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ABSTRACT

Given a k-uniform hypergraph H and sufficiently large m » mqo(H), we
show that an m-element set I < V(#), chosen uniformly at random, with
probability 1 — e=«(m) is either not independent or is contained in an
almost-independent set in H which, crucially, can be constructed from
carefully chosen o(m) vertices of I. As a corollary, this implies that if the
largest almost-independent set in H is of size o(v(#)) then I itself is an
independent set with probability e=«(™)_ More generally, I is very likely
to inherit structural properties of almost-independent sets in H.

The value mo(#H) coincides with that for which Janson’s inequality
gives that I is independent with probability at most e=©(™0), On the
one hand, our result is a significant strengthening of Janson’s inequality
in the range m » mg. On the other hand, it can be seen as a probabilistic
variant of hypergraph container theorems, developed by Balogh, Morris
and Samotij and, independently, by Saxton and Thomason. While being
strictly weaker than the original container theorems in the sense that it
does not apply to all independent sets of size m, it is nonetheless sufficient
for many applications and admits a short proof using probabilistic ideas.
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1. Introduction

Let H be a k-uniform hypergraph, a k-graph for short, for some k € N. Through-
out the paper we use N (and sometimes v(H)) to denote the number of vertices
in H, and e(H) to denote the number of hyperedges. What is the probability
that an m-element subset I € V(H), chosen uniformly at random among all
m-~element subsets, is an independent set in H? This question is addressed by
Janson’s inequality:

(1) Pr[I is independent] < Cemrn(m)*/Ba(m)
for some sufficiently large (absolute) constant C' > 1, where

pa(m) = e(H)(m/N)*

roughly corresponds to the expected number of edges induced by I, and

Ap(m)= 3 (m/N)lew]

(e,e’)eAn
Ay ={(e,e)eH xH:ene # 2}

corresponds to the usual estimate of the variance of this number. The standard
version of Janson’s inequality is stated for binomial random subsets, that
is, when I is formed by taking each element with probability p = m/N, inde-
pendently of all other elements (e.g., see [2]). Inequality (1) follows from it by
standard concentration bounds, and we refer the reader to [1, Lemma 5.2] for
details.

In this paper, we are interested in the case where (1) gives that I is indepen-
dent with probability at most e=©("™) which happens for

Ap(m) = O(ps(m)?/m).
When I is a binomial random subset with p = m/N, this is the correct or-
der of magnitude as I is an empty set (hence independent) with probabil-
ity (1-p)"
spect to uniform sampling, however, it is perhaps less known (and somewhat

~ e~ ™. The inequality is also correct in many instances with re-

surprising) that there are cases where (1) significantly overestimates the true
probability, that is, where the true probability of I being independent decays
as e~“(™) Let us look at two examples of 3-graphs, 7, and A,,, which demon-
strate this. The vertices of 7, correspond to the edges of K, a complete graph
with n vertices (hence N = (g)), and three vertices form a hyperedge if the
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corresponding edges in K, form a triangle. The vertices of A, are integers
{1,...,n} (hence N = n), and three vertices (that is, numbers) form a hyper-
edge if they form a 3-term arithmetic progression. It is an easy exercise to show
that

Az (m) = O (ug (m)?/m)

if m > N%* (% =7T,) and m = N2 (H = A,). In the case where H = Ty,
the probability of I being independent is indeed e~©(™) in this range, however
for H = A, it decays as e=<("™) for m » /N (see [16, 19] for self-contained
proofs, and [3] for further refinements). Note that this does not contradict the
discussion about the binomial case as the event of sampling an empty set here
happens with probability 0 (i.e., we always have exactly m elements).

The previous two examples show that inequality (1), in general, cannot be
improved, but also that parameters uy and Ay do not capture all the relevant
aspects of H. In particular, the main qualitative difference between 7,, and A,,,
not captured by these parameters, is the size of a largest independent set. A
largest independent set in 7, is of size roughly N/2 (Mantel’s theorem), and
in A, of size o(N) (Roth’s theorem), and we can lower bound the probability
of I being independent by the probability it is a subset of such a (fixed) in-
dependent set, which is e=©(™) and e~“(™ respectively. Our main result, or
rather its corollary, shows that the size of a largest (almost-)independent set is,
indeed, a missing component in (1). Briefly, it states that with overwhelmingly
high probability a sampled set I is either not independent or is a subset of an
almost independent set in H. This would be rather trivial—after all, if I is an
independent set then I < I makes the previous statement vacuously hold—if
it was not for the additional fact that such an almost-independent set can be
constructed by looking only at some carefully chosen o(m) vertices of I. As we
will shortly see, this implies that the previously discussed lower bound coming
from the probability that we sample a subset of a fixed independent set in H
gives roughly the correct exponent.

To state the result concisely we need a few more definitions. Given a sub-
set V' € V(H), we use e(V') as shorthand for e(H[V']), the number of hyper-
edges in the subgraph of H induced by V’. Given ¢ > 0, denote with Z.(H)
the family of all subsets S € V(H) with e(S) < ee(#H). Finally, given a set F,
let P(F) denote the family of all subsets of F.
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THEOREM 1.1 (Probabilistic Hypergraph Containers): For every k € N
and ¢, B > 0, there exists v, T > 0 such that the following holds. Let H be
an N-vertex k-graph, and suppose mg € N (mg < N) satisfies

(2) Ay (mo) < Bpz,(mo)/mo.

Then for every Tmg < m < N there exists a function f,: P(V(H))*~! — Z.(H)
such that an m-element I < V(H), chosen uniformly at random, with probabil-
ity at least 1 — e™ satisfies (at least) one of the following properties:

(P1) e() = v - pp(m), or
(P2) there exists F < I, |F| = em, such that for some F € P(F)*~! we have

ICcFufnF).

Let us describe a typical application of Theorem 1.1. Suppose H is such that
e(S) < ee(H) implies | S| < BN, where 8 — 0 ase¢ — 0 and N — o (technically,
we need to consider a family of hypergraphs {#;}). This is, for example, the
case for H = A,, due to Roth’s theorem, and for hypergraphs constructed from
longer arithmetic progressions due to Szemerédi’s theorem. We use Theorem 1.1
to estimate the probability that an m-element I < V(#H) sampled uniformly at
random, for sufficiently large m, is independent. Choose € > 0, and suppose my
satisfies (2) and m > T'(¢)mg. For each F' € V(H) of size em and F € P(F)*1,
consider the set A = f,,(F). This gives us a family of ¢t = (E]xb) 2™k pairs of
sets, (F1,A41),...,(F, At), where each F; is of size em and A; induces at most
ee(H) edges and, therefore, is of size |4;| < SN. Let £ denote the event that I
is an independent set, and let £ denote the event that I satisfies the conclusion
of Theorem 1.1. Then

Pr[&;7] = Pr[&r | E7) Pr[E7] + Pr[&r | 7] Pr[E7]
< Pr[&r | Er] + Pr[ﬁ] < Pr[&r | Er] + ™.
Conditioning on the event &p, if I is an independent set then F; < I and
I~ F; € A; for some i € [t]. Calculating the probability that this happens
involves manipulation of binomial coefficients, and it eventually gives e=¢™
for ¢ — 0 as 8 — 0 (see the proof of [4, Theorem 1.1] for details). Therefore, I
is independent with probability e=“("™) as m » mg. As a comparison, Janson’s
inequality implies that I is independent with probability at most e=©("™) in this

range of m.
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A reader familiar with recent developments in extremal and probabilistic
combinatorics will notice that Theorem 1.1 is, in fact, an approximate (or prob-
abilistic) version of the result of Balogh, Morris, and Samotij [4] and Saxton
and Thomason [20], colloquially called hypergraph container theorems (see also
an excellent survey by Balogh, Morris, and Samotij [5]). In particular, both of
these results state that the described property holds with probability exactly 1,
that is, for every I which does not satisfy (P1) the part (P2) holds. With
very little effort, hypergraph containers imply almost all known extremal re-
sults in random graphs, some of which were originally proven in breakthroughs
by Schacht [22] and Conlon and Gowers [12], and many counting results, such
as the celebrated KLR conjecture [14] or the number of maximal triangle-free
graphs [6]. All of these results can also be derived from Theorem 1.1 in much
the same way, and we demonstrate its use to prove one such new result in
Section 4. That being said, there are also results, such as [8, 13, 15], where
Theorem 1.1 does not suffice. These examples rely on an iterative application
of the containers, for which Theorem 1.1, due to the existence of an exceptional
family of ‘bad’ m-element subsets, is not suited.

As remarked earlier, Theorem 1.1 strengthens Janson’s inequality in the
higher range of m. However, it does not imply Janson’s inequality in the lower
range, thus the two are not comparable. The upper bound on Ay (myg) is very
close in spirit to the notion of (K, p)-boundedness from [22] and the assumption
in [7, Theorem 2.1]. The main advantage of working directly with Ay (mg) is
that it is exactly the parameter used in Janson’s inequality, making the cases
where a container-type statement applies more transparent. The main value of
our new proof lies in the simplicity and transparency of the ideas which, in our
view, exploit the very essence of why the existence of the containers (i.e., the
existence of F' and f satisfying (P2)) is not surprising.

1.1. PROOF OUTLINE. The proofs of container theorems from [4] and [20] are
roughly along the same lines and differ mainly in the analysis of an otherwise
very similar algorithm for finding a subset F' < I and constructing containers. A
few other proofs have been obtained since, including the recent work by Balogh
and Samotij [7] which provides almost optimal dependency of parameters, a
short proof by Bernshteyn, Delcourt, Towsner, and Tserunyan [9], and another
simpler proof by Saxton and Thomason [21] of a variant which only applies to
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linear hypergraphs. The proof we present here uses probabilistic ideas and, at
its core, relies on the deletion method of Rodl and Rucinski.

In the remainder of this section we discuss two things: which property the
bound (2) implies, and how does such a property give the existence of the
function f,,, and a suitable subset F' in (P2)?

The intuition behind the assumption (2) is best described on a simple exam-
ple H = T,. We naturally refer to the vertices of 7T,, as edges, and hyperedges
in 7, as triangles. Recall that

N = (g) and  e(H) = (g)

As mentioned earlier, Ay (m) = O(up(m)?/m) holds for m > N3/4 that is,

m>n3/2

. What is important about this value of m is that every edge e € K,
with constant positive probability, forms a triangle with two edges from a ran-
domly chosen m-element I < E(K,). Indeed, each edge e belongs to n — 2
different triangles, and the probability that in each such triangle we sample at

most one other edge is at most
(1= (m/N)*)"2,

which is constant for m > n3/2

. One can apply a similar argument to conclude
that in any S < F(K,) which spans at least en® triangles, there are ©.(n?)
edges in S which, with constant positive probability, form a triangle with two
edges from a randomly chosen m-element I’ € S. In other words, ©.(n?) edges
in S form a triangle with some two edges from I’, in expectation.

Let us now see how to use the described property. Instead of looking at the
whole I at once, we ‘reveal’ it in pieces I = I u Iy U ---. From the previous
discussion, we expect ©(n?) edges in E(K,) to form a triangle with some two
edges from Iy, for a randomly chosen I; of size ém > myg. Let us denote these
edges with Ly, and note that if I is to be independent (that is, triangle-free)
then I \ I € Lq, where L1 = F(K,,) Ly. If Ly spans less than en? triangles,
then we could set f,,(I1) = L; and we are done. Otherwise, Ly spans enough
triangles, thus, again, we expect ©.(n?) edges in L; to form a triangle with
two edges from a randomly chosen Iy € Ly of size |I3| = &m. Defining Lo to
be the set of edges in Ly which do not form a triangle with two edges from I,
we further have I ~\ (I3 u I3) € Lo, and so on. By repeating this argument
constantly many rounds, we eventually arrive at a subset of edges L., for some
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constant z, which contains less than en?® triangles. Crucially, by taking & to be
sufficiently small (and thus m > TN 3/4 for T sufficiently large), we can keep
the total size of the revealed part of I to be smaller than em.

The actual proof proceeds in a somewhat different manner, but the described
argument is implicitly present. The assumption (2) is also used more directly,
through Paley-Zygmund inequality, to deduce that there are many vertices in a
k-graph H which form a hyperedge with some k— 1 vertices from a certain small
subset. Finally, at this point we are not in a position to say more about where
m

the probability €™ comes from, other than it is obtained through an application
of the deletion lemma of R6dl and Ricinski [18].

2. Proof of the probabilistic containers

Given subsets D, W < V(H) and k' € [k — 1], let e (D, W) denote the number
of edges in H[D u W] which intersect W in at least k' vertices. Similarly, for a
vertex v € D let deg,, (v, D, W) denote the number of edges in H[D u W] which
contain v and intersect W . {v} in at least k' vertices.

Definition 2.1: Let H be a k-graph and &' € [k — 1]. A subset W < V(H) is
(K', a, t)-saturating for D < V(H), for some a,t > 0, if

(3) |{ve D: degy (v,D,W) =t/N}| = aN.

The following lemma is the main building block in the proof of Theorem 1.1.
Note, it is crucial that o does not depend on &.

LEMMA 2.2: Forevery keN and¢,, 8, B>0, there exist a=a(k, 8, B), A\, T>0
such that the following holds. Let H be a k-graph and suppose mg € N (mg < N)
satisfies
Ay (mo) < Bpz,(mo)/mo.

Let Tmy < m < N. Then there exists a family B,, of m-element subsets
of V(H), |Bm| < ™ (TJX), such that every m-element I < V(H), I ¢ B,,, has the
following property: There exists X € I, | X| < 8m, such that if some I' € I\ X,
|[I'| = m/2, and D < V(H) satisfy

(4) ew (D, 1) = 7 - e(H)g",

where ¢ = m/N and k' € [k —1], then I’ contains a (k', a, A\e(H)q" )-saturating
set W for D of size |[W| < &m.
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Let us give a brief intuition behind the statement of Lemma 2.2. First, if
D = V(H) and I’ is chosen uniformly at random, then e(H)g* roughly corre-
sponds to the expected number of edges which intersect I’ in at least k&’ elements.
If (4) holds and the edges intersecting I’ are evenly distributed, then we expect
many vertices v € D to satisfy the degree condition in (3) with t = Q(e(H)q"")
and I’ having the role of W. By choosing W < I’ uniformly at random we can
hope that it satisfies a scaled down version of (4) and inherits the distribution
of the edges intersecting it. Consequently, W is saturating for D. The key
part of the lemma is that properties which are sufficient to guarantee such a
distribution of edges hold for all but at most f™-fraction of m-element subsets.
The proof is based on the Rodl-Rucinski deletion method, and we postpone it
for the next section. Instead, we now prove Theorem 1.1.

Proof of Theorem 1.1. Let us start by fixing the constants. Set 8 = £/(2k?),
Ao = ¢, and for each k' = 1,...,k — 1, iteratively, set

e = Aw-16/(2k%),  aw = ag o(k, B, B),

& = e/ (4k?), N = Ao o(k, &k, i, B, B).
Note that it is crucial here that a in Lemma 2.2 does not depend on &, as
otherwise we would get a circular dependency. Finally, set

T = T k ’ / B .
k'IEIEl?z(l] 22( 7§k s VE ,/6, )

We prove the statement for v = v, = A\_1£/(2k?). Throughout the proof we
use ¢ = m/N.

For each k' € [k — 1], let Bff; be the family of m-element subsets given by
Lemma 2.2 for & (as £), v (as ), 8 and B. Take B,, to be the collection
of all the sets from these families, thus |B,,| < ™ (N ). We show that every

m

m-element I ¢ B,, such that e(I) < - uy(m) satisfies (P2).

FUNCTION f,,. Given F = (Fy,...,Fi_1) € P(V(H))*~!, set Dy := V(H) and
iteratively define Dy, for k' =k —1,...,0 as follows:

(5) Dk’ = {’U € Dk’+1: degk,(v,Dk/H,Fk/) < tk//N},

where tp = A - e(H)g" . In the case K’ = 0 we slightly abuse the notation
by using non-defined Fy, which is actually irrelevant for the definition of Dy.
Finally, we set f.,(F) = Dy. Note that e(Dy) < Age(H) by the definition
of tg, and furthermore Age(H) = ee(H) by the choice of Ag. Therefore, we
have fn,(F) € Z.(H), as required.
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FinDING F. Consider some m-element I ¢ B,,, and suppose (P1) does not hold.
Let X < I be the union of the sets X* promised by Lemma 2.2 for k' € [k —1],
with parameters associated to each k' as stated above. Then |X| < em/(2k) by
the choice of 8. Set I' = I ~ X. We find Fi,...,F,_1 € I' using the following
algorithm:
e Set Dy, = V(H).
e Fork=k—-1,...,1:
(1) Initially set Fr = @ and Dy = Djyryq.
(2) While e (Dyr, I') = i - e(H)g":
(a) Let W < I be a (K, ay,ty)-saturating set for Dy of size
|[W| < &m (guaranteed to exist by Lemma 2.2).
(b) Update Fj = Fjy U W.
(¢c) Set Dy to be as defined in (5) with respect to the new set
Fy.

Consider one particular k' € {k—1,...,1}. By the choice of W in (a), in each
iteration of the while loop the set Dy decreases by at least ayIN. Therefore,
after at most [1/ay/] iterations we obtain a set Fys of size at most em/(2k)
(owing to the choice of &) such that the set Dy satisfies

(6) e (D, I') <y - e(H)g" .

As I does not satisfy (P1) we also have ey (Dg, I') = e(I') < i, - e(H)q".

It remains to show that Dg, which is equal to f,,(F) for F = (Fy,..., Fr_1),
contains almost all the elements from I’. To this end, let R < I’ denote the set
of all elements which are not contained in Dy. Suppose towards a contradiction,
that |R| = em/2. Then for some k' € {0,...,k — 1} we have |Ry/| = em/(2k),
where Ry = R n (Dkurl ~ Dy/). This 1mphes

w1 (D1, 1) = Z degy (v, D1, 1) > ¢ Z degy, (v, D11, Fr)
’UGRk/ ’UGRk/
em  ty K +1
= N Yir+1e(H)q )

which contradicts (6). Therefore, |R| < em/2. All together, the set
F=XURUF, u...uF,_4

is of size |F| < em and I € F u f,,(F). By adding arbitrary elements to F' if
needed, we can assume |F| = em. |
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3. Saturating sets

The following lemma captures the main technical property used in the proof of
Lemma 2.2.

Definition 3.1: Let H be a k-graph. Given a subset @ < V(H), z € Ny
and & > 0, set
AZEx)= Y Quleue)glevdle,
(e,e’)eAn
where
1, if]|S\Q| <z,

0, otherwise.

QI(S) =

Note that Qo(S) is the indicator function for S < Q.

LEMMA 3.2: For every k € N and § > 0, there exists K > 1 such that the
following holds. Let H be a k-graph and m € N (m < N). Then an m-element
subset I < V (M), chosen uniformly at random, with probability at least 1 — ™
contains X < I, |X| < fm, such that, for every integer z € [0,2k — 1] and

every & > 0, we have
(7) ALY (€ ) < KAy (Em) - (Em/N)™".
We postpone the proof of Lemma 3.2, and instead derive Lemma 2.2 first.

Proof of Lemma 2.2. Let B, be the family of ‘bad’ m-element subsets of V (H)
implied by Lemma 3.2. We show that an m-element subset I € V(H), I ¢ B,,,
satisfies the property of the lemma.

Let X < I be a subset of size |X| < fm, promised by Lemma 3.2. Let
k' € [k—1], and suppose e (D, I') = ye(H)q" for some I' € I~ X, |I'| = m/2,
and D € V(H) (recall ¢ = m/N).

CrAIM 3.3: There exists a subset W < I’ with the following properties:
(a) [W]|<&m,
(b) ex (D, W) = o - ve(H)(q€)" , and
(©) Buev () degi (v, W) < N - Z(ve(H)(g€)¥' /N)?,
where o, Z > 0 are constants which do not depend on £ and v, and degy, (v, W)

denotes the number of edges in H which contain v and at least k' vertices
from W ~ {v}.
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Suppose Claim 3.3 holds, and let W < I’ be a promised subset. We show
that W is saturating for D. Consider v € V(#) chosen uniformly at random
and let Y = degy, (v, D, W) (for v ¢ D we have deg,, (v, D,W) = 0). Then

E,[Y] = ew (D, W)/N.
As degy (v, D, W) < deg,, (v, W), from (b) and (c) we conclude
E,[Y?] < E,[Y]*Z/o?.
Applying the Paley—Zygmund inequality, we get
Pr(v > Ev)2) > DL s 07/02) -
In other words, for at least aN elements v € V(H) we have
degy, (v, D, W) = Ae(H)q" /N,

where A = o7& /2, hence W is (K, a, \e(H)¢*' )-saturating for D. This finishes
the proof of Lemma 2.2, pending on the proof of Claim 3.3. |

Proof of Claim 3.3. Throughout the proof, we rely on the fact that for m = my
we have Ay (m) < (m/mg)?* 1Az (mg) and, consequently,

Ay (m) < Bugy(m)?/m

by the assumption of Lemma 3.2.

We prove the existence of a desired subset W < I’ using the probabilistic
method. In particular, we show that a subset W < I’ formed by taking each
element in I’ with probability £/2, independently of all other elements, satisfies
(a)—(c) (simultaneously) with positive probability. For a start, we have Pr[(a)] >
1/2 by Markov’s inequality. Using Paley—Zygmund inequality we next show
Pr[(b)] = 4/5, and then, again, using Markov’s inequality, Pr[(c)] = 4/5.

Let L = ey (D, W), and for each e € H let L. be an indicator variable for
the event |[e n W[ > k'. Then L = > 4p,pjXe, thus by the linearity of
expectation

E[L] = ex (D, I') - (&/2)F > ~e(H)(q6)* /2",
where the first inequality follows from a fact that for every edge e such

that |e n I'| < k' we deterministically have L. = 0. On the one hand, this
implies that if e n I’| < k then L. is independent of all other variables. On the
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other hand, if some variables L. and L/, are not independent then we necessarily
have e n I'| = k and |e/ n I'| = k, thus

(8) [eve)NT'|<lexTI'|+ e \I'|<2(k—k).

We now estimate E[LQ] as follows:

E[L’] <E[L]*+ ) E[ <E[L]*+ )1

e~e’ e~e’

(8)
<E[LP+ ), Qu-awleue)=E[L]”+ ALY (1,2k - 2K),

(e,e’)eAn
where the first two sums go over (ordered) pairs of edges such that L.
and L are not independent. As I ~ X satisfies the property of Lemma 3.2,
for K = K3 9(k, ) we have

~ (7) B ,
A; X(1,2k —2k') < KAy (m) - q 2k+2k

—2k+2k 22kK B

S ka2,

Finally, for o = 1/(2%-10) in (b), Paley-Zygmund! inequality gives the desired

< K(Bpuy(m)*/m) - q E[L]*.

probability:
E[L]?
E[L?]

for sufficiently large m = T'mg (which can be achieved by taking large enough

Pr[(b)] = Pr[L > E[L]/10] > 0.81 - > 4/5,

constant 7).

Proof of Pr[(c)] > 4/5 proceeds similarly. Let S = > .y (3 degy (v, W)
For a vertex v € V(H) and an edge e € H with v € e, let LY be the indicator
random variable for the event |e n (W ~ {v})| = k. Then

S=> > LiLY.

VvEH (e,e’)eAn
ﬂeemel

Note that LYL?, = 1 implies
9) [eve)\W|<2k—2K —1=:z,

thus
E[LVLY] < 22k(¢/2)leve -2,

1 Chebyshev’s inequality would give a better probability, but for our purposes it is not
needed.
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Similarly, if E[LYLY, = 1] > 0 then |(e u ') \ I'| < z. Putting all together, by
the linearity of expectation we have

B =Y S Erzi< Y S L(eud) 22 (g)le

vEH (e,e’)EAy vEH (e,e’)eNy
UE(iﬁel veeme/
<2k Y I(eued) 2% (g/2)lev T = 2k2k . AL (€/2, ).
(e,e’)eAn

The factor 2k in the penultimate inequality corresponds to the fact that for each
(e,€e') € Ay we can choose v € e e in less than 2k ways. From I’ € I\ X, the
assumption that I ~ X satisfies the property of Lemma 3.2, and £ém/2 > myg
(which holds for T sufficiently large), we further get

E[S] < 2k22 ALY (€/2,2) (2 2k2%F . KAy (6m)2) - (€q/2)7"
By (€m/2)?
Em/2

<Z'- (e(H)(€)¥)*/N,

< 2k2%FK - (£q/2)7"

where Z' = 2k22* BK. Finally, taking Z = 527 in (c), Markov’s inequality gives
the desired probability:

Pr[(c)] = Pr[S < BE[S]] = 4/5. ]

The proof of Lemma 3.2 relies on deletion lemma of R6dl and Rucinski. The
lemma originally appears in [18, Lemma 4] and was instrumental in a break-
through by Schacht [22].

LEMMA 3.4 ([17, Lemma A.1]): Let V be a set with N elements and let S be a
family of s-element subsets of V. For every [ > 0 there exists K > 1, such that
an m-element subset I € V (1 < m < N), chosen uniformly at random, with
probability at least 1 — 8™ has the following property: There exists X < I of
size | X| < fm such that I ~ X contains at most

K -[S|(m/N)?
sets from S.

Note that [17, Lemma A.1] requires m < N /4. For m = N /4 the conclusion
trivially holds for K = 4°, thus we may assume it holds in the whole range.
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Proof of Lemma 3.2. Set ¢ = m/N. For an integer u € [k, 2k — 1], let
Ay (u) = {(e,€') € Ay : e u €| = u},

and rewrite Ay (y) as

2k—1

(10) Agly) = Y [Ms(w)l(y/N)".
u=k

For each u € [k, 2k — 1] and s € [u], define a family S2 as follows:
S;={Sceue:(ee)eAy(u) and |S| = s}.

It is important to note an s-subset S appears in S with multiplicity ¢(S) = 0,
where ¢(S) counts the number of distinct pairs (e, e’) € Ay(u) with S S eue'.
We make use of |S2| < 22F| Ay (u)|.
By Lemma 3.4 (applied with 3/k% as ) and union-bound, an m-element

I € V(H), chosen uniformly at random, with probability at least 1— 3™ contains
a subset X < I of size | X| < fm such that, for each u € [k, 2k — 1] and s € [u],
Q = I ~ X satisfies

Y, Q) < K'-[Sg*

SeSy
where K’ = max, K3 4(8/k?, s) and Q(S) = Qo(S) denotes the indicator func-
tion for S € Q. For integers u € [k, 2k — 1] and z € [0, u — 1], we then have

u

D Quleve)< DD Q) < K|Aw(u)lg" 7,

(e.e”)eAn (u) s=u-w S5y

where K = 2k - K'- 2%, For x > u, we use the following trivial bound:

Y Quevd)= ¥ 1< )] < A(wle

(e,e")eN3 (u) (e,e’' )Ny (u)
Putting all together, for an integer x € [0,2k — 1] and £ > 0 we have

2k—1
AG (& x) Z D Quleue)gn T
=k (.)€ (u)
2k—1

<K Z A (w)|(€0)" ™ Y K(¢g) " Ay(em).
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4. Application: Transference for removal lemmas

The hypergraph removal lemma states that for every a > 0 there exists v > 0

such that any k-graph with n vertices and at most yn?()

copies of some fixed
k-graph H can be made H-free by removing at most an® edges. This inno-
cent looking statement has striking implications, the most prominent being
Szemerédi’s theorem [23] on arithmetic progressions in dense sets of natural
numbers. For the history of the lemma, its applications and recent develop-
ments, we refer the reader to the survey by Conlon and Fox [11].

As an application of Theorem 1.1 and, more importantnly, a demonstration
that it is not hindered by the existence of a small number of subsets for which
neither (P1) nor (P2) apply, we prove the following version of a removal lemma
for random hypergraphs. To state it concisely, let us denote with G®*) (n,p)
a subgraph of IC,(lk), the complete k-graph with n vertices, obtained by tak-
ing each hyperedge with probability p, independently of all other edges, for
some p € (0,1].

THEOREM 4.1: For any k-graph H and a > 0 there exists C,v > 0 such that

if p= Cn~Yme(H)  where

) ! !
(H,) H gH,v(H)>k},

then with high probability T' = G®*)(n
H)

,p) has the following property: Every
subgraph I” € T with at most yn* ) pe(H) copies of H can be made H-free by

removing at most an kp edges.

It should be noted that Theorem 4.1 does not have nearly as striking implica-
tions as the original hypergraph removal lemma. Nonetheless, it is an interest-
ing statement which in some way quantifies the distribution of the copies of H
in G®) (n, p). The graph case (k = 2) of Theorem 4.1 was originally obtained by
Conlon, Gowers, Samotij, and Schacht [10] using an adaption of the regularity
method for random graphs. Conlon and Gowers [12] have proved the general
case under the assumption that my(H) is obtained uniquely for H' = H, that
is, when H is strictly k-balanced. Here we prove the statement without any
additional assumption.

It should be noted that the proof of the removal lemma for random graphs
using the regularity method very closely follows the original proof of the regu-
larity lemma for graphs. In contrast, the transference result presented here as
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well as the one by Conlon and Gowers [12] uses the hypergraph removal lemma,
a notoriously difficult result, as a black box. That being said, instead of directly
proving Theorem 4.1 we prove a more general result which abstracts out the
removal property, from which Theorem 4.1 then follows as a straightforward
corollary.

Given s,r € N, we say that a hypergraph H is (s,r)-removable if for every
I € V(H) with e(I) < s there exists X < I of size |X| < r such that I \ X is
an independent set in H.

THEOREM 4.2: For every k € N and B,a > 0 there exists vo,C > 0 such
that the following holds. Let H be a (ye(H),aN)-removable k-graph, for
some v < 7y, and suppose mg € N is such that

Ay (mo) < Bpgg(mg)? /mo.

Let W € V(H) be a random subset formed by taking each element with proba-
bility p = Cmg/N, independently of all other elements. Then with probability
at least 1 —exp(—O(Np)) the induced hypergraph H[W] is (ya*e(H)p*, 3aNp)-
removable.

Proof. Let 7y > 0 be as given by Theorem 1.1 for some sufficiently small
e = (). Suppose H is (ye(H), aN)-removable for some 0 < vy < 7p.

By Chernoff’s inequality, we have Np/2 < |W| < 2Np with probability
1 — exp(—O(Np)). Moreover, a simple union-bound gives the following upper
bound on the probability that an m-element subset excluded by Theorem 1.1,
for aNp < m < 2Np, is a subset of W:

2Np m
N N

Y ()< n(Se) <o
m aNp

m=aNp

for sufficiently small € = e(a). Therefore, from now on we can assume that for
every m-element subset I € W with

(11) e(I) < yoare(H)p" < voe(H)(m/N)F,

for aNp < m < 2Np, the property (P2) of Theorem 1.1 holds.
Suppose there exists I € W which satisfies (11) such that I ~ X is not
independent for every X < I of size |X| < 3aNp. In particular, this implies

|I| = m > 3aNp.
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Then, by (P2), I € Fu f,(F) for some F € I of size |F| = em and F € T_1(F).
As H is (ye(H),aN)-removable and e(f,,(F)) < ~ve(H), there exists a sub-
set R(F) c V(H) of size |R(F)| < alN such that f,,(F) ~ R(F) is an indepen-
dent set. If [W n R(F)| < 2aNp, then we can make I to be an independent
set by removing F' u (W n R(F)) which, for ¢ < «/2, is of size at most 3aNp.
Therefore, we must have

[W n R(F)| > 2aNp.

To summarise, to show the theorem it suffices to bound the probability of
an event that |W n R(F)| = 2aNp for some F € T;_1(F) where F € W is of
size |F| = s with e« Np < s < 2e Np. The probability of this happening for one
particular F is, by Chernoff’s inequality, at most e~*V?/3 thus a union-bound
over all possible F gives the following:

2eNp 2eNp k
Z (N) 2ks _ps . e—uNp/3 < e—aNp/3 Z (62 Np)s
s=aeNp s s=aeNp o
k
< e—aNP/3 . N(e2 Np)QaNp
2eNp ’

which is of order e ®P) for ¢ sufficiently small with respect to . This con-
cludes the proof. |

Note that the proof works just the same using the hypergraph containers
theorem of Saxton and Thomason [20]. For comparison, a variant of Balogh,
Morris, and Samotij [4] does not suffice as it only gives e(I) > 0 in (P1). The-
orem 4.1 now follows as a straightforward application of Theorem 4.2 and the
hypergraph removal lemma.

Proof of Theorem 4.1. Let H be an e(H)-graph whose vertices correspond to
edges in K;k) and e(H) vertices in H form an edge if the corresponding hy-
peredges in ICSC) form a copy of H. By the hypergraph removal lemma, for a
given o > 0 there exists 7, > 0 such that H is (v,e(H), aN)-removable. Further-
more, it is well known (and easy to verify) that Ay (mg) satisfies the condition
of Theorem 4.2 for mg = nF=1/m+(H) and some B > 0. The theorem now follows
for v = min{~v;, v}, where 7 is as given by Theorem 4.2 for @ and B. ]
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