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ABSTRACT

We prove an analogue of the Weierstrass preparation theorem for henselian

pairs, generalizing the local case recently proved by Bouthier and

Česnavičius. As an application, we construct a henselian analogue of the

resultant of p-adic series defined by Berger.

1. Introduction

Let R be a ring (commutative, with unit). We denote by R{t} the henselization

of the polynomial ring R[t] with respect to the ideal (t): this is a subring of the

power series ring R[[t]]. (For a brief review of henselian pairs and henselization,

see Section 2.1.)
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The aim of this work is to prove the following result:

Theorem 1.1: Let R be a ring, I an ideal of R. Assume that (R, I) is a

henselian pair. Let d be a natural integer and let f be an element of R{t}
which in R[[t]] has the form f =

∑
i≥0 ait

i, where ad ∈ R× and ai ∈ I for i < d.

Then:

(1) The images of 1, t, . . . , td−1 form a basis of the R-module S = R{t}/(f).
(2) (Division theorem) Every element of R{t} can be written uniquely in

the form Bf + C where B ∈ R{t} and where C ∈ R[t] is a polynomial

of degree < d.

(3) (Preparation theorem) f can be written uniquely as f = (td + Q) v

where v ∈ R{t}× and where Q ∈ R[t] has degree < d and coefficients

in I.

1.2. Related results. The result (today) most commonly named “Weier-

strass preparation theorem” is the analogous statement where R{t} is replaced

by R[[t]], where R is a complete noetherian local ring with maximal ideal I: see

for instance [5, VII, §3, no 8, prop. 5]. This formal variant was generalized by

O’Malley [11, 2.10] to the case where R is I-adically complete and separated

(but is no longer assumed local or noetherian).

In the local case, there is a convergent variant, where R = K〈x1, . . . , xn〉 is

the ring of germs of analytic functions in n variables over some field K complete

for an absolute value, and the role of R{t} is played by K〈x1, . . . , xn, t〉. For

K = C, this is in fact the original theorem of Weierstrass. It is generally proved

by inspection of the above formal variant (where R is K[[x1, . . . , xn]]), checking

that the series constructed in the proof remain convergent; see for instance [10,

Theorem 45.3].

When R is local henselian with maximal ideal I, Theorem 1.1 was proved

by Bouthier and Česnavičius in [6, 3.1.2], which inspired the present paper.

The proof we give here is somewhat different and more direct: we do not use

reduction to the noetherian case or the classical preparation theorem, but we

work directly from the construction of R{t} as a filtered colimit of étale R[t]-

algebras.

Regrettably, there does not seem to be, at the moment, a general result

covering all the above-mentioned variants, or at least a common strategy of

proof.
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1.3. Outline of the paper. In Section 2, we recall some basic facts about

henselian pairs and henselization, some elementary results on henselian series

rings (i.e., of the form R{t1, . . . , tn}), and a useful decomposition result for

R-schemes, where R is as in Theorem 1.1.

Theorem 1.1 itself is proved in Section 3. The three statements are easily

deduced from each other; here we derive (2) and (3) from (1).

Finally, as an easy application, we define in Section 4 a notion of resultant

in R{t}, entirely similar to the resultant constructed by Berger [4] for p-adic

formal power series.

Notation and conventions. All rings are commutative with unit; ring ho-

momorphisms respect unit elements. The unit group of a ring R is denoted by

R×, its Jacobson radical by rad(R).

If x is a point of a scheme, κ(x) denotes its residue field.

Let Y be a closed subscheme of a scheme X . We say (X,Y ) is a Zariski pair

if X is the only open subscheme of X containing Y ; this condition only depends

on the underlying spaces. If X = Spec (A) is affine and I ⊂ A is the ideal

of Y , we say (A, I) is a Zariski pair if (X,Y ) is a Zariski pair or, equivalently,

if I ⊂ rad(A). If (X,Y ) is Zariski and X ′ → X is a closed morphism, then

(X ′, Y ×X X ′) is Zariski.

Acknowledgments. The author is grateful to Henri Lombardi and Herwig

Hauser for pointing out references, and to the referee for their remarks.

2. Preliminary results

2.1. Review of henselian pairs. The notion of a henselian pair was defined

by Lafon [9], generalizing the local case introduced by Azumaya [3]. Let us first

recall the definition:

Definition 2.1.1: Let R be a ring and I an ideal of R. We say that (R, I) is a

henselian pair if for every étale R-algebra R′, every morphism ρ : R′ → R/I

of R-algebras lifts to a morphism ρ : R′ → R.

If (R, I) is a henselian pair, we also say occasionally that (Spec (R), Spec (R/I))

is a henselian pair. (There is an obvious generalization to general schemes, but

we only need the affine case.) A henselian local ring is a local ring R, with

maximal ideal I, such that (R, I) is henselian.
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A henselian pair is a Zariski pair: if f ∈ 1 + I, apply the definition to

R′ = Rf . It follows that, given ρ as in the definition, ρ is unique. Another

immediate consequence of the henselian property is that the map R → R/I

induces a bijection on idempotents: consider R′ = R[x]/(x(x − 1)).

There are many equivalent definitions of a henselian pair; for this and for

more generalities, see for instance [13, Tag 09XD]. One important property

that we shall use is that if (R, I) is a henselian pair, so is (R′, IR′) for every

finite (or just integral) R-algebra R′. In particular, idempotents of R′/IR′ lift
uniquely to idempotents of R′.

2.1.2. Henselization. Let R be a ring and I ⊂ R an ideal. The category of

henselian pairs (S, J), where S is an R-algebra and J is an ideal containing IS,

has an initial object (R, I)
h
= (Rh, Ih) called the henselization of (R, I) (or the

henselization of R at I).1 We have Ih = IRh and R/I
∼−→ Rh/Ih. We can con-

struct Rh as the filtered colimit of étale R-algebrasR′ such that R/I
∼−→ R′/IR′;

in particular, Rh is flat over R, and faithfully flat if (R, I) is a Zariski pair. If R′

is an integral R-algebra (for instance a quotient of R), then

(R′, IR′)h = (R, I)
h ⊗R R′.

2.2. Structure of henselian series rings. Let R be a ring, t = (t1, . . . , tn)

a finite sequence of indeterminates.2 We denote by R{t} the henselization

of R[t] at the ideal (t1, . . . , tn); it is an R[t]-algebra with an isomorphism

ε : R{t}/(t) ∼−→ R, and there is a natural injection R{t} ↪→ R[[t]] making R[[t]]

the (t)-adic completion of R{t}; the image of f ∈ R{t} in R[[t]] will be denoted

by ffor.

As a functor of R, R{t} is better behaved than R[[t]]. In particular, it com-

mutes with filtered colimits, and if I is any ideal of R we have

R{t}/IR{t} ∼= (R/I){t}.
For f ∈ R{t} we have the equivalences:

f ∈ R{t}× ⇔ ffor ∈ R[[t]]× ⇔ ε(f) ∈ R×.

It follows that rad(R{t}) is generated by rad(R) and (t). In particular, if (R, I)

is a Zariski pair, so is (R{t}, IR{t}+ (t)).

1 Of course, the notation Rh will be used only if there is no doubt about I.
2 For the preparation theorem we only need the case n = 1. The case of an infinite set of

indeterminates is left to the reader.
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Similarly, if (R, I) is a henselian pair, so is (R{t}, IR{t} + (t)): to see this,

view R as the quotient R{t}/(t) and apply the transitivity property [13, 0DYD].

Classically, R{t} can be constructed as the colimit of a filtered family (Aλ)λ∈L

of étale R[t]-algebras, with compatible isomorphisms ελ : Aλ/(t)Aλ
∼−→ R. In

particular, for all λ ∈ L and N ∈ N, the natural morphism of R-algebras

R[t]/(t)N → Aλ/(t)
NAλ

is an isomorphism.

Each natural morphism πλ : Spec (Aλ) → Spec (R) is smooth of relative

dimension n, and has a section sλ deduced from ελ.

We say that an R-algebra A is geometrically irreducible if the natural

morphism Spec (A) → Spec (R) has geometrically irreducible fibers.

Lemma 2.2.1: Let R and t = (t1, . . . , tn) be as above. Then one can choose

the system (Aλ)λ∈L such that each Aλ is a geometrically irreducible R-algebra.

Proof. Starting with an arbitrary family (Aλ)λ∈L, we may assume, by enlarg-

ing L, that for all λ ∈ L and f ∈ Aλ such that ελ(f) ∈ R×, the localized

algebra Aλ[1/f ] is still in the family. It suffices to show that, assuming this,

the sub-system formed by the geometrically irreducible Aλ’s is cofinal. For

each λ, let Uλ ⊂ Spec (Aλ) be the union of the connected components of the

fibers of πλ meeting the section sλ. As πλ is smooth, Uλ is open in Spec (Aλ)

[7, (15.6.7)], and its fibers over Spec (R) are smooth and connected, with a

rational point, hence geometrically irreducible. Since Uλ is open, there is

f ∈ Aλ such that Im(sλ) ⊂ Spec (Aλ[1/f ]) ⊂ Uλ (in an affine scheme, ev-

ery closed subset has a basis of principal open neighborhoods). The fibers of

Spec (Aλ[1/f ]) → Spec (R) are nonempty and open in those of Uλ → Spec (R)

and therefore geometrically irreducible. This completes the proof.

2.2.2. Evaluation. This section will not be used until Section 4.

Let us keep the notation of 2.2 and consider the category AlghR of henselian

pairs (A, J) where A is an R-algebra. Then (R{t}, (t)) is an object of AlghR
corepresenting the set-valued functor (A, J) 
→ ∏n

i=1 J. In particular, for an

object (A, J) of AlghR and a sequence α = (α1, . . . , αn) from J , we have a

morphism “evaluation at α” from R{t} to A which we denote by f 
→ f(α).

One may construct it by noting that the morphism P 
→P (α) from R[t] to A

maps the ti’s into J , hence factors through R{t} because (A, J) is henselian.
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For given α, the element f(α) is the sum in A, for the J-adic topology, of the

series ffor(α) obtained by substituting α for t; this property characterizes f(α)

if A is J-adically separated (but not in general).

The reader can check the following nice property, which will not be used

here: if I is an ideal of R generated by n elements a1, . . . , an, the evaluation

morphism f 
→ f(a) induces an isomorphism of R{t}/(ti − ai)1≤i≤n with the

henselization (R, I)
h
.

2.3. Schemes over henselian pairs: a decomposition result.

Notation 2.3.1: Let (R, I) be a henselian pair. Put S = Spec (R), R = R/I, and

S = Spec (R); more generally, for each R-algebra A (resp. each R-scheme X)

we shall put A = A/IA (resp. X = X ×S S).

The following proposition is a variant of [12, XI, cor. 1 p. 119]:

Proposition 2.3.2: With notation as above, let Z be a separated R-scheme

of finite type. Assume that Z is finite over R.

Then there is a unique open and closed subscheme Z f of Z which is finite

over R and satisfies Z f = Z. Moreover Z f has the following properties:

(1) The pair (Z f , Z) is henselian.

(2) Z f is the smallest open subscheme of Z containing Z.

(3) Let T be an R-scheme and u : T → Z an R-morphism. Assume that

(T, T ) is a Zariski pair. Then u factors through Z f .

Proof. Let us first assume the existence of Z f and prove (1), (2) and (3). First,

(1) is clear since (R, I) is henselian and Z f is finite over R. In particular, (Z f , Z)

is a Zariski pair, and (2) follows because Z f is open in Z. Now take u : T → Z

as in (3): then u−1(Z f) is a neighborhood of T in T , hence equal to T , which

proves (3).

Observe that (2), for instance, implies the uniqueness of Z f . Now let us

prove existence. First, consider the set Z ′ of points x ∈ Z isolated in their

fiber above Spec (R). Then Z ′ is open in Z [7, (13.1.4)] and, viewed as an open

subscheme, it is quasifinite over Spec (R); in addition, we have Z ′ = Z. So it is

clear that if Z ′f exists it is open in Z, and closed since it is finite over R, so we

can take Z f = Z ′f . Replacing Z by Z ′, we can therefore assume Z quasifinite

over R.
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By Zariski’s main theorem [8, (18.12.13)], there is an open immersion Z ↪→ Zc,

where Zc is a finite R-scheme. As Z is finite over R, the induced open im-

mersion Z ↪→ Zc is closed, so we have Zc = Z � Y for an open and closed

subscheme Y of Zc. Since (R, I) is henselian and Zc is finite over R, this

decomposition is induced (using the idempotent lifting property) by a decom-

position Zc = Z f �Zc
1 of Zc, where Z f and Zc

1 are finite over R and Z f = Z. In

particular (Z f , Z f) = (Z f , Z) is a Zariski pair. Since Z ∩ Z f is open in Z f and

contains Z, it is therefore equal to Z f which means that Z f ⊂ Z and Z = Z f�Z ′

with

Z ′ := Z ∩ Zc
1.

Thus, the desired conditions for Z f are satisfied.

Remarks 2.3.3: (1) Assertions (2) and (3) of 2.3.2 only use the existence of

Z f and the Zariski property for (R, I).

(2) We see in particular that Z f is the largest closed subscheme of Z which

is finite over S. Moreover, Z f is functorial in Z: if Y is a separated

R-scheme of finite type with Y finite over R, every R-morphism Z → Y

sends Z f to Y f .

(3) Using more sophisticated tools, one can generalize 2.3.2 by replacing

“finite” by “proper” in the conditions for Z and Z f . For the proof, the

first step (reduction to the quasifinite case) is of course ignored. One

uses Nagata compactification to choose an open immersion Z ↪→ Zc

into a proper S-scheme p : Zc → S. Then by the properness of Zc and

the henselian property of (R, I), we can apply [13, Tag 0A0C] to the

sheaf (Z/2Z)Zc to conclude that the idempotent defining Z in Zc lifts

to a unique idempotent on Zc, which we take to define Z f .

(4) Assume that R is local henselian and I is its maximal ideal, and let Y

be a separated R-scheme of finite type. Let y be an isolated point of Y .

Then C := Y � {y} is closed in Y , so we can apply 2.3.2 to Z := Y �C

since Z = {y} set-theoretically. It is then easy to see that

Z f = Spec (OY,y).

In particular, OY,y is a finite R-module: this is the Mather division the-

orem as stated in [1, Theorem 1]. The approach in [1] (and the related

paper [2]) is algorithmic, while here we use Zariski’s main theorem as a

magic wand.
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3. The preparation theorem

3.1. Notation and assumptions. We fix a ring R and an indeterminate t.

We denote by Alg+R[t] the category of pairs (A, x) where A is an R[t]-algebra

and x is an element of A.

We also fix an element f of R{t}, and we write

ffor =
∑

i≥0

ait
i ∈ R[[t]] (ai ∈ R).

We assume that the ideal generated by the ai’s (i > 0) is equal to R. Equiv-

alently, for all p ∈ Spec (R), the image of f in κ(p)[[t]], or in κ(p){t}, is not a

constant.

Finally we denote by S the R[t]-algebra R{t}/(f).
Proposition 3.2: With the assumptions of 3.1, we also fix an indeterminate u.

(1) The object (R{t}, f) of Alg+R[t] is the filtered colimit of a system

(Aλ, fλ)λ∈L with, for each λ ∈ L, the following properties:

(i) The R[t]-algebra Aλ is étale and, for all n ∈ N, the canonical

morphism R[t]/(tn) → Aλ/t
nAλ is an isomorphism.

(ii) The canonical R-morphism R[u] → Aλ mapping u to fλ is flat

and quasifinite.

In particular, the canonical R-morphism R[u] → R{t} mapping u to f

is flat, and f is a nonzerodivisor in R{t}.
(2) The R[t]-algebra S is the filtered colimit of a system (Sλ)λ∈L with the

following properties:

(i) Each R-algebra Sλ is flat, of finite presentation and quasifinite,

and the transition maps Sλ → Sμ (λ ≤ μ) are étale. (In particular,

S is flat over R.)

(ii) For all n∈N and λ∈L, the canonical morphismR[t]/(tn)→Sλ/t
nSλ

is surjective.

Proof. Part (1) immediately implies part (2), with Sλ = Aλ/(fλ) (the transition

maps are étale due to the same property for the Aλ’s, which are étale over R[t]).

To prove (1), write R{t} = lim−→λ∈L
Aλ as in Lemma 2.2.1, and call tλ ∈ Aλ

the canonical image of t. There exists λ0 ∈ L and fλ0 ∈ Aλ0 mapping to f ;

we can restrict L to the indices λ ≥ λ0 and, for each λ, denote by fλ ∈ Aλ

the image of fλ0 . Clearly, we have (R{t}, f) = lim−→λ∈L
(Aλ, fλ). Part (1) (i) is

obvious from the choice of (Aλ)λ∈L.
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Let us prove (1) (ii). For fixed λ, we can view fλ as a morphism

gλ : Xλ := Spec (Aλ) → A
1
R = Spec (R[u])

of R-schemes. For s ∈ Spec (R), the κ(s)-morphism gλ,s : Xλ,s → A
1
κ(s) induced

on the fibers is deduced from 1⊗fλ ∈ κ(s)⊗RAλ, whose image in κ(s)⊗R R{t}
is assumed nonconstant. So gλ,s is not constant on Xλ,s, which is a smooth geo-

metrically irreducible curve over κ(s). It follows that gλ,s is flat and quasifinite.

Since Xλ and A1
R are smooth over Spec (R), the “fiberwise flatness” criterion

[7, (11.3.10)] shows that gλ is flat. It is also quasifinite since it is affine of finite

presentation with finite fibers. This completes the proof.

Definition 3.3: Let R be a ring, I an ideal of R, t an indeterminate.

We say that a formal power series f =
∑

i≥0 ait
i ∈ R[[t]] is I-normal if there

is d ∈ N such that ad ∈ R× and ai ∈ I for i < d. The integer d (unique if I �= R)

is called the order of f .

We say that f is I-monic of order d if it is I-normal of order d and ad = 1.

An element f of R{t} is I-normal (I-monic) of order d if ffor ∈ R[[t]] is.

Proof of Theorem 1.1. As in 1.1, let (R, I) be a henselian pair and let f ∈ R{t}
be I-normal of order d, with ffor =

∑
i≥0 ait

i ∈ R[[t]] (ai ∈ R). If d = 0,

everything is trivial, so we assume in addition that d > 0; thus, the assumption

of 3.1 is satisfied and, in particular, Proposition 3.2 applies to f .

Assume assertion 1.1 (1) is proved, i.e., S = R{t}/(f) is a free R-module

with the images of 1, t, . . . , td−1 as a basis. This immediately implies the division

theorem 1.1 (2), with uniqueness coming from the fact that f is a nonzerodivisor

(3.2 (1)).

In turn, the division theorem implies the preparation theorem 1.1 (3). In-

deed, the relation in (3) can be rewritten as td = v−1 f − Q, so that unique-

ness follows from the uniqueness part of (2); next, applying (2) to td, we find

that td = Bf −Q where Q is a polynomial of degree < d. Reducing modulo I

and comparing coefficients, we see that Q has coefficients in I and the constant

term of B is in ad + I, which gives (3) with v = B−1.

It remains to prove 1.1 (1). As in 2.3, we put A = A/IA for everyR-algebraA.

First we observe that the image f of f in R{t} ∼= R{t} is the product of td

by a unit, so that

S ∼= R{t}/(td) ∼= R[t]/(td)

which is R-free with basis (1, t, . . . , td−1).
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Let us write S as the colimit of a filtered system (Sλ)λ∈L of R[t]-algebras

with the properties of 3.2 (2). We have just seen that td vanishes in S, so by

changing the index set L we may assume that td vanishes in Sλ for all λ: thus,

Sλ = Sλ/tdSλ hence, by 3.2 (2) (ii), it is a quotient of R[t]/(td). So we have

morphisms of R[t]-algebrasR[t]/(td) → Sλ → S where the first map is surjective

and the composition is an isomorphism. We conclude that R[t]/(td)
∼−→ Sλ for

all λ. In particular, Sλ is finite over R. As (R, I) is henselian, we may apply

Proposition 2.3.2 and write Sλ = Sf
λ×Tλ, where S

f
λ is finite over R and Sf

λ = Sλ.

By functoriality (Remark 2.3.3), the quotients Sf
λ of the Sλ’s form an inductive

system.

Since S is a quotient of R{t} and (R{t}, IR{t}) is a Zariski pair, so is (S, IS).

Hence, for all λ, the canonical morphism Sλ → S factors through Sf
λ by 2.3.2 (3),

and finally S = lim−→λ∈L
Sf
λ.

Since, for each λ, Sλ is a flat R-algebra of finite presentation, so is Sf
λ, which

is in addition a finite R-module, hence locally free. As (1, tλ, . . . , t
d−1
λ ) induces

an R-basis of Sf
λ, and I ⊂ rad (R), it follows easily that (1, tλ, . . . , t

d−1
λ ) is an

R-basis of Sf
λ for all λ, and part (1) follows.

4. Application: a henselian resultant

If R is a ring, S a finite locally free R-algebra and x an element of S, we denote

by NS/R(x) ∈ R the norm of x in R, i.e., the determinant of multiplication by x

in the R-module S.

Definition 4.1: Let (R, I) be a henselian pair. Let f ∈ R{t} be I-monic of

order d. Denote by S the R-algebra R{t}/(f) (which is a free R-module of

rank d, by 1.1 (1)).

For g ∈ R{t}, the (henselian) resultant of f and g, denoted by Resh(f, g),

is the element of R defined by

Resh(f, g) := NS/R(g).

4.2. Properties of the resultant. We keep the notation and assumptions

of 4.1, and we denote by P = td +Q the polynomial associated to f by 1.1 (3).

The proofs of the following properties are easy and left to the reader.
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4.2.1. Functoriality. Let ϕ : (R, I) → (R′, I ′) be a morphism of henselian pairs,

f ′ and g′ the images of f and g in R′{t}. Then
Resh(f ′, g′) = ϕ(Resh(f, g)).

4.2.2. By construction, Resh(f, g) only depends on f via the R-algebra

R{t}/(f). In particular,

Resh(f, g) = Resh(P, g).

4.2.3. Resh(f, g) only depends on g via its class modulo f ; in other words, we

have

Resh(f, g + hf) = Resh(f, g) for all h ∈ R{t}.
Moreover, Resh(f, g) ∈ R× if and only if the ideal (f, g) ⊂ R{t} equals R{t}.
(More generally, see 4.2.8 below.)

4.2.4. Special cases. If α ∈ R, we have

Resh(f, α) = αd and Resh(f, α− t) = P (α).

If α ∈ I, then

Resh(α− t, g) = g(α)

and

Resh(f, α− t) = (1 + ε) f(α) for some ε ∈ I

by the second formula above (recall that f is I-monic).

4.2.5. Multiplicativities. If h ∈ R{t}, we have

Resh(f, gh) = Resh(f, g)Resh(f, h);

if in addition h is I-monic of order m, then

Resh(fh, g) = Resh(f, g)Resh(h, g).

For the second equality, one may use the exact sequence

0 −→ R{t}/(h) ×f−−→ R{t}/(fh) −→ R{t}/(f) −→ 0.

4.2.6. Polynomials. If f and g are in R[t], with f monic of degree d (in the sense

of polynomials), then Resh(f, g) is the usual resultant. The condition on f is

essential: for instance, Resh(1+αt, g) = 1 for all α ∈ R and g ∈ R{t}. (In fact,

for two possibly non-monic polynomials of respective degrees ≤ d and ≤ m, the

definition of the classical resultant depends on the choice of d and m.)
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4.2.7. Weak symmetry. Assuming that g is I-monic of order m, then

Resh(g, f) = (−1)md (1 + ε) Resh(f, g) for some ε ∈ I.

To see this, reduce to the case of polynomials and apply 4.2.6.

4.2.8. Elimination. Let J ⊂ R{t} be the ideal generated by f and g. Then

Resh(f, g) ∈ J (thus it belongs to J ∩ R): indeed, in the free R-module

S = R{t}/(f), the image of multiplication by g contains Resh(f, g)S.

Conversely, every α ∈ J ∩ R is a multiple of the class of g in S so, taking

norms, αd is a multiple of Resh(f, g) in R. In particular, we have in R the

inclusions (Resh(f, g)) ⊂ J ∩ R ⊂ √
(Resh(f, g)). Geometrically, the closed

subset V (Resh(f, g)) ⊂ Spec (R) is the projection of V (f, g) ⊂ Spec (R{t}).
4.2.9. Roots. Let ϕ : R → R′ be a ring homomorphism, and let α ∈ R′ be a

zero of P in R′. First, I claim that g(α) makes sense in R′ and is an element

of R[α] ⊂ R′. Indeed, the relation P (α) = 0 shows that (due to the form of P )

αd ∈ IR[α], whence α ∈ √
IR[α]. Since R[α] is a finite R-module, the pair

(R[α],
√

IR[α]) is henselian, hence the claim.

Now assume that the image of P in R′[t] factors as
∏d

i=1(t− αi), where the

αi’s are elements of R′. Then we have in R′ the equality

ϕ(Resh(f, g)) =

d∏

i=1

g(αi)

as follows from the above remark and properties 4.2.4 and 4.2.5 (applied in the

ring R[α1, . . . , αd] ⊂ R′).
Note that if we assume for simplicity that R = R′ is a domain, then the αi’s

are the zeros of f in
√
I.

4.2.10. Power series. Assume R is I-adically complete and separated. Then

Resh(f, g) = Res(ffor, gfor)

where Res denotes the resultant defined in [4].
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