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ABSTRACT

We give necessary and sufficient conditions for stratification and costrat-

ification to descend along a coproduct preserving, tensor-exact R-linear

functor between R-linear tensor-triangulated categories which are rigidly-

compactly generated by their tensor units. We then apply these results to

non-positive commutative DG-rings and connective ring spectra. In partic-

ular, this gives a support-theoretic classification of (co)localizing subcate-

gories, and thick subcategories of compact objects of the derived category

of a non-positive commutative DG-ring with finite amplitude, and provides

a formal justification for the principle that the space associated to an even-

tually coconnective derived scheme is its underlying classical scheme. For

a non-positive commutative DG-ring A, we also investigate whether cer-

tain finiteness conditions in D(A) (for example, proxy-smallness) can be

reduced to questions in the better understood category D(H0A).

1. Introduction

Given a triangulated category T, it is generally hopeless to ask for a complete

classification of its objects up to isomorphism. Instead, one can ask for a clas-

sification of its objects up to extensions, retracts and (co)products, and devel-

oping a support theory for T allows one to approach such classifications. This
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idea of classifying the thick, localizing and colocalizing subcategories of triangu-

lated categories began in chromatic homotopy theory with the classification of

the thick subcategories of compact objects in the stable homotopy category by

Hopkins–Smith [16]. Hopkins [15] then transported this idea into algebra, pro-

viding a classification of the thick subcategories of the perfect complexes in the

derived category D(R) of a commutative noetherian ring, and Neeman [20, 23]

extended this to a classification of (co)localizing subcategories of D(R).

Benson–Iyengar–Krause [6, 7, 8, 9] then developed an abstract support theory

for triangulated categories with the action of a ring R, leading to a notion of

(co)stratification which provides a classification of thick, localizing and colocal-

izing subcategories, together with many more important consequences. They

then applied this theory in the modular representation theory of finite groups [7].

In this paper, we investigate when stratification and costratification descend

along an exact functor of tensor-triangulated categories. Given a strong sym-

metric monoidal, exact, coproduct-preserving functor f∗:T→U between rigidly-

compactly generated tensor-triangulated categories, it follows that f∗ has a

right adjoint f∗ which itself has a right adjoint f (1); see [1]. If a ring R acts on

both T and U and the functor f∗ is suitably compatible with this action, then

one can ask under what conditions U being (co)stratified by R implies that T

is (co)stratified by R.

Our first main result is the following which gives a sufficient condition for

stratification and costratification to descend. In fact, under an additional mild

hypothesis (which holds in the examples we study), we prove that the condition

is also necessary. We direct the reader to Theorems 3.7 and 3.11, and Corollar-

ies 3.16 and 3.17 for a more detailed statement of the following main result. In

this introduction we actually only state special cases of our main results, in the

setting where the categories are generated by their tensor units.

Theorem: Let f∗ : T→ U be an exact, strong symmetric monoidal, coproduct-

preserving functor between R-linear tensor-triangulated categories which are

rigidly-compactly generated by their tensor units. Suppose that U is stratified

(resp., costratified) by R.

(1) If f∗1U builds 1T (that is, 1T ∈ LocT(f∗1U)), then T is stratified (resp.,

costratified) by the action of R.

(2) Moreover, if suppT(1T) ⊆ suppU(1U), then the converse holds; namely,

T is stratified (resp., costratified) by R if and only if f∗1U builds 1T.
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By the work of Benson–Iyengar–Krause [8, 9], the (co)stratification of a

tensor-triangulated category provides a classification of the localizing subcate-

gories, colocalizing subcategories and the thick subcategories of compact objects.

As a corollary of this, we obtain bijections between the localizing subcategories

of T and U (and similarly, for colocalizing subcategories and thick subcategories

of compact objects). It should be noted that the bijections in the following state-

ment are given by explicit formulas, and are not just abstract formal bijections.

We direct the reader to Corollaries 3.8 and 3.13 for the precise statement of the

following.

Theorem: Let f∗ : T→ U be an exact, strong symmetric monoidal, coproduct-

preserving functor between R-linear tensor-triangulated categories which are

rigidly-compactly generated by their tensor units. Suppose that U is costratified

by R and that f∗1U builds 1T. Then there are bijections{
localizing subcategories

of T

} {
colocalizing subcategories

of T

}

{subsets of suppT(1T)}

{
localizing subcategories

of U

} {
colocalizing subcategories
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}

∼=

∼=
∼=

∼=
∼=

∼=

∼= ∼=

and⎧⎪⎨
⎪⎩
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of compact

objects in T

⎫⎪⎬
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⎧⎪⎨
⎪⎩
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of compact

objects in U

⎫⎪⎬
⎪⎭
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}
.

∼=
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One could also ask for a more general version of the previous results, where

the ring which acts on T can be different to the ring which acts on U. Barthel–

Castellana–Heard–Valenzuela [2, 3] have discussed descent statements for maps

of commutative noetherian ring spectra where the ring acting is different, and

they developed a notion of Quillen lifting to tackle this; see Remark 3.12 for

further discussion. In this paper, we choose to restrict to the case when the
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same ring acts. We emphasize that whilst this is a restrictive hypothesis, this

allows us to obtain a condition which is both necessary and sufficient. Moreover,

there are still interesting examples which satisfy this hypothesis.

We now turn to applications of our results. We give two main applications: to

commutative DG-rings and to connective ring spectra. For a non-positive (in co-

homological grading) commutative DG-ring A with finite amplitude, our result

applies to show that the derived category D(A) is both stratified and costrati-

fied by the action of H0A; see Theorems 4.11, 4.15, 4.16 and 4.17 in the main

body of the paper for a more precise statement and additional consequences.

Theorem: Let A be a non-positive commutative DG-ring with finite amplitude

and H0A noetherian. Then D(A) is stratified and costratified by the action

of H0A.

This theorem is a strong generalization of [8, Theorem 8.1] and [9, Theorem

10.3] which show that for a formal commutative DG-ring A with H∗A noe-

therian, the derived category D(A) is stratified and costratified by H∗A; see

Remark 4.13 for more details. The assumption that A has finite amplitude is

necessary. In Example 4.19 we give an example of a commutative noetherian

DG-ring A with infinite amplitude such that D(A) is neither stratified nor cos-

tratified by the action of H0A. Commutative DG-rings of this form are the

affine pieces of derived algebraic geometry, and one may view this theorem as a

formal proof for the principle that the relation between an eventually coconnec-

tive derived scheme and its underlying classical scheme is similar to the relation

between a scheme and the reduced scheme associated to it.

For a non-positive commutative DG-ring A, using the above stratification

result, we also show that the reduction functor H0A⊗L
A− and the coreduction

functor RHomA(H
0A,−) can often be used to reduce questions in D(A) to

questions in the much better understood category D(H0A). For instance, we

prove in Corollary 4.20 that if A is commutative with finite amplitude and H0A

is noetherian, then for M,N ∈ D(A) it holds that M builds N in D(A) if

and only if H0A ⊗L
A M builds H0A ⊗L

A N in D(H0A). We further show in

Example 4.21 that this result is false if A has infinite amplitude. These reduction

results are very powerful in reducing questions from the derived category of the

DG-ring A to the derived category of the ring H0A.
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However, there are some notable exceptions here: we show that the no-

tions of proxy-smallness and virtual-smallness as defined by Dwyer–Greenlees–

Iyengar [13, 14] cannot be determined by reduction to D(H0A); see Theo-

rem 4.29. In light of recent work by Briggs–Iyengar–Letz–Pollitz [11] (build-

ing on work of Dwyer–Greenlees–Iyengar [14], Pollitz [24] and Letz [19]) who

provided a characterization of locally complete intersections in terms of proxy-

smallness, this suggests that locally complete intersections between commuta-

tive DG-rings are significantly more complicated than locally complete intersec-

tions between ordinary rings. This can also already be seen through work of

the first author [31], where the definition is unwieldy without a restriction to

maps which are retracts of maps of flat dimension 0.

We also apply our main result to connective ring spectra R, giving a necessary

and sufficient condition for the homotopy category of R-modules to be stratified

and costratified by π0R. Given a connective ring spectrum R, we write D(R)

for its homotopy category of modules. Applied in this setting, our main result

yields the following.

Theorem: Let R be a connective commutative ring spectrum with π0R noe-

therian. Then D(R) is stratified and costratified by π0R if and only if π0R

builds R in D(R).

We remark that given a commutative ring spectrum R with π∗R noetherian,

it is expected in general that D(R) will be stratified and costratified by π∗R
rather than π0R. This highlights that our assumption that the same ring acts

on both categories is quite restrictive in this setting. Nonetheless, the above

application is still valuable since it gives a necessary and sufficient condition,

and under certain nilpotency assumptions one may show that (co)stratification

by π∗R holds if and only if (co)stratification by π0R does; see Proposition 3.14

and Corollary 5.4.
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2. Preliminaries

Here we recall the necessary preliminaries on tensor-triangulated categories,

and the various notions of smallness in use throughout the paper. Let T be

a triangulated category with arbitrary (small) products and coproducts. Note

that under a mild hypothesis (compact generation) which we will always assume,

the existence of small coproducts implies the existence of small products [22,

Proposition 8.4.6].

A full subcategory of T is said to be thick if it is replete (closed under isomor-

phisms), triangulated and closed under retracts, is said to be localizing if it is

thick and closed under arbitrary coproducts, and is said to be colocalizing if it

is thick and closed under arbitrary products. Given a set K of objects in T we

write ThickT(K) for the smallest thick subcategory of T containing K, LocT(K)
for the smallest localizing subcategory of T containing K, and ColocT(K) for

the smallest colocalizing subcategory of T containing K. If K = {X} consists of
a single object, then we write LocT(X) for LocT({X}) and similarly for thick

and colocalizing subcategories.

Definition 2.1: Let X,Y ∈ T. We say that:

• X builds Y (or Y is built from X) if Y ∈ LocT(X);

• X finitely builds Y (or Y is finitely built from X) if Y ∈ ThickT(X);

• X cobuilds Y (or Y is cobuilt from X) if Y ∈ ColocT(X).

Definition 2.2: An object X ∈ T is said to be small (or compact) if the natural

map ⊕
HomT(X,Ai)→ HomT

(
X,

⊕
Ai

)
is an isomorphism for every set {Ai} of objects of T. We write Tω for the full

subcategory of T consisting of the compact objects.

The following definitions first appeared in [13] and [14].

Definition 2.3: A non-zero object X ∈ T is said to be:

• proxy-small if there exists a small object W ∈ T such that X finitely

builds W and W builds X ;

• virtually-small if there exists a non-zero small object W ∈ T such

that X finitely builds W .

We call W a witness for the fact that X is proxy-small/virtually-small. Note

that any proxy-small object is virtually-small.
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Throughout the paper, we will work with tensor-triangulated categories, that

is, triangulated categories with a compatible closed symmetric monoidal struc-

ture. We write 1T for the tensor unit, ⊗ for the tensor product and F (−,−)
for the internal hom. Moreover, we will work with rigidly-compactly generated

tensor-triangulated categories; that is, those which have a set G of compact and

dualizable objects which generate T in the sense that LocT(G) = T, and for

which the unit 1T is compact. Under this assumption, the compact objects of T

are precisely those which are finitely built from G; see [17, Theorem 2.1.3(d)].

A localizing subcategory is said to be a localizing tensor ideal if it is closed

under tensoring with arbitrary objects of T and a colocalizing subcategory C is

said to be hom-closed if for Y ∈ T and Z ∈ C we have F (Y, Z) ∈ C. Given a

set K of objects in T we write Loc⊗T (K) for the smallest localizing tensor ideal

of T containing K, and ColocHom
T (K) for the smallest hom-closed colocalizing

subcategory of T containing K.
If G is a set of compact generators for T, then one sees that

Loc⊗T (K) = LocT(G ⊗ K) and ColocHom
T (K) = ColocT(F (G,K))

where LocT(G ⊗ K) = LocT({G ⊗ K | G ∈ G,K ∈ K}) for example. There-

fore, if T is compactly generated by its tensor unit 1T, then every localizing

subcategory is a localizing tensor ideal, and every colocalizing subcategory is

hom-closed.

Definition 2.4: A functor f∗ : T → U between tensor-triangulated categories

is called geometric if it is exact, strong symmetric monoidal and preserves

arbitrary coproducts.

We note that f∗ need not be induced by any map f ; this notation is merely

suggestive. Geometric functors satisfy various important properties as we now

recall.

Lemma 2.5: Let f∗ : T→ U be a geometric functor between rigidly-compactly

generated tensor-triangulated categories.

(1) There is an adjoint triple

T U
f∗

f(1)

f∗

where the left adjoints are displayed above the respective right adjoints.
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(2) There is a projection formula for the adjunction (f∗, f∗), that is, for

any X ∈ U and Y ∈ T, the natural map f∗X ⊗ Y → f∗(X ⊗ f∗Y ) is an

isomorphism.

(3) For any X ∈ U and Y ∈ T, there is a natural isomorphism

F (f∗X,Y ) � f∗F (X, f (1)Y ).

(4) If X builds (resp., finitely builds, resp., cobuilds) Y in U, then f∗X
builds (resp., finitely builds, resp., cobuilds) f∗Y in T.

Proof. Parts (1), (2) and (3) can be found in [1, Corollary 2.14 and Proposition

2.15]. Part (4) is an immediate consequence of the fact that f∗ is exact and

preserves coproducts and products.

Example 2.6: For orientation, it is helpful to keep in mind the example when f∗

is the extension of scalars functor B ⊗L
A − : D(A) → D(B) along a map of

commutative rings f : A → B. Then f∗ is the restriction of scalars functor,

and f (1) is the coextension of scalars functor RHomA(B,−). Note that the

notation differs from the standard; here, f∗ corresponds to the derived inverse

image functor along the corresponding map SpecB → SpecA of affine schemes.

Recall that an exact functor F : T→ U is said to be conservative if it reflects

isomorphisms, or equivalently, if FX � 0 implies that X � 0.

Proposition 2.7: Let f∗ : T → U be a geometric functor between rigidly-

compactly generated tensor-triangulated categories. If Loc(f∗GU) = T then the

functors f∗ and f (1) are conservative.

Proof. To show that f (1) is conservative, first suppose that f (1)X � 0. There-

fore Hom∗
U(G, f (1)X) = 0 for all G ∈ GU, so Hom∗

T(f∗G,X) = 0 by adjunction

for all G ∈ GU. Since f∗GU generates T, it follows that X � 0.

To prove that f∗ is conservative, first suppose that X∈T is such that f∗X�0.

Therefore f∗G ⊗ X � f∗(G ⊗ f∗X) � 0 for all G ∈ GU using the projection

formula (Lemma 2.5(2)). Since 1T ∈ Loc(f∗GU), it follows that X � 0 as

required.

Remark 2.8: The hypothesis that Loc(f∗GU) = T ensures that f∗GU generates T.

However, we do not require that the objects of f∗GU are compact in T; indeed,

in our main example of interest this is not the case; see Remark 4.4.
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3. Descent of stratification and costratification

3.1. Local (co)homology and (co)support. Recall that for a (graded)

commutative noetherian ring R and a triangulated category T, an action of

R on T is a map R→ Z∗
T(X) for each X ∈ T where Z∗

T(X) is the graded centre

of T. This gives the data of a map φX : R→ End∗T(X) for each X ∈ T such that

the R-actions on Hom∗
T(X,Y ) from the left and from the right are compatible;

see [6, §4] for more details. We call such a triangulated category R-linear.

We denote by SpecR the graded prime spectrum of R. For a set V ⊆ SpecR,

we let Vc denote the complement of V . Given a specialization closed subset V
of SpecR, one can construct certain (co)localization functors of torsion, local-

ization and completion. See [6, 9] for more details about the following construc-

tions, noting Remark 3.2 where we explain the difference in notation.

There is a localization functor LVc : T→ T defined by

ker(LVc) = {X ∈ T | Hom∗
T(C,X)p = 0 for all p ∈ Vc and C ∈ Tω}.

This has a corresponding colocalization functor ΓV . We define Γp = Γ∧(p)

and Lp = L∨(p), where

∧(p) = {q ∈ SpecR | p ⊇ q} and ∨(p) = {q ∈ SpecR | p ⊆ q}.
For each object X ∈ T and each specialization closed set V of SpecR there is a

triangle

ΓVX → X → LVcX ;

we warn the reader that there is no triangle ΓpX→X→LpX since ∧(p)c 
=∨(p).
The functors ΓV and LVc preserve coproducts and so have right adjoints by

Brown Representability; see [22, Theorem 8.4.4]. We denote the right adjoints

of ΓV and LVc by ΛV and VVc respectively. Similarly to above, given a prime

ideal p we define Λp = Λ∧(p) and Vp = V∨(p). There is a triangle

VVcX → X → ΛVX

for any X ∈ T. We denote the essential image of Γp by ΓpT, and similarly for

the other (co)localization functors.

If T is tensor-triangulated and the R-action on T is canonical, that is, the

map R→ End∗T(X) factors through End∗T(1T), then ΓV and LVc are smashing;

see [6, Proposition 8.1]. This means that for any object X ∈ T we have natural

isomorphisms ΓVX � ΓV1T ⊗X and LVcX � LVc1T ⊗X . By definition, one

then notices that ΛVX � F (ΓV1T, X) and VVcX � F (LVc1T, X).
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Example 3.1: Let R be a commutative noetherian ring, and consider D(R) with

the canonical R-action on it. Then the functor Γp is the right derived functor

of the p-torsion functor, the functor Λp is the left derived functor of the p-adic

completion functor, the functor Lp is the localization functor given byM �→Mp,

and the functor Vp is the colocalization functor given by M �→ RHomR(Rp,M).

For more details see [6, Theorem 9.1] and [25].

Using the functors described above, one has notions of support and cosupport.

For an object X ∈ T, the support of X is defined by

suppT(X) = {p ∈ SpecR | ΓpLpX 
� 0}

and the cosupport of X is defined by

cosuppT(X) = {p ∈ SpecR | ΛpVpX 
� 0}.
Remark 3.2: Our notation differs from [6, 9] in two ways:

(1) The composite ΓpLp = Γ∧(p)L∨(p) is denoted by Γp in [6]. We instead

keep the notation for the localization and torsion functors distinct. The

same remark applies to the composite ΛpVp.

(2) We index the localization LU on a generalization closed subset U ; in [6],

L is indexed on the complementary specialization closed set. Similarly,

in [9] the colocalization V is indexed on the complementary specializa-

tion closed set.

Definition 3.3: Let T and U be R-linear tensor-triangulated categories. An R-

linear functor f∗ : T → U is an exact functor f∗ : T → U, such that the

triangle

R

End∗T(X) End∗U(f
∗X)

φX φf∗X

f∗

commutes for allX ∈ T. If, moreover, the actions of R on T and U are canonical,

we say that f∗ : T→ U is a canonical R-linear functor.

Recall that given a geometric functor f∗ : T → U between rigidly-compactly

generated tensor-triangulated categories, we obtain an adjoint triple f∗�f∗�f (1)

from Lemma 2.5(1).
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Lemma 3.4 ([9, Theorem 7.7]): Let f∗ : T→ U be a geometric R-linear functor

between rigidly-compactly generated tensor-triangulated categories. Let V be

a specialization closed subset of SpecR, X ∈ T and Y ∈ U. There are natural

isomorphisms:

ΓV(f∗X) � f∗ΓVX, ΓV(f∗Y ) � f∗ΓVY,

LVc(f∗X) � f∗LVcX, LVc(f∗Y ) � f∗LVcY,

ΛV(f (1)X) � f (1)ΛVX, ΛV(f∗Y ) � f∗ΛVY,

VVc(f (1)X) � f (1)VVcX, VVc(f∗Y ) � f∗VVcY.

Corollary 3.5: Let f∗ : T → U be a geometric R-linear functor between

rigidly-compactly generated tensor-triangulated categories. If LocT(f∗GU) = T,

then for all X ∈ T, we have

suppT(X) = suppU(f
∗X) and cosuppT(X) = cosuppU(f

(1)X).

Proof. This is a straightforward consequence of Proposition 2.7 and

Lemma 3.4.

The next lemma was inspired by [4, Proposition 2.7].

Lemma 3.6: Let R be a graded-commutative noetherian ring, and denote by R0

its subring of homogeneous elements of degree 0, and by ϕ : R0 → R the inclu-

sion map. Suppose that each homogeneous element a ∈ R such that |a| 
= 0 is

a nilpotent element.

(1) The map SpecR→ SpecR0 given by p �→ ϕ−1(p) = p ∩R0 is bijective.

(2) Let T be a R-linear triangulated category. Then, considering T as a

R0-linear triangulated category by restricting the R-action along ϕ, for

any specialization closed subset V of SpecR there are isomorphisms of

functors

ΓV ∼= Γϕ−1(V), ΛV ∼= Λϕ−1(V), LVc ∼= Lϕ−1(Vc), VVc ∼= Vϕ−1(Vc).

Proof. To prove (1) observe that if p ∈ SpecR, since p contains all nilpotent ele-

ments, by our assumption on R it must contain all homogeneous elements of non-

zero degree. Since p is homogeneous, this implies that it is uniquely determined

by p∩R0, so the map SpecR→ SpecR0 is a bijection. Now (2) follows from (1)

and [9, Theorem 7.7], applied to the identity functor (T, R0)→ (T, R).
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3.2. Descent of stratification. In this section we give a sufficient condi-

tion for stratification to descend along a geometric functor of rigidly-compactly

generated tensor-triangulated categories.

Recall from [8] that an R-linear tensor-triangulated category T is said to be

stratified by R if the following minimality condition holds: for each p ∈ SpecR,

the localizing tensor ideal ΓpLpT is either zero or minimal (i.e., it has no proper

non-zero localizing tensor ideals). Note that the minimality condition can be

restated as for every non-zero X,Y ∈ ΓpLpT, we have Loc⊗T (X) = Loc⊗T (Y ).

We also note that since we work in the tensor-triangulated setting, the local-to-

global principle automatically holds [9, Theorem 8.6].

Theorem 3.7: Let f∗ : T → U be a geometric canonical R-linear functor be-

tween rigidly-compactly generated tensor-triangulated categories. Suppose that

LocT(f∗GU) = T and that U is stratified by R. Then T is stratified by the action

of R.

Proof. Given a non-zero X ∈ ΓpLpT, it is sufficient to show that

Loc⊗T (X) = Loc⊗T (ΓpLp1T). Firstly we have

Loc⊗T (X) = LocT(f∗GU ⊗X) = LocT(f∗(GU ⊗ f∗X))

using that f∗GU generates T and the projection formula (Lemma 2.5(2)).

Since f∗ is conservative by Proposition 2.7, the object f∗X is non-zero, and

is in ΓpLpU by Lemma 3.4. Therefore as U is stratified by the action of R, we

have that

LocU(GU ⊗ f∗X) = Loc⊗U (f
∗X) = Loc⊗U (ΓpLp1U) = LocU(GU ⊗ ΓpLp1U).

Combining this with Lemma 2.5(4) we obtain that

LocT(f∗(GU ⊗ f∗X)) = LocT(f∗(GU ⊗ ΓpLp1U)).

Since f∗ is strong monoidal, we have f∗1T � 1U, so that

LocT(f∗(GU ⊗ ΓpLp1U)) = LocT(f∗(GU ⊗ f∗ΓpLp1T))

= LocT(f∗GU ⊗ ΓpLp1T) = Loc⊗T (ΓpLp1T)

by the projection formula (Lemma 2.5(2)). Combining these we see that

Loc⊗T (X) = Loc⊗T (ΓpLp1T)

as required.

We now give some consequences of the previous result.
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Corollary 3.8: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories. Suppose

that LocT(f∗GU) = T, f∗ is conservative and that U is stratified by R. Then

there is a bijection

{localizing tensor ideals of T} ∼=←−−→ {localizing tensor ideals of U}

given by L �→ Loc⊗U (f
∗X | X ∈ L). Moreover, if T and U are noetherian (i.e.,

End∗T(1T) and End∗U(1U) are finitely generated R-modules), then there is a

bijection

{thick tensor ideals of Tω} ∼=←−−→ {thick tensor ideals of Uω}

given by S �→ Thick⊗U (f
∗X | X ∈ S).

Proof. We prove the claim about localizing tensor ideals first. Since U is strat-

ified by R, T is also stratified by R by Theorem 3.7. Note that

supp(T) =
⋃

G∈GU

suppT(f∗G) =
⋃

G∈GU

suppU(G) = supp(U)

since f∗ is conservative. Consider the diagram

{
localizing tensor

ideals of T

} {
localizing tensor

ideals of U

}

{subsets of supp(T)}

L �→Loc⊗U (f∗X|X∈L)

supp supp

in which the diagonals are bijections by [7, Theorem 3.8], since T and U are

stratified by R. Therefore it suffices to verify that the diagram commutes; that

is for a localizing tensor ideal L of T, we need to check that⋃
Y ∈Loc⊗U (f∗X|X∈L)

suppU(Y ) =
⋃
X∈L

suppT(X).

The reverse inclusion is clear from Corollary 3.5. For the forward inclusion, note

that since the diagonals are isomorphisms, for any Y ∈ Loc⊗U (f
∗X | X ∈ L)

we have suppU(Y ) ⊆ ⋃
X∈L suppU(f

∗X). Hence by Corollary 3.5 the forward

inclusion holds. The claim about thick tensor ideals follows similarly, using the

tensor-triangulated analogue of [8, Theorem 6.1].
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Remark 3.9: The hypothesis that f∗ is conservative is often satisfied in practice

since f∗ frequently takes the form of a forgetful functor. We direct the reader

to Lemma 3.15 for a condition which guarantees this in all of the examples we

study in this paper.

3.3. Descent of costratification. In this section, we give a sufficient con-

dition for costratification to descend along a geometric functor between rigidly-

compactly generated tensor-triangulated categories.

Recall from [9] that an R-linear tensor-triangulated category T is said

to be costratified by R if the following minimality condition holds: for

each p ∈ SpecR, the hom-closed colocalizing subcategory ΛpVpT is either zero or

minimal (i.e., it has no proper non-zero hom-closed colocalizing subcategories).

We note that the local-to-global principle holds automatically since we are in

the tensor-triangulated setting [9, Theorem 8.6].

Lemma 3.10: Let T be a tensor-triangulated category and let X,Y ∈ T. If

LocT(X) = LocT(Y ), then ColocT(F (X,Z)) = ColocT(F (Y, Z)) for any Z ∈ T.

Proof. This follows from the fact that F (−, Z) is exact and sends coproducts

to products.

Theorem 3.11: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories. Suppose

that LocT(f∗GU) = T and that U is costratified by R. Then T is costratified by

the action of R.

Proof. Given any non-zero X ∈ ΛpVpT it is sufficient to show that we have

ColocHom
T (X) = ColocHom

T (ΛpVp1T).

Firstly,

ColocHom
T (X) = ColocT(F (f∗GU, X)) = ColocT(f∗F (GU, f (1)X))

by Lemma 2.5(3). Since f (1) is conservative by Proposition 2.7, we have

that f (1)X is non-zero. As U is costratified, it follows that

ColocU(F (GU, f (1)X)) = ColocHom
U (ΛpVpf

(1)1T)

by minimality since f (1)X ∈ ΛpVpT by Lemma 3.4. It follows that

ColocT(f∗F (GU, f (1)X)) = ColocT(f∗F (GU, f (1)ΛpVp1T))

= ColocT(F (f∗GU,ΛpVp1T)) = ColocHom
T (ΛpVp1T)

by Lemmas 2.5(4) and 2.5(3) which completes the proof.
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Remark 3.12: Barthel–Castellana–Heard–Valenzuela [2, 3] have investigated de-

scent properties of (co)stratification along a map f : R → S of commutative

noetherian ring spectra, giving sufficient conditions for the (co)stratification

of D(S) by π∗S to imply (co)stratification of D(R) by π∗R. This involves a

notion of Quillen lifting which ensures that prime ideals of π∗S can be ‘realized’

by prime ideals of π∗R. They applied this theory to deduce (co)stratification

results for cochain spectra C∗(X ;Fp) for certain spaces X , most notably for a

large class of classifying spaces of topological groups, extending work of Benson–

Iyengar–Krause [9] and Benson–Greenlees [5]. We note that the setup differs

for us—we are interested in cases where the same ring acts on both categories,

and therefore the Quillen lifting hypothesis is not relevant for us. We further re-

mark that the lifting result for costratification given in [2] assumes that the map

f : R→ S has a retract, an assumption that rarely holds in the applications we

give below.

Corollary 3.13: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories. Suppose

that LocT(f∗GU) = T, f∗ is conservative and that U is costratified by R. Then

there is a bijection

{hom-closed colocalizing subcategories of T}
∼=←−−→ {hom-closed colocalizing subcategories of U}

given by

C �→ ColocHom
U (f (1)X | X ∈ C).

Proof. The proof is similar to the proof of Corollary 3.8, using [9, Corol-

lary 9.2].

Proposition 3.14: Let R be a graded-commutative noetherian ring, and de-

note by R0 its subring of homogeneous elements of degree 0. Suppose that each

homogeneous element a ∈ R such that |a| 
= 0 is a nilpotent element. Let T

be a R-linear triangulated category, so that T is also a R0-linear triangulated

category by restriction of the R-action. Then T is stratified (resp., costratified)

by the action of R if and only if T is stratified (resp., costratified) by the action

of R0.

Proof. This follows immediately from Lemma 3.6.
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3.4. Generation by the unit. Consider our standard setup of a geometric

functor f∗ : T → U between rigidly-compactly generated tensor-triangulated

categories. In this subsection, we specialize our results to the case when T

and U are generated by their tensor units. Under this assumption, we are able

to give a converse to our main result; in addition, the examples we focus on in

the remainder of this paper are all generated by their tensor units.

Lemma 3.15: Let f∗ : T→ U be a geometric functor between rigidly-compactly

generated tensor-triangulated categories. Assume moreover that T and U are

generated by their tensor units. Then the functor f∗ is conservative.

Proof. Let X ∈ U. Since f∗ is strong monoidal we have f∗X � 0 if and only if

Hom∗
T(1T, f∗X) = 0 if and only if Hom∗

U(1U, X) = 0 if and only if X � 0.

We can now give converses to our main results under a mild additional as-

sumption which holds in all of the examples we study.

Corollary 3.16: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories which are

generated by their tensor units. Assume further that suppT(1T) ⊆ suppU(1U),

and that U is stratified by R. Then the following are equivalent:

(1) f∗1U builds 1T;

(2) T is stratified by the action of R.

Proof. The fact that (1) implies (2) is contained in Theorem 3.7. To see the

converse, note that by Lemmas 3.4 and 3.15, there is an equality

suppU(1U) = suppT(f∗1U),

so the assumption that suppT(1T) ⊆ suppU(1U) implies that

suppT(1T) ⊆ suppT(f∗1U).

The result now follows from [8, Theorem 4.2].

Corollary 3.17: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories which are

generated by their tensor units. Assume further that suppT(1T) ⊆ suppU(1U),

and that U is costratified by R. Then the following are equivalent:

(1) f∗1U builds 1T;

(2) T is costratified by the action of R.
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Proof. The fact that (1) implies (2) is contained in Theorem 3.11. For the

converse, note that by [9, Theorem 9.7], the assumption that T is costratified

by the action of R implies that T is also stratified by the action of R, so this

follows from Corollary 3.16.

Remark 3.18: Given an R-linear tensor-triangulated category T, by [9, Theorem

9.7] T being costratified by R implies that T is stratified by R. However the

converse is not known in general. Combining Corollaries 3.16 and 3.17 gives

a family of examples when T being stratified by R is equivalent to T being

costratified by R.

One also obtains versions of Corollary 3.8 and Corollary 3.13 without the

conservativity assumption on f∗ by Lemma 3.15. We note that in this case,

stratification classifies the localizing subcategories, since when the unit gener-

ates any localizing subcategory is automatically a localizing tensor ideal, and

similarly for costratification.

Corollary 3.19: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories which are

generated by their tensor units. Suppose that f∗1U builds 1T and that U is

stratified by R. Given X,Y ∈ T, it holds that X builds Y in T if and only

if f∗X builds f∗Y in U.

Proof. Since f∗ is exact and preserves coproducts, the forward implication is

clear. For the reverse implication, if f∗X builds f∗Y , since U is stratified by R,

this implies by [8, Theorem 4.2] that suppU(f
∗Y ) ⊆ suppU(f

∗X). Hence, by

Corollary 3.5, we have that suppT(Y ) ⊆ suppT(X), and since by Theorem 3.7,

T is also stratified by R, we deduce that X builds Y in T.

The proof of the next corollary is completely analogous to the proof of Corol-

lary 3.19, so we omit it.

Corollary 3.20: Let f∗ : T → U be a geometric canonical R-linear functor

between rigidly-compactly generated tensor-triangulated categories which are

generated by their tensor units. Suppose that f∗1U builds 1T and that U is

costratified by R. Given X,Y ∈ T, it holds that X cobuilds Y in T if and only

if f (1)X cobuilds f (1)Y in U.
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4. Non-positive DG-rings

In this section we apply the results of the previous section to the derived category

of a non-positive DG-ring A. In particular, we show that for a non-positive

commutative DG-ring A with finite amplitude such that H0A is noetherian,

the derived category D(A) is stratified and costratified by the action of H0A.

4.1. Recollections on DG-rings. We give a brief recap of key definitions

and features of DG-rings, and refer the reader to [34] for more details.

A DG-ring A is a graded ring equipped with a differential d : A → A of

degree 1, which satisfies the Leibniz rule. We emphasize that we grade coho-

mologically. A DG-ring A is said to be commutative if ab = (−1)|a||b|ba for all

homogeneous a, b ∈ A, and a2 = 0 if |a| is odd. We say that A is non-positive

if Ai = 0 for all i > 0. The zeroth cohomology H0A of a non-positive DG-

ring A is a ring (which is commutative if A is), and comes equipped with a

map A → H0A of DG-rings. A DG-A-module M is a graded A-module with

a differential of degree 1 which satisfies the Leibniz rule. The DG-A-modules

form an abelian category and inverting quasi-isomorphisms yields the derived

category D(A) which is triangulated (and moreover tensor-triangulated if A is

commutative).

Let A be a non-positive DG-ring. For each n ∈ Z we have so-called smart

truncation functors smt>n, smt≤n : D(A)→ D(A) with the property that

H i(smt>nM) =

⎧⎨
⎩H iM, i > n

0, i ≤ n
and Hi(smt≤nM) =

⎧⎨
⎩H iM, i ≤ n

0, i > n.

Furthermore there is a triangle

smt≤nM →M → smt>nM

in D(A).

For M ∈ D(A) we define

sup(M) = sup{i ∈ Z | H iM 
= 0} and inf(M) = inf{i ∈ Z | HiM 
= 0}.
We write D+(A) for the full subcategory of D(A) consisting of M with

inf(M)>−∞, D−(A) for the full subcategory ofM with sup(M)<∞, and Db(A)

for the intersection D+(A) ∩D−(A). If M ∈ Db(A), we may define

amp(M) = sup(M)− inf(M) ∈ N

and say that M has finite amplitude.
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We say that a non-positive commutative DG-ring A is noetherian if H0A

is noetherian, and for all n < 0, HnA is a finitely generated H0A-module. The

full subcategory of D(A) consisting of those M for which each HnM is a finitely

generatedH0A-module is denoted by Df(A); we write D
b
f (A) for the intersection

Db(A) ∩ Df(A).

4.2. Stratification and costratification for DG-rings. We now apply

the results of the previous sections to DG-rings. The following lemma is really

just a special case of Lemma 2.5(4), but we record it here since we will use it

throughout (and in slightly more generality than Lemma 2.5(4) claims).

Lemma 4.1: Let f : A → B be map of DG-rings, and let M,N ∈ D(B). If M

builds (resp., finitely builds, resp., cobuilds) N in D(B), then M builds (resp.,

finitely builds, resp., cobuilds) N in D(A).

Proof. This follows from the fact that the restriction of scalars functor

D(B)→ D(A) is exact and preserves coproducts and products.

The following proposition appears in [11, Lemma 1.6]. Since it is a funda-

mental ingredient in our proof of (co)stratification, we recall the proof.

Proposition 4.2: Let A be a non-positive DG-ring. If M ∈ D(A) has finite

amplitude, then H0A builds M in D(A).

Proof. For each n ∈ Z, there is a distinguished triangle

smt≤nsmt>n−1M → smt>n−1M → smt>nM

in D(A). Note that

smt≤nsmt>n−1M � HnM

which is a H0A-module. Therefore HnM is built from H0A in D(H0A), and

hence in D(A) by Lemma 4.1. One can now proceed by a finite (reverse) induc-

tion on infM−1 ≤ n ≤ supM , starting with the observation that smt>supMM =

0 and ending with smt>infM−1M = M .

Corollary 4.3: Let A be a non-positive DG-ring with finite amplitude.

Then H0A builds A in D(A). Moreover, if A is noetherian and H0A is a regular

ring of finite Krull dimension, then H0A finitely builds A in D(A) and as such

is proxy-small.
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Proof. The first statement follows from Proposition 4.2. If A is noetherian

andH0A is regular of finite Krull dimension, then in the proof of Proposition 4.2,

one sees that HnA is finitely built from H0A, and then the same inductive

argument shows that A is finitely built from H0A. It follows that H0A is

proxy-small with A as a witness: H0A finitely builds A, A builds H0A (since A

generates D(A)), and A is compact.

Remark 4.4: Despite the previous corollary, assuming A has finite amplitude,

H0A is not a compact generator for D(A) unlessA→H0A is a quasi-isomorphism

by [18, Theorem I] and [33, Theorem 0.7].

Theorem 4.5: Let A be a non-positive DG-ring with finite amplitude. For a

map f : M → N in D(A), the following are equivalent:

(i) f : M → N is an isomorphism in D(A);

(ii) H0A⊗L
A f : H0A⊗L

A M → H0A⊗L
A N is an isomorphism in D(H0A);

(iii) RHomA(H
0A, f) : RHomA(H

0A,M)→ RHomA(H
0A,N) is an isomor-

phism in D(H0A).

In other words, the reduction H0A⊗L
A− and coreduction RHomA(H

0A,−) are
conservative.

Proof. Note that the collection of objects Z ∈ D(A) for which the map

Z ⊗L
A f : Z ⊗L

A M → Z ⊗L
A N

is an isomorphism in D(A) is localizing. Since H0A and A build each other by

Corollary 4.3, the equivalence of (i) and (ii) follows. Similarly one notes that

the collection of objects Z ∈ D(A) for which

RHomA(Z, f) : RHomA(Z,M)→ RHomA(Z,N)

is an isomorphism in D(A) is localizing and the equivalence of (i) and (iii)

follows.

Remark 4.6: In [33, Proposition 3.1] it was shown that for any non-positive DG-

ring A, the functor H0A⊗L
A − : D−(A)→ D−(H0A) is conservative. Similarly,

in [28, Proposition 3.4], it was shown that for any non-positive DG-ring A the

functor RHomA(H
0A,−) : D+(A) → D+(H0A) is conservative. The above

result generalizes these facts to the unbounded derived category, under the

additional assumption that A has finite amplitude.



Vol. 261, 2024 LIFTING (CO)STRATIFICATIONS 269

Remark 4.7: Henceforth we will restrict to the case when A is commutative, in

which case the previous result is a consequence of Proposition 2.7. Nonetheless,

it holds without this hypothesis.

We now want to specialize to the case when A is a non-positive commutative

DG-ring. Its derived category D(A) is tensor-triangulated and the extension of

scalars functor H0A⊗L
A − : D(A)→ D(H0A) is a geometric functor; for clarity,

in the notation of the previous sections we have f∗ = H0A⊗L
A−, f∗ is restriction

of scalars along A → H0A, and f (1) = RHomA(H
0A,−). If H0A is moreover

noetherian, then D(H0A) is stratified and costratified by the canonical action

of H0A, and we now use the results of the previous section to show that if A

has finite amplitude then D(A) is stratified and costratified by H0A.

Firstly, we note that (essentially by definition) the abstract torsion and com-

pletion functors arising from [6] coincide with functors described by the first

author in [29]. Therefore, we have concrete, calculable definitions of Γp and Λp

in terms of Koszul complexes; see [29, Proposition 2.4] for more details.

Remark 4.8: We warn the reader that for M ∈ D(A), the notion of support we

use in this paper is the small support

suppA(M) = {p ∈ Spec(H0A) | ΓpLpM 
� 0}.
In general this is different to the big support

SuppA(M) = {p ∈ Spec(H0A) | LpM 
� 0}
as discussed in [30, Definition 1.10]. However, there is an inclusion suppA(M) ⊆
SuppA(M), with equality if M ∈ Db

f (A).

Lemma 4.9: LetA be a non-positive commutative DG-ring. Then the extension

of scalars functorH0A⊗L
A− : D(A)→ D(H0A) is a canonicalH0A-linear functor

in the sense of Definition 3.3.

Proof. Note that for any M ∈ D(A) the diagram

A H0A

RHomA(M,M) RHomH0A(H
0A⊗L

A M,H0A⊗L
A M)

H0A⊗L
A−

is commutative, so this follows from applying the functor H0 to this diagram.
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Lemma 4.10: Let A be a non-positive commutative DG-ring with H0A noe-

therian. Then there is an equality suppA(A) = suppA(H
0A).

Proof. Given p ∈ Spec(H0A), since the functors Γp and Lp commute with

restriction of scalars by Lemma 3.4, we have that

suppA(H
0A) = suppH0A(H

0A) = Spec(H0A),

which shows that suppA(A) ⊆ suppA(H
0A). The converse inclusion follows

from the fact that Γp and Lp are smashing.

Theorem 4.11: Let A be a non-positive commutative DG-ring with H0A noe-

therian. The derived categoryD(A) is stratified and costratified by the canonical

action of H0A if and only if H0A builds A in D(A). In particular, this is the

case if A has finite amplitude.

Proof. The derived category D(H0A) is stratified and costratified by the canon-

ical action of H0A by [20, Theorem 2.8] and [23, Corollary 2.8]. By combining

Corollaries 3.16 and 3.17, Lemmas 4.9 and 4.10 and Corollary 4.3, the result

follows.

Corollary 4.12: Let A be a non-positive commutative DG-ring with finite

amplitude and H0A noetherian. Then the derived category D(A) is stratified

and costratified by the canonical action of H∗A.

Proof. Note that since A has finite amplitude, any homogeneous element of

H∗A which does not belong to H0A is nilpotent. Hence, this follows from

Proposition 3.14 and Theorem 4.11.

Remark 4.13: The above result is a far reaching generalization of [8, Theorem

8.1] and [9, Theorem 10.3] which proved that if A is a formal commutative

noetherian DG-ring then D(A) is stratified and costratified by the canonical

action of H∗A. We also note the related work of [12, Theorem 1.6] which shows

that for a commutative DG-ring A with H∗A noetherian, the derived category

D(A) is stratified by H∗A if each localized prime p(H∗A)p is generated by a

finite regular sequence.

Corollary 4.14: Let A be a non-positive commutative DG-ring with H0A

noetherian. Suppose that H∗A is generated over H0A by elements of odd

degree. Then the derived category D(A) is stratified and costratified by the

canonical action of H∗A if and only if H0A builds A in D(A).
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Proof. The commutativity assumption implies that any homogeneous element

in H∗A of odd degree has square zero, so it is nilpotent. From this the result

follows using Proposition 3.14 and Theorem 4.11.

The work of Benson–Iyengar–Krause shows that (co)stratification implies a

lot about the structure of D(A). We record these consequences in the following

three theorems. First, we deal with support.

Theorem 4.15: Let A be a non-positive commutative DG-ring with finite am-

plitude and H0A noetherian.

(1) There is a bijection

{localizing subcategories of D(A)} ∼=←−−→ {subsets of Spec(H0A)}
given by

L �→
⋃
X∈L

suppA(X)

with inverse

V �→ {M ∈ D(A) | suppA(M) ⊆ V }.
(2) LetM,N∈D(A). ThenM builds N if and only if suppA(M)⊇suppA(N).

(3) Let M,N ∈ D(A). Then suppA(M ⊗L
A N) = suppA(M) ∩ suppA(N).

(4) If A is noetherian, then the telescope conjecture holds in D(A); that is,

for any localizing subcategory L of D(A), the following are equivalent:

(a) L is generated by compact objects of D(A);

(b) the associated localization functor L is smashing;

(c) the support of L is specialization closed.

(5) There is a bijection

{localizing subcategories of D(A)} ∼=←−−→ {localizing subcategories of D(H0A)}
given by

L �→ LocD(H0A)(H
0A⊗L

A X | X ∈ L).

Proof. Since D(A) is stratified by the canonical action ofH0A by Theorem 4.11,

(1) follows from [8, Theorem 4.2], and part (2) is an immediate consequence of

(1) and the definition of building. Part (3) follows from [8, Theorem 7.3], and

(4) from [8, Theorem 6.3] (see also [7, Theorem 11.12]). As the tensor unit of

D(A) generates, localizing tensor ideals and localizing subcategories in D(A) are

the same. Therefore, part (5) is a consequence of Corollary 3.8.
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Next, we discuss consequences for compact objects in D(A).

Theorem 4.16: Let A be a non-positive commutative DG-ring with finite am-

plitude and H0A noetherian.

(1) If A is noetherian, there is a bijection

{thick subcategories of D(A)ω}
∼=←−−→ {specialization closed subsets of Spec(H0A)}

given by

S �→
⋃
X∈T

suppA(X)

with inverse

V �→ {M ∈ D(A)ω | suppA(M) ⊆ V }.

(2) Let M,N ∈ D(A) be compact objects. Then M finitely builds N if and

only if suppA(M) ⊇ suppA(N).

(3) If A is noetherian, there is a bijection

{thick subcategories of D(A)ω} ∼=←−−→ {thick subcategories of D(H0A)ω}

given by

S �→ ThickD(H0A)(H
0A⊗L

A X | X ∈ S).

Proof. Since D(A) is stratified by the canonical action ofH0A by Theorem 4.11,

(1) follows from [8, Theorem 6.1]. For part (2), since M is compact, by Thoma-

son’s localization theorem [21, Theorem 2.1(2.1.3)] we have

Thick(M) = Loc(M) ∩ D(A)ω .

Therefore, as N is also compact, M finitely builds N if and only if M builds N ,

so the claim follows from Theorem 4.15(2). Finally, part (3) is a consequence

of Corollary 3.8, as thick tensor ideals and thick subcategories are the same

in D(A) since the tensor unit of D(A) generates.

Here are the corresponding results for cosupport.
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Theorem 4.17: Let A be a non-positive commutative DG-ring with finite am-

plitude and H0A noetherian.

(1) There is a bijection

{colocalizing subcategories of D(A)} ∼=←−−→ {subsets of Spec(H0A)}
given by

C �→
⋃
X∈C

cosuppA(X)

with inverse

V �→ {M ∈ D(A) | cosuppA(M) ⊆ V }.
(2) There is a bijection

{localizing subcategories of D(A)} ∼=←−−→ {colocalizing subcategories of D(A)}
given by

L �→ L⊥ = {M ∈ D(A) | RHomA(M,N) � 0 for all N ∈ L}
with inverse

C �→ ⊥C = {N ∈ D(A) | RHomA(M,N) � 0 for all M ∈ C}.
(3) Let M,N ∈ D(A). Then M cobuilds N if and only if

cosuppA(M) ⊇ cosuppA(N).

(4) Let M,N ∈ D(A). Then

cosuppA(RHomA(M,N)) = suppA(M) ∩ cosuppA(N).

(5) There is a bijection

{colocalizing subcategories of D(A)}
∼=←−−→ {colocalizing subcategories of D(H0A)}

given by

C �→ ColocD(H0A)(RHomA(H
0A,X) | X ∈ C).

Proof. By Theorem 4.11, D(A) is costratified by the canonical action of H0A,

so (1) follows from [9, Proposition 5.6] (also see [9, Remark 5.7]), and (2) from [9,

Corollary 9.9]. Part (3) follows immediately from (1) and the definition of

cobuilding. Part (4) follows from [9, Theorem 9.5] since D(A) is also stratified

by H0A by Theorem 4.11. Since the tensor unit in D(A) generates, colocalizing

sucategories and hom-closed colocalizing subcategories are the same in D(A).

Therefore, part (5) is a consequence of Corollary 3.13.
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The next result may be viewed as a generalization of Remark 4.4. Note that

we do not assume in it finite amplitude.

Corollary 4.18: Let A be a non-positive commutative noetherian DG-ring,

and suppose that D(A) is stratified by the canonical action of H0A. Then

the DG-module H0A is compact in D(A) if and only if the map of DG-rings

A→ H0A is a quasi-isomorphism.

Proof. By Lemma 4.10 there is an equality suppA(A) = suppA(H
0A). Hence,

as in (1) and (2) of Theorem 4.16 above, it follows from [8, Theorem 4.2] that

if H0A is compact, then H0A finitely builds A. This implies that A has finite

amplitude, so by [18, Theorem I] or [33, Theorem 0.7] it follows that A→ H0A

is a quasi-isomorphism.

Example 4.19: Let k be a field, and letA=k[t], thought of as a graded ring with t

in (cohomological) degree −2. This is a commutative noetherian DG-ring with

zero differential and infinite amplitude. As explained in [33, Example 7.26] and

in [11, Example 1.7], it holds that H0A is a compact object in D(A), so it follows

from Corollary 4.18 that D(A) is not stratified by the canonical action of H0A.

This in turn implies by [9, Theorem 9.7] that D(A) is also not costratified by

the canonical action of H0A. It follows from Theorem 4.11 that H0A does not

build A in D(A). In fact, by [7, Theorem 5.2] and [9, Theorem 10.3], we know

that D(A) is stratified and costratified by the action of H∗A.

4.3. Reduction determines buildings. We now apply the consequences of

the (co)stratification results described in Theorems 4.15, 4.16 and 4.17 to show

that the reduction and coreduction functors can be used to determine a lot of

structure in D(A).

Corollary 4.20: Let A be a non-positive commutative DG-ring with finite

amplitude such that H0A is noetherian, and let M,N ∈ D(A).

(1) M builds N in D(A) if and only if H0A ⊗L
A M builds H0A ⊗L

A N in

D(H0A).

(2) M cobuilds N in D(A) if and only if RHomA(H
0A,M) cobuilds

RHomA(H
0A,N) in D(H0A).

Proof. (1) follows from Corollary 3.19 and (2) follows from Corollary 3.20.

The next example shows that this result is false if A has infinite amplitude

(even if it is formal).
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Example 4.21: This example is a continuation of Example 4.19, that is, we take

A = k[t] where t is in degree −2. Even when A has infinite amplitude, the

functor

H0A⊗L
A − : D−(A)→ D−(H0A)

is conservative by [33, Proposition 3.1], so it follows as in Corollary 3.5 that

suppH0A(H
0A⊗L

A H0A) = suppA(H
0A) = suppH0A(H

0A).

Since D(H0A) is stratified by H0A, this implies that H0A ⊗L
A H0A builds

H0A = H0A⊗L
A A in D(H0A), but we have seen in Example 4.19 that H0A

does not build A in D(A).

Proposition 4.22: Let A be a non-positive commutative DG-ring A with fi-

nite amplitude, and let M ∈ D(A). Then M is compact in D(A) if and only

if H0A⊗L
A M is compact in D(H0A).

Proof. The forward implication is evident since the restriction of scalars

along A→ H0A preserves sums. For the reverse implication, since H0A⊗L
A M

is compact it has finite flat dimension and hence M also has finite flat dimen-

sion by [27, Theorem 4.1]. Since M has finite flat dimension and A has finite

amplitude, M � A⊗L
AM has finite amplitude. By [33, Theorem 5.11] it follows

that M is compact.

In view of the above, it is natural to ask the following questions:

Question 4.23: Given a DG-module M ∈ D(A) such that H0A ⊗L
A M is proxy-

small (resp., virtually-small) in D(H0A), does it follow that M is proxy-small

(resp., virtually-small) in D(A)?

Question 4.24: Given two DG-modules M,N ∈ D(A) such that H0A ⊗L
A M

finitely builds H0A ⊗L
A N in D(H0A), does it follow that M finitely builds N

in D(A)?

We remark that Question 4.24 has a positive answer if both M and N are

compact by Theorem 4.16(2).

Proposition 4.25: If Question 4.24 has a positive answer, then Question 4.23

has a positive answer.

Proof. According to [14, Proposition 4.5], if H0A⊗L
AM is virtually-small, then

there exists a finite sequence x ⊆ H0A, such that H0A ⊗L
A M finitely builds
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the Koszul complex K(H0A;x). By the base change property of the Koszul

complex, we have that

K(H0A;x) � H0A⊗L
A K(A;x).

Hence, if Question 4.24 has a positive answer, this implies that M finitely builds

the small DG-module K(A;x), so that M is virtually-small. The corresponding

result about proxy-smallness follows similarly, using [14, Proposition 4.4].

We will show that both of these questions have a negative answer. Firstly we

need some auxiliary results.

Lemma 4.26: Let k be a field. Then any object of D(k) is proxy-small (and

hence also virtually-small).

Proof. Given any non-zero object M ∈ D(k), there exists some shift of k which

is a direct summand of M , and hence M finitely builds k, while k builds M ,

so M is proxy-small.

Lemma 4.27: Let A→ B be a map of DG-rings, and suppose that B is small

as an object of D(A). Given M ∈ D(B), we have that M is small in D(B) if

and only if M is small in D(A).

Proof. This follows from the adjunction

RHomA(M,−) � RHomB(M,RHomA(B,−)).

The next result is a DG version of [14, Proposition 7.2].

Proposition 4.28: Let A→ B be a map of DG-rings, and suppose that B is

small in D(A). Given M ∈ D(B), if M is proxy-small (resp., virtually-small)

in D(B), then M is proxy-small (resp., virtually-small) in D(A).

Proof. We prove the claim about proxy-smallness, as the claim about virtual-

smallness is proved similarly. Let W ∈ D(B) be a small object, such that M

finitely builds W and W builds M in D(B). By Lemma 4.27 the DG-module W

is small in D(A), while by Lemma 4.1 the DG-module M finitely builds W and

the DG-module W builds M in D(A), so M is proxy-small in D(A).

We are now ready to show that Questions 4.23 and 4.24 have a negative

answer:
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Theorem 4.29: There exists a commutative noetherian DG-ring K with finite

amplitude, and an object N ∈ Db
f (K) such that N is not virtually-small (and

hence not proxy-small) in D(K), but H0K ⊗L
K N is proxy-small (and hence

virtually-small) in D(H0K).

Proof. Let A be any commutative noetherian ring which is not a locally com-

plete intersection ring. By [24, Theorem 5.4], this implies that there exists some

non-zero M ∈ Db
f (A), such that M is not virtually-small (and hence, also not

proxy-small). For concrete examples of such A and M , see [10].

Since M ∈ Db
f (A), the small support and big support of M coincide (see

Remark 4.8), and are equal to a non-empty closed subset of Spec(A). In par-

ticular, there exists some maximal ideal m in the support of M . Let m be a

finite sequence of elements in A that generates m, and let K = K(A;m) be

the Koszul complex on this sequence. Then K is a commutative noetherian

DG-ring with finite amplitude.

Set N = K ⊗L
A M . We claim that N is not virtually-small (and hence not

proxy-small) in D(K), but that H0K⊗L
K N is proxy-small (and hence virtually-

small) in D(H0K). The latter follows from Lemma 4.26 since H0K = A/m

is a field. To see that N is not virtually-small in D(K), note that if it were,

since K is small over A, this would imply by Proposition 4.28 that N = K⊗L
AM

is virtually-small in D(A). Since A finitely builds K, it would follow that M

finitely builds N = K ⊗L
A M , which shows M is virtually-small, and this would

be a contradiction.

5. Connective ring spectra

In this section we apply our descent results for (co)stratification to the derived

category of a connective ring spectrum R.

Given a connective ring spectrum R (that is, one for which πiR = 0 for i < 0)

we write D(R) for its homotopy category of R-modules. The zeroth homo-

topy π0R is a ring, and there is a map of ring spectra R → π0R. Note that

we implicitly view the ordinary ring π0R as a ring spectrum via the Eilenberg–

MacLane functor H ; since there is a symmetric monoidal equivalence of derived

categories D(Hπ0R) � D(π0R) this does no harm; see [26] and [32] for more

details. If R is commutative, then so is π0R, and D(R) is a tensor-triangulated

category which is rigidly-compactly generated by R. The extension of scalars
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functor f∗ = π0R⊗R − is a geometric functor, and we have f∗ is restriction of

scalars, and f (1) = HomR(π0R,−). Note that these constructions are implicitly

derived.

Lemma 5.1: The extension of scalars π0R⊗R− : D(R)→ D(π0R) is a canonical

π0R-linear functor, and suppR(R) = suppR(π0R).

Proof. The proof is analogous to the proofs of Lemmas 4.9 and 4.10.

Theorem 5.2: Let R be a connective commutative ring spectrum with π0R

noetherian. Then D(R) is stratified and costratified by the canonical action

of π0R if and only if π0R builds R in D(R).

Proof. The derived category D(π0R) is stratified and costratified by π0R by [20,

Theorem 2.8] and [23, Corollary 2.8]. (More precisely, here we are using [8,

Proposition 8.3] and the equivalence D(Hπ0A)�D(π0A) described above.) The

result then follows from Lemma 5.1, together with Corollaries 3.16 and 3.17.

Remark 5.3: Since one can view non-positive (cohomologically graded) DG-

rings as connective ring spectra, the previous theorem can be viewed as a gen-

eralization of Theorem 4.11.

If one is in the situation of Theorem 5.2, then there are multiple consequences;

instead of listing them here, we direct the reader to Theorems 4.15, 4.16 and 4.17

where we listed the consequences in the setting of a non-positive DG-ring. The

consequences in the setting of connective ring spectra are completely analogous

to those in the setting of non-positive DG-rings.

Corollary 5.4: Let R be a connective commutative ring spectrum with π0R

noetherian. If any homogeneous element of π∗R which does not have degree 0 is

nilpotent, then D(R) is stratified and costratified by the canonical action of π∗R
if and only if π0R builds R in D(R).

Proof. This follows from Proposition 3.14 and Theorem 5.2.
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