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ABSTRACT

We obtain some global features of totally disconnected locally compact

(t.d.l.c.) groups G that are locally isomorphic to a just infinite profinite

group, building on an earlier result of Barnea–Ershov–Weigel and also us-

ing tools developed by P.-E. Caprace, G. Willis and the author for studying

local structure in t.d.l.c. groups. The approach uses the following property

of just infinite profinite groups, essentially due to Wilson: given a locally

normal subgroup K of G, then there is an open subgroup of K that is a

direct factor of an open subgroup of G. This is a local property of t.d.l.c.

groups and we obtain a characterization of the local isomorphism types of

t.d.l.c. groups that have it.
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1. Introduction

1.1. Background. The background and motivation for this article comes pri-

marily from three sources. First, we recall some of the structure theory of just

infinite groups; see [9] and [19] for a detailed account.

Definition 1.1: A topological group G is just infinite if G is infinite and every

nontrivial closed normal subgroup of G has finite index.

A hereditarily just infinite (h.j.i.) group is one for which every finite index

open subgroup is just infinite.

A branch group is a compact or discrete group G acting faithfully by au-

tomorphisms on a locally finite rooted tree, with root vertex ε, such that for

each sphere of vertices Sn(ε) around the root, G acts transitively on Sn(ε) and

a finite index open subgroup of G splits as a direct product
∏

v∈Sn(ε)

Rv,

where Rv fixes all vertices not descended from v.

Theorem 1.1 ([18, Theorem 3], [19, Corollary 4.4]):1 Let G be a just infinite

profinite or discrete group. Then every closed subnormal subgroup of G is a

direct factor of a finite index open subgroup.

Theorem 1.2 (See [9, Theorem 3]): Let G be a just infinite profinite or discrete

group that is not virtually abelian. Then exactly one of the following holds:

(i) There is a closed normal subgroup of G of finite index of the form

L1×· · ·×Ln, where the Li form a single conjugacy class of hereditarily

just infinite subgroups of G;

(ii) G is a branch group.

In the present article we will consider a property inspired by J. Wilson’s

Theorem 1.1, converted into a form expressible in the local structure of totally

disconnected, locally compact (t.d.l.c.) groups.

Definition 1.2: Let G be a t.d.l.c. group. Say that G has property (LD) if

for every closed subgroup K of G with open normalizer, then there is an open

subgroup L of K that is a direct factor of an open subgroup of G.

1 The cited results do not claim the result for a just infinite virtually abelian profinite

group G, but this case can be verified by a similar argument to [18, Theorem 3A].



Vol. 259, 2024 T.D.L.C. GROUPS WITH J.I. SUBGROUPS 463

Theorem 1.1 shows that just infinite profinite groups have (LD). In fact, we

will obtain a characterization of property (LD) that shows it is closely related

to the just infinite property.

The second source of inspiration is the articles [1] and [3] of Barnea–Ershov–

Weigel and Caprace–De Medts respectively, which introduce and develop the

theory of local isomorphisms of t.d.l.c. groups. This theory is well-behaved for

t.d.l.c. groups G where the quasi-centre QZ(G), that is, the group of elements

with open centralizer in G, is trivial. In that case, there is a group L (G), the

group of germs of G, which contains as an open subgroup every t.d.l.c. group

that is locally isomorphic to G and has trivial quasi-centre. In [1], the closed

normal subgroup structure of G = L (H) was considered where H is a h.j.i.

profinite group that is not virtually abelian. Write Res(G) for the intersection

of all open normal subgroups of G.

Theorem 1.3 ([1, Proposition 5.1 and Theorem 5.4]):2 LetH be a h.j.i. profinite

group that is not virtually abelian and let G be a t.d.l.c. group containing H as

an open subgroup. Then QZ(H) = {1} and exactly one of the following holds:

Residually discrete type: Res(G/QZ(G)) = {1};
Mysterious type: Res(G/QZ(G)) �={1} but Res(Res(G/QZ(G)))={1};
Simple type: Res(G/QZ(G)) is open and topologically simple.

In [1], the authors also comment that they are not aware of any groups of

germs of h.j.i. profinite groups of mysterious type. As far as I am aware, it

is still unknown whether there are t.d.l.c. groups of mysterious type (not just

groups of germs) with trivial quasi-centre and a h.j.i. compact open subgroup.

In the present article we continue this analysis to other classes of t.d.l.c.

groups G that have strong restrictions on their closed locally normal subgroups,

including the case when G is locally isomorphic to a just infinite branch group.

The third source of inspiration is the series of articles [5], [6] and [7] of

P.-E. Caprace, G. Willis and the present author, in which further methods were

developed for using local properties of t.d.l.c. groups G to obtain restrictions on

the global structure (particularly when G is nondiscrete, compactly generated

and topologically simple). Particularly relevant here is the notion of the local

decomposition lattice of a t.d.l.c. group G, which was also directly inspired by

Wilson’s approach to just infinite groups.

2 The theorem was originally stated for G = L (H), but the argument only uses the more

general hypothesis.
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Definition 1.3: Let G be a t.d.l.c. group. A subgroup is locally normal if

it has open normalizer. Two subgroups H and K are locally equivalent

if H ∩K is open in both H and K. The structure lattice LN (G) of G is the

bounded lattice formed by the local equivalence classes of closed locally normal

subgroups of G, ordered by inclusion of representatives; write 0 for the least

element [{1}] and ∞ for the greatest element [G]. When QZ(G) is discrete, the

local decomposition lattice LD(G) consists of those elements α of LN (G)

with a complement in LN (G), that is, β := α⊥ such that

α ∨ β = ∞ and α ∧ β = 0.

Note that for a t.d.l.c. group G such that QZ(G) is discrete, property (LD)

is exactly the condition that LN (G) = LD(G).

1.2. Local structure of groups with (LD). Our first main result is to

characterize property (LD), establishing the connection with just infinite profi-

nite groups.

Theorem 1.4 (See Section 3): Let G be a t.d.l.c. group. The following are

equivalent:

(i) G has (LD);

(ii) G is locally isomorphic to a profinite group of the form

∏
i∈I

Li,

such that finitely many factors Li (possibly none) are just infinite profi-

nite groups and the remaining factors are finite simple groups.

We also show that in a group with (LD), every closed subnormal subgroup

has (LD) and has an open subgroup that is locally normal: see Lemma 3.1.

Given a t.d.l.c. group G with property (LD), then there is a compact open

subgroup that decomposes into a direct product of monomial factors plus a

leftover factor G∞, which is either trivial or a direct product of infinitely many

finite simple groups, such that each isomorphism type only appears finitely

many times. Moreover, this factorization is stable under local isomorphisms.

(See Propositions 4.4 and 4.5 for the exact statements.)
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1.3. Global structure. For the rest of this introduction we will assume

that QZ(G) = {1}. In that case we have a decomposition into parts locally

isomorphic to just infinite profinite groups, as follows.

Theorem 1.5 (See Theorem 4.6): Let G be a t.d.l.c. group with property (LD)

such that QZ(G) = {1}. Then G is first-countable and has an open subgroup

of the form

M = M1 ×M2 × · · · ×Mn,

where for 1 ≤ i ≤ n the groups Mi have the following properties:

(i) Mi is closed and characteristic in every closed locally normal subgroup

of G containing Mi.

(ii) Mi is locally isomorphic to a just infinite profinite group.

Thus to a large extent, the structure theory of groups with (LD) and trivial

quasi-centre reduces to the case of groups locally isomorphic to a just infinite

profinite group. If G is locally isomorphic to a h.j.i. profinite group, then the

possibilities for the subnormal subgroup structure of G are accounted for by

Theorem 1.3; see also Theorem 4.7. If G is locally isomorphic to a just infinite

profinite branch group, we decompose Res(G) into noncompact, directly inde-

composable parts, each of which is either residually discrete or topologically

simple; see Theorem 4.11.

We conclude the introduction with a theorem concerning the relationship

between topologically simple closed locally normal subgroups of G (which are

necessarily nondiscrete and noncompact in the present setting) and contraction

groups. In effect, we obtain restrictions on the mysterious type case of Theo-

rem 1.3, and also on the analogous phenomenon for when G is locally isomorphic

to a just infinite profinite branch group (that is, the possibility of a nontrivial

direct factor of Res(G) that is residually discrete). A relative version for the

action of compactly generated (not necessarily closed) subgroups of G is also

given below, see Theorem 4.15.

Definition 1.4: Let G be a t.d.l.c. group. The contraction group of g ∈ G is

the group

con(g) := {x ∈ G | gnxg−n → 1 as n → ∞}.
The Tits core G† of G is

G† = 〈con(g) | g ∈ G〉.



466 C. D. REID Isr. J. Math.

Theorem 1.6 (See Section 4.5): Let G be a t.d.l.c. group with (LD) such

that QZ(G) = {1}. Then G† is a direct factor of Res(G) and is trivial or a

direct product of finitely many topologically simple groups. If G is compactly

generated, then Res(G)/G† ∼= CRes(G)(G†) is locally isomorphic to a direct

product of finitely many h.j.i. profinite groups.

1.4. Acknowledgements. This article started as an offshoot of the project

with Pierre-Emmanuel Caprace and George Willis that led to [5], [6] and [7],

and was also partly developed during research visits to Alejandra Garrido and

John Wilson at Oxford, and to Yiftach Barnea at RHUL. I thank all of them for

their hospitality and for very helpful discussions. I also thank the referee, whose

recommendations have led to a number of improvements to the presentation.

2. Preliminaries

2.1. The structure lattice and the decomposition lattice. We begin

by setting some terminology.

Definition 2.1: Write H ≤o G to mean “H is an open subgroup of G”. All

groups in this article will be locally compact Hausdorff topological groups.

We distinguish between two groups H and K being commensurable, mean-

ing there is an isomorphism from a finite index open subgroup of H to a finite

index open subgroup of K, and commensurate, meaning they are both sub-

groups of some ambient group, such that H ∩ K is open and has finite index

in both H and K. An automorphism α of some G ≥ H commensurates H

if α(H) is commensurate with H .

Given t.d.l.c. groups H and K, a local isomorphism from H to K is a

continuous injective open homomorphism θ :U→K, where U≤oH . Two t.d.l.c.

groups are locally isomorphic if a local isomorphism between them exists.

Let G be a t.d.l.c. group. Given two subgroups H and K of G, we say H

is locally equivalent to K, and write H ∼o K, if H ∩K is open in both H

and K. Write [H ] for the local equivalence class of H . Say H ≤ G is locally

normal if NG(H) is open in G. The structure lattice of G is defined to be

the set

LN (G) := {[H ] | H ≤ G closed,NG(H) ≤o G},
partially ordered by setting [H ] ≤ [K] if H ∩K is open in H . We write 0 for

the least element [{1}] and ∞ for the greatest element [G].
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The quasi-centre QZ(G) of a t.d.l.c. group G is the set of all elements with

open centralizer; we say G is quasi-discrete if QZ(G) is dense in G.

More generally, the quasi-centralizer QCG(H) of H ≤ G is the set of all

elements of G that centralize an open subgroup of H . Given a local equiva-

lence class α of closed subgroups of G, we also define QCG(α) to be QCG(H)

where H ∈ α (note that the choice of representative is irrelevant). We also

define C2
G(H) := CG(CG(H)) and QC2

G(α) := QCG(QCG(α)).

In a profinite group, QZ(G) is just the union of all finite conjugacy classes of

G. Let us note two useful consequences of this fact.

Lemma 2.1 (See [11, Theorems 5.1 and 5.2]): Let G be a profinite group. Then

every element of QZ(G) of finite order is contained in a finite normal subgroup

of G. If QZ(G) is torsion-free, then it is abelian.

The next lemma is clear from the fact that the conjugation action is con-

tinuous; in particular, we see that QZ(G) contains all discrete locally normal

subgroups of a t.d.l.c. group G.

Lemma 2.2: Let G be a t.d.l.c. group, let O ≤o G and let g ∈ G. Suppose that

the set {ogo−1 | o ∈ O} is discrete. Then g ∈ QZ(G).

If we rule out quasi-central and abelian locally normal subgroups, we obtain

a Boolean algebra canonically associated to the structure lattice.

Definition 2.2: A t.d.l.c. group G is [A]-semisimple if QZ(G) = {1} and there

are no nontrivial abelian locally normal subgroups of G.

Definition 2.3: Given a bounded lattice L, and α ∈ L, a pseudocomplement

of α is an element α⊥ ∈ L with the property

∀α, β ∈ L : α ∧ β = 0 ⇔ β ≤ α⊥.

Pseudocomplements are unique if they exist, and if every element of L has a

pseudocomplement, we say that L is pseudocomplemented, with associated

pseudocomplement map

⊥: L → L; α �→ α⊥.

The pseudocomplement α⊥ to α is a complement if in addition α ∨ α⊥ = ∞;

if all elements of L admit a complement, we say L is complemented. In

particular, a Boolean algebra is a bounded distributive complemented lattice.
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The set of pseudocomplements of any bounded lattice forms a Boolean alge-

bra: see [8].

Theorem 2.3 (See [6, Theorems 3.19 and 5.2]): Let G be an [A]-semisimple

t.d.l.c. group. Then there is a well-defined pseudocomplement map ⊥ on LN (G)

given by [K]⊥ = [CG(K)]. Moreover, given closed locally normal subgroups K

and L of G, then the following are equivalent:

(i) K ∩ L is discrete, that is, [K] ∧ [L] = 0;

(ii) K ∩ L is trivial;

(iii) K ≤ QCG(L) and L ≤ QCG(K);

(iv) [K,L] = {1}.
Note that, since condition (i) in Theorem 2.3 only depends on the local equiv-

alence classes of K and L, the same is true for the other three conditions.

The image ⊥(LN (G)) with induced partial order is the centralizer lattice

LC(G). The operation ⊥ is an involution on LC(G), that is, α⊥⊥⊥ = α⊥ for

all α ∈ LN (G), and it serves as the complement for LC(G). The theorem

also yields a global version of the centralizer lattice: we have a G-equivariant

isomorphism of Boolean algebras

LC(G) → LC(G); α �→ QC2
G(α),

where LC(G) is the set of centralizers of closed locally normal subgroups of G,

ordered by inclusion; the group QC2
G(α) = CG(QCG(α)) in fact contains every

closed locally normal subgroup of G that represents α.

In this article, when we refer to direct products and factors, it is required

that the topology is the product topology; in particular, the factors are closed

subgroups. In an [A]-semisimple t.d.l.c. group, the elements α of LN (G) such

that α ∨ α⊥ = ∞ in LN (G) are exactly the elements represented by direct

factors of open subgroups. These form another Boolean algebra LD(G), the

local decomposition lattice, which is a sublattice of LN (G) and a subalgebra

of LC(G). One can also define LD(G) as the subalgebra of LC(G) corresponding

to LD(G); one sees that the elements of LD(G) are all direct factors of open

subgroups of G. Moreover, any finite set of disjoint elements of LD(G) generates

its direct product.

Lemma 2.4: Let G be an [A]-semisimple t.d.l.c. group and let K1, . . . ,Kn be

direct factors of open subgroups of G. Then the group K generated by the Ki

is closed in G and forms a direct product K = K1 × · · · ×Kn.
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Proof. We proceed by induction on n; the case n = 1 is clear. Note that by

Theorem 2.3, we have [Ki,Kj ] = {1} for i �= j. Let L = 〈K2, . . . ,Kn〉; by the

inductive hypothesis, L is closed and is the direct product of K2, . . . ,Kn. We

now form the group M = K1CG(K1). Since K1 is a direct factor of an open

subgroup of G, given a compact open subgroup U of G then the product

V = (K1 ∩ U)CU (K1)

is open in U , and hence M is open in G; consequently M is [A]-semisimple.

By compactness, the natural map from the external direct product of (K1 ∩U)

and CU (K1) to V is an isomorphism of topological groups; since V is an identity

neighbourhood in M , it follows that as a topological group, M decomposes as a

direct product K1×CG(K1). Now K = K1L is a subgroup of M , and given the

direct decomposition of M , we see that K is closed and decomposes as K1 ×L,

and hence as K1 ×K2 × · · · ×Kn, as required.

2.2. The Mel’nikov subgroup and just infinite groups.

Definition 2.4: A topological group H is finitely decomposable if

H = H1 × · · · ×Hn for some n ≥ 1, such that each Hi cannot be decomposed

further as a direct product. A t.d.l.c. group G is locally finitely decompos-

able if every compact open subgroup of G is finitely decomposable.

Let G be a profinite group. The Mel’nikov subgroup M(G) of G is the

intersection of all closed normal subgroups K of G such that G/K is simple.

Say G is Mel’nikov-finite if G/M(G) is finite. A t.d.l.c. group L is locally

Mel’nikov-finite if every compact open subgroup of L is Mel’nikov-finite.

We list here some useful facts about the Mel’nikov subgroup of a profinite

group.

Proposition 2.5: Let G be a profinite group.

(i) We have M(G) < G unless G is the trivial group. In particular, if G is

topologically characteristically simple, then M(G) = {1}.
(ii) Given a closed normal subgroupH ofG, we haveM(G/H)=M(G)H/H .

In particular, M(G/M(G))={1}.
(iii) The quotient G/M(G) is a direct product of finite simple groups. In

particular, the torsion elements of QZ(G/M(G)) form a dense subgroup

of G/M(G).

(iv) If G/M(G) is finite, then G is finitely decomposable.
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(v) Let H be a closed normal subgroup of G. Then G = M(G)H if and

only if G = H .

(vi) Let H be a closed normal subgroup of G. Then M(H) ≤ M(G). In

particular, it follows that G is locally Mel’nikov-finite if and only if

there is a set of open normal Mel’nikov-finite subgroups of G forming a

basis of identity neighbourhoods.

(vii) Define M0 = G and thereafter Mi+1 = M(Mi). Then
⋂

i∈N
Mi = {1}.

Thus ifG is locally Mel’nikov-finite, then it is first-countable, and indeed

has a countable descending chain of open characteristic subgroups with

trivial intersection.

(viii) Suppose that G is locally Mel’nikov-finite. Then for each natural num-

ber n, there are only finitely many open subgroups of G of index n.

Proof. For (iii), see for instance [16, Lemma 8.2.2]. The other statements are

straightforward exercises given the well-known properties of profinite groups.

Definition 2.5: A profinite group G is just infinite if it is infinite, but every

nontrivial closed normal subgroup of G is open (in other words, has finite index).

It is hereditarily just infinite (h.j.i.) if every open subgroup of G is just

infinite.

A profinite group G is nearly just infinite if G has an open subgroup in

common with a just infinite profinite group. (Nearly) hereditarily just infinite

groups and (nearly) just infinite branch groups are defined similarly.

There are few possibilities for the quasi-centre and Mel’nikov subgroup of a

just infinite profinite group.

Lemma 2.6: Let G be a just infinite profinite group.

(i) The quasi-centre QZ(G) is either trivial or the direct product of finitely

many copies of Zp for some fixed prime p; in particular, QZ(G) is closed.

(ii) We have QZ(B) ≤ QZ(G) for every closed locally normal subgroup B

of G.

(iii) G is locally Mel’nikov-finite, and hence has only finitely many open

subgroups of each index.

Proof. Since G has no nontrivial finite normal subgroups, Lemma 2.1 implies

that QZ(G) is torsion-free abelian; note also that G has no nontrivial finite

locally normal subgroups. The closure Q of QZ(G) is an abelian closed normal
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subgroup, which is then either trivial or of finite index; in either case, we see

that Q = QZ(G), so QZ(G) is closed. Using the just infinite property, it is now

straightforward to see that if Q �= {1}, then Q ∼= (Zp)
n for some prime p and

natural number n, proving (i).

For (ii), consider first the case that G has no nontrivial abelian locally normal

subgroup; we conclude from (i) that G is [A]-semisimple, and by Theorem 2.3

it follows that QZ(B) = {1} for every closed locally normal subgroup. Thus

we may assume G has some nontrivial abelian locally normal subgroup C; note

that C is then infinite. Let M be an open normal subgroup of G contained

in NG(C) and let

N = 〈g(C ∩M)g−1 | g ∈ G〉.
Then N is nilpotent by Fitting’s theorem and is open in G by the just infinite

property, so N has a nontrivial central subgroup Z(N), which is normal in G

and contained in Q. Thus Q > {1}, so by part (i), Q has finite index in G and is

torsion-free. Now consider an arbitrary closed locally normal subgroup B of G.

Then QZ(B)∩Q is torsion-free, from which it follows that the product of all fi-

nite normal subgroups of QZ(B) has order at most |G : Q| < ∞; since G has no

nontrivial finite locally normal subgroups we deduce that QZ(B) is torsion-free,

hence abelian. We now claim that QZ(B) commutes with the finite index sub-

group R = NQ(B) of G, so that QZ(B) ≤ Q. Letting x ∈ QZ(B) and k ∈ N, we

see that [xk, r] = [x, r]k using the fact that [QZ(B), R] is central in QZ(B). For

some k > 0 we have xk ∈ R, so [xk, r] = 1 and hence [x, r]k = 1. Since QZ(B)

is torsion-free it follows that [x, r] = 1, so indeed QZ(B) ≤ Q, completing the

proof of (ii).

If Q > {1} then G is virtually isomorphic to Zn
p for some n and p by

part (i), and (iii) is clear. Otherwise, for each open normal subgroup N of G,

then QZ(N) = {1} by part (ii), and hence M(N) > {1} by Proposition 2.5(iii);

by the just infinite property of G it follows that M(N) is open in N . Part (iii)

now follows by parts (vi) and (viii) of Proposition 2.5.

2.3. Contraction in t.d.l.c. groups. We recall some definitions relating to

contraction groups in t.d.l.c. groups.

Definition 2.6: The contraction group of an automorphism φ of a group G is

the group

con(φ) := {x ∈ G | φn(x) → 1 as n → ∞}.
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Given g ∈ G, we let g act on G by left conjugation. Let G be a t.d.l.c. group

and let H ≤ Aut(G). We define the relative Tits core G†
H of H acting on G

as

G†
H = 〈con(h) | h ∈ H〉.

Given a closed subgroup K of G and H ≤ NG(K), we define K†
H to be K†

φ(H),

where φ is the left conjugation action of H on K. In particular, we define the

Tits core G† := G†
G. For a single automorphism α, we write G†

α := G†
〈α〉.

The Tits core is not sensitive to passing to an open subgroup of finite index,

as follows from the following basic observation.

Lemma 2.7: Let G be a t.d.l.c. group, let α ∈ Aut(G) and let n be a positive

integer. Then

con(α) = con(αn).

Proof. We have con(αn)≥con(α), since (αni)i∈N is a subsequence of (αi)i∈N. Let

H=con(α), let x∈con(αn) and set xi=αi(x). Then the sequence (xni)i∈N con-

verges to the identity. Since α is a continuous automorphism and αj(xk)=xj+k

for all j, k ∈ Z, it follows that the sequence (xj+ni)i∈N converges to αj(1) = 1.

Hence (xi)i∈N converges to the identity, since it can be partitioned into finitely

many subsequences (xj+ni)i∈N for 0 ≤ j < n, each of which converges to the

identity. In other words, x ∈ con(α).

For individual automorphisms, having trivial relative Tits core is equivalent

to having small invariant neighbourhoods, as follows.

Lemma 2.8: Let G be a t.d.l.c. group and let α be an automorphism of G. Then

G†
α = {1} if and only if the compact open subgroups U of G such that α(U) = U

form a base of neighbourhoods of the identity.

Proof. If G†
α = {1}, then by [2, Proposition 3.24], α normalizes a compact

open subgroup U , and by [2, Theorem 3.32], U can be made arbitrarily small.3

Conversely, if the compact open subgroups U of G such that α(U) = U form a

base of neighbourhoods of the identity, then clearly con(αn) = {1} for all n ∈ Z,

so G†
α = {1}.

3 Some of the results in [2, §3] assume G is metrizable, but the assumption is only used to

prove [2, Theorem 3.8]. The latter theorem was later proved without the assumption of

metrizability by Jaworski [10], and consequently the subsequent results in [2, §3] are in

fact valid for all t.d.l.c. groups.
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Given a group G and a subgroup H , write ResG(H) for the intersection of all

open H-invariant subgroups of H .

Lemma 2.9 (See [15, Theorem B]): Let G be a t.d.l.c. group and letH be a com-

pactly generated (not necessarily closed) subgroup of G. Then there is a com-

pactly generated open subgroupE of G such thatH≤E and ResG(H)=Res(E).

3. Groups in which every closed locally normal subgroup is locally a

direct factor

3.1. First observations. The goal of this section is to prove Theorem 1.4.

We start by establishing some general features of the property (LD).

Lemma 3.1: Let G be a t.d.l.c. group with (LD) and let K be a closed subnor-

mal subgroup of an open subgroup of G. Then some open subgroup of K is a

direct factor of an open subgroup of G; moreover, K has (LD).

Proof. Let U ≤o G such that K is subnormal in U and let

K = U0 � U1 � · · ·� Un = U

be a subnormal series from K to U of shortest possible length. By induction on

n, there is an open subgroup V of U1 that is a direct factor of an open subgroup

of U , so there is M ≤ U such that 〈V,M〉 ∼= V × M ≤o U . Now K ∩ V

is normal in 〈V,M〉, hence locally normal in G, so by (LD), G has an open

subgroup K0 ×N where K0 ≤o K ∩ V . In particular, K0 is an open subgroup

of K that is a direct factor of an open subgroup of G.

Every locally normal subgroup R of K0 is also locally normal in G, and so

there is R2 ≤o R and L2 ≤ G such that R2 × L2 ≤o G. We now see that

R2 × (L2 ∩K0) ≤o K0,

so R2 is a direct factor of an open subgroup of K0. Thus K0 has (LD); since K0

is open in K, it follows that K has (LD).

When the quasi-centre is trivial, property (LD) can be characterized in terms

of quasi-centralizers.

Lemma 3.2: Let G be a t.d.l.c. group with (LD) and let K be a closed locally

normal subgroup of G such that QZ(G) ∩K = {1}. Then QZ(K) = {1}.
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Proof. Without loss of generality, K is normal in G. Let K0 be an open sub-

group of K that is a direct factor of an open subgroup of G. Then every element

of QZ(K0) has open centralizer in G, so we have

QZ(K) ∩K0 = QZ(K0) ≤ QZ(G) ∩K = {1}.
Thus QZ(K) is a discrete normal subgroup of G; hence QZ(K) ≤ QZ(G) by

Lemma 2.2, so in fact QZ(K) = {1}.
Lemma 3.3: Let G be a t.d.l.c. group with QZ(G) = {1}. The following are

equivalent:

(i) G has (LD);

(ii) G is [A]-semisimple and for every compact locally normal subgroup K

of G that is not open, then QCG(K) is nondiscrete.

Proof. Let K be a compact locally normal subgroup of G that is not open.

Suppose G has (LD). By Lemma 3.2, every closed locally normal subgroup

of G has trivial quasi-centre, so G is [A]-semisimple. After replacing K with an

open subgroup we find that K × QCG(K) is open in G, so certainly QCG(K)

is not discrete. Thus (ii) holds.

Conversely, suppose (ii) holds. Given a compact open subgroup U contain-

ing K, we have a compact locally normal subgroup of the form

L=K×QCU (K)

Because [QCU (K)] is the pseudocomplement of [K] in LN (G) (see Section 2.1),

we see that [QCU (L)] = 0, so by (ii), L must be open. Thus K is a direct factor

of an open subgroup, showing that G has (LD).

We have the following restriction on direct factors of open subgroups.

Lemma 3.4: Let G be a t.d.l.c. group with (LD) such that QZ(G) = {1}.
Then K/[K,K] and K/M(K) are both finite for every compact locally normal

subgroup K of G. In particular, G is locally finitely decomposable and first-

countable.

Proof. Let K be a compact locally normal subgroup of G. Then K has (LD)

by Lemma 3.1 and trivial quasi-centre by Lemma 3.2.

By property (LD), K has an open subgroup of the form L1 × L2 where

L1 ≤o [K,K]. Since L1 has finite index in [K,K], L2 is virtually abelian, and

indeed L2 can be chosen to be abelian. But then L2 ≤ QZ(K) = {1}, so in
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fact L1 is open in K, and hence [K,K] is open in K. Similarly, K has an

open subgroup of the form M1 ×M2 where M1 ≤o M(K). We see that M2 is

commensurable with a profinite group R such that M(R) = {1}. Then QZ(R)

is dense in R by Proposition 2.5(iii). But then QZ(M2) must be open in M2;

since QZ(M2) = {1}, we conclude that M2 is finite and M1 is open in K,

so M(K) is open in K.

Applying parts (iv) and (vii) of Proposition 2.5 to a compact open subgroup,

we see that G is locally finitely decomposable and first-countable.

The next two lemmas will allow us to split the proof of Theorem 1.4 into the

quasi-discrete case and the trivial quasi-centre case.

Lemma 3.5: Let G be a t.d.l.c. group with (LD). Then G has an open subgroup

of the form Q×R, with the following properties:

(i) Q and R are closed subgroups with property (LD);

(ii) Q is characteristic inG, the quotientG/Q has (LD) withQZ(G/Q)={1},
and QZ(Q) is open in Q;

(iii) R is a compact locally normal subgroup of G such that QZ(R) = {1}.
Proof. Suppose G has (LD). Let K = QZ(G) and let Q/K = QZ(G/K); by

construction, Q is characteristic in G. Then G has a compact open subgroup

of the form Q1 ×R where Q1 is open in K; note that R is compact and locally

normal in G. Since Q1 already accounts for an open subgroup of K, the inter-

section K ∩ R is discrete, and by passing to an open subgroup of R we may

ensure that K∩R = {1}, so QZ(R) = {1} by Lemma 3.2. In the quotient G/K,

we have a copy of R embedded as an open subgroup; since R has trivial quasi-

centre we see that Q/K = QZ(G/K) is discrete, and in particular closed, so

that Q is closed in G and K is open in Q. The quotient G/Q then has trivial

quasi-centre. In addition, Q ∩KR = K, so Q ∩ R = {1}. Now G has an open

subgroup QR, such that the factors Q and R normalize each other and have

trivial intersection, and R is compact; consequently

QR ∼= Q×R

as topological groups. By Lemma 3.1, Q and R have (LD). In turn, G/Q

has (LD) since it is locally isomorphic to R.

Lemma 3.6: Let G be a t.d.l.c. group with an open subgroup Q×R, where Q

and R have (LD) and QZ(R) = {1}. Then G has (LD).
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Proof. Since property (LD) is a local property we may assume that G = Q×R

and that G is compact. Let K be a closed locally normal subgroup of G; we

must show that an open subgroup of K is a direct factor of an open subgroup

of G. Let KQ and KR be the projections of K onto Q and R respectively.

By passing to an open subgroup, we may assume KQ is a direct factor of Q

and KR is a direct factor of R. Note also that KQ and KR have (LD) by

Lemma 3.1, and QZ(KR) = {1} by Lemma 3.2. So it suffices to consider the

case when KR = R.

By Lemma 3.4, [R,R] is open in R. Moreover, since R ≤ KQ andK is normal

in G, we have [R,R] = [K,R] ≤ K, so indeed K ∩ R is open in R. It follows

that the subgroup (K ∩Q)× (K ∩R) is open in K. Using property (LD) in Q,

we obtain an open subgroup of G of the form Q2×K2× (K ∩R) where Q2 ≤ Q

and K2 ≤o K ∩Q. Thus G has (LD) as required.

3.2. [A]-semisimple groups with property (LD). Lemma 3.4 is a strong

restriction on closed locally normal subgroups that will lead to a characteriza-

tion of property (LD) in the [A]-semisimple case.

Lemma 3.7: Let G be an [A]-semisimple profinite group such that every closed

normal subgroup is finitely decomposable. Then LD(G)G is finite.

Proof. Suppose LD(G)G is infinite and let U be an open normal subgroup of G.

Then we can find an infinite set L of pairwise disjoint elements of the Boolean

algebra LD(G)G, as follows. In any finite subset F of LD(G)G with infinitely

many elements below the join of F , there is some element of F lying above

infinitely many elements of LD(G)G. By the axiom of choice there is therefore

an infinite properly descending chain (αi)i≥0 in LD(G)G, where α0 = ∞ and

thereafter we take 0 < βi+1 < αi and then set αi+1 to be βi+1 or αi ∧ β⊥
i+1,

whichever lies above infinitely many elements. Now set

L = {αi ∧ α⊥
i+1 | i ≥ 0}.

The corresponding direct product
∏
α∈L

QC2
U (α)

is then a closed normal subgroup of G that is not finitely decomposable.

An atom of a Boolean algebra is a minimal nonzero element.
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Lemma 3.8: Let G be an [A]-semisimple profinite group. Suppose that N is a

closed normal subgroup of G, such that [N ] is an atom of LN (G)G and such

that NCG(N) is open in G. Then N has (LD) and is commensurable with a

just infinite profinite group.

Proof. To show N has (LD), by Lemma 3.3 it suffices to show that every closed

locally normal subgroup ofN of infinite index has nondiscrete (quasi-)centralizer

in N . Let K be a closed locally normal subgroup of N of infinite index. By

replacing N and K with N ∩ U and K ∩ U respectively for a sufficiently small

open normal subgroup U of G, we may assume K is normal in U and N ≤ U .

Let K1, . . . ,Kn be the conjugates of K in G, with K1 = K. By the minimality

of [N ], we have
⋂n

i=1 Ki = {1}. Let I be a subset of {1, . . . , n} of largest possible
size such that

L :=
⋂
i∈I

Ki > {1};

since I is a proper subset of {1, . . . , n}, we may assume 1 �∈ I. Then L is a

normal subgroup of N and K ∩ L = {1}, so QCN (K) ≥ L > {1}. Indeed

QCN (K) must be nondiscrete, since QCN (K) is a nontrivial locally normal

subgroup of G. Thus N has (LD) as required.

Since NCG(N) is open in G, we can identify LN (N) with the set I of ele-

ments α of LN (G) such that α ≤ [N ]; we also note that

N ∩ CG(N) ≤ QZ(G) = {1}.
Let H =G/CG(N); we see that there is a G-equivariant isomorphism between

LN (H) and I, and H is commensurable with N . If x ∈ G is such that xCG(N)

centralizes an open subgroup of G/CG(N), then x ∈ QCG(N) = CG(N),

so QZ(H) = {1}; thus H has no nontrivial finite normal subgroups. Moreover,

given the minimality of [N ] and the way H arises as a quotient of G, the action

of H on LN (H) has no nontrivial fixed points. Thus H is just infinite.

Corollary 3.9: Let G be an [A]-semisimple profinite group with (LD).

Then LN (G)G is finite. Moreover, there is an open characteristic subgroup U

of G that decomposes as a finite direct product, where each factor is commen-

surable with a just infinite group.

Proof. Given a closed locally normal subgroup H of G, then by Lemmas 3.1

and 3.2, H has (LD) with QZ(H) = {1}, so LN (H) = LD(H) and H is finitely

decomposable by Lemma 3.4. It follows by Lemma 3.7 and property (LD) that

LN (G)G is finite.
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Let α1, . . . , αn be the atoms of LN (G)G. By property (LD),

LN (G) = LD(G),

and hence G has an open characteristic subgroup U =
∏n

i=1 Hi where

Hi = QC2
G(αi).

For 1 ≤ i ≤ n, we see that Hi is commensurable with a just infinite group by

Lemma 3.8.

3.3. The quasi-discrete case. Let us now focus on the case of a profinite

groupG such that QZ(G) is dense in G. Write P for the set of all prime numbers.

Lemma 3.10: Let G be a profinite group that is elementary abelian, that is, G

is abelian and there is some p ∈ P such that xp = 1 for all x ∈ G. Then every

closed subgroup of G is a direct factor, with a closed direct complement. In

particular, G has (LD).

Proof. The Pontryagin dual Ĝ := Hom(G,T) is an elementary abelian discrete

group, which we may regard as a vector space over the field of p elements. LetK

be a closed subgroup of G. Then the annihilator M of K in Ĝ is a subspace

of Ĝ, so we have Ĝ = M ⊕N for some other subspace N of Ĝ (for instance, we

could take a basis A of M , extend to a basis B of Ĝ, and set N to be the span

of B \A). Now the annihilator R of N in G, that is, the set of elements g ∈ G

such that g ∈ kerφ for all φ ∈ Ĝ, is a closed subgroup of G, and we have

G = K ×R.

We can now prove Theorem 1.4 for profinite groups with dense quasi-centre.

Proposition 3.11: Let G be a quasi-discrete profinite group. The following

are equivalent:

(i) G has (LD).

(ii) G has an open subgroup of the form

k∏
i=1

(Zpi)
ni × E,

where k ≥ 0, {p1, . . . , pk} is a set of primes, with associated positive

integers (n1, . . . , nk), and E is a direct product of finite simple groups.
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Proof. Suppose that G has (LD). Let K be the closed subgroup of G topolog-

ically generated by all minimal finite normal subgroups of G. Every minimal

finite normal subgroup of G is a product of copies of a finite simple group; we

see from this that K/K0 is a direct product of simple groups for every open nor-

mal subgroup K0 of K, and hence M(K) = {1}. Thus by Proposition 2.5(iii),

K =
∏

i∈I Si for some finite simple groups Si. By property (LD), there is an

open subgroup of G of the form G2 = K2 × L where K2 ≤o K and L inter-

sects K trivially; we see that QZ(G2/K2) is dense in G2/K2, so QZ(L) is dense

in L. We can also take

K2 =
∏
i∈I′

Si,

where I ′ is a cofinite subset of I.

Let x ∈ QZ(L) and suppose x has finite order. Then x ∈ QZ(G), so by

Lemma 2.1, x is contained in a finite G-invariant subgroup F of L. Now F

is a finite normal subgroup of N that intersects trivially with K. From the

definition of K, this forces F = {1}, so x = 1. We have thus shown that QZ(L)

is torsion-free. By Lemma 2.1, QZ(L) is abelian, hence L = QZ(L) is abelian;

in particular, L = QZ(L). Now L has (LD) by Lemma 3.1. There is therefore

an open subgroup of L of the form L1 × L2, where L1 ≤o M(L). We see

that L/M(L) is a product of elementary abelian groups, so by passing to an

open subgroup, we can make L2 a product of elementary abelian groups. But L

is torsion-free, so then L2 = {1}. We conclude that |L : M(L)| < ∞; since L is

torsion-free abelian, it follows that

L =

k∏
i=1

(Zpi)
ni

for some distinct primes p1, . . . , pk (k ≥ 0) and positive integers n1, . . . , nk.

Thus (ii) holds.

Conversely, suppose that (ii) holds. Without loss of generality, let us suppose

that

G = T ×A× E,

where T =
∏k

i=1(Zpi )
ni , A =

∏
p∈P

Ap where Ap is an elementary abelian pro-p

group and E is a direct product of nonabelian finite simple groups. Let K be

a closed locally normal subgroup of G. On passing to an open subgroup of G,

we may in fact assume that K is normal in G. In particular, KE = K ∩ E is
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normal in E, from which we may conclude that Z(KE) = {1} and also

K = CK(KE)KE

(since G only induces inner automorphisms on the normal subgroups of E by

conjugation), so in fact K = CK(KE)KE . So to show that G has (LD), it

suffices to show that T × A has (LD), and thus we may assume E = {1}. In

this case, K is abelian, so admits a canonical direct decomposition

K :=
∏
p∈P

Kp

by Sylow’s theorem, where Kp is the p-Sylow subgroup of K. Note that T

is a pro-π group for a finite set of primes π. We can construct a subgroup

L =
∏

p∈P
Lp that is almost a direct complement of K in G (in the sense that

an open subgroup of G is of the form K2 × L, with K2 ≤o K) as follows:

For all primes p �∈ π, we have Kp ≤ Ap, and we may choose Lp to be a direct

complement of Kp in Ap using Lemma 3.10.

Given p ∈ π, choose a direct complement Rp to Kp ∩ A = Kp ∩ Ap in Ap,

noting that Kp ∩A is the torsion subgroup of Kp (since A contains the torsion

subgroup of G). Let P be the p-Sylow subgroup of G. Then

P/Ap
∼= (Zp)

n

for some integer n. The group (Zp)
n has (LD) for the following reason: given

a closed subgroup P of Zn
p , we embed Zn

p in the vector space Qn
p , obtain a Qp-

linear complement Q to the span of P , and observe that P × (Q∩Zn
p ) spans Q

n
p

and is therefore an open subgroup of Zn
p . Thus P/Ap has (LD). Note that there

is a continuous injective homomorphism from P/A to P ∩T given by φ : x �→ xp.

Let Q/Ap be a closed subgroup such that Q/Ap ×KpAp/Ap is open in P/Ap,

and let Sp = φ(Q). Finally, set Lp = Rp × Sp. We see that P has an open

subgroup of the form

Sp × φ(Kp)×Rp × (Kp ∩Ap),

and φ(Kp)× (Kp ∩Ap) is an open subgroup of Kp.

Finally, set

K2 =
∏
p∈π

(φ(Kp)× (Kp ∩Ap))×
∏
p
∈π

Kp

and L =
∏

p∈P
Lp. Then K2 ×L is an open subgroup of G with K2 open in K,

as required.
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3.4. Characterization of property (LD). We now complete the charac-

terization of property (LD).

Proof of Theorem 1.4. Suppose G has (LD). Then by Lemma 3.5, G has an

open subgroup of the form Q×R where Q is quasi-discrete and QZ(R) = {1}.
By Proposition 3.11, Q has an open subgroup that is a direct product of finite

simple groups (possibly including cyclic groups of prime order) together with

finitely many groups Zpi , the latter being just infinite profinite groups. By

Corollary 3.9, R has an open subgroup that is commensurable with a finite

direct product of just infinite groups. Thus G has an open subgroup in common

with a direct product ∏
i∈I

Li,

such that finitely many factors Li (possibly none) are just infinite profinite

groups and the remaining factors are finite simple groups, as required.

Conversely, supposeG has an open subgroup in common with a direct product

∏
i∈I

Li,

such that finitely many factors Li (possibly none) are just infinite profinite

groups and the remaining factors are finite simple groups. Without loss of

generality we may assume actually G =
∏

i∈I Li. Recalling from Lemma 2.6(i)

the structure of just infinite groups with nontrivial quasi-centre, we can write

an open subgroup of G as a direct product

k∏
i=1

(Zpi)
ni × E × J1 × · · · × Jn,

where E is a direct product of finite simple groups and each of the groups Ji is

just infinite with trivial quasi-centre. Appealing to Proposition 3.11, the group

Q =

k∏
i=1

(Zpi )
ni × E

has (LD), whilst Ji has (LD) for all i by Lemma 3.8. Using Lemma 3.6, we

conclude that G has (LD), completing the proof of the theorem.
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4. Global structure

We now turn to the study of t.d.l.c. groups with (LD), using what we know

about the compact open subgroups to deduce global properties.

4.1. Similarity classes. At this point it is useful to introduce a notion of

homogeneity of closed locally normal subgroups, which will capture many ex-

amples of groups with (LD).

Definition 4.1: Let G1 and G2 be t.d.l.c. groups. Say G1 and G2 are commen-

surable if there is an isomorphism from a finite index open subgroup of G1 to

a finite index open subgroup of G2. Say G1 and G2 are similar if there are

natural numbers a1 and a2 such that Ga1
1 is commensurable with Ga2

2 . Say G1

and G2 are locally similar if they have compact open subgroups U1 and U2

respectively such that U1 is similar to U2.

A t.d.l.c. group G is (locally) monomial if it is nondiscrete and (locally)

similar to every infinite closed locally normal subgroup of Ga for all natural

numbers a.

It is easily seen that similarity and local similarity are equivalence relations

and that the local similarity type is stable under passage to an open subgroup.

It is also easy to see that among profinite groups, the monomial property is a

similarity invariant. We can characterize the locally monomial t.d.l.c. groups as

follows. In the next theorem “LS” is for “locally semisimple”, the “J” stands

for “just infinite”, and then the letter after indicates the relevant type of just

infinite profinite group (either (virtually) abelian, (similar to) hereditarily just

infinite, or (nearly) branch).

Theorem 4.1: Let G be a nondiscrete t.d.l.c. group. Then the following are

equivalent:

(i) G is locally monomial and has (LD).

(ii) One of the following holds:

(LS) Some open subgroup of G is a direct product of ℵ0 copies of a

finite simple group;

(JA) G has a compact open subgroup isomorphic to Zd
p for some natural

number d and prime p;
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(JH) QZ(G) is discrete, LN (G) is finite and an open subgroup of G

is a direct product of n copies of a h.j.i. profinite group,

where 2n = |LN (G)|;
(JB) QZ(G) is discrete, LN (G) is infinite, G/QZ(G) acts faithfully

on LN (G) and G is locally isomorphic to a just infinite profinite

branch group.

We begin the proof with two lemmas.

Lemma 4.2: Every nearly just infinite profinite group is monomial.

Proof. Since the monomial property is a commensurability invariant, we only

need to consider just infinite profinite groups. Let J be a just infinite profi-

nite group and let H be an infinite closed locally normal subgroup of Ja for

some a ≥ 1; we must show that H is similar to J . If QZ(J) > {1}, then by

Lemma 2.6(i), J is commensurable with Zm
p for some prime p and natural num-

ber m, and then H is commensurable with Zn
p for some 1 ≤ n ≤ am; hence H

is similar to J . Thus we may assume QZ(J) = {1}. In this case, Ja is a finite

index open subgroup of the just infinite group J ′ = J � Sym(a), which contains

H as a locally normal subgroup. Let U be an open normal subgroup of J ′ that
normalizes H ; without loss of generality we may replace H with U ∩ H and

assume that H is normal in U . Then LN (U)U is finite by Corollary 3.9, so it is

generated by its atoms. We can then take a closed normal subgroupK of U rep-

resenting an atom of LN (U)U such that the distinct J ′-conjugates K1, . . . ,Kn

of K represent distinct atoms of LN (U)U . Since J ′ is just infinite,

LN (U)J
′
= {0,∞}.

and so U has an open subgroup of the form K1 × · · · × Kn; we then see that

every closed normal subgroup of U is commensurate with the product of some

subset ofK1, . . . ,Kn and hence is similar to K. In particular, H is similar to K;

clearly also K is similar to J ′ and J ′ is similar to J .

Lemma 4.3: Let G = J1 × · · · × Jn, where n ≥ 1 and J1, . . . , Jn are nearly just

infinite profinite groups. Then the following are equivalent:

(i) G is monomial;

(ii) J1, . . . , Jn are similar;

(iii) G is nearly just infinite.
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Proof. Given Lemma 4.2, the only nontrivial implication is that (ii) implies (iii),

so let us suppose (ii) holds. If QZ(Ji) > {1} for some i, then QZ(Jj) > {1}
for 1 ≤ j ≤ n, and hence by Lemma 2.6(i) and similarity, G is commensurable

with Zm
p (for some prime p and natural number m), which in turn is commen-

surable with a just infinite virtually abelian group of the form Zm
p �F for some

finite subgroup F of GLm(Zp) acting irreducibly over Qp, implying (iii). Thus

we may assume QZ(Ji) = {1} for 1 ≤ i ≤ n; hence also QZ(G) = {1}.
There is a profinite group H and natural numbers k1, . . . , kn such that Jki

i

is commensurable with H for 1 ≤ i ≤ n. We can clearly take H to be just

infinite, for instance H = J1 � Sym(k1). Taking k =
∏n

i=1 ki, we see that Gk is

commensurable with a power H l of H . In turn, H l is commensurable with the

just infinite profinite group L = H � Sym(l).

We now argue that G itself is commensurable with a just infinite profinite

group. We have an isomorphism θ from V k, where V is open in G, to an

open subgroup U of L. In particular, θ(V ) represents an element of LN (U)U .

Similar to the proof of Lemma 4.2, we find that V is commensurable with a

direct power Km of K, where K represents an atom of LN (U)U . It follows by

Lemma 3.8 that K is commensurable with a just infinite profinite group K2,

and thus G is commensurable with the just infinite profinite group K2 �Sym(m).

Thus (ii) implies (iii), completing the cycle of implications.

Proof of Theorem 4.1. Let us first consider the closed locally normal subgroups

of an infinite direct product E =
∏

i∈I Si, where Si is a finite simple group.

We see that every closed locally normal subgroup of E is commensurate with

the subgroup
∏

i∈I′ Si for some subset I ′ of I, where I ′ is determined up to

adding or removing finitely many elements. From this description, we see that

if E is monomial, then all but finitely many Si belong to a single isomorphism

class; moreover, the fact that E is similar to
∏

i∈I′ Si where |I ′| = ℵ0 ensures

that |I| = ℵ0. Conversely, if all but finitely many Si belong to a single isomor-

phism class and I is countably infinite, it is clear that E is monomial.

Suppose G is locally monomial and has (LD). Then given Theorem 1.4, G is

locally isomorphic a direct product

J × E,

where J is a direct product of finitely many (possibly no) just infinite profinite

groups and E is a direct product of finite simple groups. It follows that J×E is

monomial; clearly, for this to be the case we must have either J trivial or E finite.
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If J is trivial, then E is monomial, and then (LS) follows by the first paragraph.

So let us suppose that E is finite. Then by Lemma 4.3 we know that J , and

hence G, is locally isomorphic to a just infinite group J ′. If J ′ is virtually

abelian then (JA) follows. If J ′ is not virtually abelian, then QZ(J ′) = {1},
from which it follows that QZ(G) is discrete. There are then two possibilities

as in Theorem 1.2: if LN (G) is finite, then J ′ is commensurable with a direct

product of n copies of a hereditarily just infinite profinite group, and we see

that 2n = |LN (G)|; after passing to an open subgroup, we obtain such a direct

product that also occurs as a compact open subgroup of G, and hence (JH)

holds. If instead LN (G) is infinite, then J ′ is a just infinite branch group,

which means that J ′ acts faithfully on LN (J ′) and hence the kernel of the

action of G on LN (G) is discrete. At the same time, QZ(G) acts trivially

on LN (G) and is the largest discrete normal subgroup of G; thus we have a

faithful action of G/QZ(G) on LN (G), and (JB) follows. Thus (i) implies (ii).

Conversely, suppose that (ii) holds. In case (LS), it follows from the first

paragraph that G is locally monomial, and from Theorem 1.4 that G has (LD).

For (JA), (JH) and (JB), we see that G is locally isomorphic to a just infinite

profinite group, and the same conclusions follow by Lemma 4.3 and Theorem 1.4.

Thus (ii) implies (i).

Moving away from the locally monomial case, we now obtain a canonical

factorization of an open subgroup.

Definition 4.2: Given a profinite group H with (LD), a monomial factoriza-

tion of H is a factorization of H as a direct product

H = H1 ×H2 × · · · ×Hn ×
∏
S∈C

HS ×H∞

with the following properties:

(i) Hi is nearly just infinite for 1 ≤ i ≤ n, and for i �= j then Hi and Hj

are not similar;

(ii) C is a collection of isomorphism types of finite simple groups (possibly

empty), and for each S ∈ C then HS is the direct product of ℵ0 copies

of S;

(iii) H∞ is either trivial or a direct product of infinitely many finite sim-

ple groups not belonging to C, such that each isomorphism type only

appears finitely many times.
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Note in particular that the factors of the monomial factorization are mono-

mial, with the exception of the leftover part H∞.

Proposition 4.4: Let G be a first-countable t.d.l.c. group with (LD).

(i) G has an open subgroup H admitting a monomial factorization

H = H1 ×H2 × · · · ×Hn ×
∏
S∈C

HS ×H∞.

(ii) Let N be an infinite compact monomial locally normal subgroup of G.

Then N is virtually contained in one of the factors of the monomial

factorization of H .

(iii) Let K be a first-countable profinite group admitting a monomial fac-

torization

K = K1 ×K2 × · · · ×Km ×
∏
S∈C′

HS ×K∞,

such that there is a local isomorphism φ : U → H from K to H . Then

the monomial factorizations are equivalent in the following sense: We

havem = n and C = C′; there is a permutation π of {1, . . . ,m} such that

[φ(Ki ∩ U)] = [Hπ(i)];

[φ(KS)] = [HS ] for all S ∈ C;
[φ(K∞)] = [H∞].

Proof. (i) By Theorem 1.4, after passing to an open subgroup we can take

G =
∏
i∈I

Li,

where finitely many factors, say L1, . . . , Ln′ , are nearly just infinite profinite

groups and the remaining factors are finite simple groups. Since G is first-

countable, we can take the indexing set I to be countable. This immediately

yields a factorization

G = L1 × · · · × Ln′ ×
∏
S∈C

HS ×H∞,

where C is the set of isomorphism types of finite simple factors of G that occur

infinitely many times, and H∞ is the product of the finite simple factors of G

whose isomorphism type only occurs finitely many times. We can then group

the factors L1, . . . , Ln′ into similarity classes; by Lemma 4.3, the product of the

factors in a given similarity class is nearly just infinite. This yields the desired

factorization of some open subgroup H of G.
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(ii) By Theorem 4.1, after replacing N with a finite index open subgroup, we

may assume either that N is a direct product of ℵ0 copies of a finite simple

group S or N is nearly just infinite.

If N is a direct product of ℵ0 copies of a finite simple group S, let IS be the

set of elements of LN (G) with representatives locally isomorphic to N . We see

that S ∈ C, [N ] ∈ IS , and [HS ] is the unique largest element of IS : we see

the last asssertion, for example, by observing that H/HS has no closed locally

normal subgroup locally isomorphic to HS . Thus [N ] ≤ [HS ], that is, N is

virtually contained in HS . If instead N is nearly just infinite, one sees similarly

that the set J of elements of LN (G) with representatives similar to N has a

unique largest element, which is represented by Hi for 1 ≤ i ≤ n, and hence N

is virtually contained in Hi.

(iii) Writing θ([L]) = [φ(L∩U)], we have an order isomorphism θ from LN (K)

to LN (H), which also preserves commensurability of the representatives. In

particular, applying (ii), we see that if S ∈ C′, then S ∈ C and θ([KS ]) ≤ [HS ];

after applying the same argument to θ−1, we see that C = C′ and θ([KS ]) = [HS ]

for every S ∈ C′. Similarly, given 1 ≤ i ≤ m we see that θ([Ki]) ≤ [Hj ] for some

1 ≤ j ≤ n, ensuring that Hj is similar to Ki, and conversely given 1 ≤ j ≤ n

then θ−1([Hj ]) ≤ [Ki] for some 1 ≤ i ≤ n such that Ki is similar to Hi.

Thus in fact there is a permutation π of {1, . . . ,m} such that θ([Ki]) = [Hπ(i)],

where π is uniquely determined by the correspondence between the similarity

classes of the nearly just infinite factors in the monomial factorizations of K

and H . Finally, we can characterize [K∞] in LN (K) as follows, and similarly

for [H∞] in LN (H): Given a closed locally normal subgroup N of K such that

the finite simple normal subgroups of N that do not belong to C generate a

dense subgroup of N , then N is virtually contained in K∞, and [K∞] is the

smallest element of LN (K) with this property. Thus θ([K∞]) = [H∞].

Remark 4.1: In Proposition 4.4 we restricted to the first-countable case to avoid

some technicalities, and because dropping this condition does not generalize the

class of groups under consideration in any interesting way. There are only count-

ably many isomorphism types of finite group and every just infinite profinite

group is first-countable, so the only difference between first-countable and gen-

eral profinite groups with (LD) in the context of Theorem 1.4 is that in the

latter case, the factorization
∏

i∈I Li can include uncountably many copies of

the same finite simple group.
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4.2. Monomial constituents. Given a t.d.l.c. group G, a similarity class S
of profinite groups is a monomial constituent of G if groups in S are mono-

mial and there exists H ∈ S such that H is isomorphic to a closed locally

normal subgroup of G. Proposition 4.4 shows that if G has (LD), then any

monomial factorization of a profinite group locally isomorphic to G will yield

all the monomial constituents of G.

Let us prove some analogues to Proposition 4.4 describing closed normal

subgroups of G as a whole. In particular, it will follow that the structure

theory of t.d.l.c. groups with (LD) can to some extent be reduced to the locally

monomial case.

Proposition 4.5: Let G be a first-countable t.d.l.c. group with (LD) and let S
be a monomial constituent of G. Then there is a continuous injective homo-

morphism φ : GS → G, where GS is a first-countable t.d.l.c. group, with the

following properties:

(i) GS is generated by its compact open subgroups, all of which belong

to S.
(ii) Given a compact locally normal subgroup N of G such that N ∈ S,

then φ restricts to a homeomorphism from φ−1(N) to N .

(iii) φ(GS) is characteristic in any open subgroup of G that contains it.

Moreover, given an open subgroup K of G containing φ(GS), then the

map GS → K has the same properties with respect to K in place of G.

Proof. Given a compact open subgroup U of G, by Proposition 4.4 there is an

open subgroup of U with a monomial factorization, such that exactly one of the

factors US belongs to the similarity class S.
Now let L be the set of all compact locally normal subgroups of G that belong

to the similarity class S. Given N ∈ L, we see by Proposition 4.4(ii) that N

is virtually contained in US , and by Proposition 4.4(iii), N commensurates US .
It follows that the subgroup 〈L〉 can be equipped with a t.d.l.c. group topology

such that US is embedded as an open subgroup; let GS be 〈L〉 with this topology

and let φ be the inclusion map into G. Note that US ∈ L, and up to finite index,

US does not depend on the choice of U , so GS does not depend on U .

Since G is first-countable, so is US , and hence GS is first-countable. It is clear

from the construction that φ(GS) is characteristic in G and that (ii) holds; in

particular, since US is open in GS , we see from (ii) that φ is continuous at
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the identity. Since φ is evidently also a group homomorphism, it is continuous

everywhere. The profinite group US , and hence all profinite groups commensu-

rable with it, belong to S; thus (i) holds.
Finally, if K is an open subgroup of G containing φ(GS), then we see that

the set of monomial factors in S of compact locally normal subgroups of K

belonging to S is the same as for G. Thus we can identify GS with KS in

the obvious way, ensuring that (iii) holds and the map GS → K has the same

properties with respect to K in place of G.

Remark 4.2: The map φ is not closed in general, even when G is compact.

For example, if G = Zp × ∏
ℵ0

Z/pZ and S is the monomial constituent con-

taining Zp, then φ is bijective since G is generated by copies of Zp, but GS is

equipped with the topology in which Zp is a compact open subgroup, so for

instance there is a subgroup

Zp ×
⊕
ℵ0

Z/pZ

that is closed in GS but not in G. This complication only arises when

QZ(G) > {1}, as we will see from Theorem 4.6 below.

We now obtain an extended version of Theorem 1.5.

Theorem 4.6: Let G be a t.d.l.c. group with property (LD) such that

QZ(G) = {1}. Then G is first-countable and has an open subgroup of the form

M = M1 ×M2 × · · · ×Mn,

where for 1 ≤ i ≤ n the groups Mi have the following properties:

(i) Mi is closed and characteristic in every closed locally normal subgroup

of G containing Mi.

(ii) Mi is locally isomorphic to a just infinite profinite group Ji, so in par-

ticular Mi is locally monomial; additionally Mi contains every closed

locally normal subgroup of G that is locally similar to Ji.

(iii) In the case that G contains a compact just infinite representative Ji

of [Mi], then Ji ≤ Mi and every nontrivial closed normal subgroup

of Mi is open in Mi.

(iv) If G = L (G), then G = M , L (Mi) = Mi for 1 ≤ i ≤ n, and Mi has a

just infinite compact open subgroup for all 1 ≤ i ≤ n.
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Proof. By Lemma 3.3, G is [A]-semisimple; by Lemma 3.4, G is first-countable.

By Proposition 4.4, there is a compact open subgroup U of G with a factoriza-

tion

U = U1 × U2 × · · · × Un

such that the factors U1, . . . , Un are each nearly just infinite, with trivial quasi-

centre, and no two factors are similar. Let αi be the element of LN (G) = LD(G)

represented by Ui and let

Mi = C2
G(Ui);

in particular, Mi is closed and is the largest representative of αi. Since

{α1, . . . , αn} forms a partition of ∞ in LD(G), we have an open subgroup

M := 〈M1,M2, . . . ,Mn〉 = M1 ×M2 × · · · ×Mn,

where the direct product decomposition holds by Lemma 2.4. Let Ji be a

compact just infinite representative of [Mi], if one exists; otherwise let Ji be a

just infinite profinite group commensurable with Ui. Let N be a closed locally

normal subgroup of G that is locally similar to Ji. By Proposition 4.4(ii), Ui∩N
is open in N , so also Mi ∩N is open in N . By Theorem 2.3 it follows that Mj

centralizes N for all j �= i, and hence N ≤ Mi. Thus (ii) holds.

Consider a closed locally normal subgroup K of G and let βi be the element

of LD(K) represented by K ∩ Ui; note that the product
∏n

i=1(K ∩ Ui) is a

compact open subgroup of K, and also that K has (LD) and trivial quasi-centre

by Lemmas 3.1 and 3.2. For 1 ≤ i ≤ n, since the compact representatives

of αi are monomial, they are similar to the representatives of βi. Since the

representatives of αi lie in different similarity classes for 1 ≤ i ≤ n, we deduce

that
∏n

i=1(K ∩ Ui) is a monomial factorization of an open subgroup of K, and

by Proposition 4.4(iii), it follows that every automorphism of K will preserve

each of the elements β1, . . . , βn of LD(K). In particular, if Mi ≤ K for some i,

we see that αi = βi and that Mi is the largest representative of βi, so Mi is

characteristic in K. This proves (i).

Suppose G contains a compact just infinite representative Ji of [Mi]. Then

Ji ≤ Mi by (ii), and hence

LN (Mi)
Mi = {0,∞},

ensuring that every closed normal subgroup of Mi is discrete or open in Mi.

The former is ruled out by the fact that QZ(Mi) = {1}; thus (iii) holds.
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Finally, let us suppose that G = L (G). Given g ∈ G, then conjugation by g

induces a local automorphism of U ; using Proposition 4.4(iii), we can restrict

this local automorphism to an isomorphism

V1 × V2 × · · · × Vn → gV1g
−1 × gV2g

−1 × · · · × gVng
−1,

where Vi and gVig
−1 are open subgroups of Ui. We then see that there are ele-

ments g1, . . . , gn of G such that givg
−1
i = gvg−1 for all v ∈ Vi, but gi ∈ CG(Vj)

for all j �= i. We then have gi ∈ Mi and g = g1g2 . . . gn. This proves

that G = M . On the other hand, we see that every local automorphism of Mi

extends to a local automorphism of G, and hence can be realized by conjugation

in G; thus Mi = L (Mi) for 1 ≤ i ≤ n. Finally, it is now clear that Ji appears

as a compact open subgroup of Mi, completing the proof of (iv).

Remark 4.3: In the situation of Theorem 4.6, one sees that factors M1, . . . ,Mn

correspond to the monomial constituents S1, . . . ,Sn of G from Proposition 4.5,

and for 1 ≤ i ≤ n the map φ : GSi → G constructed in Proposition 4.5 restricts

to an open embedding (in particular, a closed map) from GSi to Mi.

4.3. Groups of type (JH). We now give the analogue of Theorem 1.3 for

groups of type (JH).

Theorem 4.7: Let G be a t.d.l.c. group of type (JH), with QZ(G) = {1}. Then
there is a hereditarily just infinite profinite group J and an open subgroup

P = P1 × P2 × · · · × Pn

of G, where the factors P1, . . . , Pn (which we call the atomic factors of G)

have the following properties:

(i) Every automorphism of G permutes the factors {P1, . . . , Pn} (possibly

trivially); in particular, P is characteristic in G.

(ii) For 1 ≤ i ≤ n, QZ(Pi) = {1} and Pi has a compact open subgroup

isomorphic to J .

(iii) Given 1 ≤ i ≤ n, exactly one of the following holds:

Reducible type: Pi ∩ Res(G) = {1};
Mysterious type: Pi∩Res(G) is open, but Pi∩Res(Res(G)) = {1};
Simple type: Pi∩Res(G) = Res(Pi) is open in Pi and topologically

simple.
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Proof. By Theorem 4.1, LN (G) is finite and there is an open subgroup J ′ of G
that is a direct product

J ′ = J1 × J2 × · · · × Jn,

where Ji ∼= Jj for all i and j and J := J1 is hereditarily just infinite. Note that

the elements [J1], . . . , [Jn] of LN (G) are distinct and are exactly the atoms

of LN (G). We set Pi = QC2
G([Ji]); then we have an open subgroup

P = P1 × P2 × · · · × Pn.

Since the factors P1, . . . , Pn are obtained from LN (G) in a canonical way, they

form a characteristic class of subgroups; thus (i) is satisfied. We also note that

QZ(Pi) ≤ QZ(G) = {1} for all 1 ≤ i ≤ n,

and clearly Ji ≤o Pi; this proves (ii).

It remains to divide the atomic factors into three types as in (iii). Without

loss of generality, we can replace G with the finite index open subgroup

n⋂
i=1

NG(Pi);

note that this does not change Res(G). Clearly the three listed types are mutu-

ally exclusive; note also that because of (ii), any closed locally normal subgroup

of Pi is either trivial or open. Fix 1 ≤ i ≤ n and suppose Pi is not of reducible

or mysterious type. Then we see that Res(Res(G)) ∩ Pi must be open in Pi;

since P is open and characteristic in G, we see that Res(G) ≤ P and hence

Pi ∩ Res(Res(G)) = Res(R),

where R = Pi ∩Res(G). In particular, the product of Res(R) with Pj for j �= i

is an open normal subgroup O of G; we then have

Res(R) = Pi ∩O ≥ Pi ∩Res(G) = R,

thus Res(R) = R. Since in addition, every nontrivial closed normal subgroup

of R is open, we conclude that R is topologically simple. We then have

Res(R) ≤ Res(Pi) ≤ R,

so R = Res(Pi). Thus Pi is of simple type, completing the proof.



Vol. 259, 2024 T.D.L.C. GROUPS WITH J.I. SUBGROUPS 493

We do not resolve the question of Barnea–Ershov–Weigel of whether locally

h.j.i. groups of mysterious type actually exist, but we can put some restrictions

on when they occur.

Theorem 4.8: Let G be a t.d.l.c. group with QZ(G) = {1}, such that G

has a h.j.i. compact open subgroup and G is compactly generated. Suppose

that R = Res(G) is open but Res(R) is trivial. Then the following hold:

(i) There is a noncompact open normal subgroup K of R such that, given

any nontrivial closed normal subgroup Q of R, then Q contains a G-

conjugate of K.

(ii) There is a G-conjugate of K that properly contains K.

(iii) Given a compactly generated subgroup H of G such that R ≤ H , then

ResR(H) is open in R. In particular, R is not compactly generated.

(iv) Let L be a subgroup of G containing R such that L/R is virtually

polycyclic. Then every open normal subgroup of R contains an open

normal subgroup of L; in particular, L is residually discrete.

Part (iv) is derived from a more general fact, which we prove separately in a

lemma.

Lemma 4.9 ([12, Corollary 1.4]): Let U be a profinite group such that U has

only finitely many open subgroups of each index, and such that U is isomorphic

to a proper open subgroup of itself. Then U has an infinite abelian normal

subgroup.

Lemma 4.10: Let G be a t.d.l.c. group. Make the following assumptions:

(i) We have G = 〈K,x〉, where K is a residually discrete open normal

subgroup of G.

(ii) The action of G on LN (G) has no nontrivial fixed points.

(iii) K has no infinite abelian locally normal subgroups.

(iv) Given a compact open subgroup U of K, then U has only finitely many

open subgroups of each index.

Then G is residually discrete; indeed, every open normal subgroup ofK contains

an open normal subgroup of G.
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Proof. Let H be an open normal subgroup of K and let U be a compact open

subgroup of H . Define the following subgroups:

H+ =
∞⋂
i=0

xiHx−i; H− =
∞⋂
i=0

x−iHxi;

U+ =

∞⋂
i=0

xiUx−i; U− =

∞⋂
i=0

x−iUxi.

Note that all conjugates of H and their intersections are closed and normal

in K; furthermore, xH+x
−1 and x−1H+x are both locally equivalent to H+.

Hence α+ = [H+] is an element of LN (G) that is fixed by G. It follows

that α+ ∈ {0,∞}. By [17, Lemma 1], the set U+U− is a neighbourhood of

the identity in H . Suppose that α+ = 0; then H+ is discrete, so U+ is finite,

and hence U− is open inK. By construction, xU−x−1 is a proper open subgroup

of U− that is isomorphic to U−. Thus K has an infinite abelian locally normal

subgroup by Lemma 4.9, a contradiction. Thus α+ = ∞, in other words, H+ is

open in K. By the same argument, H− is also open in K, so H+ ∩H− is open

in K; by construction, H+ ∩ H− is normal in G and contained in H . Hence

every open normal subgroup of K contains an open normal subgroup of G.

Proof of Theorem 4.8. Let U be a proper compact open subgroup of R and

note that the G-conjugates of U have trivial intersection. By [14, Theorem 1.2],

there is some x ∈ R \ {1} such that the G-conjugacy class of x accumulates

at the identity. In particular, every open subgroup of R contains gxg−1 for

some g ∈ G.

Now let

K = 〈rxr−1 | r ∈ R〉
and consider a nontrivial closed normal subgroup Q of R. Then K and Q are

both open, because R is locally h.j.i. and has trivial quasi-centre. We then

see that Q contains gxg−1 for some g ∈ G; since Q is normal in R, it follows

that Q contains rgxg−1r−1 for every r ∈ R. Since R is normal in G, in fact Q

contains grxr−1g−1 for every r ∈ R; since Q is a closed subgroup of R, it follows

that

gKg−1 ≤ Q.

We have now proved (i) except for the fact that K is not compact.
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Consider the case Q = K ∩ gKg−1, where g ∈ G is such that K � gKg−1.

Then Q contains hKh−1 for some h ∈ G, and then we see that hKh−1 < K.

This proves (ii). However, by Lemma 4.9, no compact open subgroup of R

is isomorphic to a proper open subgroup of itself. Thus K is not compact,

completing the proof of (i).

We note by (i) that R has no compact open normal subgroups. It follows

that if H is a compactly generated subgroup containing R, then H also has no

compact open normal subgroups. By [4, Corollary 4.1] it follows that

Res(H) �= {1},
and hence Res(H) is open. Since R is open and normal in H , we have

Res(H) = ResR(H).

Since Res(R) = {1}, we see that R cannot be compactly generated, proving (iii).

Finally, consider a subgroup L of G containing R, such that L/R is virtually

polycyclic; then there is R ≤ L0 ≤ L such that L0/R is polycyclic and L0 is a

normal subgroup of L of finite index. By repeated application of Lemma 4.10

we see that every open normal subgroup of R contains an open normal subgroup

of L0. In turn, every open normal subgroup M of L0 contains the open normal

subgroup

M ′ =
⋂
y∈Y

yMy−1

of L, where Y is a finite set of coset representatives for L0 in L. This

proves (iv).

4.4. Groups locally isomorphic to just infinite profinite branch

groups. We now turn to groups G of type (JB). In this case there is no atomic

decomposition coming from the structure lattice, since LN (G) is atomless. In-

stead, we take the approach of decomposing Res(G) into directly indecompos-

able parts. Other than that, we obtain a statement similar to Theorem 4.7.

Theorem 4.11: Let G be a t.d.l.c. group of type (JB), with QZ(G) = {1}.
Then Res(G) is a direct factor of an open characteristic subgroup and admits

a decomposition into finitely many directly indecomposable direct factors

Res(G) = P1 × P2 × · · · × Pn,

which we call the components of G, with the following properties:
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(i) Every direct factor of Res(G) is a direct product of a subset of the

components.

(ii) Each component P is noncompact, but locally isomorphic to a just infi-

nite profinite branch group, and we have LN (P )P = {0,∞}. Moreover,

G does not normalize any proper nontrivial closed subgroup of P .

(iii) Given 1 ≤ i ≤ n, exactly one of the following holds:

Mysterious type: Pi is residually discrete;

Simple type: Pi is topologically simple.

Proof. We see that R = Res(G) is itself of type (JB) with trivial quasi-centre.

In particular, we have LN (R) = LD(R), R is [A]-semisimple, and R acts faith-

fully on LN (R) with finitely many fixed points. Let α1, . . . , αn be the atoms

of LN (R)R and set Pi = QC2
R(αi) for 1 ≤ i ≤ n. Then we obtain an open

subgroup of R

O = P1 × P2 × · · · × Pn.

From the construction we see that O is characteristic in R, hence normal in G;

from there we see that CG(R)×O is an open normal subgroup of G. Thus

R ≤ CG(R)×O

and in fact R = O, so R is a direct factor of the open characteristic sub-

group CG(R)×R. It is now clear that

LN (Pi)
Pi = {0,∞} for 1 ≤ i ≤ n;

in particular, Pi is directly indecomposable, and every nontrivial closed normal

subgroup of Pi is open. Moreover, Pi is of type (JB), so it is locally isomorphic

to a just infinite profinite branch group. Given a nontrivial closed subgroup Q

of Pi that is normalized by G, we see that Q is open in Pi, and hence the prod-

uct Q′ of Q with the components other than Pi is an open normal subgroup

of G. But then R ≤ Q′, so Pi ≤ Q. To complete the proof of (ii), suppose

for a contradiction Pi is compact. Then Pi is a just infinite profinite group;

in particular, M(Pi) is open in Pi by Lemma 2.6(iii). But then M(Pi) is char-

acteristic, hence G-invariant, and we have a contradiction, since we have just

shown that G preserves no proper nontrivial closed subgroup of Pi. Thus Pi is

noncompact as claimed.
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Consider now a direct factor D of Res(G). Since R is [A]-semisimple, D has a

unique direct complement CR(D), and then D = C2
R(D), so D is closed and is

the largest representative of an element α ∈ LN (R). Since R = D×CR(D), in

fact α ∈ LN (R)R, so we can write α as the join of {αi | i ∈ I} for some subset I

of {1, . . . , n}. Given the direct decomposition of R into components, we see that

in fact D is generated by the components {Pi | i ∈ I}. This proves (i).
It remains to divide the components into two types. Fix 1 ≤ i ≤ n. If

Res(Pi) > {1}, then by (ii), we must have Res(Pi) = Pi. Since every nontrivial

closed normal subgroup of Pi is open, it follows that Pi is topologically simple.

Otherwise, clearly Pi is of mysterious type.

Similar to type (JH), there are no known examples of mysterious compo-

nents; however, unlike for type (JH), we can rule out the mysterious compo-

nents when G is compactly generated. In fact, in the present situation we can

prove a result about ResG(H), where H is any compactly generated subgroup

of G. We first recall a sufficient condition for a t.d.l.c. group to have a nontrivial

contraction group.

Lemma 4.12 (See [7, Proposition 6.14 and Theorem 6.19]): Let G be a com-

pactly generated t.d.l.c. group that is [A]-semisimple and let A be a subalgebra

of LC(G) on which G acts faithfully.

(i) Suppose that G has a compact open subgroup U such that⋂
g∈G

gUg−1 = {1}.

Then there is a finite subset {α1, . . . , αn} ofA such that for all β∈A\{0},
there is some g ∈ G and i ∈ {1, . . . , n} such that gαi < β.

(ii) Let V be a compact open subgroup of G, and suppose there is g∈G and

α∈A such that gα<α. Then there is a natural number n0 such that

QC2
U (g

n0α \ gn0+1α) ≤ con(g).

Lemma 4.13: Let G be a t.d.l.c. group of type (JB), with QZ(G) = {1}, and
let H be a compactly generated (not necessarily closed) subgroup of G. Then

ResG(H) is the direct product of finitely many (possibly none) topologically

simple groups, each of which is locally normal in G. Moreover, if H is closed

and ResG(H) ≤ H , then

ResG(H) = G†
H = H†.
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Proof. By Lemma 2.9 and replacing G with an open subgroup, we may assume

that ResG(H) = Res(G). Since Res(G) is a direct factor of an open subgroup,

there is a natural isomorphism of topological groups

Res(G) → Res(G)CG(Res(G))/CG(Res(G)) = Res(G/CG(Res(G))).

If Res(G) = {1} there is nothing more to prove, so without loss of generality,

Res(G) > {1}. In that case Res(G) is locally similar to G, since G is locally

monomial by Theorem 4.1. We can now replace G with G/CG(Res(G)) and

hence assume

CG(Res(G)) = {1}.
As a result, Res(G) is open in G.

By Theorem 4.11, we have

Res(G) = P1 × P2 × · · · × Pn,

where P1, . . . , Pn are the components of G; after replacing G with a finite index

open subgroup G0 and H with H ∩ G0, we may assume that P1, . . . , Pn are

normal in G. (Note that by Lemma 2.7, this does not change the (relative)

Tits core of H , nor its discrete residual on G.) Under this assumption we

see that the elements αi = [Pi] of LD(G) are exactly the atoms of LD(G)G,

while P1, . . . , Pn are exactly the minimal nontrivial closed normal subgroups

of G. Applying Lemma 4.12, for 1 ≤ i ≤ n there is gi ∈ G and 0 < βi < αi such

that giβi < βi, and then the contraction group conPi(gi) of gi acting on Pi is

nontrivial. In particular, the semidirect product Ri = Pi � 〈gi〉 (equipped with

the product topology) is not residually discrete.

Suppose that Pi is residually discrete. Then Ri satisfies the hypotheses of

Lemma 4.10. Hypothesis (i) is clear; hypothesis (ii) follows from Theorem 4.11,

ensuring that Pi acts on

LD(Pi) ∼= LN (Ri)

with no nontrivial fixed points. For hypotheses (iii) and (iv), we note that Pi has

trivial quasi-centre and is locally isomorphic to a just infinite profinite branch

group, and then appeal to Lemma 2.6. But then Ri is residually discrete, a

contradiction. Thus Pi is not residually discrete, so by Theorem 4.11 it is

topologically simple.

In the case that H is closed and ResG(H) ≤ H , it is clear that G†
H = H†,

and the existence of the elements gi makes it clear that H† = ResG(H).



Vol. 259, 2024 T.D.L.C. GROUPS WITH J.I. SUBGROUPS 499

4.5. Noncompact topologically simple direct factors of open sub-

groups. We can now prove Theorem 1.6 from the introduction.

Proof of Theorem 1.6. We see that G† is a closed G-invariant subgroup of

Res(G), and by Theorem 4.6, Res(G) splits into monomial parts. Given Theo-

rems 4.7 and 4.11, we can write

Res(G) = P1 × P2 × · · · × Pn,

where {P1, . . . , Pn} is a characteristic class of subgroups of G, and each of the

factors Pi is one of the following:

(a) the intersection of an atomic factor of mysterious type with Res(G);

(b) a locally branch component of mysterious type;

(c) a topologically simple group that is locally isomorphic to a just infinite

profinite group.

Note that in all cases,

LN (Pi)
Pi = {0,∞}.

After passing to a finite index open subgroup (which changes neither G† nor

Res(G)), we may assume Pi is normal in G for 1 ≤ i ≤ n. We then see that

G† = Q1 ×Q2 × · · · ×Qn,

where Qi = (Pi)
†
G.

Fix 1 ≤ i ≤ n and suppose Qi �= {1}; that is, there is some g ∈ G with

a nontrivial contraction group on Pi. In particular, the group Pi � 〈g〉 is not

residually discrete. By Lemma 4.10, it follows that Pi is not residually discrete,

so we are in case (c), that is, Pi is topologically simple. In particular, Pi = Qi.

Now suppose G is compactly generated. The group Res(G)/G† is isomorphic

to the direct product of those Pi such that Qi = {1}. By Lemma 4.13, the

factors Pi of type (b) are ruled out, and for type (c), if Pi is locally branch we

have Pi = Qi. Thus Res(G)/G† is a direct product of finitely many groups of

type (JH); in particular, it is locally isomorphic to a finite direct product of

h.j.i. profinite groups.

Theorem 1.6 has the following corollary, which illustrates a significant con-

nection between topologically simple t.d.l.c. groups and the internal structure

of just infinite profinite groups.



500 C. D. REID Isr. J. Math.

Corollary 4.14: Let U be a just infinite profinite group that is not virtually

abelian. Let V ≤o U and let θ : V → U be a continuous injective open homo-

morphism such that θ(W ) �= W for all W ≤o V . Then there is a compactly

generated t.d.l.c. groupG with an open normal topologically simple subgroup S,

such that S is locally isomorphic to U (in the case that U is hereditarily just

infinite) or locally similar to U (in the case that U is a branch group). Conse-

quently, the composition factors of U are of bounded order.

Proof. As explained in [1], U naturally embeds in L = L (U) as a compact open

subgroup, and then θ is the restriction of an inner automorphism of L, induced

by the element x say of L. By the construction of the group of germs, L is locally

just infinite and QZ(L) = {1}. By the assumptions on θ and Lemma 2.8, we see

that L†
x �= {1}. It follows that H† �= {1}, where H = 〈U, x〉. By Theorem 1.6,

H has a topologically simple locally normal subgroup S. If U is hereditarily

just infinite then S is open in H , hence locally isomorphic to U ; otherwise, U

is monomial by Lemma 4.2, so S is locally similar to U . Finally, we form the

group G = NH(S)/CH(S), which has S as an open normal subgroup.

By [7, Proposition 4.6], taking a compact open subgroup V of S, then the

composition factors of V are of bounded order. Since U is similar to V , it

follows that the composition factors of U are also of bounded order.

We note also the following result concerning relative discrete residuals. Note

that if H has a cocompact polycyclic subgroup, then ResG(H) = G†
H : see [13,

Corollary 1.12].

Theorem 4.15: Let G be a t.d.l.c. group with (LD) such that QZ(G) = {1}
and let H be a compactly generated (not necessarily closed) subgroup of G.

Suppose that at least one of the following holds:

(i) HResG(H)/ResG(H) is virtually polycyclic;

(ii) G has no hereditarily just infinite compact locally normal subgroup.

Then ResG(H) is trivial or a direct product of finitely many topologically simple

groups, each of which is locally normal in G.

Proof. By Lemma 2.9 and replacing G with an open subgroup, we may assume

that ResG(H) = Res(G). We first take the monomial factorization of an open

normal subgroup of G,

M = M1 ×M2 × · · · ×Mm,



Vol. 259, 2024 T.D.L.C. GROUPS WITH J.I. SUBGROUPS 501

as in Theorem 4.6; it is then clear that ResG(H) is the direct product of

ResMi(H) for 1 ≤ i ≤ m. Thus we reduce to the case when G is locally

monomial, and hence of type (JH) or (JB).

If G is of type (JH), we are in the case that HResG(H)/ResG(H) is virtually

polycyclic. We take the atomic factorization of G as in Theorem 4.7, and see

by Theorem 4.8(iv) that only the topologically simple atomic factors of G can

contribute to ResG(H), and hence there are no atomic factors of mysterious

type; in other words, ResG(H) is a finite direct product of topologically simple

groups.

If G is of type (JB), then the conclusions follow from Lemma 4.13.
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