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ABSTRACT

Reiher, Rödl and Schacht showed that the uniform Turán density of ev-

ery 3-uniform hypergraph is either 0 or at least 1/27, and asked whether

there exist 3-uniform hypergraphs with uniform Turán density equal or ar-

bitrarily close to 1/27. We construct 3-uniform hypergraphs with uniform

Turán density equal to 1/27.
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1. Introduction

Determining the minimum density of a (large) combinatorial structure required

to contain a given (small) substructure is a classical extremal combinatorics

problem, which can be traced to the work of Mantel [12] and Turán [24] in the

first half of the 20th century. The Turán density of a k-uniform hypergraphH ,

which is denoted by π(H), is the infimum over all d such that every sufficiently

large host k-uniform hypergraph with edge density at least d contains H as a

subhypergraph. It can be shown [10] that the Turán density of H is equal to

the limit of the maximum density of a k-uniform n-vertex H-free hypergraph

(n tends to infinity); in particular, Katona, Nemetz and Simonovits [10] showed

that this sequence of maximum densities is non-increasing and so the limit

always exists.

The Turán density of a complete graph Kr of order r is equal to
r−2
r−1 as deter-

mined by Turán [24] himself. Erdős and Stone [6] showed that the Turán density

of any r-chromatic graph H is equal to r−2
r−1 ; also see [4]. The situation is more

complex already for 3-uniform hypergraphs, which we will call 3-graphs for sim-

plicity, compared to graphs (which are 2-uniform hypergraphs). In particular,

determining the Turán density of the complete 4-vertex 3-graph K
(3)
4 is a ma-

jor open problem, and likewise determining the Turán density of K
(3)−
4 , defined

as K
(3)
4 with an edge removed, is a challenging open problem [1, 7, 15] despite

some recent progress obtained using the flag algebra method of Razborov [14];

also see the survey [11] for further details.

It is well-known that H-free graphs with density close to the Turán den-

sity π(H) are close to (r − 1)-partite complete graphs [8, 23], i.e., the edges in

such graphs are distributed in a highly non-uniform way. The same applies to

conjectured extremal constructions in the setting of 3-graphs [7]. In this paper,

we study the notion of uniform Turán density of hypergraphs, which requires

the edges in the host hypergraph to be distributed uniformly. This notion was

suggested by Erdős and Sós [3, 5] in the 1980s and there is a large amount of

recent progress in relation to this notion and to some of its variants [9, 17–21],

see also the survey [16]. For example, Glebov, Volec and the second author [9]

and Reiher, Rödl and Schacht [20] answered a question raised by Erdős and Sós

by showing that the uniform Turán density of K
(3)−
4 is equal to 1/4.

The following result of Reiher, Rödl and Schacht [18] is the starting point

of our work: the uniform Turán density of every 3-graph is either zero or at
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least 1/27. Reiher et al. [18] asked whether there exist 3-graphs with uniform

Turán density equal or arbitrarily close to 1/27. We answer this question in

the affirmative by giving a sufficient condition for a 3-graph to have uniform

Turán density equal to 1/27 and finding examples of 3-graphs satisfying this

condition.

We next introduce the notation needed to state our results precisely. The

ε-linear density of an n-vertex hypergraph H is the minimum density of an

induced subhypergraph of H with at least εn vertices. The uniform Turán

density of a hypergraph H0 is the infimum over all d such that there ex-

ists ε > 0 such that every sufficiently large hypergraph H with ε-linear density

d containsH0. We also present an equivalent definition, which is used by Reiher,

Rödl and Schacht [17–21]. An n-vertex k-uniform hypergraph H is (d, ε)-dense

if every subset W of its vertices induces at least d
(|W |

k

) − εnk edges. The uni-

form Turán density of a hypergraph H0 is the supremum over all d such that

for every ε > 0, there exist arbitrarily large H0-free (d, ε)-dense hypergraphs.

It is easy to show that the two definitions are equivalent.

The notion of the uniform Turán density is trivial for graphs as the uniform

Turán density of every graph is equal to zero. However, the situation is much

more complex already for 3-graphs. As we have already mentioned, the uniform

Turán density of K
(3)−
4 has been determined only recently [9,20], and the only

other 3-graphs with a positive uniform Turán density that has been determined

are tight 3-uniform cycles of length not divisible by three [2]—note that for

tight cycles divisible by 3 the uniform Turán density is equal to 0. In particular,

determining the uniform Turán density of K
(3)
4 is a challenging open problem

though it is believed that the 35-year-old construction of Rödl [22] showing that

the uniform Turán density of K
(3)
4 is at least 1/2 is optimal [16].

Reiher, Rödl and Schacht [18] gave a characterization of 3-graphs with uni-

form Turán density equal to zero, which we now present. Let H be a 3-graph

with n vertices. We say that an ordering v1, . . . , vn of the vertices of H is

vanishing if the set of pairs (i, j), 1 ≤ i < j ≤ n, can be partitioned to

sets L, T and R such that every edge {vi, vj , vk} of H , where i < j < k, sat-

isfies that (i, j) ∈ L, (i, k) ∈ T and (j, k) ∈ R. The pairs that belong to L, T

and R are referred to as left, top and right, respectively (the reason for this

terminology comes from the visualization of the pairs of a triple by arcs over a

horizontal line as in Figure 1). We remark that when the vanishing ordering is

fixed, the partition to the sets L, T and R is unique up to the pairs (i, j) such
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that the vertices vi and vj are not contained in a common edge, and we can

choose all such undetermined pairs to be, say, left. So, we can speak about left,

top and right pairs whenever a vanishing ordering is fixed.

left right

top

i j k

Figure 1. Illustration of left, right and top pairs in an edge of

a 3-graph with ordered vertex set i < j < k. The left pair

is drawn solid, the right pair dashed and the top pair dotted

following the convention used later in Figure 3.

The characterization of 3-graphs with uniform Turán density equal to zero

reads as follows.

Theorem 1 (Reiher, Rödl and Schacht [18]): Let H be a 3-graph. The uniform

Turán density ofH is zero if and only ifH has a vanishing ordering of its vertices.

If a 3-graph H has no vanishing ordering, then the uniform Turán density

of H is at least 1/27 because of the following construction from [18]. Indeed,

fix a 3-graph H with no vanishing ordering and construct a random n-vertex

3-graph Hn as follows: let v1, . . . , vn be the vertices of Hn, randomly parti-

tion all pairs of those vertices to sets L, T and R, and include {vi, vj , vk},
1 ≤ i < j < k ≤ n, as an edge of Hn if (i, j) ∈ L, (i, k) ∈ T and (j, k) ∈ R.

Observe that H cannot be a subhypergraph of Hn (as H has no vanishing or-

dering). On the other hand, for every ε > 0 and δ > 0, there exists n0 such

that the density of every subset of at least εn vertices of Hn for n ≥ n0 is

at least 1/27 − δ with positive probability. It follows that the uniform Turán

density ofH is at least 1/27 as claimed. Hence, Theorem 1 implies the following.

Corollary 2: The uniform Turán density of every 3-graph is either zero or

at least 1/27.

Reiher, Rödl and Schacht [18] asked whether there exist 3-graphs with uni-

form Turán density equal or arbitrarily close to 1/27. In this paper we answer

this question in the affirmative.



Vol. 259, 2024 MINIMUM POSITIVE UNIFORM TURÁN DENSITY 705

Theorem 3: There exists an infinite family of 3-graphs with uniform Turán

density equal to 1/27.

Theorem 3 is implied by the following. In Theorem 15, we give a sufficient

condition for a 3-graph to have uniform Turán density equal to 1/27, we then

present a 7-vertex 9-edge 3-graph (Theorem 17) and an infinite family of 3-

graphs (Theorem 18), whose smallest element has 8 vertices and 9 edges, that

satisfy the condition given in Theorem 15. We remark that we have verified by

a computer that there is no such 3-graph with six or fewer vertices; in fact, we

have been able to show that every 3-graph with six or fewer vertices has Turán

density either equal to zero or at least 1/8.

2. Notation

In this section, we introduce the notation used throughout the paper. We

write [n] for the set of the first n positive integers, i.e., [n] = {1, . . . , n}. An n-

partitioned hypergraph H is a 3-graph such that its vertex set is partitioned

to sets Vij , 1 ≤ i < j ≤ n, and every edge e ofH satisfies that there exist indices

1 ≤ i < j < k ≤ n such that one vertex of e belongs to Vij , one to Vik and

one to Vjk. The set of all edges of H with a vertex from Vij , one from Vik and

one from Vjk is called an (i, j, k)-triad, and the density of an (i, j, k)-triad is

the number of edges forming the triad divided by |Vij | · |Vik| · |Vjk|. Finally, the
density of an n-partitioned hypergraph H is the minimum density of a triad

of H .

We will use the following convention to simplify our notation used throughout

the paper. If H is an n-partitioned hypergraph, we write Vij , 1 ≤ i < j ≤ n,

for its vertex parts, and if H ′ is an n′-partitioned hypergraph, we write V ′
ij ,

1 ≤ i < j ≤ n′, for its vertex parts, i.e., we use the same mathematical accents

when denoting a hypergraph as we do for its vertex parts without specifying

the relation explicitly. The reverse of an n-partitioned hypergraph H is an n-

partitioned hypergraph H ′ with the same vertex set and the same edge set as H

but with the partition of vertices given by V ′
ij = Vn−j+1,n−i+1 for 1 ≤ i < j ≤ n.

Let H be an n-partitioned hypergraph. We say that H ′ is an induced sub-

hypergraph of H if there exists I ⊆ [n] such that H ′ is an |I|-partitioned
hypergraph, its vertex parts are the parts Vij of H such that i, j ∈ I and H ′
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contains all edges of H with vertices in the vertex parts forming H ′. We will

refer to H ′ as the subhypergraph of H induced by the index set I.

We next define several notions of a normalized degree of a vertex of an n-

partitioned hypergraph H . Fix 1 ≤ i < j < k ≤ n and define

• dij→k(v) for v ∈ Vij to be the number of edges of the (i, j, k)-triad

containing v divided by |Vik| · |Vjk|,
• dik→j(v) for v ∈ Vik to be the number of edges of the (i, j, k)-triad

containing v divided by |Vij | · |Vjk|, and
• djk→i(v) for v ∈ Vjk to be the number of edges of the (i, j, k)-triad

containing v divided by |Vij | · |Vik|.

Note that the arrow in the notation indicates to which part of the triad v be-

longs. Further, dij,ik(v, v
′) for v ∈ Vij and v′ ∈ Vik is the number of edges of the

(i, j, k)-triad containing v and v′ divided by |Vjk|; we analogously use dij,jk(v, v′)
for v ∈ Vij and v′ ∈ Vjk and dik,jk(v, v

′) for v ∈ Vik and v′ ∈ Vjk. The con-

sidered hypergraph H when using the just introduced notation will always be

clear from the context, so we decided not to include it as a part of the notation

to keep the notation simpler.

An N -partitioned hypergraph H embeds an n-vertex hypergraph H0 if it

is possible to choose distinct 1 ≤ a1, . . . , an ≤ N corresponding to the vertices

of H0 and vertices vij ∈ Vaiaj for 1 ≤ i < j ≤ n such that if the i-th, j-th and

k-th vertex of H0 form an edge, then {vij , vik, vjk} is an edge of H .

In [16], Reiher gave a general theorem that relates computing the uniform

Turán density of 3-graphs to embeddings in partitioned hypergraphs. In our

notation, the theorem reads as follows.

Proposition 4 (Reiher [16, Theorem 3.3]): Let H be a 3-graph and d ∈ [0, 1].

Suppose that for every δ > 0 there exists N such that every N -partitioned

hypergraph with density at least d + δ embeds H . Then, the uniform Turán

density of H is at most d.

Some of our arguments use the classical Ramsey theorem for multicolored

hypergraphs, which we state below for reference.

Theorem 5 (Ramsey [13]): For all k, r, n ∈ N, there exists N ∈ N such that

every k-edge-coloring of a complete r-uniform hypergraph with N vertices con-

tains a monochromatic complete r-uniform hypergraph with n vertices.
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3. Preprocessing steps

In this section, we present two lemmas that we use to tame a given partitioned

hypergraph before we can apply our main arguments. The first lemma says

that we can find a subhypergraph of a partitioned hypergraph such that the

proportions of left, top and right vertices with non-negligible degrees in all

triads are approximately the same.

Lemma 6: For every ε > 0 and n ∈ N, there exists N ∈ N such that the follow-

ing holds. For every N -partitioned hypergraph H , there exist reals �, t and r,

and an n-partitioned induced subhypergraphH ′ such that for all 1≤ i<j<k≤n

�|V ′
ij | ≤ |{v ∈ V ′

ij , dij→k(v) ≥ ε}| ≤ (�+ ε)|V ′
ij |,

t|V ′
ik| ≤ |{v ∈ V ′

ik, dik→j(v) ≥ ε}| ≤ (t+ ε)|V ′
ik|,

r|V ′
jk | ≤ |{v ∈ V ′

jk , djk→i(v) ≥ ε}| ≤ (r + ε)|V ′
jk|.

Proof. Apply Theorem 5 for 3-graphs with kR = (�ε−1� + 1)3 and nR = n to

get N (the variables on the left of the equalities are named as in the statement

of Theorem 5 but with the subscript R added). Let H be an N -partitioned

hypergraph. Consider the following kR-edge-coloring of the complete 3-graph

with vertex set [N ]: for 1 ≤ i < j < k ≤ N , let L be the set of vertices v ∈ Vij

such that dij→k(v) ≥ ε, T the set of v ∈ Vik such that dik→j(v) ≥ ε, and R

the set of v ∈ Vjk such that djk→i(v) ≥ ε, and color the edge {i, j, k} with the

triple (⌊ |L|
ε|Vij |

⌋
,
⌊ |T |
ε|Vik|

⌋
,
⌊ |R|
ε|Vjk|

⌋)
.

Theorem 5 implies that there exists a subset I ⊆ [N ] such that all edges with

vertices in I have the same color, say (�′, t′, r′). The n-partitioned subhyper-

graph H ′ of H induced by the index set I satisfies the statement of the lemma

with � = ε�′, t = εt′ and r = εr′.

The next lemma concerns partitioned hypergraphs with density larger

than 1/27, and yields that every such hypergraph contains an induced sub-

hypergraph with one of the three properties described in the lemma. We will

refer to the first of these properties as the case of horizontal intersection and

the other as the case of vertical intersection (the second and third cases are

symmetric by reversing the order of the parts of the partitioned hypergraph).

The case of horizontal intersection corresponds to the existence of an edge in
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a (k′, i, j)-triad and an edge in an (i, j, k)-triad, k′ < i < j < k, that share a

common vertex of Vij (the adjective horizontal comes from the fact that the

(k′, i, j)-triad and the (i, j, k)-triad can be visualized by being drawn as over-

lapping edges following each other on a horizontal line). The case of vertical

intersection corresponds to the existence of an edge in an (i, k′, j)-triad and an

edge in an (i, j, k), i < k′ < j < k, that share a common vertex of Vij (the

adjective vertical comes from the fact that the two triads cannot be visualized

as in the previous case as the edges are nested) or the existence of an edge in

a (j, k′, k)-triad and an edge in an (i, j, k), i < j < k′ < k. Using this termi-

nology, the next lemma asserts that every partitioned hypergraph with density

larger than 1/27 has a subhypergraph such that all triads have non-trivial hor-

izontal intersection or all triads have non-trivial vertical intersection. We will

show that hypergraphs that we construct later can be embedded in every parti-

tioned hypergraph where all triads have non-trivial horizontal intersection and

in every partitioned hypergraph where all triads have non-trivial vertical inter-

section, which are the two cases corresponding to the two possible outcomes of

Lemma 14.

Lemma 7: For every δ > 0, there exists ε > 0 such that for every n ∈ N,

there exists N ∈ N such that the following holds. For every N -partitioned

hypergraph H with density at least 1/27 + δ, there exists an n-partitioned

induced subhypergraph H ′ of H such that at least one of the following holds:

• For all 1 ≤ k′ < i < j < k ≤ n, the set V ′
ij contains at least ε|V ′

ij |
vertices v such that dij→k(v) ≥ ε and dij→k′ (v) ≥ ε.

• For all 1 ≤ i < k′ < j < k ≤ n, the set V ′
ij contains at least ε|V ′

ij |
vertices v such that dij→k(v) ≥ ε and dij→k′ (v) ≥ ε.

• For all 1 ≤ i < j < k′ < k ≤ n, the set V ′
jk contains at least ε|V ′

jk|
vertices v such that djk→i(v) ≥ ε and djk→k′ (v) ≥ ε.

Proof. We can assume that δ ≤ 1/2 without loss of generality. Set ε = δ/9

and ε0 = δ/3 and suppose that n is given. Apply Theorem 5 with kR = 3,

rR = 5 and nR = 2n + 1 to get N0 and apply Lemma 6 with ε0 and N0 to

get N . Let H be an N -partitioned hypergraph with density at least 1/27 + δ,

and let H0 be the induced N0-partitioned subhypergraph provided by Lemma 6

along with the reals �, t and r with the properties given in the statement of

Lemma 6.

We first show the following
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Claim: �+ t+ r ≥ 1 + ε0.

Proof of Claim. Suppose that �+ t+ r < 1+ ε0 and choose arbitrary i, j and k

such that 1 ≤ i < j < k ≤ N0. Let L be the set of vertices v ∈ Vij such

that dij→k(v) ≥ ε, T the set of vertices v ∈ Vik such that dik→j(v) ≥ ε, and R

the set of vertices v ∈ Vjk such that djk→i(v) ≥ ε. Observe that the num-

ber of edges of the (i, j, k)-triad that contain a particular vertex v ∈ Vij \ L
is at most ε · |Vik| · |Vjk|, the number of edges that contain a particular ver-

tex v ∈ Vik \ T is at most ε · |Vij | · |Vjk |, and the number of edges that contain a

particular vertex v ∈ Vjk \R is at most ε · |Vij | · |Vik|. Hence, the (i, j, k)-triad

has at most 3ε · |Vij | · |Vjk | · |Vik| edges in addition to the edges with a vertex

from L, a vertex from T and a vertex from R. The number of the edges of the

latter type is at most |L| · |T | · |R|. We derive using �+ t+ r < 1 + ε0 that the

density of the (i, j, k)-triad is at most

(�+ ε0)(t+ ε0)(r + ε0) + 3ε <
(1 + 4ε0

3

)3

+ 3ε <
1

27
+ 3ε0,

which contradicts that the density of the (i, j, k)-triad is at least 1
27 + δ.

We next construct an auxiliary 3-edge-coloring of the complete 5-uniform

hypergraph with vertex set [N0]. Consider 1 ≤ k < i < k′ < j < k′′ ≤ N0

and let R be the set of vertices v of Vij such that dij→k(v) ≥ ε, T the set of

vertices v of Vij such that dij→k′ (v) ≥ ε, and L the set of vertices v of Vij such

that dij→k′′ (v) ≥ ε. If |R ∩ L| ≥ ε0
3 |Vij |, we color the edge {k, i, k′, j, k′′} with

the color red; otherwise, if |L∩T | ≥ ε0
3 |Vij |, we color the edge {k, i, k′, j, k′′} with

the color green; otherwise, if |R∩ T | ≥ ε0
3 |Vij |, we color the edge {k, i, k′, j, k′′}

with the color blue. If neither of the three cases applied, it would hold that

each of the sets R ∩ T , R ∩ L and L ∩ T has fewer than ε0
3 |Vij | vertices; this

would imply that

|L∪T∪R| ≥ |R|+|L|+|T |−|R∩T |−|R∩L|−|L∩T | > (�+t+r−ε0)|Vij | ≥ |Vij |,
which is impossible since L ∪ T ∪ R is a subset of Vij . Hence, one of the three

cases always applies and so each edge gets a color. Theorem 5 yields that there

exists a subset I0 ⊆ [N0] of size 2n+1 such that all edges with vertices from I0

have the same color.

Let I0 = {a1, a2, a3, . . . , a2n+1} and let I = {b1, . . . , bn} where bi = a2i

for i = 1, . . . , n. We define the n-partitioned hypergraph H ′ as the subhyper-

graph of H0 induced by I, where the vertex set Vij of H ′ is identified with the
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vertex set Vbibj of H0. We claim that the n-partitioned hypergraph H ′ has one
of the three properties described in the statement of the lemma. We distinguish

three cases based on the common color of the edges of the complete 5-uniform

hypergraph induced by I0. If the common color is red, we will show that the first

property holds, i.e., we obtain the case of the horizontal intersection. Indeed,

for any integers 1 ≤ k′ < i < j < k ≤ n, consider {a2k′ , a2i, a2i+1, a2j , a2k} and

the sets L and R from the definition of the color of this edge. Observe that the

set L ∩ R contains vertices v such that dij→k′ (v) ≥ ε and dij→k(v) ≥ ε in the

n-partitioned hypergraph H ′, which are vertices v such that da2ia2j→a2k′ (v) ≥ ε

and da2ia2j→a2k
(v) ≥ ε in H .

If the common color is green, we will show that the second property holds.

Indeed, for any integers 1 ≤ i < k′ < j < k ≤ n, consider the edge

{a2i−1, a2i, a2k′ , a2j , a2k}. The sets T and L from the definition of the color

of the edge have the property that the set L ∩ T contains vertices v such that

dij→k′ (v) ≥ ε and dij→k(v) ≥ ε in H ′. Finally, if the common color is blue, we

conclude using an argument analogous to the just analyzed case that H ′ has
the third property given in the statement of the lemma.

4. Embedding lemma

In this section, we prove Lemma 14 which asserts that every partitioned hy-

pergraph with density larger than 1/27 contains one of two specific general

substructures that can be used to embed our considered hypergraphs. We re-

mark that Lemmas 8–10 are implicitly contained in [18] where they were proven

using an iterative approach; we prove them using Ramsey type arguments and

extend them to a more general setting (Lemmas 11 and 12) which is needed to

deal with two possible outcomes of Lemma 7.

We start with stating and proving Lemma 8.

Lemma 8: For every n and ε > 0, there exists N such that the following holds.

If H is an N -partitioned hypergraph and for each 1 ≤ i < j < k ≤ N a

subset Sijk of Vij with at least ε|Vij | vertices is given, then there exist a subset

I ⊆ [N ] of size n and vertices sij , i, j ∈ I, i < j, such that sij ∈ Sijk for

all i, j, k ∈ I, i < j < k.



Vol. 259, 2024 MINIMUM POSITIVE UNIFORM TURÁN DENSITY 711

Proof. Apply Theorem 5 with kR = 2, rR = n and nR = max{2n, 2+ 
n/ε�} to
get N (the variables on the left of the equalities are named as in the statement

of Theorem 5 with the subscript R added to distinguish them from the variables

in the statement of the lemma). Let H be an N -partitioned hypergraph and

sets Sijk ⊆ Vij be as described in the statement of the lemma. We construct an

auxiliary 2-edge-coloring of the complete n-uniform hypergraph on the vertex

set [N ] as follows: an n-tuple a1 < a2 < · · · < an is colored blue if the n − 2

sets Sa1a2a3 , Sa1a2a4 , . . . , Sa1a2an have a common vertex, and it is colored red

otherwise. By Theorem 5, there exist a1, . . . , anR ∈ [N ], a1 < a2 < · · · < anR ,

such that all n-tuples of a1, . . . , anR have the same color. We next distinguish

two cases depending on the common color of those n-tuples.

If the common color of the n-tuples is blue, then we set I = {a1, . . . , an} and

let saiaj for 1 ≤ i < j ≤ n be any element contained in the intersection of the

sets Saiajaj+1 , Saiajaj+2 , . . . , Saiajan .

Suppose that the common color for the n-tuples is red. Since each of the

sets Sa1a2a�
for � = 3, . . . , 2 + 
n/ε� contains at least ε|Va1a2 | elements of Va1a2

and the number of choices for � is 
n/ε�, there exist an element s ∈ Va1a2

and J ⊆ {a3, . . . , a2+�n/ε�}, |J | ≥ n, such that s ∈ Sa1a2a for every a ∈ J .

This implies that the n-tuple formed by a1, a2 and any n − 2 elements of J

should be blue, which contradicts that the common color for the n-tuples formed

by a1, . . . , anR is red.

The first of the next two lemmas follows from Lemma 8 by applying it to the

reverse of H , however, for later use it is beneficial to state it explicitly; the proof

of the second lemma follows along the lines of Lemma 8 and we only include its

sketch for completeness.

Lemma 9: For every n and ε > 0, there exists N such that the following holds.

If H is an N -partitioned hypergraph and for each 1 ≤ i < j < k ≤ N a

subset Sijk of Vjk with at least ε|Vjk| vertices is given, then there exist a subset

I ⊆ [N ] of size n and vertices sjk, j, k ∈ I, j < k, such that sjk ∈ Sijk for

all i, j, k ∈ I, i < j < k.

Lemma 10: For every n and ε > 0, there exists N such that the following

holds. If H is an N -partitioned hypergraph and for each 1 ≤ i < j < k ≤ N a

subset Sijk of Vik with at least ε|Vik| vertices is given, then there exist a subset

I ⊆ [N ] of size n and vertices sik, i, k ∈ I, i < k, such that sik ∈ Sijk for

all i, j, k ∈ I, i < j < k.
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Proof. As we have mentioned, we only sketch the proof as it follows the lines

of the proof of Lemma 8. We first apply Theorem 5 with kR = 2, rR = n

and nR = max{n2, 2 + 
n/ε�} to get N . Suppose that an N -partitioned

hypergraph H and sets Sijk ⊆ Vik are given. We construct an auxiliary 2-

edge-coloring of the complete n-uniform hypergraph on the vertex set [N ] as

follows: an n-tuple a1 < a2 < · · · < an is colored blue if the n − 2 sets

Sa1a2an , Sa1a3an , . . . , Sa1an−1an have a common vertex, and it is colored red

otherwise. By Theorem 5, there exist a1, . . . , anR ∈ [N ], a1 < a2 < · · · < anR ,

such that all n-tuples of a1, . . . , anR have the same color. If the common color is

blue, we set I = {a1, an+1, . . . , an2−n+1}. If the common color is red, we argue

as in the proof of Lemma 8 that there is an element s ∈ Va1a�n/ε�+2
contained

in at least n sets Sa1a�a�n/ε�+2
where � ranges between 2 and 
n/ε�+ 1. Hence,

the n-tuple formed by a1, a�n/ε�+2 and n − 2 choices of � with this property

should be blue, which contradicts that the common color of the n-tuples formed

by a1, . . . , anR is red.

We now extend Lemmas 8–10 to the setting needed to prove Lemma 14.

Lemma 11: For every n and ε > 0, there exists N such that the following

holds. If H is an N -partitioned hypergraph and for each 1 ≤ i < j < k ≤ N

subsets Sijk of Vij and S′
ijk of Vjk are given such that the intersection S′

k′ij∩Sijk

has at least ε|Vij | elements for all 1 ≤ k′ < i < j < k ≤ N , then there exists a

subset I ⊆ [N ] of size n and vertices sij , i, j ∈ I, i < j, such that sij ∈ S′
k′ij

and sij ∈ Sijk for all k′ < i < j < k with i, j, k, k′ ∈ I.

Proof. Apply Theorem 5 with kR=2, rR=2n−2 and nR=max{3n, 2 + 2
n/ε�}
to get N . Let H be an N -partitioned hypergraph and sets Sijk, S

′
ijk ⊆ Vij

as described in the statement of the lemma. We construct an auxiliary

2-edge-coloring of the complete (2n− 2)-uniform hypergraph on the vertex set

[N ] as follows: an (2n − 2)-tuple a1 < a2 < · · · < a2n−2 is

colored blue if the n − 2 sets S′
a1an−1an

, S′
a2an−1an

, . . . , S′
an−2an−1an

and the

n − 2 sets San−1anan+1, San−1anan+2 , . . . , San−1ana2n−2 have a common vertex,

and it is colored red otherwise. By Theorem 5, there exist a1, . . . , anR ∈ [N ],

a1 < a2 < · · · < anR , such that all (2n− 2)-tuples of a1, . . . , anR have the same

color. We next distinguish two cases depending on the common color of these

(2n− 2)-tuples.
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If the common color of the (2n−2)-tuples is blue, we set I = {an−1, . . . , a2n−2}
and let saiaj for n− 1 ≤ i < j ≤ 2n− 2 be any element contained in the inter-

section of the sets S′
ai−(n−2)aiaj

, . . . , S′
ai−1aiaj

and Saiajaj+1 , . . . , Saiajaj+n−2 .

Suppose that the common color for the (2n − 2)-tuples is red. Since each

of the m := 
n/ε� many sets S′
a�am+1am+2

∩ Sam+1am+2am+2+�
for � = 1, . . . ,m

contains at least ε|Vam+1am+2 | elements of Vam+1am+2 , there exist an element

s ∈ Vam+1am+2 and J ⊆ {1, . . . ,m}, |J | = n− 2, such that

s ∈ S′
a�am+1am+2

∩ Sam+1am+2am+2+�

for every � ∈ J , i.e., s ∈ S′
a�am+1am+2

and s ∈ Sam+1am+2am+2+�
for every � ∈ J .

It follows that the (2n − 2)-tuple formed by the indices am+1, am+2, a� and

am+2+�, � ∈ J , should be colored blue. This contradicts that the common color

for the (2n− 2)-tuples formed by elements of I is red.

The proof of the next lemma follows along the lines of the proof of Lemma 11

but since it is not completely analogous, we decided to include its sketch for

completeness.

Lemma 12: For every n and ε > 0, there exists N such that the following

holds. If H is an N -partitioned hypergraph and for each 1 ≤ i < j < k ≤ N

subsets Sijk of Vij and S′
ijk of Vik are given such that the intersection S′

ik′j∩Sijk

has at least ε|Vij | elements for all 1 ≤ i < k′ < j < k ≤ N , then there exists a

subset I ⊆ [N ] of size n and vertices sij , i, j ∈ I, i < j, such that sij ∈ S′
ik′j

and sij ∈ Sijk for all i < k′ < j < k with i, j, k, k′ ∈ I.

Proof. First apply Theorem 5 with kR = 2, rR = 2n − 2 and

nR = max{n2, 2+ 2
n/ε�} to get N . Consider an N -partitioned hypergraph H

and sets Sijk and S′
ijk as given in the statement. We construct an auxil-

iary 2-edge-coloring of the complete (2n − 2)-uniform hypergraph on the ver-

tex set [N ] as follows: an (2n − 2)-tuple a1 < a2 < · · · < a2n−2 is col-

ored blue if the n − 2 sets S′
a1a2an

, S′
a1a3an

, . . . , S′
a1an−1an

and the n − 2 sets

San−1anan+1 , San−1anan+2 , . . . , San−1ana2n−2 have a common vertex,

and it is colored red otherwise. By Theorem 5, we get a1, . . . , anR ∈ [N ],

a1 < a2 < · · · < anR , such that all (2n− 2)-tuples of a1, . . . , anR have the same

color. If the common color of the (2n− 2)-tuples is blue, we set

I = {a1, an+1, . . . , an2−n+1};
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the existence of sij follows as all (2n − 2)-tuples are blue. Suppose that the

common color for the (2n−2)-tuples is red. Similarly to the proof of Lemma 11,

we consider intersections S′
a1a1+�a�n/ε�+2

∩ Sa1a�n/ε�+2a�n/ε�+�+2
where � ranges

between 1 and 
n/ε� and argue that there exist n of these intersections that

have a vertex in common; this implies that one of (2n − 2)-tuples should be

blue.

To prove Lemma 14, we need an additional auxiliary lemma.

Lemma 13: The following holds for every tripartite hypergraph G with

parts A, B and C and every ε > 0: If a vertex a of A is contained in at

least ε|B| · |C| edges of G, then there exist at least ε|B|/2 vertices b of B such

that a and b are contained together in at least ε|C|/2 edges of G.

Proof. Let B′ ⊆ B be the subset of vertices b of B which are contained together

with a in at least ε|C|/2 edges of G. If |B′| < ε|B|/2, then there are less

than ε|B| · |C|/2 edges containing the vertex a and a vertex b ∈ B′. Since any

vertex b ∈ B\B′ is contained together with a in less than ε|C|/2 edges of G, the

number of edges containing the vertex a is less than ε|B| · |C|, which contradicts

the assumption of the lemma.

We are now ready to prove the embedding lemma, which is the main result

of this section. The lemma will be used to upper bound the uniform Turán

density of hypergraphs constructed in the next section.

Lemma 14: For every δ > 0 and n ∈ N, there exists N ∈ N such that the follow-

ing holds. For every N -partitioned hypergraph H with density at least 1/27+δ,

there exists an n-partitioned induced subhypergraph H ′ of H and vertices

αij , βij , γij , β
′
ij , γ

′
ij ∈ Vij for all 1 ≤ i < j ≤ n such that {αij , βjk, γik} is

an edge of H ′ for all 1 ≤ i < j < k ≤ n and at least one of the following holds:

• For all 1 ≤ i < j < k ≤ n, {βij , β
′
jk, γ

′
ik} is an edge of H ′.

• For all 1 ≤ i < j < k ≤ n, {γij , β′
jk, γ

′
ik} is an edge of H ′.

• For all 1 ≤ i < j < k ≤ n, {β′
ij , γjk, γ

′
ik} is an edge of H ′.

Proof. Fix δ > 0 and n ∈ N. Apply Lemma 7 with δ to get ε > 0. Apply

Lemma 8 with n and ε/2 to get n1, then Lemma 10 with n1 and ε/2 to get n2,

then Lemma 9 with n2 and ε/2 to get n3, then Lemma 10 with n3 and ε/2 to

get n4, and finally Lemma 11 with n4+2 and ε to get Nh. Next apply Lemma 9
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with n1 and ε/2 to get n′
2, then Lemma 9 again with n′

2 and ε/2 to get n′
3, then

Lemma 10 with n′
3 and ε/2 to get n′

4, and finally Lemma 12 with n′
4 + 2 and ε

to get Nv. We obtain N by applying Lemma 7 with max{Nh, Nv} (with δ and ε

as fixed earlier).

Let H be an N -partitioned hypergraph with density at least 1/27 + δ. By

Lemma 7, there exists a max{Nh, Nv}-partitioned induced subhypergraph H5

ofH that satisfies one of the three properties given in the statement of Lemma 7.

We start with analyzing the case that the first property holds, i.e., the case

of horizontal intersection; this case results in the first case described in the

statement of the lemma. The sought hypergraph H ′ and the vertices

αij , βij , γij , β
′
ij , γ

′
ij are obtained as follows:

• For 1 ≤ k′ < i < j < k ≤ Nh, let S
′
k′ij be the set of the vertices v ∈ Vij

such that dij→k′ (v) ≥ ε and let Sijk be the set of the vertices v ∈ Vij

such that dij→k(v) ≥ ε. By assumption we are in the horizontal inter-

section case and the first outcome of Lemma 7 applies and therefore

|S′
k′ij ∩ Sijk | ≥ ε|Vij |

for all 1 ≤ k′ < i < j < k ≤ Nh. Hence, Lemma 11 yields that there

exists an (n4 + 2)-partitioned induced subhypergraph of H5 and ver-

tices βij such that dij→k′ (βij) ≥ ε and dij→k(βij) ≥ ε for all

1 ≤ k′ < i < j < k ≤ n4 + 2; removing the first and the last part yields

an n4-partitioned induced subhypergraph H4 of H5 such that

djk→i(βjk) ≥ ε and dij→k(βij) ≥ ε

for all 1 ≤ i < j < k ≤ n4.

• For 1 ≤ i < j < k ≤ n4, let Sijk be the set of vertices v ∈ Vik such

that dij,ik(βij , v) ≥ ε/2; observe that each of the sets Sijk contains at

least ε|Vik|/2 elements by Lemma 13. Lemma 10 yields that there exists

an n3-partitioned induced subhypergraph H3 of H4 and vertices γ′
ik

such that dij,ik(βij , γ
′
ik) ≥ ε/2 for all 1 ≤ i < j < k ≤ n3.

• For 1 ≤ i < j < k ≤ n3, let Sijk be the set of vertices v ∈ Vjk that

form an edge together with βij and γ′
ik in the (i, j, k)-triad of H3, and

apply Lemma 9 to get an n2-partitioned induced subhypergraph H2

of H3 and vertices β′
jk such that {βij , β

′
jk, γ

′
ik} is an edge of H2 for

all 1 ≤ i < j < k ≤ n2.
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• For 1 ≤ i < j < k ≤ n2, let Sijk be the set of vertices v ∈ Vik such

that djk,ik(βjk, v) ≥ ε/2; observe that each of the sets Sijk contains

at least ε|Vik|/2 elements by Lemma 13. So, Lemma 10 yields that

there exists an n1-partitioned induced subhypergraph H1 of H2 and

vertices γik such that djk,ik(βjk, γik) ≥ ε/2 for all 1 ≤ i < j < k ≤ n1.

• For 1 ≤ i < j < k ≤ n1, let Sijk be the set of vertices v ∈ Vij that form

an edge with βjk and γik in H1. Lemma 8 yields that there exists an

n-partitioned induced subhypergraph H ′ of H1 and vertices αij such

that {αij , βjk, γik} is an edge of H ′ for 1 ≤ i < j < k ≤ n.

The hypergraph H ′ together with the vertices αij , βij , γij , β
′
ij , γ

′
ij satisfies the

first case of the lemma.

The case of vertical intersection from Lemma 7 is analyzed in an analogous

way. We next sketch the steps resulting in the sought hypergraph H ′ and the

vertices αij , βij , γij , β
′
ij , γ

′
ij if the second property in the statement of Lemma 7

applies.

• Lemma 12 is used to obtain an (n′
4 + 2)-partitioned induced subhyper-

graph of H5 and vertices γij such that dij→k(γij)≥ε and dij→k′ (γij)≥ε

for all 1 ≤ i < k′ < j < k ≤ n4 +2; removing the first and the last part

yields an n′
4-partitioned induced subhypergraph H4 of H5.

• Lemma 10 is used to obtain an n′
3-partitioned induced subhypergraph

of H3 of H4 and vertices γ′
ik such that dij,ik(γij , γ

′
ik) ≥ ε/2 for

all 1 ≤ i < j < k ≤ n3.

• Lemma 9 is used to obtain an n′
2-partitioned induced subhypergraph

of H2 of H3 and vertices β′
jk such that {γij , β′

jk, γ
′
ik} is an edge of H2.

• Lemma 9 is used to obtain an n′
1-partitioned induced subhypergraph

of H1 of H2 and vertices βjk such that djk,ik(βjk, γik) ≥ ε/2 for all

1 ≤ i < j < k ≤ n1.

• Finally, Lemma 8 is used to obtain an n-partitioned induced subhyper-

graph of H ′ of H1 and vertices αij such that {αij , βjk, γik} is an edge

of H ′ for 1 ≤ i < j < k ≤ n.

The obtained hypergraph H ′ together with the vertices αij , βij , γij , β
′
ij , γ

′
ij sat-

isfies the second case of the lemma. The case of the third property in the

statement of Lemma 7 applies is completely symmetric and yields the third

case of the lemma.
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5. Main theorem and examples

We are now ready to prove our main theorem. This is done by transferring

our result about n-partitioned hypergraphs contained in Lemma 14 back to

the original setting of uniformly dense hypergraphs by using Proposition 4.

The second and third properties in the statement of the theorem correspond

to the cases of horizontal and vertical intersection, respectively, as described in

Lemmas 7 and 14; note that the second and third cases in the two lemmas are

symmetric (by reversing the order of the parts) and so are associated with the

case of vertical intersection. The definition of a vanishing ordering can be found

in Section 1.

Theorem 15: Let H0 be an n-vertex 3-graph that

• has no vanishing ordering of its vertices,

• can be partitioned into two spanning subhypergraphs H1 and H2 such

that there exists an ordering of the vertices that is vanishing for bothH1

and H2 and if e1 is an edge of H1 and e2 is an edge of H2 such that

|e1 ∩ e2| = 2, then the pair e1 ∩ e2 is right with respect to H1 and left

with respect to H2, and

• can be partitioned into two spanning subhypergraphs H ′
1 and H ′

2 such

that there exists an ordering of the vertices that is vanishing for bothH ′
1

and H ′
2 and if e1 is an edge of H ′

1 and e2 is an edge of H ′
2 such that

|e1 ∩ e2| = 2, then the pair e1 ∩ e2 is top with respect to H ′
1 and left

with respect to H ′
2.

The uniform Turán density of H0 is equal to 1/27.

Proof. Fix an n-vertex 3-graph H0 with the properties given in the statement

of the lemma. Since H0 has no vanishing ordering, its uniform Turán density is

at least 1/27 by Theorem 1 and Corollary 2. By Proposition 4, we need to show

that for every δ > 0, there exists N such that every N -partitioned hypergraph

with density at least 1/27 + δ embeds H0. Apply Lemma 14 with n and δ to

get N . Let H be an N -partitioned hypergraph with density at least 1/27 + δ

and let H ′ be an n-partitioned induced subhypergraph of H with one of the

three properties given in Lemma 14. In each of the three cases given by which

of the three properties holds, we use a partition given in the second or in the

third case of the statement of the theorem, to embed H1 using the edges formed

by the vertices αij , βij and γij , and to embed H2 using the edges formed by

the vertices β′
ij , γ

′
ij and either βij or γij .
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If the first property given in Lemma 14 holds, we consider an ordering of

the vertices of H0 as described in the second bullet point in the statement of

the theorem and choose αij for every pair i, j that is left with respect to H1,

choose βij for every pair i, j that is right with respect to H1 or left with respect

to H2, choose γij for every pair i, j that is top with respect to H1, choose β
′
ij for

every pair i, j that is right with respect to H2, and choose γ′
ij for every pair i, j

that is top with respect to H2. Hence, H
′ embeds H0.

If the second property given in Lemma 14 holds, we consider an ordering of

the vertices of H0 as described in the third bullet point in the statement of

the theorem and choose αij for every pair i, j that is left with respect to H1,

choose βij for every pair i, j that is right with respect to H1, choose γij for every

pair i, j that is top with respect to H1 or left with respect to H2, choose β
′
ij for

every pair i, j that is right with respect to H2, and choose γ′
ij for every pair i, j

that is top with respect to H2. Again, we conclude that H ′ embeds H0.

The third property given in Lemma 14 is symmetric to the second (by re-

versing the order of the parts of H ′), and the arguments as in the previous

paragraph yield that H ′ embeds H0. Since H ′ embeds H0 regardless which of

the three properties given in Lemma 14 holds, the uniform Turán density of H0

is at most 1/27 by Proposition 4.

We next give examples of 3-graphs that satisfy the assumption of Theorem 15

and so their uniform Turán density is equal to 1/27. We start with introducing

a lemma, which will be useful to rule out the existence of a vanishing ordering

of vertices of a 3-graph. We say that a directed graph is simple if every pair

of its vertices is joined by at most one edge, i.e., there are no parallel edges or

pairs of edges oriented in the opposite way.

Lemma 16: A 3-graph H has a vanishing ordering if and only if there exists

a simple directed graph G with the same vertex set as H such that each edge

of H corresponds to a cyclically directed triangle with edges colored 1, 2 and 3

(in this order), and there exist distinct indices i and j, i, j ∈ {1, 2, 3}, such that

the subgraph of G containing all edges colored with i and j is acyclic.

Proof. We show that the existence of a directed graph G with properties as

given in the statement of the lemma is equivalent to the existence of a vanishing

ordering of H . First suppose that there exists a directed graph G with edges

colored as described in the statement of the lemma. By symmetry, we may
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assume that the subgraph of G containing all edges colored with 1 and 2 is

acyclic (otherwise, we cyclically rotate the colors to satisfy this). Consider a

linear ordering of the vertices ofH that is an extension of the partial order given

by the existence of a directed path in G. We claim that this linear ordering is

vanishing. Indeed, all left edges are colored with 1, all right edges with 2 and

all top edges with 3.

Next suppose that there exists a vanishing ordering of the vertices of H and

consider the following simple directed graph G: if {u, v, w} is an edge of H such

that uv is the left pair, vw is the right pair and uw is the top pair, include the

edge uv directed from u to v and colored with 1, the edge vw directed from v

to w and colored with 2, and the edge uw directed from w to u and colored

with 3. The subgraph of G containing all edges colored with 1 and 2 satisfies

that every edge is directed from a smaller vertex to a larger vertex, and so the

subgraph is acyclic. Hence, G has the properties described in the statement of

the lemma.

As the first example of a 3-graph with uniform Turán density equal to 1/27,

we present a 3-graph with seven vertices, which is the smallest possible number

of vertices. The 3-graph has a non-trivial group of automorphisms, which corre-

spond to a vertical mirror symmetry in Figure 2 where the 3-graph is visualized.

Theorem 17: Let H be a 3-graph with seven vertices a, . . . , g and the follow-

ing 9 edges: abc, ade, bcd, bcf , cde, def , abg, cdg and efg. The uniform Turán

density of H is equal to 1/27.

Proof. Consider a directed graph G associated with the 3-graph H as described

in the statement of Lemma 16. Note that if we fix an orientation and a col-

oring for the triple abc, then all the orientations and colors of the graph are

fixed. Therefore G is unique up to cyclical shifts of the colors and a swap of all

the orientations. Hence it suffices to consider the directed graph G depicted in

Figure 2 together with the three subgraphs containing all edges of the colors 1

and 2, all edges of the colors 1 and 3, and all edges of the colors 2 and 3. Since

neither of the three subgraphs is acyclic, the 3-graph H has no vanishing order-

ing by Lemma 16. Hence, the first condition in the statement of Theorem 15

holds.
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Figure 2. The 3-graph H described in the statement of The-

orem 17 (the edges correspond to the drawn triangles), the

unique (up to a symmetry) graph G associated with H as de-

scribed in Lemma 16 and the three subgraphs containing all

edges with distinct pairs of colors. Cycles witnessing that nei-

ther of the three subgraphs is acyclic are drawn dashed.

We next verify the second and third conditions in the statement of Theo-

rem 15. We set H1 and H ′
1 to be the 3-graphs with the same vertex set as H

and the edge abg only, and H2 and H ′
2 the 3-graphs obtained from H by remov-

ing the edge abg. We consider the ordering egbdfac of the vertices of H2 and

the ordering ebgdfac of the vertices of H ′
2. The orderings are vanishing with

respect to H2 and H ′
2, respectively; this can be straightforwardly verified with

the aid of Figure 3. Note that ab is the only pair shared by an edge of both H1

and H2, as well as the only pair shared by an edge of both H ′
1 and H ′

2. The

pair ab is left with respect to both H2 and H ′
2. Since the pair ab is right with

respect to H1 and top with respect to H ′
1 (the orderings are vanishing with

respect to H1 and H ′
1 as the 3-graph consists of a single edge), the second and

third conditions in the statement of Theorem 15 hold. We conclude that the

uniform Turán density of H is equal to 1/27.
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Figure 3. The 3-graph H described in the statement of Theo-

rem 17 and the vanishing orders with respect to 3-graphs H2

and H ′
2 as in the statement of Theorem 15; the 3-graphs H2

and H ′
2 are obtained by removing the edge abg from H . The

left pairs are drawn solid, the right pairs dashed and the top

pairs dotted.

We next present an infinite family of 3-graphs with uniform Turán density

equal to 1/27; the smallest 3-graph in the family has eight vertices. The family

enjoys three cyclic symmetries (by mapping the vertices ci, di and ei to each

other in a cyclic way).

Theorem 18: For a positive integer k, let Hk be the 3-graph with 5 + 3k

vertices a, b, c0, . . . , ck, d0, . . . , dk, e0, . . . ek and the following 3(k + 2) edges:

abc0, bc0c1, c0c1c2, . . . , ck−2ck−1ck, ck−1ckdk,

abd0, bd0d1, d0d1d2, . . . , dk−2dk−1dk, dk−1dkek,

abe0, be0e1, e0e1e2, . . . , ek−2ek−1ek, ek−1ekck.

The uniform Turán density of Hk is equal to 1/27.

Proof. Fix a positive integer k. We first show using Lemma 16, Theorem 1 and

Corollary 2 that the uniform Turán density of Hk is at least 1/27. Consider

the graph G as described in the statement of the lemma. By symmetry, we can

assume that the edge ab is oriented from a to b and colored with 1 (see Figure 4

for k = 1). So, the edge bx0 is oriented from b to x0 and colored with 2 for

each x ∈ {c, d, e}, and the edge x0x1 is oriented from x0 to x1 and colored with 3,

etc. In particular, the edge xk−1xk is oriented from xk−1 to xk and colored

with k + 2 (mod 3). It follows that the edges ckdk, dkek and ekck form a
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cyclically oriented triangle and each of the edges is colored with k (mod 3),

and the edges ck−1ck, ckek−1, ek−1ek, ekdk−1, dk−1dk and dkck−1 form an

oriented cycle with edges colored with k + 2 (mod 3) and k + 1 (mod 3) in an

alternating way. Hence, no pair of edge colors induces an acyclic subgraph, and

so the 3-graph Hk has no vanishing ordering of the vertices by Lemma 16. We

conclude that the uniform Turán density of Hk is at least 1/27.

1

3

3

3 2

2

2

3

1

3

1

3

1

2

2

2

1

1

1

a b

c0

d0

e0

c1

d1e1

Figure 4. The graph G from the proof of Theorem 18 for k = 1.

We next verify the second and third conditions in the statement of Theo-

rem 15. We set H1 and H ′
1 to be the 3-graphs with the same vertex set as Hk

and the edge ek−1ekck only, and H2 and H ′
2 the 3-graphs obtained from Hk by

removing the edge ek−1ekck. Let A be the set containing all vertices xi with

i ≡ k − 1 (mod 3), x ∈ {c, d, e}, a if k ≡ 2 (mod 3), and b if k ≡ 0 (mod 3).

Let B be the set containing all vertices xi with i ≡ k (mod 3), x ∈ {c, d, e},
except for ck and dk, a if k ≡ 1 (mod 3), and b if k ≡ 2 (mod 3). Finally, let C

be the set containing all vertices xi with i ≡ k + 1 (mod 3), x ∈ {c, d, e}, a
if k ≡ 0 (mod 3), and b if k ≡ 1 (mod 3).

First consider any ordering of the vertices of Hk that contains first all vertices

of A except for ek−1, then ck, then ek−1, then dk, then all vertices of B, and

then all vertices of C. Observe that this ordering is a vanishing ordering with
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respect to H ′
1 and the pair ek−1ek is left in this ordering. Indeed, each edge

of H ′
1 except for those containing the vertex ck or the vertex dk, i.e., except for

ck−2ck−1ck, dk−2dk−1dk, ck−1ckdk and dk−1dkek, contains exactly one vertex

from A, one from B and one from C, and so the pairs involving a vertex from A

and a vertex from B except the pair dk−1ek are left, the pairs involving a vertex

from A and a vertex from C are top, and the pairs involving a vertex from B and

a vertex from C are right; in addition, the pairs ck−1ck and dk−1dk are left, the

pairs ckck−2, dkdk−2 and dkek are right, and the pairs ck−1dk and dk−1ek are

top, which is in line with the ordering of the four exceptional edges. Since H1

contains a single edge (the edge ek−1ekck), the ordering is also a vanishing

ordering with respect to H1. Furthermore, ek−1ek is the only pair shared by H1

and H ′
1 and the pair right with respect to this ordering in H1 and left in H ′

1.

Hence, the second condition in the statement of Theorem 15 holds.

Next consider any ordering of the vertices of Hk that contains first all vertices

of A, then ck, then dk, then all vertices of B, and then all vertices of C. Observe

that this ordering is a vanishing ordering with respect to H ′
2 and the pair ek−1ek

is left in this ordering (the argument is analogous to the previous case). SinceH2

contains a single edge, the ordering is also a vanishing ordering with respect

to H2 and the pair ek−1ek is top. We conclude that the third condition in the

statement of Theorem 15 also holds, and so the uniform Turán density of H is

equal to 1/27.

6. Conclusion

The 7-vertex 3-graph with uniform Turán density 1/27 described in Theorem 17

has the smallest possible number of vertices but it is not the unique 7-vertex

3-graph with uniform Turán density equal to 1/27. Using a computer, we

have generated all minimal 7-vertex 3-graphs with uniform Turán density equal

to 1/27 and we include their list below (three of them have one fewer edge

than the 3-graph from Theorem 17, however, they enjoy less symmetries than

the presented 3-graph and so we preferred analyzing a more symmetric 3-graph

with a larger number of edges). The vertices are denoted by a, . . . , g and each

line below is the edge set of one of them; the first line contains the 3-graph
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described in Theorem 17 (with vertices renamed).

abc, abd, abe, acf, acg, bdf, bdg, cef, deg

abc, abd, abe, acf, acg, bdf, cdg, cef, efg

abc, abd, abe, acf, adg, bdf, cef, efg

abc, abd, abe, acf, aeg, bdf, bfg, cde, cdg, cef

abc, abd, abe, acf, bcg, bdf, cde, ceg, efg

abc, abd, ace, adg, bcf, bde, bfg, cdf, ceg

abc, abd, ace, aef, afg, bcf, bde, beg, cdf, cdg

abc, abd, ace, afg, bcf, bde, bfg, def

abc, abd, ace, bde, bfg, cdf, ceg, cfg

For each of the remaining 15 minimal 7-vertex 3-graphs H with positive

uniform Turán density (out of which 6 have isolated vertices), for every ε > 0,

there exist arbitrarily large (4/27, ε)-dense 3-graphs that avoidH . Each of these

3-graphs H is avoided by one of the following two constructions of random n-

vertex 3-graphs: Order the n vertices randomly and color the pairs of vertices

randomly red and blue with probability 2/3 and 1/3, respectively. In the first

construction, we include an edge if the left and right pairs are red and the top

pair is blue, and in the second construction, we include an edge if the left and

top pairs are red and the right pair is blue.

Theorem 15 gives a sufficient condition on a 3-graph to have the uniform

Turán density equal to 1/27. We believe that this condition is not necessary,

however, we do not have an example of a 3-graph with uniform Turán den-

sity 1/27 that does not satisfy the condition and do not also have a conjecture

for a possible classification of 3-graphs with uniform Turán density 1/27.

Problem 1: Characterize the 3-graphs with uniform Turán density equal to 1/27.

In view of Corollary 2, it is natural to ask whether a similar phenomenon

appears for the uniform Turán density of 1/27, in particular, all 3-graphs that

we know to fail to satisfy the conditions of Theorems 1 and 15 have uniform

Turán density at least 4/27.

Problem 2: Does there exist δ > 0 such that the uniform Turán density of every

3-graph is either at most 1/27 or at least 1/27 + δ?
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