗(i)) → Y (i)

are equal. Finally, a morphism X(∞) → Y (∞) is an equivalence class of pre-

morphisms. Note that the equivalence relation is preserved by the composition

operation.

There is a fully faithful functor C → Pro(C) sending X ∈ Ob(C) to the pro-

object X : 1op → C. It is clear from (2.6) that

Pro(C)(X,Y ) ∼= C(X,Y );(2.7)

Pro(C)(X(∞), Y ) ∼= lim−→
i∈IX

C(X(i), Y );(2.8)

Pro(C)(X,Y (∞)) ∼= lim←−
i∈IY

C(X,Y (i)).(2.9)

Moreover, it is also clear from (2.6) and (2.8) that the following assertion

holds.

Lemma 2.1: X(∞) is the projective limit of X(i) in the category Pro(C).
The category of pro-sets Pro(Set) has all finite limits by [8, Prop. 6.1.18] and

therefore is a cartesian monoidal category.

Let us describe an explicit construction of limits in one important special case.

Let X(∞), Y (∞) : Iop → Set be a pair of pro-sets with the same index category.

Recall that the pointwise product of functors X(∞)×Y (∞) : Iop → Set is given

by (X(∞)× Y (∞))(i) = X(i)×Y (i). Clearly, X(∞)× Y (∞) is a product of X(∞)

and Y (∞) in the category Fun(Iop,Set).
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There is an obvious identity-on-objects functor Fun(Iop,Set) → Pro(Set)

sending a natural transformation ϕ : X(∞) → Y (∞) to the morphism of pro-

sets given by the pre-morphism ϕ∗ = idOb(I), ϕ(i) = ϕi. The diagonal mor-

phism Δ: X(∞) → X(∞) × X(∞) and the canonical projection morphisms

πX : X(∞) × Y (∞) → X(∞), πY : X(∞) × Y (∞) → Y (∞) can be defined in the

category Pro(Set) as the images of the corresponding natural transformations

in Fun(Iop,Set) under this functor.
We claim that the point-wise product X(∞) × Y (∞) satisfies the universal

property of products in the category Pro(Set). Indeed, this follows from (2.6)

and the fact that filtered colimits commute with finite limits. This argument

also shows that the functor Fun(Iop,Set)→ Pro(Set) preserves finite limits.

2.2. Group and ring objects in pro-sets. In this paper we consider only

commutative rings. To distinguish between unital and non-unital rings we re-

serve the word “ring” only for unital rings and refer to non-unital rings as rngs.

We denote the category of rings (resp. rngs) as Ring (resp. Rng).

Let T be an algebraic theory. Throughout this paper we will be mostly

interested in the case where T is the theory of groups or the theory of rngs.

Since the category Pro(Set) is cartesian monoidal, we may speak of the cate-

goryMod(T,Pro(Set)) of models of T in Pro(Set). In the special case where T

is the theory of groups (resp. rngs) this category is precisely the category of

group (resp. rng) objects in Pro(Set).

The forgetful functor F from the category of pro-groups Pro(Grp) to the

category of pro-sets Pro(Set) is faithful. Every pro-group G(∞) defines the

structure of a group object in Pro(Set) on F (G(∞)). It is easy to see that a

morphism f ∈ Pro(Set)(F (G(∞)), F (H(∞))) comes from Pro(Grp) if and only

if it is a morphism of group objects. Indeed, if f : F (G(∞)) → F (H(∞)) is a

pre-morphism and the corresponding morphism preserves the multiplication in

the sense of group objects, then the maps f (i) : G(f∗(i)) → H(i) are group homo-

morphisms after a restriction to G(j) for sufficiently large j. Thus, Pro(Grp) is

equivalent to a full subcategory of the category of group objects in Pro(Set).

Definition 2.2: Let n be a natural number and Fn,T be the free algebra on n

generators in the theory T . If T is the theory of groups, then Fn is the free

group F (t1, . . . , tn). Similarly, if T is the theory of rngs, Fn,T is the sub-rng of

the ring Z[t1, . . . , tn] consisting of polynomials over Z without free terms.
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Given a word w ∈ Fn,T and a T -model X(∞) in Pro(Set), one can construct

the Pro(Set)-morphism

w(∞) : X(∞) × · · · ×X(∞)︸ ︷︷ ︸
n times

→ X(∞),

which “interprets” the word w. This morphism can be obtained as an appropri-

ate composition of diagonal morphisms ΔX(∞) , projections πi (which are part of

the structure of a cartesian monoidal category on Pro(Set)) and the morphisms

defining the structure of a T -model on X(∞).

In order to simplify the notation, to denote the interpretation morphism w(∞)

we often use the original term for w, in which every symbol of a free variable ti

is replaced by the symbol t
(∞)
i .

Example 2.3: Consider the case where T is the theory of groups. Let G(∞)

be a group object in Pro(Set) and w = [t1, t2] = t1t2t
−1
1 t−1

2 ∈ F (t1, t2) be

the word representing the generic commutator. In this case the interpretation

morphism w(∞) (also denoted [t
(∞)
1 , t

(∞)
2 ]) can be defined as the composition

G(∞) ×G(∞) Δ×Δ
G(∞) ×G(∞) ×G(∞) ×G(∞)

〈π1,π3,iπ2,iπ4〉

G(∞) ×G(∞) ×G(∞) ×G(∞)
m(m×m)

G(∞),

where the structure of a group object on G(∞) is given by the triple (m, i, e).

2.3. Homotopes of rings and pro-rings. For the rest of the paper R de-

notes an arbitrary ring and S denotes a fixed multiplicative subset of R contain-

ing a unit. Denote by S the category, whose objects are the elements of S and

whose morphisms S(s, s′) are all s′′ ∈ S such that ss′′ = s′. The composition

and the identity morphisms are induced by the ring structure on R. It is clear

that S is a filtered category. Unless stated otherwise, all the pro-sets that we

encounter in the sequel have S as their category of indices.

We introduce the notion of a homotope of a ring inspired by a similar notion

from nonassociative algebra.
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Definition 2.4: Let s be an element of R. By definition, the s-homotope of R is

the rng R(s) = {a(s) | a ∈ R} with the operations of addition and multiplication

given by

a(s) + b(s) = (a+ b)(s), a(s)b(s) = (asb)(s), a, b ∈ R.

Clearly, R(s) has the structure of an R-algebra given by the formula

a · b(s) = (ab)(s), a, b ∈ R.

For s, s′ ∈ S there is a homomorphism of R-algebras

R(ss′) → R(s′), a(ss
′) �→ (as)(s

′).

Denote by R(∞) the formal projective limit of the projective system R(s), where

s ∈ Ob(S). Thus, R(∞) is an object of the category Pro(Rng). It can also be

considered as an rng object in Pro(Set).

Notice that every pro-rng R(∞) can be considered as a pro-group by forgetting

its multiplicative structure pointwise.

Remark 2.5: Denote by sR the principal ideal of R generated by s. There is an

rng homomorphism R(s) → sR given by r(s) �→ sr. In the case where R is an

integral domain this homomorphism is easily seen to be an rng isomorphism.

The reason why we use homotopes rather than principal ideals in the defi-

nition of R(∞) is that there is always a “division by s” homomorphism of R-

modules R(ss′) → R(s′) given by r(ss
′) �→ r(s

′), while the similar map ss′R→ s′R
may not exist if R does not happen to be a domain. The existence of this divi-

sion homomorphism will be important in Section 4.

Notice also that the projective limit of R(s) in Rng is often trivial. Indeed,

if R is a domain, then the limit of R(s) in Rng computes the intersection of

the principal ideals
⋂

s∈S sR, which often coincides with the zero rng. This also

shows that the set of global elements of R(∞) (i.e., the hom-set in Pro(Set)

from the terminal object 1 to R(∞)) is often trivial and therefore will be of little

interest to us.

Recall that a morphism f ∈ C(X,Y ) is called a split epimorphism (or

a retraction) if it admits a section, i.e., there exists g ∈ C(Y,X) such that

fg = idY . Retractions are preserved under pullbacks.
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Lemma 2.6: The rng multiplication morphism m : R(∞) × R(∞) → R(∞) is a

split epimorphism of pro-sets.

Proof. Consider the following pre-morphism of pro-sets:

u : R(∞) → R(∞) ×R(∞), u∗(s) = s2, u(s) : c(s
2) �→ (1(s), c(s)).

Clearly, this is indeed a pre-morphism and

m(s)(u(s)(c(s
2))) = 1(s)c(s) = (sc)(s),

which shows that mu = idR(∞) .

The majority of the calculations encountered in the present paper occur in

the category of pro-sets or pro-groups. Most often we need to prove certain

equalities between composite pro-set or pro-group morphisms. It turns out

that the usual notation for categorical composition makes these calculations

too lengthy and hardly readable. In order to remedy this and also make our

computations look like the usual computations with root unipotents in Stein-

berg groups, we need to introduce a certain way to denote pro-set (pro-group)

morphisms, specifically composite ones.

Convention 2.7: First of all, notice that the present conventions apply only to

algebraic expressions in which the symbol (∞) occurs in the upper index of

all free variables (e.g., the identities of Lemma 2.8 or Lemma 3.6, but not the

identities (R1)–(R4)). We call such expressions pro-expressions.

• Any pro-expression encountered in the sequel is meant to denote a cer-

tain morphism of pro-sets. Apart from the variables marked with the

index (∞), a pro-expression may also involve group or rng operations

and other pro-set morphisms.

• Whenever a pro-expression does not involve other pro-set morphisms,

it should be understood according to Definition 2.2 (the domain and

codomain will usually be clear from the context).

• To denote the composition of pro-set morphisms we use the syntax

of substituted expressions. For example, if f, g : X(∞) → Y (∞) are

morphisms of pro-groups and [t
(∞)
1 , t

(∞)
2 ] is the pro-group morphism

from Example 2.3, then [f(a(∞)), g(b(∞))] denotes the composite mor-

phism

[t
(∞)
1 , t

(∞)
2 ] ◦ (f × g) : X(∞) ×X(∞) → Y (∞).
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• Any equality of pro-expressions should be understood as the equality of

pro-set morphisms defined by these expressions.

• The exact names of the variables occurring in a pro-expression are

unimportant and are usually chosen arbitrarily. On the other hand,

there is always some natural order on the variables that allows one to

read the pro-expression unequivocally. In particular, [t
(∞)
1 , t

(∞)
2 ] and

[a(∞), b(∞)] denote the same pro-set morphism G(∞) × G(∞) → G(∞),

while [t
(∞)
1 , t

(∞)
2 ] and [t

(∞)
2 , t

(∞)
1 ] are two different morphisms.

• The domain of the pro-set morphism defined by a pro-expression will

usually be clear from the context. Most often, it is a power of a single

pro-object. In this case to determine the exponent one should count

the number of different variables occurring in the expression.

• The notation for the multiplication operation is usually suppressed, i.e.,

we prefer the notation a(∞)b(∞) to m(a(∞), b(∞)) or a(∞) · b(∞).

• The syntax of tuples is used to denote the product of morphisms. For

example, if f, g : X(∞) → Y (∞) are morphisms of pro-sets, then the

notation (f(x
(∞)
1 ), g(x

(∞)
2 )) means simply f × g.

• If g is a morphism of pro-sets with X(∞) × Y ∞ as its domain, then we

write g(a(∞), b(∞)) instead of g((a(∞), b(∞))).

• Notice that the trivial group 1 is a zero object in the category Pro(Grp),

therefore for any pro-groups G(∞), H(∞) there is a unique morphism

G(∞) → H(∞) passing through 1; this morphism will also be denoted

by 1.

Now we are ready to formulate our next result.

Lemma 2.8: Let G(∞) be a pro-group, R(∞) be the pro-rng defined above

and g : R(∞) × R(∞) → G(∞) be a morphism of pro-sets. There is a mor-

phism f : R(∞) → G(∞) of pro-groups such that

g(a(∞), b(∞)) = f(a(∞)b(∞))

if and only if g satisfies the following identities in Pro(Set):

• [g(a
(∞)
1 , b

(∞)
1 ), g(a

(∞)
2 , b

(∞)
2 )] = 1;

• g(a
(∞)
1 + a

(∞)
2 , b(∞)) = g(a

(∞)
1 , b(∞)) g(a

(∞)
2 , b(∞));

• g(a(∞), b
(∞)
1 + b

(∞)
2 ) = g(a(∞), b

(∞)
1 ) g(a(∞), b

(∞)
2 );

• g(a(∞)b(∞), c(∞)) = g(a(∞), b(∞)c(∞)).
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Proof. The necessity of the identities is clear. By Lemma 2.6 the morphism f

is unique, so it suffices to show that it exists. By Lemma 2.1 it suffices to

consider the case where G is a group. Let g be a morphism satisfying the

above identities. By definition, there exists s ∈ S such that g is given by a

homomorphism g′ : R(s) ×R(s) → G satisfying the first three identities and the

identity

g′((asb)(s), c(s)) = g′(a(s), (bsc)(s)).

Consider the map f ′ : R(s2) → G given by

f ′(c(s
2)) = g′(1(s), c(s));

it is a homomorphism by the first and the third identities. From the last two

identities we conclude that for all a, b ∈ R one has

f ′(a(s
2)b(s

2)) = g′(1(s), (s2ab)(s))

= g′((sa)(s), (sb)(s))

= g′(a(s
2), b(s

2)).

It is clear that f ′ defines the required morphism f of pro-groups.

2.4. Steinberg groups and Steinberg pro-groups. Let Φ be an irre-

ducible root system of rank ≥ 3. We assume that the root system Φ is contained

in a Euclidean space V = R� whose inner product we denote by (−,−). For a

pair of roots α, β ∈ Φ we denote by 〈α, β〉 the integer

2(α, β)

|β|2 .

Recall that a root subset Σ ⊆ Φ is called closed if α, β ∈ Σ, α + β ∈ Φ

imply α + β ∈ Σ. A closed root subset Σ is called symmetric (resp. special)

if Ψ = −Ψ (resp. Ψ ∩ −Ψ = ∅). By definition, a root subsystem Ψ ⊆ Φ is a

symmetric and closed root subset.

We start by recalling the definition of the Steinberg group.

Definition 2.9: Let R be a ring. The Steinberg group St(Φ, R) is given by

generators xα(a), where α ∈ Φ and a ∈ R and the following list of defining
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relations (cf. [18]):

xα(a) · xα(b) = xα(a+ b);(R1)

[xα(a), xβ(b)] = 1,(R2)

if α+ β �∈ Φ ∪ {0};
[xα(a), xβ(b)] = xα+β(Nα,β · ab),(R3)

if α+ β ∈ Φ but α+ 2β, 2α+ β �∈ Φ;

[xα(a), xβ(b)] = xα+β(Nα,β · ab) · x2α+β(N
2,1
α,β · a2b),(R4)

if α+ β, 2α+ β ∈ Φ.

The constants Nα,β and N2,1
α,β appearing in the above relations are called the

structure constants of the Chevalley group of type Φ. Let us take a closer

look at them.

First of all, notice that we excluded the case Φ = G2 so the only possi-

bilities for Nα,β appearing in the above relations are ±1 or ±2. Notice that

|Nα,β | = 2 only when α and β are short but α + β is long, in which case we

set N̂α,β = 1
2Nα,β. In the other cases |Nα,β | = 1. Now, by definition,

N2,1
α,β = Nα,β · N̂α,α+β .(2.10)

It is clear that |N2,1
α,β | = 1.

Many different methods of the choice of signs of the structure constants have

been proposed in the literature, see e.g., [31]. Regardless of their concrete

choice, however, the structure constants always must satisfy certain relations.

First of all, recall from [31, §14] that

(2.11) Nα,β = −Nβ,α = −N−α,−β =
|α+ β|2
|α|2 Nβ,−α−β =

|α+ β|2
|β|2 N−α−β,α.

These identities will be used in the sequel without explicit reference.

We also will need another identity for structure constants. To formulate it

succinctly, we extend the domain of the structure constant function N−,− by

setting Nα,β = 0 whenever α+β �∈ Φ \ {0}. Now if α, β, γ is a triple of pairwise

linearly independent roots such that α+ β + γ �= 0, then one has

(2.12) Nα,β+γNβ,γ +Nβ,γ+αNγ,α +Nγ,α+βNα,β = 0.

This identity is an equivalent form of (N9) in [31, §14] (cf. also (H4) in [18]).
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Sometimes it is convenient to write down the relations (R2)–(R4) as a single

relation

(2.13) [xα(a), xβ(b)] =
∏

iα+jβ∈Φ
i,j>0

xiα+jβ(N
i,j
α,β · aibj),

in which

N1,2
α,β := −N2,1

β,α and N1,1
α,β := Nα,β.

Notice that the multiplicative identity of R is actually never used in the

definition of the Steinberg group, which allows one to use it in the situation

when R is an rng.

Definition 2.10: Let Φ be a root system of rank ≥ 3. Applying the Steinberg

group functor St(Φ,−) to the projective system of rngs R(s) (see Definition 2.4)

we obtain a projective system of groups, whose formal projective limit will be

denoted by St(∞)(Φ, R) and will be called the Steinberg pro-group.

Remark 2.11: There is a group homomorphism St(Φ, R(s)) → St(Φ, sR) given

by x
(s)
α (a) �→ xα(sa). By Remark 2.5 this homomorphism is an isomorphism in

the case where R is an integral domain. Thus, similarly to pro-rngs, Steinberg

pro-groups often do not have global elements.

For every root α ∈ Φ there is a “root subgroup” morphism in Pro(Grp),

xα : R
(∞) → St(∞)(Φ, R),

defined by the pre-morphism

x∗
α = idS , x(s)

α (a(s)) = xα(a
(s)).

We denote by Gsc(Φ,−) the simply-connected Chevalley–Demazure group

scheme corresponding to a root system Φ. We also fix a pinning for Gsc(Φ,−).
By this we mean that a split maximal torus T of Gsc(Φ,−) and a Borel sub-

group B containing T are chosen, and for every α ∈ Φ there is an embed-

ding tα : Ga → Gsc(Φ,−). For a ∈ R we call the element tα(a) of Gsc(Φ, R) an

elementary root unipotent, cf. [31]. Notice that sometimes different nota-

tion is used for these elements (e.g., xα(a) or eα(a), cf. [14, 21, 31]).

Recall that for an ideal I � R the congruence subgroup Gsc(Φ, R, I) is

defined as the kernel of the homomorphism Gsc(Φ, R)→ Gsc(Φ, R/I).

Recall also that one can define the unitalization of an rng R as the semidirect

product R� Z (cf., e.g., [20, Definition 3.2]).
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Definition 2.12: Consider the projective system of congruence subgroups

G(Φ, R(s)) := Gsc(Φ, R
(s)

� Z, R(s)) = Ker(Gsc(Φ, R
(s)

� Z)→ Gsc(Φ,Z))

with the structure morphisms induced by the structure morphisms of R(∞). De-

fine the simply-connected Chevalley pro-group G(∞)(Φ, R) as the formal

projective limit of this system.

Recall that there is a well-defined homomorphism st : St(Φ, R) → Gsc(Φ, R)

sending each generator xα(a) to the root unipotent tα(a). The pro-group ana-

logue st : St(∞)(Φ, R) → G(∞)(Φ, R) of this homomorphism is given by the

pre-morphism st∗ = idS , st
(s)(xα(a

(s))) = tα(a
(s)).

Remark 2.13: Let Σ ⊆ Φ be a closed special root subset and R be an rng. It is

well-known that the restriction of the canonical map St(Φ, R) → Gsc(Φ, R) to

the subgroup

U(Σ, R) = 〈xα(a) | a ∈ R, α ∈ Σ〉 ≤ St(Φ, R)

is injective. Moreover, for any chosen linear order on Σ the map RΣ → U(Σ, R)

given by (rα)α �→
∏

α xα(rα) is a bijection. As a consequence, the subgroup

U(Σ, R) admits presentation by means of generators xα(a) for α ∈ Σ and the

relations (R1)–(R4) in which α, β ∈ Σ.

Remark 2.14: The definition of the group G(Φ, R(s)) can be reformulated in

terms of Hopf algebras. Denote by HΦ the Hopf Z-algebra corresponding to the

group scheme Gsc(Φ,−). Thus,
Gsc(Φ, R) = Ring(HΦ, R).

For a pair A,B of abelian groups we define the product A ⊗̂B as follows:

A ⊗̂B := (A⊗Z B)⊕A⊕B.

Recall that if R1 and R2 are rngs then R1⊗̂R2 realizes their coproduct in the cat-

egoryRng. The product structure is induced from that of (R1 � Z)⊗Z (R2�Z).

The canonical morphisms Ri → R1 ⊗̂ R2, i = 1, 2 are the obvious inclusions

r1 �→ (0, r1, 0), r2 �→ (0, 0, r2). Rng has the structure of a symmetric monoidal

category with zero rng as the unit object and ⊗̂ as the tensor product. For an

rng R we denote by m the natural homomorphism R⊗̂2 → R given by

(s⊗ t, u, v) �→ st+ u+ v.
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Notice also that the usual Z-module tensor product R1 ⊗Z R2 has the nat-

ural structure of an rng and that R1 ⊗ R2 ⊆ R1 ⊗̂ R2. A priori there are no

homomorphisms Ri → R1 ⊗ R2. However, if R1 happens to be a ring, there is

a canonical homomorphism R2 → R1 ⊗R2.

Recall that a Hopf monoid H in a symmetric monoidal category, by defini-

tion, is a bimonoid (H,m, u,Δ, ε) with a commutative m such that there is a

morphism ς : H → H , called the antipode, satisfying u ◦ ε = m ◦ (1 ⊗ ς) ◦Δ.

We claim that the augmentation ideal Ker(ε) of HΦ has the structure of a Hopf

monoid in Rng. The coproduct Δ and the antipode ς are induced from the

corresponding morphisms defining the structure of a Hopf algebra on HΦ. The

counit ε is the unique homomorphism Ker(ε)→ 0.

Now if R is an arbitrary ring and s ∈ R then there is a canonical isomorphism

Rng(Ker(ε), R(s)) ∼= G(Φ, R(s)) induced by the mapping

(h : Ker(ε)→ R(s)) �→ (h̃ : HΦ → R(s)
� Z),

where h̃(a) = (h(a−ε(a)), ε(a)). The structure of a group on G(Φ, R(s)) is then

induced from the Hopf monoid structure on Ker(ε) by duality. For instance, the

neutral element in this group is the zero map 0: Ker(ε) → R(s). The product

of g, h ∈ Rng(Ker(ε), R(s)) is the composite map

Ker(ε)
Δ

Ker(ε)⊗̂2
g⊗̂h

R(s) ⊗̂R(s) m
R(s).

Remark 2.15: To formulate the next lemma, we need to introduce a way of

reinterpreting the usual Steinberg relations (R2)–(R4) as relations between the

morphisms xα in the category Pro(Grp). We call these relations the pro-

analogues of (R2)–(R4). To obtain these relations one has to add the upper

index (∞) to the free variables a, b occurring in (R2)–(R4) and then read the

resulting expressions according to Convention 2.7. The fact that these relations

hold is an easy consequence of our definitions.

Notice that the pro-analogue of (R1) is the identity

xα(a
(∞))xα(b

(∞)) = xα(a
(∞) + b(∞)),

or in the usual notation m◦(xα×xα) = xα ◦+R(∞) . It is clear that this relation

simply means that xα is a morphism of group objects in Pro(Set), which is a

consequence of the condition that xα is a pro-group morphism.



22 A. LAVRENOV, S. SINCHUK AND E. VORONETSKY Isr. J. Math.

Let X = {xi}i∈I be a collection of morphisms in Pro(Grp) with a common

codomain, which we denote by S(∞). We say that X generates S(∞) if for

every pair of pro-group morphisms f1, f2 : S
(∞) → G(∞) in order to verify the

equality f1 = f2 it is enough to check that f1xi = f2xi for xi ∈ X .
Lemma 2.16: The morphisms

xα : R
(∞) → St(∞)(Φ, R), α ∈ Φ

generate St(∞)(Φ, R). Moreover, for every pro-group G(∞) to obtain a mor-

phism f : St(∞)(Φ, R) → G it suffices to construct a collection of pro-group

morphisms fα : R
(∞) → G, α ∈ Φ, satisfying the pro-analogues of (R2)–(R4),

in which xα’s are replaced with fα’s.

Proof. Notice that by Lemma 2.1 both of the assertions can be verified in the

special case where G(∞) = G is a group.

Let us verify the first assertion. Since there is only a finite number of roots

in Φ one can find a sufficiently large index s ∈ S such that the homomor-

phisms f
(s)
1 , f

(s)
2 : St(Φ, R(s))→ G become equal after precomposition with xα

for all α ∈ Φ. Since the root elements xα(a
(s)) generate St(Φ, R(s)) we conclude

that the morphisms f1 and f2 are equal.

Let us verify the second assertion. By definition, a morphism fα : R
(∞) → G

corresponds to a single group homomorphism f ′
α : R

(sα) → G for some sα ∈ S.

Precomposing each f ′
α with the structure morhism R(s) → R(sα) for sufficiently

large s ∈ S, we obtain a collection of homomorphisms f̃α : R
(s) → G.

Notice that (R2)–(R4) specify only a finite collection of identities in Pro(Set)

to which fα’s must satisfy. Unwinding the definitions, we find a sufficiently

large index s ∈ S such that f̃α satisfy the same identities (with fα’s replaced

by f̃α’s). Thus, we obtain a group homomorphism St(Φ, R(s)) → G, which, in

turn, determines a morphism St(∞)(Φ, R)→ G.

3. Elimination of roots

Throughout this section we always assume that R is an arbitrary commutative

ring, S ⊆ R is a multiplicative subset of R and Φ is a root system of rank ≥ 3

different from B� and C�.
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Lemma 3.1: Let α, β, γ ∈ Φ be a triple of roots having the same length such

that α = β + γ. Then there exist roots β1, γ1 ∈ Φ \ (Zβ +Zγ) having the same

length as β and, moreover, such that β1 + γ1 = β. The roots β, γ, β1, γ1 are

contained in a root subsystem Φ0 ⊆ Φ, whose type is either A3 or C3.

Proof. Denote by Φ′ the subset of Φ consisting of roots having the same length

as β. It follows from our assumptions that either Φ is simply-laced and Φ′ = Φ

or Φ = F4, in which case Φ′ is a root subset isomorphic to D4 (notice that Φ′

is closed only if β is long). In either case the Dynkin diagram of Φ′ is simply

laced, connected and has at least 3 vertices. Since all root subsystems of Φ′

of type A2 lie in the same orbit under the action of the Weyl group of Φ′, we
may assume β and γ to be basic roots corresponding to adjacent nodes on the

Dynkin diagram of Φ′, in which case the first assertion is clear.

For any choice of β1 and γ1 notice that the smallest root subsystem Φ0 con-

taining β, γ, β1, γ1 is irreducible and has rank 3, which implies that it is either

of type C3 (if Φ = F4 and β is short) or A3 (otherwise).

As an immediate application of the above lemma we prove the following

generation result, which is a stronger version of the first claim of Lemma 2.16.

Lemma 3.2: Let Φ0 ⊆ Φ be a rank 2 subsystem. The collection of root subgroup

morphisms xγ : R
(∞) → St(∞)(Φ, R) for γ ∈ Φ \ Φ0 generates St(∞)(Φ, R).

Proof. Thanks to Lemma 2.16 it suffices to show that f1xδ = f2xδ for all δ ∈ Φ0.

Let δ be a root lying in Φ0. We claim that δ can be decomposed as a sum γ1+γ2

for some γ1, γ2 ∈ Φ\Φ0 having the same length as δ. We need to consider several

cases.

In the case Φ0
∼= A2 the claim follows from Lemma 3.1. Consider the case

Φ0
∼= B2, which is only possible for Φ = F4. Since all root subsystems of type B2

lie in the same orbit under the action of W (F4) (cf., e.g., [5, Table 8]), we may

assume that Φ0 corresponds to the central edge of the Dynkin diagram of F4

and δ is one of the nodes incident to it, in which case the claim is obvious.

Finally, consider the case Φ0
∼= A1 + A1. If either Φ is simply-laced or Φ0

has roots of different length, acting by a suitable element of W (Φ) we may

achieve that the basis vectors of Φ0 correspond to a pair of unjoined nodes of

the Dynkin diagram of Φ, in which case the claim is also obvious. On the other

hand, if Φ = F4 and the roots of Φ0 have the same length, the claim can be

proved by passing to the root subsystem Φ′ ∼= D4 consisting of roots of Φ having

the same length as the roots of Φ0.
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As an immediate consequence of the claim we conclude that

f1(xδ(a
(∞)b(∞))) = [f1(xγ1(Nγ1,γ2a

(∞))), f1(xγ2(b
(∞)))]

= [f2(xγ1(Nγ1,γ2a
(∞))), f2(xγ2(b

(∞)))]

= f2(xδ(a
(∞)b(∞))),

which together with Lemma 2.6 implies the required equality f1xδ = f2xδ.

Definition 3.3: We denote by St(Φ\{α}, R) the group given by generators xβ(a),

β �= α, a ∈ R and the subset of the set of relations (R1)–(R4) consisting of those

relations, expressions for which do not contain xα(a).

Similarly to Definition 2.10 one can define the pro-group St(∞)(Φ\{α}, R) as

the formal projective limit of the projective system of groups St(Φ \ {α}, R(s))

where s ∈ S.

For β �= α we use the same notation xβ for the “root subgroup” morphisms

R(∞) → St(∞)(Φ \ {α}, R).

Obviously, these morphisms satisfy the pro-analogues of (R2)–(R4) not con-

taining α in their notations.

We can formulate the analogue of Lemma 2.16 for St(∞)(Φ \ {α}, R).

Lemma 3.4: The morphisms xβ for β �= α generate St(∞)(Φ \ {α}, R). To con-

struct a morphism f : St(∞)(Φ \ {α}, R)→ G(∞) it suffices to construct a col-

lection of pro-group morphisms fβ : R
(∞) → G(∞) satisfying the pro-analogues

of those relations (R2)–(R4) in which xα does not appear (with xβ ’s replaced

with fβ ’s). Moreover, among these pro-analogues we can omit all relations of

the form

[xβ(b
(∞)), xγ(c

(∞))] = 1

for all pairs of long roots β, γ such that β + γ = 2α.

Proof. The proof of the first two assertions is analogous to Lemma 2.16. Let

us verify the last assertion. Notice that Φ must be of type F4, otherwise there

are no such relations. Acting by a suitable element of W (F4) we may assume,

without loss of generality, that α = 1
2 (e1+e2+e3+e4), β = e1+e2, γ = e3+e4

(we assume that F4 is realized in R4 as in [4, Ch. VI, §4.9]). Set

γ1 = e4 and γ2 = e3 − e4.
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Since β + γ1, β + γ2, β + γ1 + γ2 /∈ Φ ∪ {0, 2α},

[xβ(b
(∞)), xγ(N

2,1
γ1,γ2

c(∞)2d(∞))]

=[xβ(b
(∞)), xγ1+γ2(Nγ1,γ2c

(∞)d(∞))xγ(N
2,1
γ1,γ2

c(∞)2d(∞))] by (R2),(2.1)

=[xβ(b
(∞)), [xγ1(c

(∞)), xγ2 (d
(∞))]]=1 by (R2),(R3),(2.4).

The morphism c(∞)2d(∞) : R(∞) × R(∞) → R(∞) is a split epimorphism of

pro-sets by an argument similar to the proof of Lemma 2.6. Thus, the iden-

tity [xβ(b
(∞)), xγ(c

(∞))] = 1 is a consequence of the other defining relations

for St(∞)(Φ \ {α}, R).

There is a morphism of pro-groups Fα : St(∞)(Φ \ {α}, R) → St(∞)(Φ, R).

given by the pre-morphism F ∗
α = idS and the homomorphisms

F (s)
α : St(Φ \ {α}, R(s))→ St(Φ, R(s))

induced by the obvious embedding of generators.

Notice that, in general, the individual homomorphisms F
(s)
α need not be iso-

morphisms (at least if s �= 1). On the other hand, as the following result shows,

the morphism of pro-groups Fα is an isomorphism.

Theorem 1: For every root α ∈ Φ the morphism Fα is an isomorphism of

pro-groups.

The proof of Theorem 1 occupies the rest of this subsection. Our immediate

goal is to construct the root subgroup morphism

x̃α : R
(∞) → St(∞)(Φ \ {α}, R)

“missing” from the presentation of St(∞)(Φ \ {α}, R).

Definition 3.5: Let β, γ ∈ Φ be an arbitrary fixed pair of roots such that

α = β + γ and α, β, and γ have the same length. Denote by xβ,γ(b
(∞), c(∞))

the morphism

[xβ(Nβ,γb
(∞)), xγ(c

(∞))] : R(∞) × R(∞) → St(∞)(Φ \ {α}, R).

Below we will construct the morphism x̃α based on the morphism xβ,γ ,

see Lemma 3.7. However, in order to be able to do this we first need to prove

the following assertion.
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Lemma 3.6: The morphism xβ,γ satisfies the following relations:

(3.1) [xβ,γ(b
(∞), c(∞)), xδ(d

(∞))] = 1, if α+ δ �∈ Φ ∪ {0}, δ �= α;

(3.2)
[xβ,γ(b

(∞), c(∞)), xδ(d
(∞))] = xα+δ(Nα,δ · b(∞)c(∞)d(∞)),

if α+ δ ∈ Φ but α+ 2δ, 2α+ δ �∈ Φ;

(3.3)

[xβ,γ(b
(∞), c(∞)), xδ(d

(∞))]

= xα+δ(Nα,δ · b(∞)c(∞)d(∞)) · x2α+δ(N
2,1
α,δ · b(∞)2c(∞)2d(∞))

if α+ δ, 2α+ δ ∈ Φ;

(3.4)

[xδ(d
(∞)), xβ,γ(b

(∞), c(∞))]

= xα+δ(Nδ,α · b(∞)c(∞)d(∞)) · xα+2δ(N
2,1
δ,α · b(∞)c(∞)d(∞)2)

if α+ δ, α+ 2δ ∈ Φ.

Proof. First of all, observe that the above relations are obtained from (R2)–(R4)

by replacing xα(a
(∞)) with xβ,γ(b

∞, c∞).

Let us first consider the case δ ∈ Φ \ (Zβ + Zγ). We claim that the relations

between the remaining root subgroup morphisms of St(∞)(Φ\ {α}, R) suffice to

rewrite the left-hand side of any of the relations (3.1)–(3.4) as follows:

[xβ,γ(b
(∞), c(∞)), xδ(d

(∞))]

= xβ(Nβ,γb
(∞))xγ(c

(∞))xβ(−Nβ,γb
(∞))xγ(−c(∞))xδ(d

(∞)) xδ(−d(∞))(3.5)

=
∏

iβ+jγ+kδ∈Φ
i,j≥0;k>0

xiβ+jγ+kδ(Ai,j,kb
(∞)ic(∞)jd(∞)k).

Indeed, observe that the root subset Σ = Φ ∩ (Z≥0β + Z≥0γ + Z>0δ) is special

and does not contain −β, −γ or α. Thus, we can iteratively simplify the

expression for the conjugate of xδ in the above formula obtaining a product of

root subgroup morphisms corresponding to a subset of roots of Σ at each step.

The integers Ai,j,k in (3.5) depend only on the roots β, γ, δ (a priori they also

depend on the chosen order of factors). To determine them one can compute

the commutator [xα(1), xδ(1)] in St(Φ,Z) via the same procedure as in (3.5):

(3.6) [xα(1), xδ(1)] =
∏

iβ+jγ+kδ∈Φ
i,j≥0;k>0

xiβ+jγ+kδ(Ai,j,k).
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By Remark 2.13 the integers Ai,j,k are uniquely determined by (3.6). It is easy

to see that, depending on the relative position of α and δ, the integers Ai,j,k

coincide with the structure constants in the right-hand sides of (R2), (R3)

or (R4), in particular, Ai,j,k = 0 for i �= j. Thus, (3.1)–(3.4) follow from (3.5)

in the specified case.

It remains to verify Steinberg relations in the case δ ∈ Φ ∩ (Zβ + Zγ).

By Lemma 3.1 there exist roots β1, β2 ∈ Φ\(Zβ+Zγ) such that |β1| = |β2| = |β|
and β = β1 + β2. Recall that the root subsystem Φ0 ⊆ Φ containing β, γ, β1, β2

is of type A3 or C3. In both cases we may assume that α+ β2 �∈ Φ.

Let us first verify the relation (3.1) in the case δ ∈ {β, γ}. By symmetry we

may assume that δ = β. Direct computation shows that

(3.7)

[xβ,γ (b
(∞), c(∞)), xβ(Nβ1,β2b

(∞)
1 b

(∞)
2 )]

= [xβ,γ(b
(∞), c(∞)), [xβ1(b

(∞)
1 ), xβ2(b

(∞)
2 )]] by (R3)

= [[xβ,γ(b
(∞), c(∞)), xβ1(b1)],

xβ1
(b

(∞)
1 )xβ2(b

(∞)
2 )] by (2.4),(3.1).

In the case Φ0
∼= A3 the inner commutator in the last expression is trivial

by (3.1), therefore so is the outer commutator (notice that α and β1 form an

acute angle). In the case Φ0
∼= C3 the last expression can be further simplified

using (R3) and the already proved relation (3.2) as follows:

· · · = [xα+β1(Nα,β1b
(∞)c(∞)b

(∞)
1 ), xβ(Nβ1,β2b

(∞)
1 b

(∞)
2 )xβ2(b

(∞)
2 )].

Since α + β1 forms an acute angle with both β and β2, the latter commutator

is trivial by (2.1) and (3.1). In both cases the right-hand side of (3.7) is trivial.

Consequently, from Lemma 2.6 we obtain the equality

[xβ,γ(b
(∞), c(∞)), xβ(d

(∞))] = 1.

Thus, we have verified (3.1) in all cases.

Finally, it remains to verify (3.2) in the case δ ∈ {−β,−γ}. By symmetry it

suffices to consider the case δ = −β. From the already proved relations (3.1)–

(3.2) and the other Steinberg relations we obtain

[xβ,γ(b
(∞), c(∞)), x−β(N−β1,−β2b

(∞)
1 b

(∞)
2 )]

= [xβ,γ(b
(∞),c(∞))x−β1(b

(∞)
1 ), xβ,γ(b

(∞),c(∞))x−β2(b
(∞)
2 )]x−β(−N−β1,−β2b

(∞)
1 b

(∞)
2 )

=
∏

iα−jβ1−kβ2∈Φ
i,j,k≥0

xiα−jβ1−kβ2(Bi,j,kb
(∞)ic(∞)ib

(∞)
1

j
b
(∞)
2

k
),
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where Bi,j,k are certain integers. Direct computation (or an argument similar to

the one used in the first part of the proof) shows that the constants Bi,j,k are all

zero with the sole exception of B1,1,1, which is equal to Nα,−β. Consequently,

from Lemma 2.6 we obtain

[xβ,γ(b
(∞), c(∞)), x−β(d

(∞))] = xγ(Nα,−βb
(∞)c(∞)d(∞)),

which finishes the proof of (3.2).

Lemma 3.7: The morphism xβ,γ satisfies the identities listed in Lemma 2.8 and

therefore gives rise to a pro-group morphism R(∞) → St(∞)(Φ \ {α}, R), which

we denote by x̃α. The resulting morphism x̃α does not depend on the choice

of β and γ.

Proof. First of all, observe that (3.1) implies the identity

[xβ,γ(b
(∞)
1 , c

(∞)
1 ), xβ,γ(b

(∞)
2 , c

(∞)
2 )] = 1.

Notice also that (2.2) and (3.1) imply that

xβ,γ(b
(∞)
1 + b

(∞)
2 , c(∞)) = [xβ(Nβ,γb

(∞)
1 )xβ(Nβ,γb

(∞)
2 ), xγ(c

(∞))]

= xβ,γ(b
(∞)
1 , c(∞))xβ,γ(b

(∞)
2 , c(∞)).

Similarly, one can show the equality

xβ,γ(b
(∞), c

(∞)
1 + c

(∞)
2 ) = xβ,γ(b

(∞), c
(∞)
1 )xβ,γ(b

(∞), c
(∞)
2 ).

Thus, the morphism xβ,γ satisfies the first three requirements of Lemma 2.8.

Now suppose that α = β1+ γ1 = β2+ γ2 are two different decompositions for

α such that α, βi and γi have the same length and α, β1, β2 are linearly indepen-

dent. By Lemma 3.1 such decompositions exist and the roots βi, γi are contained

in a root subsystem Φ0 of type A3 or C3. Swapping β1 with γ1, if necessary, we

also may assume that β1 and β2 form an acute angle. Set δ=γ1−γ2=β2−β1 and

ε1 = Nβ1,γ1 , ε2 = Nβ2,γ2 , ε3 = Nδ,γ2, ε4 = Nβ1,δ.

In order to simplify keeping track of the relative angles and the length of the

roots, the reader may assume that βi, γi are concretely realized in the space R3

as follows: β1 = e1 − e2, γ1 = e2 − e3 and

• β2 = e1 − e4, γ2 = e4 − e3, δ = e2 − e4 in the case Φ0
∼= A3,

• β2 = e1 + e2, γ2 = −e2 − e3, δ = 2e2 in the case Φ0
∼= C3.

Here ei denote the standard basis vectors of R3 and we assume that the root

systems A3 and C3 are realized in R
3 as in [4, Ch. VI, §§4.6–4.7].
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Substituting the triple (β1, γ1,−β2) into (2.12), it is not hard to conclude

that in both cases one has ε1ε2ε3ε4 = 1. Now direct calculation shows that

xβ1,γ1 (b
(∞), c(∞)d(∞))

= [xβ1(ε1b
(∞)), xγ1 (c

(∞)d(∞))]

= [xβ1(ε1b
(∞)), [xδ(ε3c

(∞)), xγ2(d
(∞))]]

by (R3) if Φ0
∼= A3 and by (R2),(R4),(2.1) if Φ0

∼= C3

= [[xβ1(ε1b
(∞)), xδ(ε3c

(∞))], xδ(ε3c
(∞))xγ2(d

(∞))] by (R2),(2.4)

= [xβ2(ε2b
(∞)c(∞)), xγ2(d

(∞))xγ1(c
(∞)d(∞))] by (R3)

= [xβ2(ε2b
(∞)c(∞)), xγ2(d

(∞))] by (R2),(2.1)

= xβ2,γ2(b
(∞)c(∞), d(∞)).

Thus, in both cases we obtain the equality

(3.8) xβ1,γ1(b
(∞), c(∞)d(∞)) = xβ2,γ2(b

(∞)c(∞), d(∞)).

It follows from (3.8) that

xβ1,γ1(b
(∞), u

(∞)
1 u

(∞)
2 d(∞)) = xβ1,γ1(b

(∞)u
(∞)
1 u

(∞)
2 , d(∞))

therefore by Lemma 2.6, xβ1,γ1(b
(∞), u(∞)c(∞)) = xβ1,γ1(b

(∞)u(∞), c(∞)). Thus,

the last requirement of Lemma 2.8 is satisfied. Consequently, there exists a

unique morphism of pro-groups x̃α : R
(∞) → St(∞)(Φ \ {α}, R) satisfying

(3.9) xβ1,γ1(b
(∞), c(∞)) = x̃α(b

(∞)c(∞)) = xβ2,γ2(b
(∞), c(∞)).

The next step in the proof of Theorem 1 is to verify that x̃α satisfies the

relations (R2)–(R4). Combining Lemmas 3.6 and 3.7 we immediately obtain

the following.

Corollary 3.8: The root subgroup morphism x̃α satisfies the pro-analogues

of Steinberg relations of type (R2)–(R4), in which it occurs on the left-hand

side.

Thus, to finish the proof of Theorem 1 it suffices to consider the case where x̃α

occurs in the right-hand side of the commutator formula.

Lemma 3.9: The root subgroup morphism x̃α satisfies the pro-analogues of

Steinberg relations of type (R4) in which it occurs on the right-hand side.
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Proof. We only need to consider the case Φ = F4. We need to verify the relation

obtained from

(3.10) [xβ(b
(∞)), xγ(c

(∞))] = xβ+γ(Nβ,γb
(∞)c(∞))x2β+γ(N

2,1
β,γb

(∞)2c(∞))

by replacing either xβ+γ or x2β+γ with x̃α.

First, let us consider the case α = β + γ, in which α, β are short and γ

is long. Consider a decomposition β = β1 + β2 for some short roots βi. The

smallest root subsystem containing βi and γ is of type C3, so we may assume

that α = e1 + e3, β = e1 − e3, β1 = e1 − e2, β2 = e2 − e3, γ = 2e3. Set

ε1 = Nβ1,β2 , ε2 = N2,1
β2,γ

, ε3 = Nβ2,γ ,

ε4 = N2,1
β1,2β2+γ , ε5 = Nβ1,2β2+γ , ε6 = Nβ1,β2+γ , ε7 = Nβ2+γ,β.

Substituting triples (β1, β2 + γ, β2), (β1, β2, γ), (β1, β1 + β2, β2 + γ) into (2.12)

we obtain the equalities

ε2ε3ε5 = −ε1ε7, ε3ε6 = Nβ,γε1, 2ε4ε5ε7 = −ε6Nβ,α,

which together with (2.10) imply the equality

ε2ε4 =
1

2
ε1ε3ε5ε7 · ε5ε6ε7Nβ,α =

1

2
ε1ε3ε6Nβ,α =

1

2
Nβ,γNβ,α = N2,1

β,γ.

Now a direct computation using (R2)–(R4) and Corollary 3.8 shows that

[xγ (c
(∞)), xβ(ε1b

(∞)
1 b

(∞)
2 )]

=[xβ1(b
(∞)
1 ), xγ(c

(∞))xβ2(b
(∞)
2 )] · xβ(−ε1b(∞)

1 b
(∞)
2 ) by (2.5)

=[xβ1(b
(∞)
1 ), x2β2+γ(−ε2b(∞)

2

2
c(∞))xβ2+γ(−ε3b(∞)

2 c(∞))xβ2(b
(∞)
2 )]

· xβ(−ε1b(∞)
1 b

(∞)
2 )

=[xβ1(b
(∞)
1 ), x2β2+γ(−ε2b(∞)

2

2
c(∞))]

· x2β2+γ(−ε2b
(∞)
2

2
c(∞))[xβ1(b

(∞)
1 ), xβ2+γ(−ε3b(∞)

2 c(∞))]

· [x2β2+γ(−ε2b(∞)
2

2
c(∞))xβ2+γ(−ε3b(∞)

2 c(∞)), xβ(ε1b
(∞)
1 b

(∞)
2 )] by (2.1)

=xβ1+2β2+γ(−ε2ε5b(∞)
1 b

(∞)
2

2
c(∞)) · x2β+γ(−ε2ε4b(∞)

1

2
b
(∞)
2

2
c(∞))

· x̃α(−ε3ε6b(∞)
1 b

(∞)
2 c(∞)) · xβ1+2β2+γ(−ε1ε3ε7b(∞)

1 b
(∞)
2

2
c(∞)) by (2.2), (3.9)

=x2β+γ(−N2,1
β,γb

(∞)
1

2
b
(∞)
2

2
c(∞)) · x̃α(−Nβ,γε1b

(∞)
1 b

(∞)
2 c(∞)).
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Thus, by Lemma 2.6

[xγ(c
(∞)), xβ(b

(∞))] = x2β+γ(−N2,1
β,γb

(∞)2c(∞)) · x̃α(−Nβ,γb
(∞)c(∞)),

which is an equivalent form of (3.10).

Now consider the case α = 2β+ γ, in which β is short and α, γ are long. We

can choose a decomposition γ = γ1+γ2 for some long roots γi. The smallest root

subsystem containing β and γi is of type B3, so we may assume that α = e1+e3,

β = e3, γ = e1 − e3, γ1 = e1 − e2, γ2 = e2 − e3. Set

ε1 = Nγ1,γ2 , ε2 = N2,1
β,γ2

, ε3 = Nβ,γ2 , ε4 = Nγ1,2β+γ2 , ε5 = Nγ1,β+γ2 .

Substituting the triples (β, γ2, γ1), (β, β+γ2, γ1) into (2.12) we obtain the iden-

tities

ε3ε5 = ε1Nβ,γ, 2ε2ε3ε4 = ε5Nβ,β+γ .

Notice that these identities imply that ε2ε4 = 1
2ε3ε5Nβ,β+γ = ε1N

2,1
β,γ . A direct

computation using (R2)–(R4), (2.1), (3.9) and Corollary 3.8 shows that

[xβ(b
(∞)), xγ(ε1c

(∞)
1 c

(∞)
2 )]

=[xγ1(c
(∞)
1 ), xβ(b

(∞))xγ2(c
(∞)
2 )]xγ(−ε1c(∞)

1 c
(∞)
2 )

=[xγ1(c
(∞)
1 ), x2β+γ2(ε2b

(∞)2c
(∞)
2 )xβ+γ2(ε3b

(∞)c
(∞)
2 )xγ2 (c

(∞)
2 )]xγ(−ε1c(∞)

1 c
(∞)
2 )

=x̃α(ε2ε4b
(∞)2c

(∞)
1 c

(∞)
2 ) · xβ+γ(ε3ε5b

(∞)c
(∞)
1 c

(∞)
2 ).

Now Lemma 2.6 and the above identity imply (3.10).

Lemma 3.10: The root subgroup morphism x̃α satisfies the pro-analogues of

Steinberg relations of type (R3) in which it occurs on the right-hand side.

Proof. We need to verify the relation

(3.11) [xβ(b
(∞)), xγ(c

(∞))] = x̃α(Nβ,γb
(∞)c(∞)).

In the case where α, β and γ have the same length the assertion follows from

Lemma 3.7. Thus, we only need to consider the case where α = β + γ and α is

long while β and γ are short. The smallest root subsystem containing α, β, γ

is of type B2. Without loss of generality we may assume α = e1 + e2, β = e1,
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and γ = e2. Set ε1 = N2,1
β,γ−β, ε2 = Nβ,γ−β. Direct computation shows that

xβ(d
∞)xγ(ε2b

(∞)c(∞)) · x̃α(ε1b
(∞)2c(∞))

= xβ(d
(∞))(xγ(ε2b

(∞)c(∞)) x̃α(ε1b
(∞)2c(∞))) by Corollary 3.8

= [xβ(b
(∞)), xβ(d

(∞))xγ−β(c
(∞))] by (R2), Lemma 3.9

= xβ(b
(∞)+d(∞))xγ−β(c

(∞)) · xβ(d
(∞))xγ−β(−c(∞)) by (R1)

= x̃α(ε1(b
(∞) + d(∞))2c(∞))xγ(ε2(b

(∞) + d(∞))c(∞))xγ−β(c
(∞))

· x̃α(−ε1c(∞)d(∞)2)xγ(−ε2c(∞)d(∞))xγ−β(−c(∞)) by (R4)

=xγ(ε2b
(∞)c(∞))x̃α(2ε1b

(∞)c(∞)d(∞) + ε1b
(∞)2c(∞)) by Lemma 3.9

The relation (3.11) now follows from Lemma 2.6 and (2.10).

Proof of Theorem 1. To distinguish between the root subgroup morphisms

of St(∞)(Φ, R) and St(∞)(Φ\{α}, R) we rename the root subgroup morphisms xβ ,

β �= α of St(Φ \ {α}, R(∞)) to x̃β . For the morphisms xβ of St(∞)(Φ, R) we

continue to use the usual notation.

By Lemma 2.16 the morphisms x̃β give rise to a morphism

Gα : St(∞)(Φ, R)→ St(∞)(Φ \ {α}, R).

By definition, Gαxβ = x̃β for all β. On the other hand, it is clear that

Fαx̃β = xβ for β �= α. To see that Gα is inverse to Fα it remains to invoke

the first part of Lemma 2.16 and Lemma 3.4.

4. The action of Gsc(Φ, S
−1R) on pro-groups

Throughout this section R is a ring and S ⊆ R is a multiplicative subset.

4.1. The case of Chevalley groups. Our first goal is to show that the

group Gsc(Φ, S
−1R) can be made to act on the Chevalley pro-group G(∞)(Φ, R)

by conjugation. Denote by HΦ the Hopf Z-algebra of Gsc(Φ,−) with the struc-

ture of a Hopf algebra given by the triple (Δ, ς, ε). For shortness, we denote

by K the augmentation ideal Ker(ε). Recall that HΦ = K �Z is a finitely pre-

sented commutative Z-algebra, therefore K is a finitely generated rng. Indeed,

if xi are the generators of HΦ, then yi := xi − ε(xi) generate K as an rng as
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seen, e.g., from the identity

xy − ε(xy) = (x − ε(x))(y − ε(y)) + (x− ε(x))ε(y) + ε(x)(y − ε(y)).

There is a surjective homomorphism Z[X1, . . . , Xn]→ K �Z sending Xi to xi,

whose kernel is generated by a finite collection of polynomials g1, . . . , gm. Sub-

stituting Xi �→ Yi + ε(xi) into gj ’s we obtain a new collection of polynomials

{fj(Y1, . . . , Yn)} without constant terms. It is clear that fj’s form a complete

system of defining relations between yi. Denote by N the maximum of the

degrees of fj’s. Consider the “coconjugation” homomorphism (written down in

Sweedler notation)

Coconj : K → HΦ ⊗K, h �→
∑

h(1)ς(h(3))⊗ h(2).

Recall that S−1R is isomorphic as an R-module to the filtered colimit of R-

modules R
s over the category S (cf. Section 2.3), each of these modules being

isomorphic to R. For s, s′ ∈ S the homomorphism can: R
s → R

ss′ is given by

r

s
�→ rs′

ss′
.

The elements of modules R
s can be “multiplied” with each other via the nat-

ural R-module homomorphisms R
s ⊗ R

s′ → R
ss′ compatible with the canonical

homomorphisms R
s → S−1R.

Let g be an element of Gsc(Φ, S
−1R) ∼= Ring(HΦ, S

−1R). Consider the

rng homomorphism g ⊗ id : HΦ ⊗ K → S−1R ⊗ K. Since tensor products

commute with colimits, there exists s0 ∈ S such that (g ⊗ id) ◦ Coconj(yi)
are the images of certain elements bi of

R
s0
⊗K under the canonical R-module

homomorphism R
s0
⊗K → S−1R⊗K.

Notice that the elements of R
s0
⊗K also can be multiplied with each other via

the obvious multiplication homomorphisms

R

s
⊗K ⊗ R

s′
⊗K → R

ss′
⊗K,where s, s′ ∈ S.

Using these homomorphisms we can compute the values fj(b1, . . . , bn) of the

polynomials fj’s on bi’s. It is clear that these values can be interpreted as

elements of R
sN0
⊗ K and that they are mapped to 0 under the homomor-

phism R
sN0
⊗K → S−1R ⊗K. Consequently, there is an element s′0 ∈ S anni-

hilating all of them simultaneously. Set s1 = sN0 s′0. It is clear that in R
s1
⊗K

we have the identities fj(b1, . . . , bn) = 0 for all j’s. Although bi’s are not deter-

mined uniquely, their choice is “almost” unique in the sense that for any other
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collection of elements {b′i} fitting in the left square of the diagram below there

is s2 ∈ S making the the whole diagram commute:

(4.1)

{yi}
{bi}

{b′i}
R
s1
⊗K

can⊗id R
s1s2
⊗K

K
(g⊗id)◦Coconj

S−1R⊗K.

Now we are ready to construct a premorphism θ representing the “conjugation

by g” automorphism of pro-sets

(4.2) g(−) : G(∞)(Φ, R)→ G(∞)(Φ, R).

By definition, this amounts to constructing a collection of maps

θs : Rng(K,R(θ∗(s)))→ Rng(K,R(s))

for some function θ∗ : S → S. Set θ∗(s) = ss1.

Observe that for every s, s′ ∈ S the mapping r
s ⊗ r′(ss

′) �→ (rr′)(s
′) defines an

isomorphism R
s ⊗R R(ss′) ∼= R(s′) of R-modules. In particular, the R-module

R
s ⊗R R(ss′) is equipped with a natural structure of an rng.

Let h be an element of Rng(K,R(ss1)). Notice that the images of bi under

id⊗h satisfy all fj ’s. Now the element θs(h) can be constructed as the composite

of Coconj and the unique rng homomorphism K → R(s) making the following

diagram commute:

{yi}
{bi} R

s1
⊗K

id⊗h

K
θs(h)

R
s1
⊗R R(ss1) R(s).

It is clear that the morphism (4.2) defined by θ is independent of the choices

of s0 and s1. The diagram (4.1) also shows that it is also independent of the

choice of bi’s.

Now let us check that g(−) is a morphism of pro-groups. By a standard

result on Hopf algebras and using the fact that K is flat, we may choose the

generators yi ofK in such a way that Y =
⊕

i Zyi ≤ K is a finite free submodule

and Δ(Y ) ≤ Y ⊗̂Y . Consequently, there is a well-defined group homomorphism

Y → R
s1
⊗K given by yi �→ bi. From the identity g(xy) = gx gy reformulated in
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the language of Hopf algebras we conclude that for sufficiently large s2 ∈ S the

top pentagon in the following diagram commutes:

(4.3)

Y

Δ

Y ⊗̂ Y R
s1
⊗K

can⊗Δ

( R
s1
⊗K)⊗̂2 v

(id⊗h1)⊗̂(id⊗h2)

R
s21s2
⊗K⊗̂2

id⊗(h1⊗̂h2)

(R(ss1s2))⊗̂2

m

R
s21s2
⊗ (R(ss21s2))⊗̂2

id⊗m

R(ss1s2) R(s) R
s21s2
⊗R(ss21s2).

The homomorphism v in the above diagram is induced by canonical homomor-

phisms

R

s1
→ R

s21s2
and

R

s1
⊗ R

s1
→ R

s21s2
.

It is clear that for any h1, h2 : K → R(ss21s2) the bottom square of the above dia-

gram also commutes. The commutativity of the whole diagram implies that the

images of θss1s2(h1h2) and θss1s2(h1) θss1s2(h2) in Gsc(Φ, R
(s)) coincide. Con-

sequently, the morphism (4.2) is a morphism of a group of objects in Pro(Set)

and hence a morphism of pro-groups (cf. the beginning of Section 2.2).

It is not hard to check that 1(−) is the identity automorphism of idG(∞)(Φ,R)

and that for all g, g′ ∈ Gsc(Φ, S
−1R) one has

gg′
(−) = g(g

′
(−)).

4.2. The case of Steinberg groups. Clearly, the set Pro(Grp)(R(∞)) of

endomorphisms of the additive pro-group of the pro-rng R(∞) can be endowed

with the structure of an associative ring: the addition is pointwise, while the

multiplication is the usual composition of endomorphisms.
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For every class of fractions [ rs ] ∈ S−1R there is a well-defined pro-group

endomorphism m[ rs ]
: R(∞) → R(∞) given by

m∗
[ rs ]

(s′) = ss′ and m
(s′)
[ rs ]

(a(ss
′)) = (ra)(s

′).

It is easy to see that m[ rs ]
does not depend on the choice of the representa-

tive r
s . Moreover, it is easy to see that m is actually a homomorphism of rings

S−1R→ Pro(Grp)(R(∞)) and that

(4.4) m[ rs ]
(a(∞)b(∞)) = m[ rs ]

(a(∞))b(∞) = a(∞)m[ rs ]
(b(∞)).

For brevity we write r
sa

(∞) instead of m[ rs ]
(a(∞)).

Our next step is to construct the action of the Steinberg group St(Φ, S−1R)

on the Steinberg pro-group St(∞)(Φ, R).

Definition 4.1: Let R be a ring, S ⊆ R be a multiplicative subset, and Φ be a

root system of rank ≥ 3 different from B� and C�.

For u ∈ S−1R and a root subgroup morphism xβ of St(∞)(Φ \ {−α}, R) we

define the morphism

xα(u)xβ : R
(∞) → St(∞)(Φ \ {−α}, R)

via one of the following identities:

xα(u)xβ(b
(∞)) := xβ(b

(∞)) if α+ β /∈ Φ ∪ {0};(4.5)

xα(u)xβ(b
(∞)) := xα+β(Nα,βub

(∞))xβ(b
(∞))(4.6)

if α+ β ∈ Φ but α+ 2β, 2α+ β /∈ Φ;

xα(u)xβ(b
(∞)) := xα+β(Nα,βub

(∞))x2α+β(N
2,1
α,βu

2b(∞))xβ(b
(∞))(4.7)

if α+ β, 2α+ β ∈ Φ;

xα(u)xβ(b
(∞)) := xα+β(Nα,βub

(∞))xα+2β(N
1,2
α,βub

(∞)2)xβ(b
(∞))(4.8)

if α+ β, α+ 2β ∈ Φ.

Lemma 4.2: The morphisms xα(u)xβ(b
(∞)) defined above are pro-group mor-

phisms. They give rise to an endomorphism

xα(u)(−) : St(∞)(Φ \ {−α}, R)→ St(∞)(Φ \ {−α}, R).
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Proof. By Lemma 3.4 we need to verify the identities

xα(u)xβ(b
(∞)) · xα(u)xβ(c

(∞)) = xα(u)xβ(b
(∞) + c(∞)),(4.9)

[xα(u)xβ(b
(∞)), xα(u)xγ(c

(∞))] =
∏

iβ+jγ∈Φ
i,j>0

xα(u)xiβ+jγ(N
i,j
β,γb

(∞)ic(∞)j),(4.10)

in which β, γ ∈ Φ \ {−α}, β �= −γ, −α �∈ (Z>0β + Z>0γ) ∩ Φ and, moreover,

β + γ �= −2α. A direct consideration of root systems A2 and B2 shows that

under these assumptions the root subset Σ = Φ ∩ (Z≥0β + Z≥0γ + Z≥0α) is

special (in particular, it does not contain −α).
Set T = Z[b, c, u], I := 〈b, c〉 � T . Denote by XΣ,I the set

{xδ(d) | d ∈ I, δ ∈ Σ}
of defining generators of U(Σ, I) and by RΣ,I the normal subgroup of the free

group F := F (XΣ,I) generated by the relations

Rβ(b, c) = xβ(b)xβ(c)xβ(b+ c)−1

of type (R1) and relations Rβ,γ(b, c) of type (R2)–(R4) with β, γ ∈ Σ. By Re-

mark 2.13 the group U(Σ, I) is isomorphic to F (XΣ,I)/RΣ,I .

Notice that there is a well-defined conjugation action of U(Σ, T ) on U(Σ, I).

The action of xα(u) on each xβ(b) ∈ XΣ,I is given precisely by formulas (4.5)–

(4.8) (with the superscript (∞) removed). The fact that this endomorphism

of F defines an endomorphism of U(Σ, I) implies that for any Steinberg rela-

tion R (which is either Rβ(b, c) or Rβ,γ(b, c)) the word xα(u)R can be rewrit-

ten in F as a product
∏

i R
gi
i , where Ri is either Rβi(f

1
i (b, c, u), f

2
i (b, c, u))

or Rβi,γi(f
1
i (b, c, u), f

2
i (b, c, u)), f

1
i , f

2
i ∈ I, βi, γi ∈ Σ and gi ∈ F .

Notice that a polynomial f(b, c, u) ∈ I and u0 = [ rs ] ∈ S−1R give rise to

a morphism R(∞) × R(∞) → R(∞) of pro-sets. Indeed, this morphism is the

result of reading the expression f(b(∞), c(∞), u0) according to Convention 2.7.

It can be presented as a certain composition of morphisms Δ, m[ rs ]
, m, + and

morphisms of component reordering, cf. Example 2.3. It follows from the pre-

vious paragraph that by inserting and deleting trivial subexpressions of the

form xδ(f)xδ(f)
−1, f = f(b(∞), c(∞), u0) we can rewrite either of the equa-

tions (4.9)–(4.10) into a product of conjugates of words Rβi(f
1
i (b

(∞), c(∞), u0),

f2
i (b

(∞), c(∞), u0)) or Rβi,γi(f
1
i (b

(∞), c(∞), u0), f
2
i (b

(∞), c(∞), u0)). The asser-

tion of the lemma now follows from the fact that the root subgroup morphisms

of St(∞)(Φ\{−α},R) obviously satisfy all the relationsRβ , Rβ,γ for β, γ∈Σ.
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Proposition 4.3: Let R and Φ be as in the above definition. The identi-

ties (4.5)–(4.8) specify a unique well-defined conjugation action of the

group St(Φ, S−1R) on the pro-group St(∞)(Φ, R). The morphism

st : St(∞)(Φ, R)→ G(∞)(Φ, R)

is equivariant with respect to this action.

Proof. By Theorem 1 the pro-group St(∞)(Φ \ {−α}, R) is isomorphic

to St(∞)(Φ, R), therefore from Lemma 4.2 we obtain an endomorphism

of St(∞)(Φ, R), for which we use the same notation xα(u)(−). It is easy to

see that the mapping

u �→ xα(u)(−),

in fact, specifies a group homomorphism S−1R→ Aut(St(∞)(Φ, R)).

The next step of the proof is to verify that the constructed action satisfies the

Steinberg relations (R2)–(R4) defining the group St(Φ, S−1R). Let Rα,β(a, b)

be one of these relations (as in the proof of the above lemma we interpret it

as an element of the free group on generators xα(a)). Denote by Φ0 the root

subsystem of Φ generated by α and β and let γ be a root of Φ \ Φ0. Since the

root subset

Σ = (Z≥0α+ Z≥0β + Z≥0γ) ∩Φ

is special, we can use an argument similar to the proof of Lemma 4.2 in or-

der to show that the result of conjugation of xγ with Rα,β(a, b) coincides

with xγ . By Lemma 3.2 this implies that the automorphism of conjugation

with Rα,β(a, b) coincides with the trivial automorphism of St(∞)(Φ, R).

Now let us verify the equivariance. It is enough to show that

(4.11) st(xα(u)xβ(b
(∞))) = tα(u)st(xβ(b

(∞))), for all α, β ∈ Φ, β �= −α.

We will verify the equality in the case when α+ β ∈ Φ but α+ 2β, 2α+ β /∈ Φ,

the proof in the other cases being similar. Consider the elementary root unipo-

tent tβ(−) : Ga → Gsc(Φ,−) as a morphism of algebraic groups. Denote by

Cotβ : K → XZ[X ] the corresponding homomorphism of augmentation ideals

of Hopf algebras (as in Section 4.1 we abbreviate Ker(ε) to K). Fix u ∈ S−1R.

Since root unipotents tα satisfy (R3) the outer square of the following diagram
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commutes:

K
(tα(u)⊗id)Coconj

Δ

S−1R⊗K
id⊗Cotβ

S−1R⊗XZ[X ]

Y
{bi} R

s1
⊗K

can⊗Cotβ R
s21s2
⊗XZ[X ]

Y ⊗̂ Y ( R
s1
⊗XZ[X ])⊗̂2

v

(S−1R ⊗XZ[X ])⊗̂2

m

K ⊗̂K
Cotβ⊗̂Cotα+β

X1Z[X1] ⊗̂X2Z[X2].

(
X1 �→ 1⊗X
X2 �→ Nα,βu⊗X

)

Similarly, to the construction of (4.3) we can choose a free abelian subgroup

Y ≤ K of finite rank generating K multiplicatively so that Δ(Y ) ≤ Y ⊗̂ Y .

Further, following the procedure described in (4.1) we can choose s1 and {bi}
in such a manner that the top left square of the above diagram commutes.

Also, there is a dashed arrow making the bottom pentagon commute. Fi-

nally, there exists sufficiently large s2 such that the central square of the di-

agram commutes. This commutativity implies (4.11) (the top path gives the

right-hand side while the bottom one gives the left-hand side; the homomor-

phism v has the same meaning as in (4.3)). Thus, by Lemma 2.16 the morphism

st : St(∞)(Φ, S−1R)→ G(∞)(Φ, R) is St(Φ, S−1R)-equivariant.

Theorem 2: Let R be a ring, M � R be a maximal ideal and Φ be a root

system of rank ≥ 3 different from B� and C�. Set S = R \ M . Then the

action of St(Φ, RM ) defined in Proposition 4.3 gives rise to an action of the

groupGsc(Φ, RM ) on St(∞)(Φ, R). The morphism st: St(∞)(Φ, R)→G(∞)(Φ, R)

is Gsc(Φ, RM )-equivariant.

Proof. Recall that for a, b ∈ R×
M and α ∈ Φ one can define the following elements

of St(Φ, RM ):

wα(a) = xα(a) · x−α(−a−1) · xα(a),

hα(a) = wα(a) · wα(1)
−1,

{a, b}α = hα(ab) · h−1
α (a) · h−1

α (b).

Since RM is local, the group Gsc(Φ, RM ) coincides with its elementary sub-

group Esc(Φ, R). Consequently, by [1, Proposition 1.6] and [22, Theorem 2.13]

the group Gsc(Φ, RM ) is the quotient of St(Φ, RM ) by the relations {a, b}α = 1
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for a, b ∈ R×
M and some fixed long root α ∈ Φ. Thus, it remains to check

that the Steinberg symbols {a, b}α act trivially on St(∞)(Φ, R), which, in turn,

follows from the relations

(4.12) hα(a)xβ(b
(∞)) = xβ(a

〈β,α〉b(∞)), β �= ±α.

To prove (4.12) take a root β ∈ Φ linearly independent with α. Direct

computation using Definition 4.1 shows that

hα(a)xβ(b
(∞)) =

∏
iα+jβ∈Φ

j>0

xiα+jβ(Pi,j(a) · b(∞)j)

for some Laurent polynomials Pi,j(t) ∈ Z[t, t−1] depending only on α and β

and the chosen order of factors. Since in the Steinberg group St(Φ,Z[t, t−1]) we

have a similar identity

hα(t)xβ(1) =
∏

iα+jβ∈Φ
j>0

xiα+jβ(Pi,j(t)) = xβ(t
〈β,α〉),

we conclude by Remark 2.13 that

Pi,j(t) = 0

with the sole exception of P0,1(t)= t(β,α). Thus, the proof of (4.12) is complete.

5. Proof of the main result

5.1. The construction of a crossed module. In this section we prove the

main results of the paper, namely we construct a crossed module structure on

the homomorphism st and prove the centrality of K2. Let us, first, briefly recall

the definition of a crossed module.

Definition 5.1: Let N be a group acting on itself by left conjugation. A group

homomorphism ϕ : M → N is called a crossed module if one can define the

action of the group N on M in such a way that ϕ preserves the action of N

and, moreover, the identity ϕ(m)m′ = mm′m−1, called the Peiffer identity,

holds for all m,m′ ∈M .

It is an easy exercise to check that the kernel of ϕ is always a central subgroup

of M , while the image of ϕ is normal in N .
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For the rest of this section R is an arbitrary commutative ring and M is a

maximal ideal of R. As before, Φ is a root system of rank ≥ 3 different from B�

and C�.

We denote by S the multiplicative system associated to M , i.e., S = R \M .

By Theorem 2 the group Gsc(Φ, RM ) acts on both St(∞)(Φ, R) and G(∞)(Φ, R)

by conjugation and this action is preserved by the morphism st. Consequently,

Gsc(Φ, R) acts on these pro-groups its images Gsc(Φ, RM ). Consider the follow-

ing canonical morphisms:

πR : R(∞) → R,

πSt : St(∞)(Φ, R)→ St(Φ, R),

πG : G(∞)(Φ, R)→ Gsc(Φ, R).

Notice that the action of h ∈ Gsc(Φ, R) on the pro-group G(∞)(Φ, R) is

compatible with the conjugation action of Gsc(Φ, R) on itself, i.e.,

hπG(g
(∞)) = πG(

hg(∞)).

Similarly, the conjugation action of h ∈ St(Φ, R) on St(∞)(Φ, R) is compatible

with the conjugation action of St(Φ, R) on itself, i.e., hπSt(g
(∞)) = πSt(

hg(∞)).

Notice also that xαπR = πStxα and πG st = stπSt.

Lemma 5.2: The subgroup K2(Φ, R) = Ker(st : St(Φ, R) → G(Φ, R)) is con-

tained in the center of St(Φ, R).

Proof. Let g be an element of K2(Φ, R) and α ∈ Φ be a root. Consider the

ideal

Iα = {a ∈ R | gxα(ra) = xα(ra) for all r ∈ R}.
We need to show that Iα = R. Let M � R be a maximal ideal. By The-

orem 2, the element g acts trivially on the pro-group St(∞)(Φ, R) associated

with S = R \M . Consequently, we obtain the following equality of morphisms

R(∞) → St(Φ, R):

gxα(πR(a
(∞))) = gπSt(xα(a

(∞))) = πSt(
gxα(a

(∞)))

= πSt(xα(a
(∞))) = xα(πR(a

(∞))),

which implies that Iα �⊆M .

With a similar technique, we also can re-prove Taddei’s normality theorem

(see [27]).
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Lemma 5.3: The subgroup E(Φ, R) = Im(st : St(Φ, R)→ Gsc(Φ, R)) is normal

in Gsc(Φ, R).

Proof. Let g be an element of Gsc(Φ, R) and α ∈ Φ be a root. Consider the

ideal

Iα = {a ∈ R | gtα(ra) ∈ E(Φ, R) for all r ∈ R}.
Again, we need to show that Iα = R. Let M � R be a maximal ideal. Since g

acts on the pro-groups St(∞)(Φ, R) and G(∞)(Φ, R) associated with the subset

S = R \M and this action is preserved by st, we obtain the following equalities

of morphisms R(∞) → Gsc(Φ, R):

gtα(πR(a
(∞))) = gπG(st(xα(a

(∞)))) = πG(st(
gxα(a

(∞)))) = st(πSt(
gxα(a

(∞)))),

which implies that Iα �⊆M .

Theorem 3: The homomorphism st : St(Φ, R)→ Gsc(Φ, R) can be turned into

a crossed module in a unique way.

Proof. Notice that by Lemma 5.2 we already know that K2(Φ, R) is a cen-

tral subgroup of St(Φ, R). Under our assumptions the group St(Φ, R) is a

perfect central extension of Esc(Φ, R), therefore by [21, Lemma 1.1] for every

g ∈ Gsc(Φ, R) there may exist at most one endomorphism g(−) of St(Φ, R)

satisfying

(5.1) g st(h)g−1 = st(gh) for all h ∈ St(Φ, R).

Thus, to construct an action of Gsc(Φ, R) on St(Φ, R) it suffices to construct

an endomorphism g(−) : St(Φ, R)→ St(Φ, R) satisfying (5.1). Also, this action

would automatically satisfy the Peiffer identity.

Let α be a root of Φ. Since E(Φ, R) � Gsc(Φ, R) by Lemma 5.3, the set

Yα(a) = st−1(gtα(a)g
−1) is nonempty for all a ∈ R. Moreover, Yα(a) is a coset

of the subgroup K2(Φ, R) and Yα(a+ a′) = Yα(a)Yα(a
′).

First of all, let us show that [Yα(a), Yβ(b)] = 1 provided α + β /∈ Φ ∪ {0}.
Let α, β be roots as above, a be an element of R and h be an element of Yα(a).

Set

I = {b ∈ R | [h, Yβ(bR)] = 1}
and let M � R be a maximal ideal. Since

[h, πSt(
gxβ(b

(∞)))] = πSt(
gtα(a)xβ(b

(∞)))πSt(
gxβ(−b(∞))) = 1,

we obtain I �⊆M and, consequently, I = R, which proves the assertion.
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Now let α be a root of Φ. By our assumptions on Φ there exist roots β, γ ∈ Φ

of the same length such that α = β + γ. Denote by yα(a) the only element

of the set [Yβ(Nβ,γ), Yγ(a)]. We define the map g(−) on the set of generators

of St(Φ, R) by gxα(a) = yα(a), and we claim that such a definition induces an

endomorphism, i.e., that yα(a) satisfy the Steinberg relations. Clearly, yα(a)

satisfy (R1). Since yα(a) ∈ Yα(a), it is also clear that they satisfy relations (R2).

It remains to check that yα(a) satisfy the Steinberg relations (R3) and (R4).

Let M � R be a maximal ideal. Recall that πSt(
gxγ(a

(∞))) denotes a cer-

tain pro-group morphism R(∞) → St(Φ, R), so [h, πSt(
gxγ(a

(∞)))] is a pro-set

morphism R(∞) → St(Φ, R) for a fixed h ∈ Yβ(Nβ,γ). Since

st(πSt(
gxγ(a

(∞)))) = gtγ(πR(a
(∞)))g−1,

we have

yα(πR(a
(∞))) = [h, πSt(

gxγ(a
(∞)))]

= πSt(
st(h) gxγ(a

(∞)))πSt(
gxγ(a

(∞)))−1(5.2)

= πSt(
gtβ(Nβ,γ)xγ(a

(∞)) gxγ(−a(∞))) = πSt(
gxα(a

(∞))).

Now let a be an element ofR and α, β be roots of Φ such that α+β, 2α+β ∈ Φ.

Consider the ideal

J = {b ∈ R | [yα(a), yβ(br)] = yα+β(Nα,βabr)y2α+β(N
2,1
α,βa

2br) for all r ∈ R}.

From (5.2) we obtain

[yα(a), yβ(πR(b
(∞)))] = [yα(a), πSt(

gxβ(b
(∞)))]

= πSt(
gtα(a)xβ(b

(∞)) gxβ(−b(∞)))

= πSt(
gxα+β(Nα,βab

(∞)) gx2α+β(N
2,1
α,βa

2b(∞)))

= yα+β(Nα,βaπR(b
(∞)))y2α+β(N

2,1
α,βa

2πR(b
(∞))).

It follows that J �⊆M , i.e., J = R. The verification of (R3) is similar but easier.

It is clear that the constructed endomorphism satisfies (5.1).

5.2. Concluding remarks. It is possible to prove the centrality of K2 without

using the concept of a ring homotope introduced in Definition 2.4. Indeed, the

idea is to reduce to the case of domains using the following result inspired by

[24, Lemma 5.3].
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Lemma 5.4: Let R be a commutative ring, I be an ideal of R and Φ be a

root system of rank ≥ 3. The centrality of K2(Φ, R) implies the centrality

of K2(Φ, R/I).

Proof. Consider the following commutative diagram:

St(Φ, R)
ρSt

st

St(Φ, R/I)

Esc(Φ, R)
ρE

Esc(Φ, R/I).

We denote by St(Φ, R, I) the normal closure in St(Φ, R) of the subgroup gener-

ated by elements xα(s), where s ∈ I, α ∈ Φ. We also denote by Esc(Φ, R, I) the

image of this subgroup under st. It is clear that Esc(Φ, R, I) lies in the kernel

of ρE.

Denote by H the preimage of K2(Φ, R/I) under ρSt. Also set

H ′ = [H, St(Φ, R)].

The identity (2.1) shows that H ′ is a normal subgroup of St(Φ, R). Under

our assumptions the group St(Φ, R) is perfect, therefore using Hall–Witt iden-

tity (2.3) we obtain

H ′ = [H, St(Φ, R)] = [H, [St(Φ, R), St(Φ, R)]]

⊆ [[H, St(Φ, R)], St(Φ, R)] = [H ′, St(Φ, R)].

Since st(H) is contained in the congruence subgroup Gsc(Φ, R, I) we obtain

from the standard commutator formula [30, Theorem 1] the fact that

st(H ′) ⊆ Esc(Φ, R, I).

Thus, H ′ ⊆ St(Φ, R, I) ·K2(Φ, R). Finally, from our assumptions we obtain

H ′ ⊆ [H ′, St(Φ, R)] ⊆ [St(Φ, R, I) ·K2(Φ, R), St(Φ, R)] ⊆ St(Φ, R, I),

from which the assertion of the lemma follows.

Since every commutative ring R can be presented as a quotient of the poly-

nomial ring over Z with possibly an infinite number of variables, we may re-

strict ourselves to considering only integral domains throughout the paper. As

noted before, in this case the homotopes R(s) turn into the usual principal

ideals sR � R.
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