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ABSTRACT

Given a k-uniform hypergraph H and sufficiently large m " m0pHq, we

show that an m-element set I Ď V pHq, chosen uniformly at random, with

probability 1 ´ e´ωpmq is either not independent or is contained in an

almost-independent set in H which, crucially, can be constructed from

carefully chosen opmq vertices of I. As a corollary, this implies that if the

largest almost-independent set in H is of size opvpHqq then I itself is an

independent set with probability e´ωpmq. More generally, I is very likely

to inherit structural properties of almost-independent sets in H.

The value m0pHq coincides with that for which Janson’s inequality

gives that I is independent with probability at most e´Θpm0q. On the

one hand, our result is a significant strengthening of Janson’s inequality

in the range m " m0. On the other hand, it can be seen as a probabilistic

variant of hypergraph container theorems, developed by Balogh, Morris

and Samotij and, independently, by Saxton and Thomason. While being

strictly weaker than the original container theorems in the sense that it

does not apply to all independent sets of size m, it is nonetheless sufficient

for many applications and admits a short proof using probabilistic ideas.
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1. Introduction

Let H be a k-uniform hypergraph, a k-graph for short, for some k P N. Through-

out the paper we use N (and sometimes vpHq) to denote the number of vertices

in H, and epHq to denote the number of hyperedges. What is the probability

that an m-element subset I Ď V pHq, chosen uniformly at random among all

m-element subsets, is an independent set in H? This question is addressed by

Janson’s inequality:

(1) PrrI is independents ă Ce´µHpmq2{∆Hpmq

for some sufficiently large (absolute) constant C ą 1, where

µHpmq “ epHqpm{Nqk

roughly corresponds to the expected number of edges induced by I, and

∆Hpmq “
ÿ

pe,e1qPΛH

pm{Nq|eYe1|

ΛH “ tpe, e1q P H ˆ H : e X e1 ‰ ∅u

corresponds to the usual estimate of the variance of this number. The standard

version of Janson’s inequality is stated for binomial random subsets, that

is, when I is formed by taking each element with probability p “ m{N , inde-

pendently of all other elements (e.g., see [2]). Inequality (1) follows from it by

standard concentration bounds, and we refer the reader to [1, Lemma 5.2] for

details.

In this paper, we are interested in the case where (1) gives that I is indepen-

dent with probability at most e´Θpmq, which happens for

∆Hpmq “ OpµHpmq2{mq.

When I is a binomial random subset with p “ m{N , this is the correct or-

der of magnitude as I is an empty set (hence independent) with probabil-

ity p1 ´ pqN « e´m. The inequality is also correct in many instances with re-

spect to uniform sampling, however, it is perhaps less known (and somewhat

surprising) that there are cases where (1) significantly overestimates the true

probability, that is, where the true probability of I being independent decays

as e´ωpmq. Let us look at two examples of 3-graphs, Tn and An, which demon-

strate this. The vertices of Tn correspond to the edges of Kn, a complete graph

with n vertices (hence N “
`

n
2

˘

), and three vertices form a hyperedge if the
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corresponding edges in Kn form a triangle. The vertices of An are integers

t1, . . . , nu (hence N “ n), and three vertices (that is, numbers) form a hyper-

edge if they form a 3-term arithmetic progression. It is an easy exercise to show

that

∆Hpmq “ ΘpµHpmq2{mq

if m ě N3{4 (H “ Tnq and m ě N1{2 (H “ An). In the case where H “ Tn,

the probability of I being independent is indeed e´Θpmq in this range, however

for H “ An it decays as e´ωpmq for m "
?
N (see [16, 19] for self-contained

proofs, and [3] for further refinements). Note that this does not contradict the

discussion about the binomial case as the event of sampling an empty set here

happens with probability 0 (i.e., we always have exactly m elements).

The previous two examples show that inequality (1), in general, cannot be

improved, but also that parameters µH and ∆H do not capture all the relevant

aspects of H. In particular, the main qualitative difference between Tn and An,

not captured by these parameters, is the size of a largest independent set. A

largest independent set in Tn is of size roughly N{2 (Mantel’s theorem), and

in An of size opNq (Roth’s theorem), and we can lower bound the probability

of I being independent by the probability it is a subset of such a (fixed) in-

dependent set, which is e´Θpmq and e´ωpmq respectively. Our main result, or

rather its corollary, shows that the size of a largest (almost-)independent set is,

indeed, a missing component in (1). Briefly, it states that with overwhelmingly

high probability a sampled set I is either not independent or is a subset of an

almost independent set in H. This would be rather trivial—after all, if I is an

independent set then I Ď I makes the previous statement vacuously hold—if

it was not for the additional fact that such an almost-independent set can be

constructed by looking only at some carefully chosen opmq vertices of I. As we

will shortly see, this implies that the previously discussed lower bound coming

from the probability that we sample a subset of a fixed independent set in H

gives roughly the correct exponent.

To state the result concisely we need a few more definitions. Given a sub-

set V 1 Ď V pHq, we use epV 1q as shorthand for epHrV 1sq, the number of hyper-

edges in the subgraph of H induced by V 1. Given ε ą 0, denote with IεpHq
the family of all subsets S Ď V pHq with epSq ď εepHq. Finally, given a set F ,

let PpF q denote the family of all subsets of F .
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Theorem 1.1 (Probabilistic Hypergraph Containers): For every k P N

and ε,B ą 0, there exists γ, T ą 0 such that the following holds. Let H be

an N -vertex k-graph, and suppose m0 P N pm0 ă Nq satisfies

(2) ∆Hpm0q ď Bµ2
Hpm0q{m0.

Then for every Tm0 ď m ă N there exists a function fm : PpV pHqqk´1 Ñ IεpHq
such that an m-element I Ď V pHq, chosen uniformly at random, with probabil-

ity at least 1 ´ εm satisfies (at least) one of the following properties:

(P1) epIq ě γ ¨ µHpmq, or
(P2) there exists F Ď I, |F | “ εm, such that for some F P PpF qk´1 we have

I Ď F Y fmpFq.

Let us describe a typical application of Theorem 1.1. Suppose H is such that

epSq ă εepHq implies |S| ď βN , where β Ñ 0 as ε Ñ 0 and N Ñ 8 (technically,

we need to consider a family of hypergraphs tHiu). This is, for example, the

case for H “ An due to Roth’s theorem, and for hypergraphs constructed from

longer arithmetic progressions due to Szemerédi’s theorem. We use Theorem 1.1

to estimate the probability that an m-element I Ď V pHq sampled uniformly at

random, for sufficiently large m, is independent. Choose ε ą 0, and suppose m0

satisfies (2) and m ě T pεqm0. For each F Ď V pHq of size εm and F P PpF qk´1,

consider the set A “ fmpFq. This gives us a family of t “
`

N
εm

˘

2εmk pairs of

sets, pF1, A1q, . . . , pFt, Atq, where each Fi is of size εm and Ai induces at most

εepHq edges and, therefore, is of size |Ai| ď βN . Let EI denote the event that I

is an independent set, and let ET denote the event that I satisfies the conclusion

of Theorem 1.1. Then

PrrEI s “ PrrEI | ET s PrrET s ` PrrEI | ET s PrrET s
ď PrrEI | ET s ` PrrET s ď PrrEI | ET s ` εm.

Conditioning on the event ET , if I is an independent set then Fi Ď I and

I r Fi Ď Ai for some i P rts. Calculating the probability that this happens

involves manipulation of binomial coefficients, and it eventually gives e´ζm

for ζ Ñ 0 as β Ñ 0 (see the proof of [4, Theorem 1.1] for details). Therefore, I

is independent with probability e´ωpmq as m " m0. As a comparison, Janson’s

inequality implies that I is independent with probability at most e´Θpmq in this

range of m.
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A reader familiar with recent developments in extremal and probabilistic

combinatorics will notice that Theorem 1.1 is, in fact, an approximate (or prob-

abilistic) version of the result of Balogh, Morris, and Samotij [4] and Saxton

and Thomason [20], colloquially called hypergraph container theorems (see also

an excellent survey by Balogh, Morris, and Samotij [5]). In particular, both of

these results state that the described property holds with probability exactly 1,

that is, for every I which does not satisfy (P1) the part (P2) holds. With

very little effort, hypergraph containers imply almost all known extremal re-

sults in random graphs, some of which were originally proven in breakthroughs

by Schacht [22] and Conlon and Gowers [12], and many counting results, such

as the celebrated K LR conjecture [14] or the number of maximal triangle-free

graphs [6]. All of these results can also be derived from Theorem 1.1 in much

the same way, and we demonstrate its use to prove one such new result in

Section 4. That being said, there are also results, such as [8, 13, 15], where

Theorem 1.1 does not suffice. These examples rely on an iterative application

of the containers, for which Theorem 1.1, due to the existence of an exceptional

family of ‘bad’ m-element subsets, is not suited.

As remarked earlier, Theorem 1.1 strengthens Janson’s inequality in the

higher range of m. However, it does not imply Janson’s inequality in the lower

range, thus the two are not comparable. The upper bound on ∆Hpm0q is very

close in spirit to the notion of pK, pq-boundedness from [22] and the assumption

in [7, Theorem 2.1]. The main advantage of working directly with ∆Hpm0q is

that it is exactly the parameter used in Janson’s inequality, making the cases

where a container-type statement applies more transparent. The main value of

our new proof lies in the simplicity and transparency of the ideas which, in our

view, exploit the very essence of why the existence of the containers (i.e., the

existence of F and f satisfying (P2)) is not surprising.

1.1. Proof outline. The proofs of container theorems from [4] and [20] are

roughly along the same lines and differ mainly in the analysis of an otherwise

very similar algorithm for finding a subset F Ď I and constructing containers. A

few other proofs have been obtained since, including the recent work by Balogh

and Samotij [7] which provides almost optimal dependency of parameters, a

short proof by Bernshteyn, Delcourt, Towsner, and Tserunyan [9], and another

simpler proof by Saxton and Thomason [21] of a variant which only applies to
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linear hypergraphs. The proof we present here uses probabilistic ideas and, at

its core, relies on the deletion method of Rödl and Ruciński.

In the remainder of this section we discuss two things: which property the

bound (2) implies, and how does such a property give the existence of the

function fm and a suitable subset F in (P2)?

The intuition behind the assumption (2) is best described on a simple exam-

ple H “ Tn. We naturally refer to the vertices of Tn as edges, and hyperedges

in Tn as triangles. Recall that

N “
ˆ

n

2

˙

and epHq “
ˆ

n

3

˙

.

As mentioned earlier, ∆Hpmq “ ΘpµHpmq2{mq holds for m ě N3{4, that is,

měn3{2. What is important about this value of m is that every edge e P Kn,

with constant positive probability, forms a triangle with two edges from a ran-

domly chosen m-element I Ď EpKnq. Indeed, each edge e belongs to n ´ 2

different triangles, and the probability that in each such triangle we sample at

most one other edge is at most

p1 ´ pm{Nq2qn´2,

which is constant for m ě n3{2. One can apply a similar argument to conclude

that in any S Ď EpKnq which spans at least εn3 triangles, there are Θεpn2q
edges in S which, with constant positive probability, form a triangle with two

edges from a randomly chosen m-element I 1 Ď S. In other words, Θεpn2q edges

in S form a triangle with some two edges from I 1, in expectation.

Let us now see how to use the described property. Instead of looking at the

whole I at once, we ‘reveal’ it in pieces I “ I1 Y I2 Y ¨ ¨ ¨ . From the previous

discussion, we expect Θpn2q edges in EpKnq to form a triangle with some two

edges from I1, for a randomly chosen I1 of size ξm ą m0. Let us denote these

edges with L̂1, and note that if I is to be independent (that is, triangle-free)

then I r I1 Ď L1, where L1 “ EpKnq r L̂1. If L1 spans less than εn3 triangles,

then we could set fmpI1q “ L1 and we are done. Otherwise, L1 spans enough

triangles, thus, again, we expect Θεpn2q edges in L1 to form a triangle with

two edges from a randomly chosen I2 Ď L1 of size |I2| “ ξm. Defining L2 to

be the set of edges in L1 which do not form a triangle with two edges from I2,

we further have I r pI1 Y I2q Ď L2, and so on. By repeating this argument

constantly many rounds, we eventually arrive at a subset of edges Lz, for some
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constant z, which contains less than εn3 triangles. Crucially, by taking ξ to be

sufficiently small (and thus m ě TN3{4 for T sufficiently large), we can keep

the total size of the revealed part of I to be smaller than εm.

The actual proof proceeds in a somewhat different manner, but the described

argument is implicitly present. The assumption (2) is also used more directly,

through Paley–Zygmund inequality, to deduce that there are many vertices in a

k-graph H which form a hyperedge with some k´1 vertices from a certain small

subset. Finally, at this point we are not in a position to say more about where

the probability εm comes from, other than it is obtained through an application

of the deletion lemma of Rödl and Rúcinski [18].

2. Proof of the probabilistic containers

Given subsets D,W Ď V pHq and k1 P rk ´ 1s, let ek1 pD,W q denote the number

of edges in HrD YW s which intersect W in at least k1 vertices. Similarly, for a

vertex v P D let degk1 pv,D,W q denote the number of edges in HrDYW s which

contain v and intersect W r tvu in at least k1 vertices.

Definition 2.1: Let H be a k-graph and k1 P rk ´ 1s. A subset W Ď V pHq is

pk1, α, tq-saturating for D Ď V pHq, for some α, t ą 0, if

(3) |tv P D : degk1 pv,D,W q ě t{Nu| ě αN.

The following lemma is the main building block in the proof of Theorem 1.1.

Note, it is crucial that α does not depend on ξ.

Lemma 2.2: For every kPN and ξ, γ, β,Bą0, there exist α“αpk, β,Bq, λ, T ą0

such that the following holds. LetH be a k-graph and supposem0 P N pm0 ă Nq
satisfies

∆Hpm0q ď Bµ2
Hpm0q{m0.

Let Tm0 ď m ď N . Then there exists a family Bm of m-element subsets

of V pHq, |Bm| ă βm
`

N
m

˘

, such that every m-element I Ď V pHq, I R Bm, has the

following property: There exists X Ď I, |X | ď βm, such that if some I 1 Ď IrX ,

|I 1| ě m{2, and D Ď V pHq satisfy

(4) ek1 pD, I 1q ě γ ¨ epHqqk1

,

where q “ m{N and k1 P rk ´ 1s, then I 1 contains a pk1, α, λepHqqk1 q-saturating
set W for D of size |W | ď ξm.
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Let us give a brief intuition behind the statement of Lemma 2.2. First, if

D “ V pHq and I 1 is chosen uniformly at random, then epHqqk1

roughly corre-

sponds to the expected number of edges which intersect I 1 in at least k1 elements.

If (4) holds and the edges intersecting I 1 are evenly distributed, then we expect

many vertices v P D to satisfy the degree condition in (3) with t “ ΩpepHqqk1 q
and I 1 having the role of W . By choosing W Ď I 1 uniformly at random we can

hope that it satisfies a scaled down version of (4) and inherits the distribution

of the edges intersecting it. Consequently, W is saturating for D. The key

part of the lemma is that properties which are sufficient to guarantee such a

distribution of edges hold for all but at most βm-fraction of m-element subsets.

The proof is based on the Rödl–Ruciński deletion method, and we postpone it

for the next section. Instead, we now prove Theorem 1.1.

Proof of Theorem 1.1. Let us start by fixing the constants. Set β “ ε{p2k2q,
λ0 “ ε, and for each k1 “ 1, . . . , k ´ 1, iteratively, set

γk1 “ λk1´1ε{p2k2q, αk1 “ α2.2pk, β,Bq,
ξk1 “ αk1ε{p4k2q, λk1 “ λ2.2pk, ξk1 , γk1 , β, Bq.

Note that it is crucial here that α in Lemma 2.2 does not depend on ξ, as

otherwise we would get a circular dependency. Finally, set

T “ max
k1Prk´1s

T2.2pk, ξk1 , γk1 , β, Bq.

We prove the statement for γ “ γk “ λk´1ε{p2k2q. Throughout the proof we

use q “ m{N .

For each k1 P rk ´ 1s, let Bk1

m be the family of m-element subsets given by

Lemma 2.2 for ξk1 (as ξ), γk1 (as γ), β and B. Take Bm to be the collection

of all the sets from these families, thus |Bm| ă εm
`

N
m

˘

. We show that every

m-element I R Bm such that epIq ă γ ¨ µHpmq satisfies (P2).

Function fm. Given F “ pF1, . . . , Fk´1q P PpV pHqqk´1, set Dk :“ V pHq and

iteratively define Dk1 for k1 “ k ´ 1, . . . , 0 as follows:

(5) Dk1 “ tv P Dk1`1 : degk1 pv,Dk1`1, Fk1 q ă tk1 {Nu ,

where tk1 “ λk1 ¨ epHqqk1

. In the case k1 “ 0 we slightly abuse the notation

by using non-defined F0, which is actually irrelevant for the definition of D0.

Finally, we set fmpFq “ D0. Note that epD0q ď λ0epHq by the definition

of t0, and furthermore λ0epHq “ εepHq by the choice of λ0. Therefore, we

have fmpFq P IεpHq, as required.
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Finding F. Consider some m-element I R Bm, and suppose (P1) does not hold.

Let X Ď I be the union of the sets Xk1

promised by Lemma 2.2 for k1 P rk ´ 1s,
with parameters associated to each k1 as stated above. Then |X | ă εm{p2kq by

the choice of β. Set I 1 “ I rX . We find F1, . . . , Fk´1 Ď I 1 using the following

algorithm:

‚ Set Dk “ V pHq.
‚ For k1 “ k ´ 1, . . . , 1:

(1) Initially set Fk1 “ ∅ and Dk1 “ Dk1`1.

(2) While ek1 pDk1 , I 1q ě γk1 ¨ epHqqk1

:

(a) Let W Ď I 1 be a pk1, αk1 , tk1 q-saturating set for Dk1 of size

|W | ď ξk1m (guaranteed to exist by Lemma 2.2).

(b) Update Fk1 “ Fk1 Y W .

(c) Set Dk1 to be as defined in (5) with respect to the new set

Fk1 .

Consider one particular k1 P tk´ 1, . . . , 1u. By the choice of W in (a), in each

iteration of the while loop the set Dk1 decreases by at least αk1N . Therefore,

after at most r1{αk1s iterations we obtain a set Fk1 of size at most εm{p2kq
(owing to the choice of ξk1 ) such that the set Dk1 satisfies

(6) ek1 pDk1 , I 1q ă γk1 ¨ epHqqk1

.

As I does not satisfy (P1) we also have ekpDk, I
1q “ epI 1q ă γk ¨ epHqqk.

It remains to show that D0, which is equal to fmpFq for F “ pF1, . . . , Fk´1q,
contains almost all the elements from I 1. To this end, let R Ď I 1 denote the set

of all elements which are not contained in D0. Suppose, towards a contradiction,

that |R| ě εm{2. Then for some k1 P t0, . . . , k ´ 1u we have |Rk1 | ě εm{p2kq,
where Rk1 “ R X pDk1`1 rDk1 q. This implies

ek1`1pDk1`1, I
1q ě 1

k

ÿ

vPR
k1

degk1 pv,Dk1`1, I
1q ě 1

k

ÿ

vPR
k1

degk1 pv,Dk1`1, Fk1 q

ě εm

2k2
¨ tk1

N
“ γk1`1epHqqk1`1,

which contradicts (6). Therefore, |R| ă εm{2. All together, the set

F “ X Y R Y F1 Y . . . Y Fk´1

is of size |F | ď εm and I Ď F Y fmpFq. By adding arbitrary elements to F if

needed, we can assume |F | “ εm.
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3. Saturating sets

The following lemma captures the main technical property used in the proof of

Lemma 2.2.

Definition 3.1: Let H be a k-graph. Given a subset Q Ď V pHq, x P N0

and ξ ą 0, set

∆Q
H

pξ, xq “
ÿ

pe,e1qPΛH

Qxpe Y e1qξ|eYe1|´x,

where

QxpSq “

$

&

%

1, if |S rQ| ď x,

0, otherwise.

Note that Q0pSq is the indicator function for S Ď Q.

Lemma 3.2: For every k P N and β ą 0, there exists K ą 1 such that the

following holds. Let H be a k-graph and m P N pm ă Nq. Then an m-element

subset I Ď V pHq, chosen uniformly at random, with probability at least 1 ´βm

contains X Ď I, |X | ď βm, such that, for every integer x P r0, 2k ´ 1s and

every ξ ą 0, we have

(7) ∆IrX
H

pξ, xq ď K∆Hpξmq ¨ pξm{Nq´x.

We postpone the proof of Lemma 3.2, and instead derive Lemma 2.2 first.

Proof of Lemma 2.2. Let Bm be the family of ‘bad’ m-element subsets of V pHq
implied by Lemma 3.2. We show that an m-element subset I Ď V pHq, I R Bm,

satisfies the property of the lemma.

Let X Ď I be a subset of size |X | ď βm, promised by Lemma 3.2. Let

k1 P rk´ 1s, and suppose ek1 pD, I 1q ě γepHqqk1

for some I 1 Ď I rX , |I 1| ě m{2,

and D Ď V pHq (recall q “ m{N).

Claim 3.3: There exists a subset W Ď I 1 with the following properties:

(a) |W | ď ξm,

(b) ek1 pD,W q ě σ ¨ γepHqpqξqk1

, and

(c)
ř

vPV pHq deg2
k1 pv,W q ď N ¨ ZpγepHqpqξqk1 {Nq2,

where σ, Z ą 0 are constants which do not depend on ξ and γ, and degk1 pv,W q
denotes the number of edges in H which contain v and at least k1 vertices

from W r tvu.
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Suppose Claim 3.3 holds, and let W Ď I 1 be a promised subset. We show

that W is saturating for D. Consider v P V pHq chosen uniformly at random

and let Y “ degk1 pv,D,W q (for v R D we have degk1 pv,D,W q “ 0). Then

EvrY s ě ek1 pD,W q{N.

As degk1 pv,D,W q ď degk1 pv,W q, from (b) and (c) we conclude

EvrY 2s ď EvrY s2Z{σ2.

Applying the Paley–Zygmund inequality, we get

PrvpY ě EvrY s{2q ě EvrY s2
4EvrY 2s ě σ2{p4Zq “: α.

In other words, for at least αN elements v P V pHq we have

degk1 pv,D,W q ě λepHqqk1 {N,

where λ “ σγξk
1 {2, hence W is pk1, α, λepHqqk1 q-saturating for D. This finishes

the proof of Lemma 2.2, pending on the proof of Claim 3.3.

Proof of Claim 3.3. Throughout the proof, we rely on the fact that for m ě m0

we have ∆Hpmq ď pm{m0q2k´1∆Hpm0q and, consequently,

∆Hpmq ď BµHpmq2{m

by the assumption of Lemma 3.2.

We prove the existence of a desired subset W Ď I 1 using the probabilistic

method. In particular, we show that a subset W Ď I 1 formed by taking each

element in I 1 with probability ξ{2, independently of all other elements, satisfies

(a)–(c) (simultaneously) with positive probability. For a start, we have Prr(a)s ě
1{2 by Markov’s inequality. Using Paley–Zygmund inequality we next show

Prr(b)s ě 4{5, and then, again, using Markov’s inequality, Prr(c)s ě 4{5.

Let L “ ek1 pD,W q, and for each e P H let Le be an indicator variable for

the event |e X W | ě k1. Then L “ ř

ePHrDYI1s Xe, thus by the linearity of

expectation

ErLs ě ek1 pD, I 1q ¨ pξ{2qk1 ą γepHqpqξqk1 {2k,

where the first inequality follows from a fact that for every edge e such

that |e X I 1| ă k1 we deterministically have Le “ 0. On the one hand, this

implies that if |eX I 1| ă k then Le is independent of all other variables. On the
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other hand, if some variables Le and L1
e are not independent then we necessarily

have |e X I 1| ě k and |e1 X I 1| ě k, thus

(8) |pe Y e1q r I 1| ď |er I 1| ` |e1
r I 1| ď 2pk ´ k1q.

We now estimate ErL2s as follows:

ErL2s ď ErLs2 `
ÿ

e„e1

ErLeLe1 s ď ErLs2 `
ÿ

e„e1

1

(8)

ď ErLs2 `
ÿ

pe,e1qPΛH

Q2k´2k1 pe Y e1q “ ErLs2 ` ∆IrX
H

p1, 2k ´ 2k1q,

where the first two sums go over (ordered) pairs of edges such that Le

and Le1 are not independent. As I r X satisfies the property of Lemma 3.2,

for K “ K3.2pk, βq we have

∆IrX
H

p1, 2k ´ 2k1q
(7)
ď K∆Hpmq ¨ q´2k`2k1

ď KpBµHpmq2{mq ¨ q´2k`2k1 ď 22kKB

ξ2kγ2m
¨ ErLs2.

Finally, for σ “ 1{p2k¨10q in (b), Paley–Zygmund1 inequality gives the desired

probability:

Prr(b)s ě PrrL ě ErLs{10s ě 0.81 ¨ ErLs2
ErL2s ą 4{5,

for sufficiently large m ě Tm0 (which can be achieved by taking large enough

constant T ).

Proof of Prr(c)s ą 4{5 proceeds similarly. Let S “ ř

vPV pHq degk1 pv,W q2.

For a vertex v P V pHq and an edge e P H with v P e, let Lv
e be the indicator

random variable for the event |e X pW r tvuq| ě k1. Then

S “
ÿ

vPH

ÿ

pe,e1qPΛH

vPeXe1

Lv
eL

v
e1 .

Note that Lv
eL

v
e1 “ 1 implies

(9) |pe Y e1q rW | ď 2k ´ 2k1 ´ 1 “: x,

thus

ErLv
eL

v
e1 s ă 22kpξ{2q|eYe1|´x.

1 Chebyshev’s inequality would give a better probability, but for our purposes it is not

needed.
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Similarly, if ErLv
eL

v
e1 “ 1s ą 0 then |pe Y e1q r I 1| ď x. Putting all together, by

the linearity of expectation we have

ErSs “
ÿ

vPH

ÿ

pe,e1qPΛH

vPeXe1

ErLv
eL

v
e1 s ď

ÿ

vPH

ÿ

pe,e1qPΛH

vPeXe1

I 1
xpe Y e1q ¨ 22kpξ{2q|eYe1|´x

ă 2k
ÿ

pe,e1qPΛH

I 1
xpe Y e1q ¨ 22kpξ{2q|eYe1|´x “ 2k2k ¨ ∆I1

Hpξ{2, xq.

The factor 2k in the penultimate inequality corresponds to the fact that for each

pe, e1q P ΛH we can choose v P eX e1 in less than 2k ways. From I 1 Ď I rX , the

assumption that I r X satisfies the property of Lemma 3.2, and ξm{2 ě m0

(which holds for T sufficiently large), we further get

ErSs ď 2k22k∆IrX
H

pξ{2, xq
(7)
ď 2k22k ¨ K∆Hpξm{2q ¨ pξq{2q´x

ď 2k22kK ¨ BµHpξm{2q2
ξm{2

pξq{2q´x

ď Z 1 ¨ pepHqpξqqk1 q2{N,

where Z 1 “ 2k22kBK. Finally, taking Z “ 5Z 1 in (c), Markov’s inequality gives

the desired probability:

Prr(c)s ě PrrS ď 5ErSss ě 4{5.

The proof of Lemma 3.2 relies on deletion lemma of Rödl and Ruciński. The

lemma originally appears in [18, Lemma 4] and was instrumental in a break-

through by Schacht [22].

Lemma 3.4 ([17, Lemma A.1]): Let V be a set with N elements and let S be a

family of s-element subsets of V . For every β ą 0 there exists K ą 1, such that

an m-element subset I Ď V p1 ď m ď Nq, chosen uniformly at random, with

probability at least 1 ´ βm has the following property: There exists X Ď I of

size |X | ď βm such that I rX contains at most

K ¨ |S|pm{Nqs

sets from S.

Note that [17, Lemma A.1] requires m ă N{4. For m ě N{4 the conclusion

trivially holds for K “ 4s, thus we may assume it holds in the whole range.
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Proof of Lemma 3.2. Set q “ m{N . For an integer u P rk, 2k ´ 1s, let

ΛHpuq “ tpe, e1q P ΛH : |e Y e1| “ uu,

and rewrite ∆Hpyq as

(10) ∆Hpyq “
2k´1
ÿ

u“k

|ΛHpuq|py{Nqu.

For each u P rk, 2k ´ 1s and s P rus, define a family Ss
u as follows:

S
s
u “ tS Ď e Y e1 : pe, e1q P ΛHpuq and |S| “ su.

It is important to note an s-subset S appears in Ss
u with multiplicity cpSq ě 0,

where cpSq counts the number of distinct pairs pe, e1q P ΛHpuq with S Ď e Y e1.

We make use of |Ss
u| ď 22k|ΛHpuq|.

By Lemma 3.4 (applied with β{k2 as β) and union-bound, an m-element

I Ď V pHq, chosen uniformly at random, with probability at least 1´βm contains

a subset X Ď I of size |X | ď βm such that, for each u P rk, 2k ´ 1s and s P rus,
Q “ I rX satisfies

ÿ

SPSu
s

QpSq ď K 1 ¨ |Su
s |qs

where K 1 “ maxs K3.4pβ{k2, sq and QpSq “ Q0pSq denotes the indicator func-

tion for S Ď Q. For integers u P rk, 2k ´ 1s and x P r0, u ´ 1s, we then have

ÿ

pe,e1qPΛHpuq

Qxpe Y e1q ď
u

ÿ

s“u´x

ÿ

SPSu
s

QpSq ď K|ΛHpuq|qu´x,

where K “ 2k ¨ K 1 ¨ 22k. For x ě u, we use the following trivial bound:

ÿ

pe,e1qPΛHpuq

Qxpe Y e1q “
ÿ

pe,e1qPΛHpuq

1 ď |ΛHpuq| ď |ΛHpuq|qu´x.

Putting all together, for an integer x P r0, 2k ´ 1s and ξ ą 0 we have

∆Q
H

pξ, xq “
2k´1
ÿ

u“k

ÿ

pe,e1qPΛHpuq

Qxpe Y e1qξu´x

ď K

2k´1
ÿ

u“k

|ΛHpuq|pξqqu´x (10)“ Kpξqq´x∆Hpξmq.
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4. Application: Transference for removal lemmas

The hypergraph removal lemma states that for every α ą 0 there exists γ ą 0

such that any k-graph with n vertices and at most γnvpHq copies of some fixed

k-graph H can be made H-free by removing at most αnk edges. This inno-

cent looking statement has striking implications, the most prominent being

Szemerédi’s theorem [23] on arithmetic progressions in dense sets of natural

numbers. For the history of the lemma, its applications and recent develop-

ments, we refer the reader to the survey by Conlon and Fox [11].

As an application of Theorem 1.1 and, more importantnly, a demonstration

that it is not hindered by the existence of a small number of subsets for which

neither (P1) nor (P2) apply, we prove the following version of a removal lemma

for random hypergraphs. To state it concisely, let us denote with Gpkqpn, pq
a subgraph of K

pkq
n , the complete k-graph with n vertices, obtained by tak-

ing each hyperedge with probability p, independently of all other edges, for

some p P p0, 1s.

Theorem 4.1: For any k-graph H and α ą 0 there exists C, γ ą 0 such that

if p ě Cn´1{mkpHq, where

mkpHq “ max
! epH 1q ´ 1

vpH 1q ´ k
: H 1 Ď H, vpH 1q ą k

)

,

then with high probability Γ “ Gpkqpn, pq has the following property: Every

subgraph Γ1 Ď Γ with at most γnvpHqpepHq copies of H can be made H-free by

removing at most αnkp edges.

It should be noted that Theorem 4.1 does not have nearly as striking implica-

tions as the original hypergraph removal lemma. Nonetheless, it is an interest-

ing statement which in some way quantifies the distribution of the copies of H

in Gpkqpn, pq. The graph case (k “ 2) of Theorem 4.1 was originally obtained by

Conlon, Gowers, Samotij, and Schacht [10] using an adaption of the regularity

method for random graphs. Conlon and Gowers [12] have proved the general

case under the assumption that mkpHq is obtained uniquely for H 1 “ H , that

is, when H is strictly k-balanced. Here we prove the statement without any

additional assumption.

It should be noted that the proof of the removal lemma for random graphs

using the regularity method very closely follows the original proof of the regu-

larity lemma for graphs. In contrast, the transference result presented here as



894 R. NENADOV Isr. J. Math.

well as the one by Conlon and Gowers [12] uses the hypergraph removal lemma,

a notoriously difficult result, as a black box. That being said, instead of directly

proving Theorem 4.1 we prove a more general result which abstracts out the

removal property, from which Theorem 4.1 then follows as a straightforward

corollary.

Given s, r P N, we say that a hypergraph H is ps, rq-removable if for every

I Ď V pHq with epIq ă s there exists X Ď I of size |X | ď r such that I rX is

an independent set in H.

Theorem 4.2: For every k P N and B,α ą 0 there exists γ0, C ą 0 such

that the following holds. Let H be a pγepHq, αNq-removable k-graph, for

some γ ď γ0, and suppose m0 P N is such that

∆Hpm0q ď BµHpm0q2{m0.

Let W Ď V pHq be a random subset formed by taking each element with proba-

bility p ě Cm0{N , independently of all other elements. Then with probability

at least 1´expp´ΘpNpqq the induced hypergraph HrW s is pγαkepHqpk, 3αNpq-
removable.

Proof. Let γ0 ą 0 be as given by Theorem 1.1 for some sufficiently small

ε “ εpαq. Suppose H is pγepHq, αNq-removable for some 0 ă γ ď γ0.

By Chernoff’s inequality, we have Np{2 ă |W | ă 2Np with probability

1 ´ expp´ΘpNpqq. Moreover, a simple union-bound gives the following upper

bound on the probability that an m-element subset excluded by Theorem 1.1,

for αNp ď m ă 2Np, is a subset of W :

2Np
ÿ

m“αNp

εm
ˆ

N

m

˙

pm ă N

ˆ

εeN

αNp
p

˙m

ă e´Np,

for sufficiently small ε “ εpαq. Therefore, from now on we can assume that for

every m-element subset I Ď W with

(11) epIq ă γ0α
kepHqpk ď γ0epHqpm{Nqk,

for αNp ď m ă 2Np, the property (P2) of Theorem 1.1 holds.

Suppose there exists I Ď W which satisfies (11) such that I r X is not

independent for every X Ď I of size |X | ď 3αNp. In particular, this implies

|I| “ m ą 3αNp.
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Then, by (P2), I Ď F YfmpFq for some F Ď I of size |F | “ εm and F P Tk´1pF q.
As H is pγepHq, αNq-removable and epfmpFqq ă γepHq, there exists a sub-

set RpFq Ă V pHq of size |RpFq| ď αN such that fmpFq r RpFq is an indepen-

dent set. If |W X RpFq| ă 2αNp, then we can make I to be an independent

set by removing F Y pW X RpFqq which, for ε ă α{2, is of size at most 3αNp.

Therefore, we must have

|W X RpFq| ą 2αNp.

To summarise, to show the theorem it suffices to bound the probability of

an event that |W X RpFq| ě 2αNp for some F P Tk´1pF q where F Ď W is of

size |F | “ s with εαNp ď s ď 2εNp. The probability of this happening for one

particular F is, by Chernoff’s inequality, at most e´αNp{3, thus a union-bound

over all possible F gives the following:

2εNp
ÿ

s“αεNp

ˆ

N

s

˙

2ks ¨ ps ¨ e´αNp{3 ď e´αNp{3
2εNp
ÿ

s“αεNp

´e2kNp

s

¯s

ď e´αNp{3 ¨ N
´e2kNp

2εNp

¯2εNp

,

which is of order e´ΘpNpq for ε sufficiently small with respect to α. This con-

cludes the proof.

Note that the proof works just the same using the hypergraph containers

theorem of Saxton and Thomason [20]. For comparison, a variant of Balogh,

Morris, and Samotij [4] does not suffice as it only gives epIq ą 0 in (P1). The-

orem 4.1 now follows as a straightforward application of Theorem 4.2 and the

hypergraph removal lemma.

Proof of Theorem 4.1. Let H be an epHq-graph whose vertices correspond to

edges in K
pkq
n and epHq vertices in H form an edge if the corresponding hy-

peredges in K
pkq
n form a copy of H . By the hypergraph removal lemma, for a

given α ą 0 there exists γr ą 0 such that H is pγrepHq, αNq-removable. Further-

more, it is well known (and easy to verify) that ∆Hpm0q satisfies the condition

of Theorem 4.2 for m0 “ nk´1{mkpHq and some B ą 0. The theorem now follows

for γ “ mintγr, γ0u, where γ0 is as given by Theorem 4.2 for α and B.
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