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ABSTRACT

For any nullity 2 extended affine Lie algebra E of maximal type and � ∈ C,

we prove that there exist a vertex algebra VE (�) and an automorphism

group G of VE (�) equipped with a linear character χ, such that the cat-

egory of restricted E-modules of level � is canonically isomorphic to the

category of (G, χ)-equivariant φ-coordinated quasi VE (�)-modules. More-

over, when � is a nonnegative integer, there is a quotient vertex algebra

LE (�) of VE (�) modulo by a G-stable ideal, and we prove that the inte-

grable restricted E-modules of level � are exactly the (G, χ)-equivariant

φ-coordinated quasi-LE(�)-modules.

1. Introduction

Extended affine Lie algebra (EALA for short) was introduced by Hoegh-Krohn

and Torresani in [H-KT] with applications to quantum gauge theory, and since

then it has been studied extensively in the literature (see [N] and the refer-

ences therein). An EALA by definition is a complex Lie algebra E , together
with a finite-dimensional ad-diagonalizable subalgebra and a nondegenerate

invariant symmetric bilinear form, satisfying a list of natural axioms. The

isotropic roots (i.e., roots of length 0) in E generate a free abelian group of

finite rank called the nullity of E . EALAs of nullity 0 and 1 precisely coincide

with the finite-dimensional simple Lie algebras and affine Kac–Moody algebras
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respectively [ABGP]. Meanwhile, the structure of EALAs with positive nullity

are like affine Kac–Moody algebras in many ways [ABFP, BGK, CNPY]. It

is well-known that affine Kac–Moody algebras through their restricted mod-

ules can be naturally associated with vertex algebras and (twisted) modules

[FZ, FLM, Li1, Li2]. This association plays an important role in both affine

Kac–Moody algebra theory and vertex (operator) algebra theory. It is a natural

question to ask whether EALAs of nullity ≥ 2 can be associated with vertex

algebras in a similar way as the affine Kac–Moody algebras.

The main goal of this paper is to associate the nullity 2 EALAs and their

modules to vertex algebras. We would like to point out that the representa-

tion theory of nullity 2 EALAs is totally different from that for EALAs with

nullity ≥ 3 (see [ESB, CLT2]), and the nullity 2 EALAs arose naturally in the

work of Saito [Sa] and Slodowy [Sl] on simple elliptic singularities and can be

connected with Ringel–Hall algebras [LPe]. The subalgebra of an EALA gen-

erated by its nonisotropic root vectors is called the core of the EALA, and the

core modulo its center is often called the centerless core of the algebra. It is

known that the classification of EALAs can be reduced to the classification of

their centerless cores [N]. And the centerless cores of nullity 2 EALAs were

classified by Allison–Berman–Pianzola in [ABP] (see also [GP]).

In this paper we deal with the nullity 2 EALAs of maximal type in the

sense that their cores are centrally closed [BGK]. The representation theory of

nullity 2 EALAs of maximal type has been extensively studied (see [G1, G2,

G3, GZ, B2, CLT1, CLT2] for example). By applying the theory of equivariant

φ-coordinated quasi modules for vertex algebras developed by Li (see [Li6, Li8]),

we associate all nullity 2 EALAs of maximal type and their restricted modules

to vertex algebras.

Li introduced the notion of (G,χ)-equivariant quasi-modules for vertex alge-

bras in [Li3, Li4] to associate certain infinite-dimensional Lie algebras to vertex

algebras, where G is a group and χ is a linear character of G. Li [Li6, Li8] also

developed a theory of (G,χ)-equivariant φ-coordinated quasi-modules for non-

local vertex algebras to associate quantum affine algebras with quantum vertex

algebras (see also [JKLiT, CLTW]), where φ is an associate of the 1-dimensional

additive formal group F (z, w) = z +w [Li6]. In this paper we assume the asso-

ciate φ = zew, which is indeed the associate appearing in the quantum vertex

algebra theory [Li6, Li8].
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If ġ is a finite-dimensional simple Lie algebra with a diagram automorphism ν̇,

we denote by L̃(ġ, ν̇) the corresponding affine Kac–Moody algebra (i.e., nullity 1

EALA), and L̂(ġ, ν̇) = [L̃(ġ, ν̇), L̃(ġ, ν̇)] the derived Lie subalgebra of L̃(ġ, ν̇).
We know that the restricted modules for the affine Lie algebra L̂(ġ, ν̇) of level
� ∈ C can be associated with the ν̇-twisted modules for the universal affine

vertex algebra V
̂L(ġ)(�, 0) of the untwisted affine Lie algebra L̂(ġ) = L̂(ġ, id)

(see [FZ, Li1, FLM, Li2]). And the integrable restricted modules for L̂(ġ, ν̇) of
level � ∈ N can be associated with the ν̇-twisted modules for the corresponding

simple affine vertex algebras L
̂L(ġ)(�, 0) (see [FZ, Li1, Li2]).

Similar to the association of the affine Lie algebra L̂(ġ, ν̇) and its restricted

modules with the affine vertex algebras and their twisted modules, we can apply

the equivariant φ-coordinated quasi-modules for the affine vertex algebras to as-

sociate with the restricted modules for the affine Kac–Moody algebra L̃(ġ, ν̇).
For this purpose, we first, by using results from [Z] and [Li5], investigate the

natural connections among equivariant φ-coordinated quasi-modules, equivari-

ant quasi modules and twisted modules for the general vertex operator alge-

bras (see Proposition 3.4). And then we prove that the category of restricted

(resp. integrable restricted) modules for the affine Kac–Moody algebra L̃(ġ, ν̇) of
level � is isomorphic to the category of equivariant φ-coordinated quasi-modules

for the universal (resp. simple) affine vertex algebra V
̂L(ġ)(�, 0) (resp. L ̂L(ġ)(�, 0))

(see Theorem 3.11).

Let g be the untwisted affine Kac–Moody algebra L̃(ġ, id), and μ a nontran-

sitive diagram automorphism of g. We can also define the twisted toroidal

EALA g̃[μ] similar to the construction of twisted affine Kac–Moody algebra.

Allison–Berman–Pianzola proved in [ABP] that a nullity 2 EALA of maximal

type is either isomorphic to a twisted toroidal EALA g̃[μ], or to EALA s̃lN (Cq)

of type AN−1 coordinated by an irrational quantum torus Cq (see Section 5 for

details). It was discovered by Billig in [B2] that an untwisted toroidal EALA is

in general not a vertex Lie algebra in the sense of [DLM]. Thus one cannot as-

sociate the restricted g̃[μ]-modules, as in the affine Kac–Moody algebra case, to

twisted modules of vertex algebras. It was also pointed out in [Li3] that, since

the generating functions of s̃lN (Cq) are not “local” in general, the restricted

modules of EALA s̃lN(Cq) cannot be directly associated to twisted modules of

vertex algebras.
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As the main result of this paper, we prove that every nullity 2 EALA of

maximal type can be associated with a vertex algebra through equivariant φ-

coordinated quasi-modules. More explicitly, for any nontransitive diagram au-

tomorphism μ of an untwisted affine Kac–Moody algebra g, we construct a

vertex algebra Vĝ(�, 0), a quotient vertex algebra Lĝ(�, 0) of Vĝ(�, 0), an auto-

morphism group Gμ of Vĝ(�, 0) and Lĝ(�, 0), and a linear character χω of Gμ.

And then we establish a module category isomorphism from the category of

restricted (resp. integrable restricted) g̃[μ]-modules of level � to the category

of (Gμ, χω)-equivariant φ-coordinated quasi-modules for Vĝ(�, 0) (resp.Lĝ(�, 0))

(see Theorem 6.8). Meanwhile, for any positive integer N ≥ 2 and generic

complex number q, we also construct a universal (resp. simple) affine vertex al-

gebras V
̂L(sl∞)(�, 0) (resp.L

̂L(sl∞)(�, 0)) associated to sl∞, an automorphism

group GN of the affine vertex algebras, and a linear character χq of GN .

And then we prove that the category of restricted (resp. integrable restricted)

s̃lN (Cq)-modules of level � is canonically isomorphic to the category of (GN , χq)-

equivariant φ-coordinated quasi-modules for V
̂L(sl∞)(�, 0) (resp.L

̂L(sl∞)(�, 0))

(see Theorem 7.5).

The structure of the paper is given as follows. In Section 2 we recall the

notion of (G,χ)-equivariant φ-coordinated quasi-module for a vertex algebra

introduced in [Li7], and consider the (G,χ)-equivariant φ-coordinated quasi-

modules for the universal enveloping vertex algebra of a conformal algebra. Af-

ter giving natural connections among equivariant φ-coordinated quasi-modules,

equivariant quasi-modules and twisted modules for vertex operator algebras

and (general) universal affine vertex algebras, in Section 3 we prove the iso-

morphism between the categories of restricted modules for affine Kac–Moody

algebras and equivariant φ-coordinated quasi-modules for affine vertex alge-

bras. In Section 4, for any diagram automorphism μ of an untwisted affine

Kac–Moody algebra g, we construct an automorphism μ̃ of the toroidal EALA

g̃ associated to g and study the Lie subalgebra g̃[μ] of g̃ fixed by the automor-

phism μ̃. We recall Allison–Berman–Pianzola’s classification result of nullity 2

EALAs of maximal type in Section 5. And then in Section 6, we define two

vertex algebras Vĝ(�, 0) and Lĝ(�, 0), and associate restricted (resp. integrable

restricted) g̃[μ]-modules of level � with equivariant φ-coordinated quasi-modules

for the vertex algebra Vĝ(�, 0) (resp.Lĝ(�, 0)). Finally, in Section 7, we associate
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restricted (resp. integrable restricted) s̃lN (Cq)-modules of level � with equivari-

ant φ-coordinated quasi-modules for universal (resp. simple) affine vertex alge-

bras associated to sl∞.

In this paper we denote by Z, Z∗, N, C and C∗ respectively the sets of integers,
nonzero integers, nonnegative integers, complex numbers and nonzero complex

numbers. And if g is a Lie algebra, we denote by U(g) the universal enveloping

algebra.

2. Equivariant φ-coordinated quasi-modules for vertex algebras

In this section we recall the notion and some basics on equivariant φ-coordinated

quasi-modules for vertex algebras (cf. [Li8, JKLiT, CLTW]).

2.1. Definitions and basic properties. Throughout this paper, let

z, w, z0, z1, z2, . . . be mutually commuting independent formal variables. We

use the standard notations and conventions as in [FHL, LeLi]. For example, for

a vector space U , U [[z1, z2, . . . , zr]] is the space of formal (possibly doubly infi-

nite) power series in z1, z2, . . . , zr with coefficients in U , and U((z1, z2, . . . , zr))

is the space of lower truncated Laurent power series in z1, z2, . . . , zr with coef-

ficients in U . Denote a vertex algebra by V = (V, Y,1) , where 1 is the vacuum

vector and
Y (·, z) : V → Hom(V, V ((z))),

v �→
∑
n∈Z

vnz
−n−1

is the vertex operator. And the canonical derivation on V defined by v �→ v−21

for v ∈ V is denoted by D.

For a subset Γ of C∗, denote by CΓ[z] the set of all polynomials in C[z] whose

roots are contained in Γ. Let φ be the formal power series φ(z2, z0) = z2e
z0 ,

which is a particular associate of the one-dimensional additive formal group

F (z, w) = z + w as defined in [Li3]. Now we recall the notions of equivariant

φ-coordinated quasi-modules for a vertex algebra (see [Li8]).

Definition 2.1: Let (V, Y,1) be a vertex algebra, G a group of automorphisms

on V and χ : G → C∗ a linear character of G. A (G,χ)-equivariant φ-

coordinated quasi-V -module (W,Y φW ) is a vector space W equipped with a

linear map

Y φW (·, z) : V → Hom(W,W ((z))) ⊂ (EndW )[[z, z−1]]
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satisfying the following three conditions:

(i) Y φW (1, z) = 1W ;

(ii) Y φW (gv, z) = Y φW (v, χ(g)z) for g ∈ G, v ∈ V ;

(iii) for u, v ∈ V, there exists f(z) ∈ Cχ(G)[z] such that

f(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2) ∈ Hom(W,W ((z1, z2))),

f(ez0)Y φW (Y (u, z0)v, z2) = (f(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2))|z1=φ(z2,z0).

Furthermore, a (G,χ)-equivariant φ-coordinated quasi-V -module

(W,Y φW , d) is a (G,χ)-equivariant φ-coordinated quasi-V -module (W,Y φW ) equip-

ped with an endomorphism d ofW such that [d, Y φW (v, z)] = Y φW (Dv, z) for v∈V .

Now we fix a vertex algebra V , an automorphism group G of V , and a lin-

ear character χ of G. For a (G,χ)-equivariant φ-coordinated quasi-V -module

(W,Y φW ). It was proved in [Li6, Lemma 3.7] that

Y φW (Dv, z) = z
d

dz
Y φW (v, z), ∀ v ∈ V.(2.1)

This immediately gives the following result.

Lemma 2.2:For a (G,χ)-equivariant φ-coordinated quasi-V -module (W,Y φW , d),

we have

[d, Y φW (v, z)] = z
d

dz
Y φW (v, z), ∀ v ∈ V.

Furthermore, we have

Lemma 2.3:Let (W,Y φW ) be a (G,χ)-equivariant φ-coordinated quasi-V -module

and d a linear transformation on W . Assume that there is a generating set A

of V such that [d, Y φW (v, z)] = z d
dzY

φ
W (v, z) for all v ∈ A. Then (W,Y φW , d) is a

(G,χ)-equivariant φ-coordinated quasi-V -module.

Proof. Set

V ′ = {v ∈ V | [d, Y φW (v, z)] = Y φW (Dv, z)}.
For u, v ∈ V ′, take f(z) ∈ Cχ(G)[z] such that

f(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2) ∈ Hom(W,W ((z1, z2))).

Then from (2.1) we have

f2(z1/z2)Y
φ
W (Du, z1)Y φW (v, z2), f

2(z1/z2)Y
φ
W (u, z1)Y

φ
W (Dv, z2)
∈ Hom(W,W ((z1, z2))),
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which implies that

f2(ez0)Y φW (Y (Du, z0)v, z2) = (f2(z1/z2)Y
φ
W (Du, z1)Y φW (v, z2))|z1=φ(z2,z0),

f2(ez0)Y φW (Y (u, z0)Dv, z2) = (f2(z1/z2)Y
φ
W (u, z1)Y

φ
W (Dv, z2))|z1=φ(z2,z0).

Since D is a derivation on V and u, v ∈ V ′, we have

f2(ez0)Y φW (DY (u, z0)v, z2)

=f2(ez0)Y φW (Y (Du, z0)v + Y (u, z0)Dv, z2)

=(f2(z1/z2)(Y
φ
W (Du, z1)Y φW (v, z2) + Y φW (u, z1)Y

φ
W (Dv, z2)))|z1=φ(z2,z0)

=(f2(z1/z2)([d, Y
φ
W (u, z1)]Y

φ
W (v, z2) + Y φW (u, z1)[d, Y

φ
W (v, z2)]))|z1=φ(z2,z0)

=[d, (f2(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2))|z1=φ(z2,z0)]

=[d, f2(ez0)Y φW (Y (u, z0)v, z2)].

This implies that V ′ is a subalgebra of V . Since the generating set A lies in V ′,
we have V ′ = V , as required.

The following analogue of Borcherds commutator formula was proved in

[CLTW, Proposition 5.2].

Proposition 2.4: Let (W,Y φW ) be a (G,χ)-equivariant φ-coordinated quasi

V -module and ψ : χ(G) → G be a section of χ. Then for u, v ∈ V ,

[Y φW (u, z1),Y
φ
W (v, z2)]

= Resz0
∑

g∈ψ(χ(G))

Y φW (Y (gu, z0)v, z2)e
z0z2

∂
∂z2

(
χ(g)δ

(χ(g)z2
z1

))
.

Using the above formula we have:

Lemma 2.5:Let (W,Y φW ) be a (G,χ)-equivariant φ-coordinated quasi V -module,

and u, v ∈ V be such that unv = 0 for n ≥ 0. Then there exists a polynomial

q(z) ∈ Cχ(G)\{1}[z] such that

(2.2) q(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2) = q(z1/z2)Y

φ
W (v, z2)Y

φ
W (u, z1).

Furthermore, for any such polynomial q(z) we have

(2.3) Y φW (u−1v, z2) = (q(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2))|z1=z2 .
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Proof. Since unv = 0 for n ≥ 0, from Proposition 2.4 it follows that there exist

(possibly the same) λ1, . . . , λr ∈ χ(G) \ {1} such that

(z1/z2 − λ1) · · · (z1/z2 − λr)[Y
φ
W (u, z1), Y

φ
W (v, z2)] = 0.

This proves (2.2) with q(z) = (z − λ1) · · · (z − λr). Then by definition we have

q(ez0)Y φW (Y (u, z0)v, z2) = (q(z1/z2)Y
φ
W (u, z1)Y

φ
W (v, z2))|z1=z2ez0 .

Note that Y (u, z0)v ∈ V [[z0]]; one can set z0 = 0 in the above equality, which

gives (2.3).

Furthermore, we have the following results (cf. [Li1, Proposition 2.3.6], [Li2,

Proposition 2.10]).

Proposition 2.6: Let u ∈ V such that unu = 0 for n ≥ 0, � a positive integer

and (W,Y φW ) a (G,χ)-equivariant φ-coordinated quasi-V -module. Then there

exists a polynomial q(z) ∈ Cχ(G)\{1}[z] such that

(2.4)

( ∏
1≤i<j≤�+1

q(zi/zj)

)
Y φW (u,z1)· · ·Y φW (u,z�+1)∈Hom(W,W ((z1, . . . , z�+1))).

Moreover, if (u−1)
�+11 = 0, then

(2.5)

( ∏
1≤i<j≤�+1

q(zi/zj)

)
Y φW (u, z1) · · ·Y φW (u, z�+1)|z1=···=z�+1

= 0.

And on the other hand, if W is faithful and (2.5) holds, then (u−1)
�+11 = 0.

Proof. Note that the first part of the proposition follows from (2.2). For the

second part, it suffices to prove the following identity:

(2.6)

Y φW ((u−1)
�+11, z�+1)

=

( ∏
1≤i<j≤�+1

q(zi/zj)

)
Y φW (u, z1) · · ·Y φW (u, z�+1)|z1=···=z�+1

.

We prove this equation by induction on �. When � = 1, the identity (2.6) follows

from (2.3). Now we assume that � > 1 and set v = (u−1)
�1. Then by induction
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and (2.4), we obtain

q(z1/z�+1)
�Y φW (u, z1)Y

φ
W (v, z�+1)

=q(z1/z�+1)
�Y φW (u, z1)

×
( ∏

2≤i<j≤�+1

q(zi/zj)

)
Y φW (u, z2) · · ·Y φW (u, z�+1)|z2=···=z�+1

=

( ∏
1≤i<j≤�+1

q(zi/zj)

)
Y φW (u, z1) · · ·Y φW (u, z�+1)|z2=···=z�+1

∈ Hom(W,W ((z1, z�+1))).

Since unu=0 for n≥0, we have unv=0 for n≥0. Then it follows from (2.2) that

Y φW ((u−1)
�+11, z�+1)= Y φW (u−1v, z�+1)

= (q(z1/z�+1)
�Y φW (u, z1)Y

φ
W (v, z�+1))|z1=z�+1

=

( ∏
1≤i<j≤�+1

q(zi/zj)

)
Y φW (u,z1)· · ·Y φW (u,z�+1)|z1=···=z�+1

,

which proves (2.6) and hence completes the proof of the proposition.

2.2. (G,χ)-equivariant φ-coordinated quasi-VC-modules. In this sub-

section we first recall the notion of conformal algebra, then study the equi-

variant φ-coordinated quasi-modules for the universal enveloping vertex algebra

constructed from a conformal algebra [CLTW].

A conformal algebra, also known as a vertex Lie algebra (see [P, DLM]),

is a vector space C equipped with a linear operator ∂ and a linear map

(2.7)

Y − : C → Hom(C, z−1C[z−1]),

u �→ Y −(u, z) =
∑
n≥0

unz
−n−1

such that for any u, v ∈ C,

[∂, Y −(u, z)] = Y −(∂u, z) =
d

dz
Y −(u, z),(2.8)

Y −(u, z)v = Sing(ez∂Y −(v,−z)u),
[Y −(u, z), Y −(v, w)] = Sing(Y −(Y −(u, z − w)v, w)),

where Sing stands for the singular part.
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It was proved in [P, Remark 4.2] that a conformal algebra structure on a

vector space C amounts to a Lie algebra structure on the following quotient

space of C[t, t−1]⊗ C:

Ĉ = C[t, t−1]⊗ C/
(
1⊗ ∂ +

d

dt
⊗ 1

)
(C[t, t−1]⊗ C).

Lemma 2.7: Let C be a vector space equipped with a linear operator ∂ and a

linear map Y − as given in (2.7) such that (2.8) holds. Then C is a conformal

algebra if and only if there is a Lie algebra structure on Ĉ such that

[u(m), v(n)] =
∑
i≥0

(
m

i

)
(uiv)(m+ n− i),(2.9)

for u, v ∈ C, m,n ∈ Z, where u(m) stands for the image of tm ⊗ u in Ĉ.

Let C be a conformal algebra. Set

(2.10)
Ĉ− = Span{u(−m− 1) | u ∈ C,m ∈ N},

Ĉ+ = Span{u(m) | u ∈ C,m ∈ N}.

Then Ĉ = Ĉ+ ⊕ Ĉ− and both Ĉ+ and Ĉ− are subalgebras of the Lie algebra Ĉ.
Moreover, the map

(2.11) C → Ĉ−, u �→ u(−1)

is an isomorphism of vector spaces [P, Theorem 4.6]. Consider the induced

Ĉ-module

VC = U(Ĉ)⊗U(̂C+) C,

where C is the one-dimensional trivial Ĉ+-module. Set 1 = 1⊗1 ∈ VC . Identify C
as a subspace of VC through the linear map u �→ u(−1)1. It was proved in [P]

that there exists a unique vertex algebra structure on VC , called the universal

enveloping vertex algebra of C, with 1 as the vacuum vector and

Y (u, z) = u(z) =
∑
n∈Z

u(n)z−n−1

for u ∈ C. The map − d
dt ⊗ 1 (or equivalently, 1 ⊗ ∂) on C[t, t−1]⊗ C induces a

derivation D on Ĉ such that

D(u(m)) = −mu(m− 1), ∀u ∈ C, m ∈ Z.(2.12)
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Note that D preserves the subalgebra Ĉ−. Thus it can be uniquely extended to

a derivation on U(Ĉ−) ∼= VC , which coincides with the canonical derivation on

the vertex algebra VC .
Recall that an automorphism ϕ of the conformal algebra C is a linear auto-

morphism such that ϕ◦∂ = ∂ ◦ϕ and ϕ(uiv) = ϕ(u)iϕ(v) for u, v ∈ C and i ∈ N

(see [K2]). We have

Lemma 2.8: Let ϕ be a linear map of the conformal algebra C such that

ϕ ◦ ∂ = ∂ ◦ ϕ. Then the linear map

(2.13)
ϕ̂ : Ĉ → Ĉ,
u(m) �→ ϕ(u)(m) (u ∈ C,m ∈ Z)

on the Lie algebra Ĉ is well-defined. Furthermore, ϕ is an automorphism of the

conformal algebra C if and only if ϕ̂ is an automorphism of the Lie algebra Ĉ.

Proof. The first assertion of the lemma is easy to see. For the second part,

let u, v ∈ C and m,n ∈ Z. Then by (2.9) we have

(2.14)

ϕ̂([u(m), v(n)]) =
∑
i≥0

(
m

i

)
ϕ̂((uiv)(m+ n− i))

=
∑
i≥0

(
m

i

)
ϕ(uiv)(m+ n− i),

and

(2.15) ϕ̂(u(m)), ϕ̂(v(n))t = [ϕ(u)(m), ϕ(v)(n)]

=
∑
i≥0

(
m

i

)
((ϕu)i(ϕv))(m + n− i).

This immediately implies that if ϕ is an automorphism of C, then ϕ̂ is a Lie

algebra automorphism of Ĉ. On the other hand, let ϕ̂ be a Lie algebra au-

tomorphism of Ĉ. Assume that ϕ is not an automorphism of C. Then there

exist u, v ∈ C such that ϕ(uiv) �= (ϕu)i(ϕv) for some i ∈ N. Let i0 be the

maximal one among such integers. Take m,n ∈ Z such that m + n = i0 − 1.

Then we have

i0−1∑
i=0

(
m

i

)
ϕ(uiv)(m+ n− i),

i0−1∑
i=0

(
m

i

)
((ϕu)i(ϕv))(m + n− i) ∈ Ĉ+,
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and ∑
i≥i0

(
m

i

)
ϕ(uiv)(m + n− i),

∑
i≥i0

(
m

i

)
((ϕu)i(ϕv))(m + n− i) ∈ Ĉ−.

Recall that Ĉ+ ∩ Ĉ− = {0} and ϕ̂ is a Lie algebra automorphism. Then by

(2.14), (2.15) and the maximality of i0 we obtain that

ϕ(ui0v)(−1) = ((ϕu)i0 (ϕv))(−1).

This together with (2.11) gives ϕ(ui0v) = (ϕu)i0(ϕv), a contradiction. There-

fore we have finished the proof of the lemma.

We define a multiplication on the loop space C[t, t−1]⊗ C by

(2.16)
=

∑
i≥0

( 1

i!

(
t
d

dt

)i
f(t)

)
g(t)⊗ (uiv)

(f(t), g(t) ∈ C[t, t−1], u, v ∈ C).

By [K2, Remark 2.7d] this multiplication affords a Lie algebra structure on the

quotient space

C = (C[t, t−1]⊗ C)/Im
(
1⊗ ∂ + t

d

dt
⊗ 1

)
.

Denote by d the derivation on C induced from −t ddt ⊗ 1 ∈ End(C[t, t−1] ⊗ C).
Form the semi-direct product Lie algebra

C̃ = C �Cd.

For u ∈ C and m ∈ Z, denote by u[m] the image of tm ⊗ u in C. Then the Lie

relations on C̃ are given by

[u[m], v[n]] =
∑
i≥0

mi

i!
(uiv)[m+ n], [d, u[m]] = −mu[m](2.17)

for u, v ∈ C, m, n ∈ Z. The following notion was first introduced in [G-KK] (see

also [Li3]).

Definition 2.9: A G-conformal algebra is a conformal algebra C together with

an automorphism group G of C such that for u ∈ C, Y −(gu, z) = 0 for all but

finitely many g ∈ G.
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Let C be a G-conformal algebra and χ : G → C∗ be a linear character. For

any g ∈ G, it is easy to check that (cf. [CLTW, Lemma 5.8]) the linear map

ḡ : C → C, u[m] �→ χ(g)m(gu)[m]

defines an automorphism of the Lie algebra C. Furthermore, g can be extended

to be an automorphism g̃ of C̃ by

g̃|C = ḡ and g̃(d) = d.(2.18)

Following [Li6, Section 4], we define a new operation on C̄ by

(a, b) �→
∑
g∈G

[ga, b] (a, b ∈ C̄).

It was proved therein that the quotient space

(2.19) C[G] = C̄/Span{ḡa− a | a ∈ C, g ∈ G}

is a Lie algebra under the operation. For u ∈ C and n ∈ Z, we denote by u[n] the

image of u[n] under the quotient map C → C[G]. Since g ◦ d = d ◦ g for g ∈ G,

d descends to a derivation on C[G] and hence we have the semi-direct product

Lie algebra

(2.20) C̃[G] = C[G]�Cd.

For u ∈ C, we form the generating function u[z] =
∑

n∈Z
u[n]z−n, and we

say that a module W for C̃[G] or C[G] is restricted if u[z] ∈ Hom(W,W ((z)))

for u ∈ C. It is known from [P] that an automorphism of C can be lifted uniquely

to an automorphism of VC . In particular, the automorphism group G of C can

be viewed as an automorphism group of VC . Now we have the following result.

Proposition 2.10: Let C be a G-conformal algebra and χ : G → C∗ be an

injective linear character. Then the (G,χ)-equivariant φ-coordinated quasi VC-
modules (W,Y φW , d) are exactly the restricted C̃[G]-modules W with

d = d and Y φW (u, z) = u[z] for u ∈ C.

Proof. It was proved in [CLTW, Theorem 5.12] that the (G,χ)-equivariant φ-co-

ordinated quasi-VC-modules (W,Y φW ) are exactly the restricted C[G]-modulesW

with Y φW (u, z) = u[z] for u ∈ C. Note that for u ∈ C, we have

[d, u[z]] =
∑
n∈Z

[d, u[n]]z−n =
∑
n∈Z

−nu[n]z−n = z
d

dz
u[z].

This together with Lemma 2.2 and Lemma 2.3 proves the proposition.
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Remark 2.11: Assume that G = 〈g〉 is a cyclic group of finite order T , and the

linear character χ is injective. Then it is straightforward to see that C[G] is
isomorphic to the subalgebra of C fixed by ḡ. And the isomorphism is given by

u[n] �→
T−1∑
p=0

(ḡ)p(u[n])

for u ∈ C and n ∈ Z. Furthermore, this isomorphism can be extended to an

isomorphism from C̃[G] to the subalgebra of C̃ fixed by g̃ such that d �→ d.

3. Equivariant φ-coordinated quasi-modules for affine vertex algebras

In this section, we study the connection between equivariant φ-coordinated

quasi-modules for universal (resp. simple) affine vertex algebras and restricted

(resp. integrable restricted) modules for affine Kac–Moody algebras.

3.1. Equivalence of module categories for vertex operator

algebras. We first study connections among equivariant φ-coordinated quasi-

modules, equivariant quasi-modules and twisted modules for vertex operator

algebras (see [FLM, FHL]). Recall that for any finite order automorphism σ of

a vertex algebra V , there is a (weak) σ-twisted V -module (W,Y tW ), whereW

is a vector space and

Y tW ∈ Hom(W,W ((z1/N )))

with N the order of σ (cf. [Li2, FLM]). We also recall that a Z-graded vertex

algebra is a vertex algebra V equipped with a Z-grading V =
⊕

n∈Z
V(n) such

that

1 ∈ V(0)

and

(3.1) umV(n) ⊂ V(n+k−m−1) for u ∈ V(k), m, n, k ∈ Z.

Define the linear operator L(0) on a Z-graded vertex algebra V by L(0)v = nv

for v ∈ V(n) with n ∈ Z. Then we have the following definition (cf. [Li3, Li4]):
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Definition 3.1: Let (V, Y,1) be a Z-graded vertex algebra, G an automorphism

group of V preserving the Z-grading of V and χ : G→ C∗ a linear character. A

(G,χ)-equivariant quasi-V -module (W,YW ) is a vector space W equipped

with a linear map YW (·, z) : V → Hom(W,W ((z))) satisfying the following

conditions:

(i) YW (1, z) = 1W ;

(ii) YW (χ(g)−L(0)gv, z) = YW (v, χ(g)z) for g ∈ G, v ∈ V ;

(iii) for u, v ∈ V, there exists f(z) ∈ Cχ(G)[z] such that

f(z1/z2)YW (u, z1)YW (v, z2) ∈ Hom(W,W ((z1, z2))),

f((z2 + z0)/z2)YW (Y (u, z0)v, z2) = (f(z1/z2)YW (u, z1)YW (v, z2))|z1=z2+z0 .

Remark 3.2: If the automorphism group G = {1} is the trivial group in the

definition, one has the usual module for vertex algebra. And if replacing the

associate φ = z2+z0 in (iii) by φ = z2e
z0 , one gets the notion of a φ-coordinated

V -module defined in Definition 2.1.

If V = (V, Y (·, z),1) is a Z-graded vertex algebra, we define a linear map

Y [·, z] : V → End(V )[[z, z−1]],

v �→ Y (ezL(0)v, ez − 1).

Then (V, Y [·, z],1) also carries a vertex algebra structure [Z, Li7]. Note that if G

is an automorphism group of the vertex algebra V preserving the Z-grading of V ,

then it is also an automorphism group of (V, Y [·, v],1). The following result is

a generalization of [Li7, Proposition 5.8].

Proposition 3.3: Let V = (V, Y (·, z),1) be a Z-graded vertex algebra, G an

automorphism group of V preserving the Z-grading of V and χ a linear char-

acter of G. Then the (G,χ)-equivariant quasi-V -modules (W,YW ) are exactly

the (G,χ)-equivariant φ-coordinated quasi-modules (W,Y φW ) for the vertex al-

gebra (V, Y [·, z],1) with

Y φW (v, z) = YW (zL(0)v, z), ∀ v ∈ V.

Proof. Assume first that (W,YW ) is a (G,χ)-equivariant quasi-V -module. Then

for v ∈ V and g ∈ G we have

Y φW (v, χ(g)z) = YW ((χ(g)z)L(0)v, χ(g)z) = YW (zL(0)gv, z) = Y φW (gv, z).
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This together with [Li7, Proposition 5.8] shows that (W,Y φW ) is a (G,χ)-equi-

variant φ-coordinated quasi module for (V, Y [·, z],1). Conversely, let (W,Y φW )

be a (G,χ)-equivariant φ-coordinated quasi-module for (V, Y [·, z],1). Then we

have YW (v, z) ∈ Hom(W,W ((z))) for v ∈ V ,

YW (1, z) = Y φW (z−L(0)1, z) = Y φW (1, z) = 1W

and

YW (χ(g)−L(0)gv, z) = Y φW ((χ(g)z)−L(0)gv, z)

= Y φW ((χ(g)z)−L(0)v, χ(g)z) = YW (v, χ(g)z),

for v ∈ V and g ∈ G. For u, v ∈ V , let f(z) be a nonzero polynomial in Cχ(G)[z]

such that Definition 2.1 (iii) holds. Then we have

f(z1/z2)YW (u, z1)YW (v, z2)

= f(z1/z2)Y
φ
W (z

−L(0)
1 u, z1)Y

φ
W (z

−L(0)
2 v, z2) ∈ Hom(W,W ((z1, z2))).

Furthermore, we have

f(z1/z2)Y
φ
W ((z2 + w0)

−L(0)u, z1)YW (z
−L(0)
2 v, z2) ∈ Hom(W,W ((z1, z2))[[w0]])

and

f(z1/z2)Y
φ
W ((z2 + w0)

−L(0)u, z1)Y
φ
W (z

−L(0)
2 v, z2)|z1=z2ez0

= f(ez0)Y φW (Y [(z2 + w0)
−L(0)u, z0]z

−L(0)
2 v, z2).

By applying the substitution z0 = log(1 + w0/z2) in the previous equation, we

obtain from the left-hand side

(f(z1/z2)Y
φ
W ((z2 + w0)

−L(0)u, z1)Y
φ
W (z

−L(0)
2 v, z2)|z1=z2ez0 )|z0=log(1+w0/z2)

=f(z1/z2)Y
φ
W (z

−L(0)
1 u, z1)Y

φ
W (z

−L(0)
2 v, z2)|z1=z2+w0

=f(z1/z2)YW (u, z1)YW (v, z2)|z1=z2+w0 ,

while by using the fact that z
L(0)
2 Y (u, z0)z

−L(0)
2 = Y (z

L(0)
2 u, z0z) (cf. [FHL]),

we obtain from the right-hand side

(f(ez0)Y φW (Y [(z2 + w0)
−L(0)u, z0]z

−L(0)
2 v, z2))|z0=log(1+w0/z2)

=(f(ez0)YW (z
L(0)
2 Y (ez0L(0)(z2+w0)

−L(0)u, ez0−1)z
−L(0)
2 v, z2))|z0=log(1+w0/z2)

=(f(ez0)YW (Y (z
L(0)
2 ez0L(0)(z2+w0)

−L(0)u, (ez0−1)z2)v, z2))|z0=log(1+w0/z2)

=f(z2 + w0/z2)YW (Y (u,w0)v, z2).

This proves the proposition.
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Let V be a vertex operator algebra with the Virasoro element ω. We say v ∈ V

is a primary vector if L(n)v = 0 for all n ≥ 1, where

Y (ω, z) =
∑
n∈Z

L(n)z−n−2.

Proposition 3.4: Assume that V is a vertex operator algebra, G is a group

of automorphisms of V and χ a linear character of G. Then the following two

categories are isomorphic:

(i) the category of (G,χ)-equivariant φ-coordinated quasi-V -modules

(W,Y φW );

(ii) the category of (G,χ)-equivariant quasi-V -modules (W,YW ).

Moreover, if G = 〈σ〉 is a cyclic group of finite order N , and χ(σ) = e−
2π

√−1
N ,

then these two categories are also isomorphic to the following category

(iii) the category of (weak) σ-twisted V -modules (W,Y tW ).

And furthermore, if v ∈ V is a primary vector, then we have the following

identities:

Y φW (z−L(0)v, z) = YW (v, z) = Y tW ((NzN−1)L(0)v, zN ).(3.2)

Proof. Let (V, Y (·, z),1, ω) be a vertex operator algebra of central charge �.

Set ω̃ = ω − �
241. It was proved in [Z] that (V, Y [·, z],1, ω̃) carries a vertex op-

erator algebra structure. And, an explicit isomorphism f from (V, Y (·, z),1, ω)
to V (V, Y [·, z],1, ω̃) was constructed therein. This together with Proposition 3.3

implies that the (G,χ)-equivariant φ-coordinated quasi-V -modules (W,Y φW ) are

exactly the (G,χ)-equivariant quasi-V -modules (W,YW ) with

Y φW (v, z) = YW (zL(0)f(v), z), for v ∈ V.

In particular, if v is a primary vector, then from [Z] we have f(v) = v and hence

Y φW (z−L(0)v, z) = YW (v, z).

Finally, if G = 〈σ〉 is a finite cyclic group of order N and χ(σ) = e−
2π

√−1
N ,

then it was proved in [Li5] that the (G,χ)-equivariant quasi-V -modules (W,YW )

are exactly the (weak) σ-twisted V -modules (W,Y tW ) with

YW (v, z) = YW (Φ(z)v, zN), for v ∈ V,

where Φ(z) is an operator in Hom(V, V ((z))) such that Φ(z)v = (NzN−1)L(0)v

whenever v is primary. This completes the proof of the proposition.
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3.2. Equivalence of module categories for universal affine ver-

tex algebras. In this subsection, we study the equivalence of certain module

categories for universal affine vertex algebras. Let b be a (possibly infinite-

dimensional) Lie algebra equipped with a nondegenerate invariant symmetric

bilinear form 〈·, ·〉. Then we have the affine Lie algebra

L̃(b) = (C[t, t−1]⊗ b)⊕ Ck⊕ Cd,

where k is a central element and

[tm ⊗ a, tn ⊗ b] = tm+n ⊗ [a, b] + 〈a, b〉δm+n,0k, [d, tm ⊗ a] = mtm ⊗ a,(3.3)

for m,n ∈ Z and a, b ∈ b. Equip L̃(b) with a Z-grading structure with respect

to the adjoint action of −d, and form the following Z-graded Lie subalgebra

of L̃(b):
L̂(b) = (C[t, t−1]⊗ b)⊕ Ck.

Let � be a fixed complex number. View C as a (C[t]⊗b⊕Ck)-module with C[t]⊗b

acting trivially and k acting as scalar �. Then we have the induced L̂(b)-module

(3.4) V
̂L(b)(�, 0) = U(L̂(b))⊗U(C[t]⊗b⊕Ck) C,

which is naturally N-graded by defining degC = 0. Set 1 = 1 ⊗ 1 ∈ V
̂L(b)(�, 0)

and identify b as the degree-one subspace of V
̂L(b)(�, 0) through the linear map

a �→ (t−1 ⊗ a)1 ∈ V
̂L(b)(�, 0),

for a ∈ b. It is known (cf. [FZ, Li1]) that there exists a vertex algebra structure

on V
̂L(b)(�, 0), which is uniquely determined by the condition that 1 is the

vacuum vector and

Y (a, z) = a(z) =
∑
m∈Z

(tm ⊗ a)z−m−1,

for a ∈ b. The vertex algebra V
̂L(b)(�, 0) is often called the universal affine

vertex algebra associated to b. Denote by J
̂L(b)(�, 0) the unique maximal

graded L̂(b)-submodule of V
̂L(b)(�, 0). Then J ̂L(b)(�, 0) is an ideal of the vertex

algebra V
̂L(b)(�, 0). Define

L
̂L(b)(�, 0) = V

̂L(b)(�, 0)/J ̂L(b)(�, 0),

which is a simple Z-graded vertex algebra.
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Assume that G is an automorphism group of b preserving the bilinear form.

It is easy to see that G can be uniquely lifted to an automorphism group

of V
̂L(b)(�, 0) that preserves the Z-grading. Moreover, as J

̂L(b)(�, 0) is G-stable,

G also induces an automorphism group of L
̂L(b)(�, 0). Assume further that

for a, b ∈ b,

[ga, b] = 0, 〈ga, b〉 = 0(3.5)

for all but finitely many g ∈ G. For any linear character χ : G→ C∗, we define

a quotient space

L̂(b, G) = L̂(b)/Span{χ(g)m(tm ⊗ ga)− tm ⊗ a | g ∈ G,m ∈ Z, a ∈ b}.(3.6)

It was proved in [Li4] that L̂(b, G) carries a Lie algebra structure with Lie

bracket given by

[tm ⊗ a, tn ⊗ b] =
∑
g∈G

χ(g)m(tm+n ⊗ [ga, b] + δm+n,0〈ga, b〉k̄)

for a, b ∈ b and m,n ∈ Z, where tm ⊗ a and k stand for the images of tm ⊗ a

and k in L̂(b, G) respectively.
We say that an L̂(b, G)-module W is restricted if for any a ∈ b and w ∈W ,

tn ⊗ a · w = 0

for n sufficiently large, and is of level � if k acts as the scalar �. From [CLTW,

Proposition 6.4] we have the following result.

Proposition 3.5: Let G,χ be as above. The following categories are isomor-

phic to each other:

(i) the category of (G,χ)-equivariant φ-coordinated quasi-V
̂L(b)(�, 0)-mod-

ules (W,Y φW );

(ii) the category of (G,χ)-equivariant quasi-V
̂L(b)(�, 0)-modules (W,YW );

(iii) the category of restricted L̂(b, G)-modules W of level �.

And, the isomorphisms are determined by

Y φW (a, z) = zYW (a, z) =
∑
n∈Z

(tn ⊗ a)z−n,

for a ∈ b.
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We assume now that σ is an automorphism of b with finite order N and

preserving the bilinear form, and set ωN = e
2π

√−1
N . For a ∈ b and m ∈ Z,

set a(m) =
∑N−1

p=0 ω−mp
N σp(a) and b(m) = {a(m) | a ∈ b} (the σ-eigenspace of b

with eigenvalue ωmN ). Then we have the following Lie subalgebras of L̃(b), called
σ-twisted affine Lie algebras (cf. [K1]):

L̃(b, σ) =
( ∑
m∈Z

Ctm ⊗ b(m)

)
⊕ Ck⊕ Cd,

L̂(b, σ) =
( ∑
m∈Z

Ctm ⊗ b(m)

)
⊕ Ck.

Let χωN be the linear character of the cyclic group 〈σ〉 such that χωN (σ) = ω−1
N .

We take G = 〈σ〉 and χ = χωN in (3.6). Then it is easy to check that the linear

map given by

tm ⊗ a �→ tm ⊗ a(m), k �→ Nk, for a ∈ b,m ∈ Z,(3.7)

is a Lie algebra isomorphism from L̂(b, 〈σ〉) to L̂(b, σ).

Definition 3.6: Let W be a module of L̃(b, σ) or L̂(b, σ). We say that W is

restricted if for any a ∈ b and w ∈W ,

(tn ⊗ a(n)) · w = 0

for n sufficiently large, and is of level � if k acts as scalar �/N .

From Proposition 3.5 and the isomorphism (3.7), one immediately obtains

the following result.

Proposition 3.7: The following categories are isomorphic to each other:

(i) the category of (〈σ〉, χωN )-equivariant φ-coordinated quasi-V
̂L(b)(�, 0)-

modules (W,Y φW );

(ii) the category of (〈σ〉, χωN )-equivariant quasi-V
̂L(b)(�, 0)-modules (W,YW );

(iii) the category of restricted L̂(b, σ)-modules W of level �.

And, the isomorphisms are determined by

Y φW (a, z) = zYW (a, z) = a[z] :=
∑
n∈Z

(tn ⊗ a(m))z
−n,

for a ∈ b.
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Furthermore, by Proposition 3.7, Lemma 2.2, Lemma 2.3 and the fact

that [d, a[z]] = −z d
dza[z] for a ∈ b, we have

Proposition 3.8: For any complex number �, the restricted L̃(b, σ)-modulesW

of level � are exactly the (〈σ〉, χωN )-equivariant φ-coordinated quasi-V
̂L(b)(�, 0)-

modules (W,Y φW , d) with

d = −d, a[z] = Y φW (a, z),

for a ∈ b.

Remark 3.9: We also have the following variant of the twisted affine Lie alge-

bra L̂(b, σ) (cf. [FLM]):

L̂[b, σ] =
( ∑
m∈ 1

N Z

Ctm ⊗ b(Nm)

)
⊕ Ck,

where the Lie bracket is given by (3.3) with m,n ∈ 1
NZ. Note that L̂(b, σ) is

isomorphic to L̂[b, σ] with the mapping

tm ⊗ a(m) �→ tm/N ⊗ a(m), Nk �→ k,(3.8)

for a ∈ b,m ∈ Z. It is well-known that the σ-twisted V
̂L(b)(�, 0)-modules (W,Y tW )

are exactly the restricted L̂[b, σ]-modules W of level � with

Y tW (a, z) =
∑
m∈Z

(
t
m
N ⊗

a(m)

N

)
z−

m
N −1

for a ∈ b (cf. [Li2]).

Remark 3.10: One can also define the notion of a σ-twisted V
̂L(b)(�, 0)-module

(W,Y tW , d) such that [d, Y tW (v, z)] = Y tW (Dv, z) for v ∈ V
̂L(b)(�, 0) (see [Li2] for

example). Then such σ-twisted V
̂L(b)(�, 0)-modules are precisely the restricted

modules of level � for the algebra

L̂[b, σ]�C
( d
dt

⊗ 1
)
,

as [d, Y tW (v, z)] = d
dzY

t
W (v, z) for v ∈ V

̂L(b)(�, 0) (cf. [Li2]). And a similar result

also holds for the equivariant quasi-V
̂L(b)(�, 0)-modules (cf. [Li3]).
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3.3. Associating affine Kac–Moody algebras with vertex algebras.

In this subsection, we associate the nullity 1 EALAs (i.e., affine Kac–Moody al-

gebras with derivations) to vertex algebras via equivariant φ-coordinated quasi-

modules. As a by-product, we obtain a characterization of integrable restricted

modules for affine Kac–Moody algebras, which will be used later to associate

the nullity 2 EALAs with vertex algebras.

Let ġ be a finite-dimensional simple Lie algebra over the complex field, ḣ a

Cartan subalgebra of ġ, and Δ̇ the root system of ġ with respect to ḣ. Let 〈·, ·〉 be
the nondegenerate invariant symmetric bilinear form on ġ which is normalized

so that the square length of long roots is equal to 2. For α̇ ∈ Δ̇, choose nonzero

root vectors xα̇ ∈ ġα̇ such that {xα̇, α̇∨, x−α̇} form an sl2-triple, where α̇
∨ ∈ ḣ

denotes the coroot of α.

Fix a simple root system Π̇ = {α̇1, . . . , α̇l} of Δ̇, where l = dim ḣ is the

rank of ġ. Let ν̇ be a diagram automorphism of ġ of order N (N = 1, 2 or 3).

By definition, there exists a permutation ν̇ on the set İ = {1, 2, . . . , l} such

that ν̇(x±α̇i) = x±α̇ν̇(i)
for i ∈ İ. Then the Lie algebra L̃(ġ, ν̇) as defined in

Section 3.2 is a Kac–Moody algebra of affine type, and any affine Kac–Moody

algebra has such a form [K1]. We say that an L̃(ġ, ν̇)-module (or an L̂(ġ, ν̇)-
module) is integrable if all real root vectors tm ⊗ xα̇(m) for α̇ ∈ Δ̇,m ∈ Z act

locally nilpotent on it [K1]. Now we give the main result of this section.

Theorem 3.11: Let � be any complex number. For any restricted L̃(ġ, ν̇)-
module W of level �, there is a (〈ν̇〉, χωN )-equivariant φ-coordinated quasi-

V
̂L(ġ)(�, 0)-module structure (Y φW , d) on W , which is uniquely determined by

d = −d, Y φW (a, z) = a[z]

(
=

∑
n∈Z

(tm ⊗ a(m))z
−m

)
,

for a ∈ ġ. On the other hand, for any (〈ν̇〉, χωN )-equivariant φ-coordinated

quasi-V
̂L(ġ)(�, 0)-module (W,Y φW , d), W is a restricted L̃(ġ, ν̇)-module of level �

with action given by

d = −d,

a[z] = Y φW (a, z),

for a ∈ ġ. Furthermore, when � is a nonnegative integer, the integrable re-

stricted L̃(ġ, ν̇)-modules of level � exactly correspond to the (〈ν̇〉, χωN )-equi-

variant φ-coordinated quasi-L
̂L(ġ)(�, 0)-modules.
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Proof. The one-to-one correspondence between the category of restricted

L̃(ġ, ν̇)-modules of level � and the category of (〈ν̇〉, χωN )-equivariant φ-coordi-

nated quasi-V
̂L(ġ)(�, 0)-modules follows from Proposition 3.8.

For the last assertion of the theorem, we note that L
̂L(ġ)(�, 0) is a ratio-

nal vertex operator algebra, and each a ∈ ġ is a primary vector of weight 1

in L
̂L(ġ)(�, 0). Thus, by Proposition 3.4, it is easy to see that the (〈ν̇〉, χωN )-

equivariant φ-coordinated quasi-L
̂L(ġ)(�, 0)-modules (W,Y φW ) are exactly the ν̇-

twisted L
̂L(ġ)(�, 0)-modules (W,Y tW ) with

Y φW (a, z) = NzNY tW (a, z),

for a ∈ ġ. Recall the algebra L̂[ġ, ν̇] defined in Remark 3.9. It is known (cf. [Li2])

that the integrable restricted L̂[ġ, ν̇]-modules of level � are exactly the ν̇-twisted

L
̂L(ġ)(�, 0)-modules with

Y tW (a, z) =
∑
m∈Z

(
t
m
N ⊗

a(m)

N

)
z−

m
N −1,

for a ∈ ġ. Via the isomorphism (3.8), we obtain that the integrable restricted

L̂(ġ, ν̇)-modules of level � are exactly the (〈ν̇〉, χωN )-equivariant φ-coordinated

quasi-L
̂L(ġ)(�, 0)-modules (W,Y φW ) with

Y φW (a, z) = NzNY tW (a, z) =
∑
m∈Z

(t
m
N ⊗ a(m))z

−m =
∑
m∈Z

(tm ⊗ a(m))z
−m = a[z],

for a ∈ ġ. Thus, the last assertion of the theorem follows from this and Lem-

mas 2.2, 2.3.

We write Δ̇ = Δ̇1 ∪ Δ̇2, where

Δ̇2 = {α̇ ∈ Δ̇ | 〈α̇, ν̇(α̇)〉 = −1} and Δ̇1 = Δ̇ \ Δ̇2.

For each α̇ ∈ Δ̇, we set εα̇ = 2
〈α̇,α̇〉 (= 1, 2 or 3), and pα̇(z) =

1−zs
1−z if α̇ ∈ Δ̇s

for s = 1, 2.

Note that if α̇ ∈ Δ̇2 (resp. Δ̇1), then the Dynkin diagram associated to the ν̇-

orbit {ν̇p(α̇) | p = 0, . . . , N − 1} of α̇ is of type A2 (resp. a direct sum of

type A1). Using this, one can check that

pα̇(z/w) · [xα̇[z], xα̇[w]] = 0,(3.9)

for α̇ ∈ Δ̇. As a by-product of Theorem 3.11, we obtain a characterization of

the integrable restricted L̃(ġ, ν̇)-modules.
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Proposition 3.12: Let W be a restricted L̃(ġ, ν̇)-module of level �. Then W

is integrable if and only if � is a nonnegative integer, and for each α̇ ∈ Δ̇,( ∏
1≤i<j≤εα̇�+1

pα̇(zi/zj)

)
xα̇[z1]xα̇[z2] · · ·xα̇[zεα̇�+1]|z1=z2···=zεα̇�+1

= 0(3.10)

on W .

Proof. Note that if W is integrable, then � is a nonnegative integer and the

ideal J
̂L(b)(�, 0) is generated by the elements ((xα̇)−1)

εα̇�+11 for α̇ ∈ Δ̇ [K1].

LetW be a restricted L̃(ġ, ν̇)-module of level �, and hence by Theorem 3.11 there

is a (〈ν̇〉, χωN )-equivariant φ-coordinated quasi-V
̂L(ġ)(�, 0)-module (W,Y φW , d).

Furthermore, if W is also integrable, then (W,Y φW , d) becomes a (〈ν̇〉, χωN )-

equivariant φ-coordinated quasi-L
̂L(ġ)(�, 0)-module. This then implies that

((xα̇)−1)
εα̇�+11 = 0

onW . Note that (xα̇)n(xα̇) = 0 for n ≥ 0 in V
̂L(ġ)(�, 0). Thus by Proposition 2.6

and (3.9), we see that (3.10) holds.

Conversely, if (3.10) holds, again by Proposition 2.6 and (3.9), we see

that ((xα̇)−1)
εα̇�+11 = 0 onW , whereW is now viewed as a faithful (〈ν̇〉, χωN )-

equivariant φ-coordinated quasi-module for V
̂L(ġ)(�, 0)/ kerY

φ
W . This implies

that J
̂L(b)(�, 0)⊂kerY φW , and hence (W,Y φW , d) becomes a (〈ν̇〉, χωN )-equivariant

φ-coordinated quasi-L
̂L(ġ)(�, 0)-module. Finally, the integrability of W follows

from Theorem 3.11.

Remark 3.13: When ν̇ = id, the identity (3.10) is known as the Lepowsky–Primc

integrability relations [LePr].

4. Twisted toroidal extended affine Lie algebras

In this section, we recall the construction of the nullity 2 twisted toroidal ex-

tended affine Lie algebras arising from diagram automorphisms of affine Kac–

Moody algebras.
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4.1. Toroidal EALA g̃. We first recall the definition of nullity 2 toroidal ex-

tended affine Lie algebras in this subsection [BGK, B2]. LetR=C[t0, t
−1
0 , t1, t

−1
1 ]

be a Laurent polynomial ring in commuting variables t0 and t1. Denote by

Ω1
R = Rdt0 ⊕Rdt1

the space of Kähler differentials on R. Define the 1-forms

k0 = t−1
0 dt0, k1 = t−1

1 dt1.

Then {k0, k1} forms a R-basis of Ω1
R. Let

d(R) =
{
df =

∂f

∂t0
dt0 +

∂f

∂t1
dt1 | f ∈ R

}
be the space of exact 1-forms in Ω1

R, and set

K = Ω1
R/d(R),

and

(4.1) km0,m1 =

⎧⎪⎪⎨
⎪⎪⎩

1
m1
tm0
0 tm1

1 k0 if m1 �= 0,

− 1
m0
tm0
0 k1 if m0 �= 0,m1 = 0,

0 if m0 �= 0,m1 = 0,

for m0,m1 ∈ Z. Then the set

BK = {k0, k1} ∪ {km0,m1 | (m0,m1) ∈ Z2 \ {(0, 0)}}(4.2)

forms a basis of K. The set BK can also be expressed as follows:

(4.3) BK = {k0} ∪ {tm0
0 k1, km0,m1 | m0 ∈ Z,m1 ∈ Z∗},

which will be used later on. Recall that ġ is a finite-dimensional simple Lie

algebra and 〈·, ·〉 is the normalized bilinear form on ġ. Let

t(ġ) = (R⊗ ġ)⊕K

be a central extension of the double-loop algebra R⊗ ġ by K with Lie product

(4.4)

[tm0

0 tm1

1 ⊗x, tn0

0 tn1

1 ⊗ y]

= tm0+n0
0 tm1+n1

1 ⊗ [x, y] + 〈x, y〉
∑
i=0,1

mit
m0+n0
0 tm1+n1

1 ki,

for x, y ∈ ġ and m0,m1, n0, n1 ∈ Z. It is proved in [MRY] that the Lie alge-

bra t(ġ) is the universal central extension of R ⊗ ġ, and it is often called the

nullity 2 toroidal Lie algebra.
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Let

Der(R) = R ∂

∂t0
⊕R ∂

∂t1

be the space of derivations of R. Set

d0 = t0
∂

∂t0
, d1 = t1

∂

∂t1
.

Then {d0, d1} form a R-basis of Der(R), and the derivation Lie algebra Der(R)

also acts on R⊗ ġ with

ψ(f ⊗ x) = ψ(f)⊗ x,

for ψ ∈ Der(R), f ∈ R, x ∈ ġ. One notes that the Der(R)-action onR⊗ġ can be

uniquely extended to an action on the center K of the toroidal Lie algebra t(ġ)

with

ψ(fdg) = ψ(f)dg + fdψ(g),

for ψ ∈ Der(R), g ∈ R. Now, we form the semi-direct product Lie algebra

T (ġ) = t(ġ)�Der(R) = R⊗ ġ⊕K ⊕Der(R),

which is often called the full toroidal Lie algebra [B1]. Note that in T (ġ) we

have

[tm0
0 tm1

1 di, t
n0
0 tn1

1 ⊗ x]=ni(t
m0+n0
0 tm1+n1

1 ⊗ x),(4.5)

[tm0
0 tm1

1 di, t
n0
0 tn1

1 kj ]=nit
m0+n0
0 tm1+n1

1 kj+δi,j
∑
r=0,1

mrt
m0+n0
0 tm1+n1

1 kr,(4.6)

[tm0
0 tm1

1 di, t
n0
0 tn1

1 dj ]=nit
m0+n0
0 tm1+n1

1 dj −mjt
m0+n0
0 tm1+n1

1 di,(4.7)

for x ∈ g, m0, n0,m1, n1 ∈ Z, and i, j ∈ {0, 1}.
We define a Lie subalgebra S of Der(R) as follows:

S = {f0d0 + f1d1 ∈ Der(R) | f0, f1 ∈ R, d0(f0) + d1(f1) = 0}.

The elements in S are often called skew derivations over R (cf. [BGK, N]),

and also known as divergence-zero derivations (cf. [B2]). It is easy to see

that, for m0,m1 ∈ Z,

d̃m0,m1 = m0t
m0
0 tm1

1 d1 −m1t
m0
0 tm1

1 d0

are elements of S, and the set

BS = {d0, d1} ∪ {d̃m0,m1 | (m0,m1) ∈ Z× Z \ {(0, 0)}}
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forms a C-basis of S. Note that d̃m,0 = mtm0 d1 for m ∈ Z, we can rewrite BS
as follows:

BS = {d0} ∪ {tm0
0 d1, d̃m0,m1 | m0 ∈ Z,m1 ∈ Z∗},(4.8)

and the Lie product relations are given as follows

[di, d̃m0,m1 ]=mid̃m0,m1 , [d̃m0,m1 , d̃n0,n1 ]=(m0n1−m1n0)d̃m0+n0,m1+n1 ,(4.9)

for i ∈ {0, 1}, and m0,m1, n0, n1 ∈ Z.

Form the following subalgebra of T (ġ):

g̃ = t(ġ)� S = R⊗ ġ⊕K ⊕ S,(4.10)

which is often called the nullity 2 toroidal extended affine Lie algebra

[BGK, B2].

From (4.5) and (4.6), one has the following Lie product relations in g̃:

[d̃m0,m1 , t
n0
0 tn1

1 ⊗ x] = (m0n1 −m1n0)t
m0+n0
0 tm1+n1

1 ⊗ x,(4.11)

[d̃m0,m1 , kn0,n1 ] = (m0n1 −m1n0)km0+n0,m1+n1(4.12)

+ δm0+n0,0δm1+n1,0(m0k0 +m1k0),

for m0, n0,m1, n1 ∈ Z, and x ∈ ġ. And the Lie subalgebra

g := (C[t1, t
−1
1 ]⊗ ġ)⊕ Ck1 ⊕ Cd1

of g̃ is isomorphic to the affine Kac–Moody algebra L̃(ġ). We extend the nor-

malized bilinear form 〈·, ·〉 of ġ to a nondegenerate invariant symmetric bilinear

form on g by defining

〈tm1 ⊗ x+ ak1 + bd1, t
n
1 ⊗ y + a′k1 + b′d1〉 = δm+n,0〈x, y〉+ ab′ + ba′,

wherem,n ∈ Z, x, y ∈ ġ, and a, b, a′, b′ ∈ C. It is easy to see from (4.3) and (4.8)

that the Lie algebra g̃ is linearly spanned by the set

{tm0 u, km,n, d̃m,n, d0, k0 | u ∈ g, m ∈ Z, n ∈ Z∗},(4.13)

with a nondegenerate and invariant symmetric bilinear form 〈·, ·〉 defined by

〈tm0 x, t−m0 y〉 = 〈x, y〉, 〈k0, d0〉 = 〈d̃m,n, k−m,−n〉 = 1,(4.14)

for x, y ∈ g, m ∈ Z, n ∈ Z∗, and a self-centralizing ad-diagonalizable subalgebra

h̃ = ḣ⊕ Ck0 ⊕ Ck1 ⊕ Cd0 ⊕ Cd1.
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4.2. Diagram automorphisms of affine Kac–Moody algebras. For any

diagram automorphism μ of the affine Kac–Moody algebra g, we define an

automorphism μ̂ for the full toroidal Lie algebra T (ġ), which will be used to

construct twisted toroidal extended affine Lie algebras in the next subsection.

Denote by

h = ḣ⊕ Ck1 ⊕ Cd1

the Cartan subalgebra of the affine Kac–Moody algebra g, and h∗ the dual space

of h. We identify ḣ∗ as a subspace of h∗ such that α̇(k1) = α̇(d1) = 0 for α̇ ∈ ḣ∗,
and define the null root δ1 ∈ h∗ by setting

δ1(ḣ) = δ(k1) = 0, δ1(d1) = 1.

Then we have the root space decomposition g = h⊕
∑
α∈Δ gα, where

Δ = {α̇+mδ1, nδ1 | α̇ ∈ Δ̇,m ∈ Z, n ∈ Z∗}.

Denote by Δ× = {α̇ +mδ1 | α̇ ∈ Δ̇,m ∈ Z} the set of real roots in Δ. Recall

that for each α̇ ∈ Δ̇ and α = α̇+mδ1 ∈ Δ×, there are sl2-triples {xα̇, α̇∨, x−α̇}
in ġ, and {xα, α∨, x−α} in g, where

α∨ = α̇∨ +
2m

〈α̇, α̇〉k1 xα = tm1 ⊗ xα̇ ∈ gα.

Let θ̇ be the highest root in Δ̇ with respect to the simple root system

Π̇={α̇1, . . . , α̇l} of Δ̇. Then Π = {α0, . . . , αl} forms a simple root system of Δ

with α0 = δ1 − θ̇ and αi = α̇i for 1 ≤ i ≤ l. Denote by

A = (aij)i,j∈I =
(
2
〈αi, αj〉
〈αi, αi〉

)
i,j∈I

the generalized Cartan matrix of the affine Kac–Moody algebra g, where

I = {0, 1, . . . , l}. Let μ be an automorphism of the generalized Cartan matrix A,

which by definition is a permutation of I such that aij = aμ(i)μ(j) for i, j ∈ I.

It is known (cf. [KW], [FSS]) that there is a unique automorphism of g, still

denoted by μ, such that

(4.15) μ(x±αi) = x±αμ(i)
, 〈μ(x), μ(y)〉 = 〈x, y〉

for i ∈ I and x, y ∈ g. Moreover, μ stabilizes h and has the same order as it is

viewed as a permutation of I.
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Remark 4.1: The automorphism μ of the affine Kac–Moody algebra g deter-

mined by (4.15) is called a diagram automorphism associated to an auto-

morphism μ of the generalized Cartan matrix A.

From now on, we fix a diagram automorphism μ of g with order T . Recall

that μ(h) = h. Then there is an action of μ on h∗ defined by

μ(α)(h) = α(μ−1(h))

for α ∈ h∗, h ∈ h. Let

Q = ZΠ = Zα0 ⊕ · · · ⊕ Zαl

be the root lattice of g, and Q̇=ZΠ̇ be the root lattice of ġ. Note that

μ(αi) = αμ(i) for i ∈ I

and hence μ(Q) = Q. Furthermore, it is known that μ(δ1) = δ1 (cf. [FSS]).

Since Q = Q̇ ⊕ Zδ1, for each α̇ ∈ Q̇, we can write

μ(α̇) = μ̇(α̇) + ρμ(α̇)δ1,

where μ̇(α̇) ∈ Q̇ and ρμ(α̇) ∈ Z. One can easily check that

μ̇ : Q̇→ Q̇, α̇ �→ μ̇(α̇)

defines an automorphism of Q̇, and the map

ρμ : Q̇→ Z, α̇ �→ ρμ(α̇)

is a homomorphism of abelian groups.

Now identify ḣ with ḣ∗ via 〈·, ·〉 so that the coroot α̇∨ = 2α̇
〈α̇,α̇〉 for α̇ ∈ Δ̇.

Then by C-linearity we obtain the two linear maps μ̇ : ḣ → ḣ and ρμ : ḣ → C

such that

μ(h) = μ̇(h) + ρμ(h)k1(4.16)

for h ∈ ḣ. Furthermore, we can extend μ̇ to an automorphism of the Lie

algebra ġ by the following rule (cf. [CJKT]):

μ(xα̇) = t
ρμ(α̇)
1 ⊗ μ̇(xα̇) ∈ gμ̇(α̇)+ρμ(α̇)δ1(4.17)

for α̇ ∈ Δ̇ (recall that μ(α̇) = μ̇(α̇) + ρμ(α̇)δ1). Then we have the following

results:
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Lemma 4.2: For α̇ ∈ Δ̇ and n ∈ Z, we have

μ(tn1 ⊗ xα̇) = t
ρμ(α̇)+n
1 ⊗ μ̇(xα̇), μ(k1) = k1,(4.18)

μ(tn1 ⊗ α̇∨) = tn1 ⊗ μ̇(α̇∨) + δn,0ρμ(α̇
∨)k1, ,(4.19)

μ(d1) = d1 + h− 〈h,h〉
2

k1,(4.20)

where h ∈ ḣ is determined by

(4.21) μ̇(γ̇)(h) = −ρμ(γ̇) for γ̇ ∈ Q̇.

Furthermore, for any h ∈ ḣ we have

(4.22)

μ̇T (h) = h,

T−1∑
p=0

ρμ(μ̇
p(h)) = 0,

T−1∑
p=0

μ̇p(h) = 0 =

T−1∑
p=1

(T − p)〈μ̇p(h),h〉+ T 〈h,h〉
2

.

Proof. The equalities (4.18) and (4.19) were proved in [CJKT, Proposition 2.2].

Assume that μ(d1) = h+ ak1 + bd1 with h ∈ ḣ and a, b ∈ C. Since

1 = 〈d1, k1〉 = 〈μ(d1), μ(k1)〉 = 〈h+ ak1 + bd1, k1〉 = b,

we obtain b = 1. Then for any α̇ ∈ Q̇,

0 = 〈μ(d1), μ(α̇)〉 = 〈h+ ak1 + d1, μ̇(α̇) + ρμ(α̇)k1〉 = 〈h, μ̇(α̇)〉+ ρμ(α̇),

and hence h is determined by the condition (4.21). And by using the fact

that 〈μ(d1), μ(d1)〉 = 0, one obtains

a = −〈h,h〉
2

,

which implies (4.20). Finally, (4.22) follows from the equalities (4.19), (4.20)

and the fact that μ has order T .

Now we are ready to define an automorphism of the full toroidal Lie alge-

bra T (ġ) from the diagram automorphism μ of g.
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Proposition 4.3: The following assignment, for α̇∈Δ̇,m0,m1∈Z and i = 0, 1,

tm0
0 tm1

1 ⊗ xα̇ �→ tm0
0 t

m1+ρμ(α̇)
1 ⊗ μ̇(xα̇),

tm0
0 tm1

1 ⊗ α̇∨ �→ tm0
0 tm1

1 ⊗ μ̇(α̇∨) + ρμ(α̇
∨)tm0

0 tm1
1 k1,

tm0
0 tm1

1 ki �→ tm0
0 tm1

1 ki,

tm0
0 tm1

1 d0 �→ tm0
0 tm1

1 d0,

tm0
0 tm1

1 d1 �→ tm0
0 tm1

1 d1 + tm0
0 tm1

1 ⊗ h− 〈h,h〉
2

tm0
0 tm1

1 k1,

defines an automorphism, denoted by μ̂, of the full toroidal Lie algebra T (ġ)

with order T .

Proof. For m0,m1, n0, n1 ∈ Z, by applying (4.4)–(4.7), we have

[μ̂(tm0
0 tm1

1 d1), μ̂(t
n0
0 tn1

1 d1)]

=[tm0
0 tm1

1 d1, t
n0
0 tn1

1 d1]−
〈h,h〉

2
([tm0

0 tm1
1 d1, t

n0
0 tn1

1 k1] + [tm0
0 tm1

1 k1, t
n0
0 tn1

1 d1])

+ [tm0
0 tm1

1 d1, t
n0
0 tn1

1 ⊗ h] + [tm0
0 tm1

1 ⊗ h, tn0
0 tn1

1 d1] + [tm0
0 tm1

1 ⊗ h, tn0
0 tn1

1 ⊗ h]

=(n1 −m1)
(
tm0+n0
0 tm1+n1

1 d1 + tm0+n0
0 tm1+n1

1 ⊗ h− 〈h,h〉
2

tm0+n0
0 tm1+n1

1 k1

)
− 〈h,h〉

2

( ∑
i=1,2

mit
m0+n0
0 tm1+n1

1 ki −
∑
i=1,2

nit
m0+n0
0 tm1+n1

1 ki

)

+ 〈h,h〉
∑
i=1,2

mit
m0+n0
0 tm1+n1

1 ki

=μ̂([tm0
0 tm1

1 d1, t
n0
0 tn1

1 d1]).

One can check that μ̂ preserves all other relations by a similar argument as

above. And it follows from (4.22) that the order of the automorphism μ̂ is

equal to T .

4.3. Subalgebra of g̃ fixed by the automorphism μ̃. From the definition

of the automorphism μ̂ of the full toroidal Lie algebra T (ġ) given in the previous

subsection, it is easy to see that μ̂(g̃) = g̃. Fix a Z-grading g̃ =
⊕

m∈Z
g̃(m) by

the adjoint action of −d0, i.e., g̃(m)={x ∈ g̃ | [d0, x] = −mx}. Set
ω = ωT = e2π

√−1/T

and let ω−d0 be the automorphism of g̃ defined by ω−d0(a) = ωma for a ∈ g̃(m).

Therefore,

μ̃ = ω−d0 ◦ μ̂|g̃
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defines an automorphism for the toroidal EALA g̃. Now we investigate the Lie

subalgebra g̃[μ] of g̃ fixed by the automorphism μ̃.

Firstly, for x ∈ gα with α ∈ Δ× ∪ {0}, h ∈ ḣ, m ∈ Z and n ∈ Z∗, we have

(4.23)

μ̃(tm0 x) = ω−mtm0 μ(x),

μ̃(tm0 t
n
1 ⊗ h) = ω−m(tm0 t

n
1 ⊗ μ̇(h)− ρμ(h)mkm,n),

μ̃(k0) = k0,

μ̃(d0) = d0,

μ̃(km,n) = ω−mkm,n,

μ̃(d̃m,n) = ω−m
(
d̃m,n +mtm0 t

n
1 ⊗ h+

〈h,h〉
2

m2km,n

)
.

Moreover, we recall that the diagram automorphism μ preserves the Cartan

subalgebra h and the bilinear form 〈·, ·〉. Therefore, by (4.14), (4.21) and (4.23),

we have the following results:

Lemma 4.4: μ̃(h̃) = h̃, and 〈μ̃(x), μ̃(y)〉 = 〈x, y〉 for x, y ∈ g̃.

Denote by g̃[μ] and h̃[μ] the Lie subalgebras of g̃ and h̃ respectively fixed

by μ̃. We consider the root space decomposition of g̃[μ] with respect to its

abelian subalgebra h̃[μ]. Denote by (h∗)μ the subspace of h∗ that is fixed by μ

and denote by

πμ : h∗ → (h∗)μ, α �→ α̌ =
1

T

T−1∑
p=0

μp(α)

the canonical projection. Since α̌(h− μ(h)) = 0 for α ∈ h∗ and h ∈ h, we may

identify (hμ)∗ with (h∗)μ, where hμ is the subspace of h fixed by μ. Note that

h̃[μ] = hμ ⊕ Ck0 ⊕ Cd0.

We view (hμ)∗ as a subspace of h̃[μ]∗ such that

α(k0) = α(d0) = 0

for α ∈ (hμ)∗, and define δ0 ∈ h̃[μ]∗ by

(4.24) δ0(h
μ) = δ0(k0) = 0, δ0(d0) = 1.

In particular, for each α ∈ Δ, α̌ ∈ (h∗)μ = (hμ)∗ is an element in h̃[μ]∗.
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For α ∈ h̃[μ]∗, set

g̃[μ]α = {x ∈ g̃[μ] | [h, x] = α(h)x, h ∈ h̃[μ]}.

Then we have the following root space decomposition:

g̃[μ] = g̃[μ]0 ⊕
∑
α∈Δ̃μ

g̃[μ]α,

where Δ̃μ = {α ∈ h̃[μ]∗\{0} | g̃[μ]α �= 0}. Let

(4.25) ημ : g̃ → g̃[μ], x �→
T−1∑
p=0

μ̃p(x)

be a projection from g̃ to g̃[μ]. It can be readily seen that

ημ(t
m
0 u)∈ g̃[μ]α̌+mδ0 , ημ(km,n), ημ(d̃m,n)∈ g̃[μ]mδ0+nδ1 , k0, d0∈ g̃[μ]0(4.26)

for u ∈ gα with α ∈ Δ ∪ {0}, m ∈ Z and n ∈ Z∗. Then we have

Lemma 4.5: The root system Δ̃μ ⊂ (πμ(Δ) + Zδ0) ∪ Zδ0 and g̃[μ]0 = h̃[μ].

Proof. The first assertion follows from (4.13) and (4.26). For the second one,

note that if α =
∑

i∈I aiαi is a root in Δ, then

α̌ =
1

T

∑
i∈I

T−1∑
p=0

aiαμp(i)

is clearly nonzero. This together with (4.26) implies that

g̃[μ]0 = ημ(h)⊕ Ck0 ⊕ Cd0 = h̃[μ].

Denote by t(ġ, μ) the subalgebra of t(ġ) fixed by μ̃ (noting that μ̃(t(ġ)) = t(ġ)).

We have the following result from [CJKT].

Proposition 4.6: The Lie algebra t(ġ, μ) is centrally closed.

In the rest of this subsection, we recall a characterization for the subset of

the root system Δ̃μ given in [CJKT]:

Δ̃×
μ = {α̌+mδ0 ∈ Δ̃μ | α ∈ Δ,m ∈ Z and 〈α̌, α̌〉 �= 0}.

For every i ∈ I = {0, 1, . . . , l}, denote by O(i) the orbit containing i under the

action of the group 〈μ〉. We say μ is transitive if O(i) = I for each i ∈ I.

Observe that a diagram automorphism on g is transitive if and only if g is of

type A
(1)
l , and it has order l + 1. Note that in this case we have πμ(αi) = δ1

for any i ∈ I, and hence Δ̃×
μ = ∅.
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From now on we assume that μ is nontransitive, and in this case, it is known

that the folded matrix

Ǎ =
(
2
〈α̌i, α̌j〉
〈α̌i, α̌i〉

)
i,j∈Ǐ

of A associated to μ is also an affine generalized Cartan matrix (cf. [FSS, ABP]),

where Ǐ = {i ∈ I | μk(i) ≥ i for k ∈ Z} is a set of representative elements in I.

Denote by Δ̌ and W̌ respectively the root system and the Weyl group associated

to the folded matrix Ǎ. Then {α̌i}i∈Ǐ is a simple root base of Δ̌. Furthermore,

we have the following result from [ABP, Lemma 12.15].

Lemma 4.7: For each i ∈ I, one and only one of the following statement holds:

(a) The elements αp, for p ∈ O(i), are pairwise orthogonal;

(b) O(i) = {i, μ(i)}, and aiμ(i) = −1 = aμ(i)i.

Recall that T is the order of the diagram automorphism μ. For every i ∈ I,

we set

Ti = T/|O(i)|, and si =

⎧⎨
⎩1, if (a) holds in Lemma 4.7;

2, if (b) holds in Lemma 4.7.
(4.27)

The following result was proved in [CJKT, Proposition 5.1].

Proposition 4.8: If μ is nontransitive, then

Δ̃×
μ ={w̌α̌i + Timδ0 | w̌ ∈ W̌ , i ∈ Ǐ ,m ∈ Z}

∪
{
2w̌α̌i +

(T
2
+mT

)
δ0 | w̌ ∈ W̌ , i ∈ Ǐ with si = 2,m ∈ Z

}
.

Remark 4.9: If μ is nontransitive, then Δ̃×
μ is a nullity 2 reduced extended affine

root system introduced by Saito (cf. [Sa]). Conversely, any nullity 2 reduced

extended affine root system is of such a form (cf. [ABP]). Furthermore, we will

see in the next section that the triple (g̃[μ], h̃[μ], 〈·, ·〉) is a nullity 2 EALA, and

which we call a nullity 2 twisted toroidal extended affine Lie algebra.

5. Nullity 2 EALA of maximal type

In this section, we first recall the definition of extended affine Lie algebra

(cf. [AABGP, N]), and the classification of nullity 2 extended affine Lie algebras

of maximal type based on Allison–Berman–Pianzola’s work [ABP].
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Let E be a Lie algebra equipped with a nontrivial finite-dimensional self-

centralizing ad-diagonalizable subalgebraH and a nondegenerate invariant sym-

metric bilinear form (·|·). Let

E = H⊕
∑
α∈Φ

Eα

be the root space decomposition with respect toH, where Φ is the corresponding

root system. The form (·|·) is also nondegenerate when it is restricted toH = E0.
Hence it induces a nondegenerate symmetric bilinear form on H∗. Set

Φ× = {α ∈ Φ | (α|α) �= 0},
Φ0 = {α ∈ Φ | (α|α) = 0}.

Let Ec be the subalgebra of E generated by the root spaces Eα, α ∈ Φ×, which
is called the core of E .

Definition 5.1: E := (E ,H, (·|·)) is called an extended affine Lie algebra

(EALA for short) if

(1) ad(x) is locally nilpotent for x ∈ Eα, α ∈ Φ×;
(2) Φ× cannot be decomposed as a union of two orthogonal nonempty sub-

sets;

(3) the centralizer of Ec in E is contained in Ec;
(4) Φ is a discrete subset of H∗ with respect to its Euclidean topology.

The axiom (4) implies that the subgroup 〈Φ0〉 of H∗ generated by Φ0 is a free

abelian group of finite rank, and this rank is called the nullity of E . Indeed, the
nullity 0 EALAs are exactly the finite dimensional simple Lie algebras, while

nullity 1 EALAs are exactly the affine Kac–Moody algebras (cf. [ABGP]). For

the purpose of classifying EALAs, the following notion was introduced in [BGK].

Definition 5.2: An EALA is of maximal type if its core is centrally closed.

Note that the nullity 0 and nullity 1 EALAs are all of maximal type. In

general, an EALA may not be of maximal type. However, the maximal EALAs

appear to be the most interesting ones as from them one can know the structure

of other EALAs (see [BGK, Remark 3.73] and [N] for details). In what follows,

we give two classes of nullity 2 EALAs of maximal type.
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Proposition 5.3: Let μ be a nontransitive diagram automorphism of an un-

twisted affine Kac–Moody algebra g. Then the triple (g̃[μ], h̃[μ], 〈·, ·〉), defined
in the previous section, is a nullity 2 EALA of maximal type, and t(ġ, μ) is the

core of g̃[μ].

Proof. Recall from Lemma 4.5 that the ad-diagonalizable subalgebra h̃[μ] of g̃[μ]

is self-centralized, and it follows from Lemma 4.4 that the invariant form 〈·, ·〉
restricted to g̃[μ] is still nondegenerate. One can easily check that t(ġ, μ) is

generated by the elements ημ(t
m
0 x±αi) for m ∈ Z and i ∈ I. This together with

Proposition 4.8 implies that the core of g̃[μ] is t(ġ, μ). Now we check the axioms

(1)–(4) in Definition 5.1. The axiom (1) follows from Proposition 4.8, while

the axiom (2) is implied by Remark 4.9 as the root system defined by Saito is

irreducible (see [Sa, Definition 1]). The axioms (3) and (4) are obvious. Finally,

Proposition 4.6 implies the maximality of g̃[μ].

For the second class of nullity 2 EALAs of maximal type, we let q ∈ C∗

be generic, i.e, q is not a root of unity, and Cq := Cq[t
±1
0 , t±1

1 ] the quantum

torus associated to q such that t0t1 = qt1t0. For any positive integer N ≥ 2,

glN (Cq) denotes the general linear Lie algebra over Cq, and slN (Cq) the derived

subalgebra of glN (Cq). For 1 ≤ i, j ≤ N , a ∈ Cq, we write Ei,ja for the matrix

whose only possible nonzero entry is the (i, j)-entry which is a. We consider

the central extension of the Lie algebra glN (Cq):

ĝlN (Cq) := glN (Cq)⊕ Ck0 ⊕ Ck1,

where k0, k1 are central elements, and

(5.1)

[Ei,jt
m0
0 tm1

1 , Ek,lt
n0
0 tn1

1 ]=δj,kq
m1n0Ei,lt

m0+n0
0 tm1+n1

1

− δi,lq
n1m0Ek,jt

m0+n0
0 tm1+n1

1

+ δj,kδi,lδm0+n0,0δm1+n1,0q
m1n0(m0k0+m1k1),

for 1 ≤ i, j, k, l ≤ N and m0,m1, n0, n1 ∈ Z. Moreover, we define two deriva-

tions d0, d1 acting on ĝlN (Cq) by

[dr, Ei,jt
m0
0 tm1

1 ] = mrEi,jt
m0
0 tm1

1 , [dr, ks] = 0 = [dr, ds],

for r, s ∈ {0, 1} and for 1 ≤ i, j ≤ N,m0,m1 ∈ Z. Therefore, we obtain a Lie

algebra

g̃lN (Cq) := ĝlN (Cq)⊕ Cd0 ⊕ Cd1.
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Set

ŝlN (Cq) = [ĝlN (Cq), ĝlN (Cq)] = slN (Cq)⊕ Ck0 ⊕ Ck1,

the derived subalgebra of ĝlN (Cq). It is known that ŝlN (Cq) is centrally closed

and ĝlN (Cq) = ŝlN (Cq) ⊕ CIN (cf. [BGK]), where IN is the identity matrix.

Furthermore, we define

s̃lN (Cq) := ŝlN (Cq)⊕ Cd0 ⊕ Cd1,

H̃ :=

N−1∑
i=1

C(Ei,i − Ei+1,i+1)⊕ Ck0 ⊕ Ck1 ⊕ Cd0 ⊕ Cd1,

and a bilinear form 〈·, ·〉 of s̃lN (Cq) such that

〈Ei,jtm0
0 tm1

1 , Ej,it
−m0
0 t−m1

1 〉 = 1 = 〈dr, kr〉,

for 1 ≤ i, j ≤ N,m0,m1 ∈ Z, r ∈ {0, 1}, and trivial for others. The following

result is from [BGK]:

Proposition 5.4: LetN ≥ 2 be a positive integer and q ∈ C∗ be generic. Then
the triple (s̃lN (Cq), H̃, 〈·, ·〉) is a nullity 2 EALA of maximal type, and ŝlN (Cq)

is the core of s̃lN (Cq).

For any given EALA E , we call Ecc := Ec/Z(Ec) the centerless core of E ,
where Z(Ec) is the center of the core Ec. One notes that the centerless core of the

affine Kac–Moody algebra g is isomorphic to the loop algebra g = C[t1, t
−1
1 ]⊗ ġ.

Denote by μ̄ the automorphism of g induced by μ. Then the centerless core

of g̃[μ] is isomorphic to the μ̄-twisted loop algebra

L(g, μ̄) =
∑
n∈Z

tn0 ⊗ g(m) ⊂ C[t0, t
−1
0 ]⊗ g = R⊗ ġ,

where g(m) = {x ∈ g | μ̄(x) = ωmx}.
It is clear that the centerless core of s̃lN (Cq) with q generic is isomorphic

to slN (Cq). The following classification of centerless cores of nullity 2 EALAs

was given in [ABP]:

Proposition 5.5: The centerless core of a nullity 2 EALA is either isomorphic

to slN (Cq) for some positive integer N ≥ 2 and generic q ∈ C∗, or to L(g, μ̄) for
some nontransitive diagram automorphism μ of an untwisted affine Kac–Moody

algebra g.
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Two EALAs are said to be equivalent if their cores are isomorphic. Then

we have the following result.

Theorem 5.6: Up to equivalence, a nullity 2 extended affine Lie algebra of

maximal type either has the form s̃lN (Cq) for some positive integer N ≥ 2 and

generic q ∈ C∗, or has the form g̃[μ] for some nontransitive diagram automor-

phism μ of an untwisted affine Kac–Moody algebra g.

Proof. Let E be a nullity 2 EALA of maximal type. Then by Proposition 5.5,

either Ecc ∼= slN (Cq), or Ecc ∼= L(g, μ̄). Then the maximality of E forces that

either Ec ∼= ŝlN (Cq) or Ec ∼= t(ġ, μ). Thus it follows from Propositions 5.3

and 5.4 that E is either equivalent to s̃lN (Cq) or to g̃[μ].

Remark 5.7: Following [BGK, N], a K-valued affine cocycle τ on S is an

abelian 2-cocycle τ : S × S → K such that τ(S, di) = 0 for i = 0, 1, and

〈τ(s1, s2), s3〉 = 〈s1, τ(s2, s3)〉 for s1, s2, s3 ∈ S. For any affine cocycle τ , one

can define a new Lie multiplication [·, ·]τ on g̃ defined by

[x1 + s1, x2 + s2]τ = [x1 + s1, x2 + s2] + τ(s1, s2)

for x1, x2 ∈ t(ġ) and s1, s2 ∈ S. We denote the resulting Lie algebra by g̃τ . It is

easy to see that the action (4.23) also defines an automorphism μ̃ of g̃τ , denote

by g̃[μ]τ the subalgebra of g̃τ fixed by μ̃. Similar to the proof of Proposition 5.3,

one can check that (g̃[μ]τ , h̃[μ], 〈·, ·〉) is a nullity 2 EALA of maximal type if μ is

nontransitive. By the explicit construction of EALAs (of maximal type) given

by Neher in [N], one can prove that if an EALA is equivalent to g̃[μ], then it

is isomorphic to g̃[μ]τ for some affine cocycle τ . And, if an EALA is equivalent

to s̃lN (Cq), then it must be isomorphic to s̃lN (Cq).

Remark 5.8: It was shown in [MRY] that there exist nontrivial affine cocycles.

For example, for any complex number a, the bilinear map τa : S × S → K
defined by

τa(S, dr) = 0,

τa(dm0,m1 , dn0,n1) = a(m0n1 − n0m1)
3km0+n0,m1+n1

for m0,m1, n0, n1 ∈ Z and r = 0, 1, is an affine cocycle. Then we have the Lie

algebras g̃[μ]τa with g̃[μ]τ0 = g̃[μ]. It is conjectured that any K-valued affine

cocycle on S has the form τa for some a ∈ C. This will imply that g̃[μ]τa
and s̃lN (Cq) exhaust all nullity 2 EALAs of maximal type up to isomorphism.



Vol. 259, 2024 EXTENDED AFFINE LIE ALGEBRAS 385

6. Associating g̃[μ] with vertex algebras

Let μ be a fixed diagram automorphism of the untwisted affine Kac–Moody

algebra g. In this section, we associate the twisted toroidal EALA g̃[μ] with

vertex algebras through equivariant φ-coordinated quasi-modules.

6.1. Vertex algebras Vĝ(�, 0) and Lĝ(�, 0). We recall the variant of the skew

derivation algebra S introduced in [CLiT]:

Ŝ =
{
f0

∂

∂t0
+ f1d1 | f0, f1 ∈ R, ∂

∂t0
(f0) + d1(f1) = 0

}
⊂ Der(R).

For m,n ∈ Z, set

d̂n,m = (n+ 1)tn0 t
m
1 d1 −mtn0 t

m
1 d0,

It is easy to see that the set

B
̂S = {t−1

0 d0, t
−1
0 d1} ∪ {d̂n,m | (n,m) ∈ Z× Z \ {(−1, 0)}}

= {t−1
0 d0} ∪ {tn0d1, d̂n,m | n ∈ Z,m ∈ Z∗}

forms a C-basis of Ŝ, and subject to the following relations:

[t−1
0 d0, d̂n,m] = (n+ 1)d̂n−1,m, [t−1

0 d1, d̂n,m] = md̂n−1,m,(6.1)

[d̂n,m, d̂n1,m1 ] = ((n+ 1)m1 −m(n1 + 1))d̂n+n1,m+m1 ,(6.2)

for n,m, n1,m1 ∈ Z. In view of this, we have the following subalgebra of the

full toroidal Lie algebra T (ġ):

ĝ = t(ġ) + [Ŝ, Ŝ] + Ct−1
0 d1.

Note that ĝ is linearly spanned by the set

{tn0u, kn,m, k0, d̂n,m | u ∈ g, n ∈ Z, m ∈ Z∗}.(6.3)

From (4.5) and (4.6), we have

[d̂i,m, t
j
0t
n
1 ⊗ x] =((i+ 1)n−mj)ti+j0 tm+n

1 ⊗ x,(6.4)

[d̂i,m, kj,n] =((i+ 1)(m+ n)−m(i + j))ki+j,m+n(6.5)

+ δm+n,0δi+j,0((i + 1)k0 +mk1),

for i, j,m, n ∈ Z and x ∈ ġ. Set

ĝ+ = Span{tn0u, kn+1,m, d̂n−1,m | u ∈ g, n ∈ N, m ∈ Z},(6.6)

ĝ− = Span{t−n−1
0 u, k−n,m, d̂−n−2,m | u ∈ g, n ∈ N, m ∈ Z}.(6.7)
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Then both ĝ+ and ĝ− are subalgebras of ĝ. Furthermore, we have the decom-

position:

ĝ = ĝ+ ⊕ Ck0 ⊕ ĝ−.(6.8)

Let � be a complex number. View C as a (ĝ+ +Ck0)-module with ĝ+ acting

trivially and with k0 acting as scalar �. We form the induced ĝ-module

Vĝ(�, 0) = U(ĝ)⊗U(ĝ++Ck0) C.(6.9)

Let A be a vector space with a basis {Kn, Dn | n ∈ Z∗}, and set

Ag = g⊕A.

Form the generating functions a(z), a ∈ Ag in ĝ[[z, z−1]] as follows:

u(z) =
∑
n∈Z

(tn0u)z
−n−1, Dm(z) =

∑
n∈Z

d̂n,mz
−n−2, Km(z) =

∑
n∈Z

kn,mz
−n,

for u ∈ g and m ∈ Z∗. Set 1 = 1 ⊗ 1 ∈ Vĝ(�, 0). Identify Ag as a subspace

of Vĝ(�, 0) through the linear map

u �→ (t−1
0 u)1, Kn �→ k0,n1, Dn �→ d̂−2,n1,(6.10)

for u ∈ g, n ∈ Z∗. It is proved in [CLiT] that there is a unique vertex algebra

structure on Vĝ(�, 0) with Y (a, z) = a(z) for a ∈ Ag, and 1 the vacuum vector.

Remark 6.1: Note that t(ġ)⊕ Ŝ = ĝ⊕ Ct−1
0 d0 with

[−t−1
0 d0, a(z)] =

d

dz
a(z), a ∈ Ag.

This implies that Vĝ(�) is a t(ġ)⊕Ŝ-module with −t−1
0 d0 acting as the canonical

derivation D. In particular, from [CLiT] it follows that an ideal of vertex

algebra Vĝ(�, 0) is the same as a t(ġ)⊕ Ŝ-submodule.

When � is a nonnegative integer, denote by Jĝ(�, 0) the ĝ-submodule of Vĝ(�, 0)

generated by the vectors

(t−1
0 x±αi)

εi�+11, i ∈ I,(6.11)

where εi =
2

〈αi,αi〉 . It is straightforward to check that Jĝ(�, 0) is t−1
0 d0-stable

(cf. [CLiT, Lemma 3.13]), and hence by Remark 6.1 it is an ideal of the vertex

algebra Vĝ(�, 0). Let

Lĝ(�, 0) = Vĝ(�, 0)/Jĝ(�, 0)(6.12)

be a quotient vertex algebra of Vĝ(�, 0).



Vol. 259, 2024 EXTENDED AFFINE LIE ALGEBRAS 387

6.2. Conformal algebra Cg. In order to associate the twisted toroidal

EALA g̃[μ] with the vertex algebras Vĝ(�, 0) and Lĝ(�, 0), we define a Gμ-

conformal algebra Cg such that Ĉg ∼= ĝ, and C̃g[Gμ] ∼= g̃[μ]. As a vector space,

we set

Cg = (C[∂]⊗Ag)⊕ Ck0,

and define ∂ to be a linear transformation on Cg such that

∂(∂m ⊗ x) = ∂m+1 ⊗ x, ∂(k0) = 0

for m ∈ N, x ∈ Ag. Let

Y − : Cg → Hom(Cg, z−1Cg[z−1]), a �→
∑
i∈N

aiz
−i−1

be the unique linear map such that the property (2.8) holds, and the nontrivial

i-products on Ag ⊕ Ck0 are as follows:

(tm1 ⊗ u)0(t
n
1 ⊗ v) = tm+n

1 ⊗ [u, v] + 〈u, v〉m(∂ ⊗Km+n) + δm+n,0〈u, v〉mk1,

(tm1 ⊗ u)1(t
n
1 ⊗ v) = (m+ n)〈u, v〉Km+n + δm+n,0〈u, v〉k0,

(Dr)0(t
m
1 ⊗ u) = m(∂ ⊗ (tr+m1 ⊗ u)),

(tm1 ⊗ u)0(Dr) = r(∂ ⊗ (tr+m1 ⊗ u)),

(Dr)1(t
m
1 ⊗ u) = (tm1 ⊗ u)1(Dr) = (r +m)tr+m1 ⊗ u,

(Dr)0(Ks) = r(∂ ⊗Kr+s) + δr+s,0rk1,

(Ks)0(Dr) = s(∂ ⊗Kr+s) + δr+s,0(−rk1 + ∂ ⊗ k0),

(Dr)1(Ks) = (Ks)1(Dr) = (r + s)Kr+s + δr+s,0k0,

(d1)0(t
m
1 ⊗ u) = −(tm1 ⊗ u)0(d1) = mtm1 ⊗ u,

(d1)1(k1) = (k1)1(d1) = k0,

(d1)0(Kr) = −(Kr)0(d1) = rKr,

(d1)0(Dr) = −(Dr)0(d1) = Dr,

(Dr)0(Ds) = r∂ ⊗Dr+s + δr+s,0(−r∂2 ⊗ d1),

(Dr)1(Ds) = (r + s)Dr+s,

where u, v ∈ ġ, m, n ∈ Z, r, s ∈ Z∗, and we have used the convention

K0 = 0 = D0.
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Proposition 6.2: The vector space Cg, together with the linear maps ∂

and Y −, as defined above, is a conformal algebra, and the linear map îg : Ĉg → ĝ

defined by

u(m) �→ tm0 u, Kn(m) �→ km+1,n, Dn(m) �→ d̂m−1,n, k0(m) �→ δm,−1k0,

for u ∈ g, m ∈ Z and n ∈ Z∗, is an isomorphism of Lie algebras. Furthermore,

the linear map ĩg : C̃g → g̃ defined by

(6.13)
u[m] �→ tm0 u, Kn[m] �→ km,n, Dn[m] �→ d̃m,n,

k0[m] �→ δm,0k0, d �→ −d0,

for u ∈ g, m ∈ Z and n ∈ Z∗, is also an isomorphism of Lie algebras.

Proof. By definition, Ĉg is linearly spanned by the elements a(m), k0(m)

for a ∈ Ag, m ∈ Z. Note that k0(m) = 0 if m �= −1. Using these with (6.3), it is

easy to see that the map îg is an isomorphism of vector spaces. Then Ĉg admits a

Lie algebra structure transferring from ĝ via the linear isomorphism îg. By using

the relations (4.4), (6.1), (6.2), (6.4), (6.5) and the facts that d̂n,0 = (n+1)tn0d1

and km,0 = − 1
m t

m
0 k1 for n ∈ Z and m ∈ Z∗, one can check that the Lie brackets

on Ĉg coincide with that in (2.9) with the i-products defined above. Thus, by

Lemma 2.7, (Cg, ∂, Y−) is a conformal algebra with îg a Lie algebra isomorphism.

For the second assertion of the proposition, we note that C̃g is linearly spanned

by the elements a[m], k0[m], d for a ∈ Ag and m ∈ Z. Also note that k0[n] = 0

if n �= 0. These together with (4.13) give that ĩg is a linear isomorphism.

Furthermore, by comparing the Lie relation (2.17) in C̃g and the Lie rela-

tions (4.4), (4.9), (4.11), and (4.12) in g̃, it is straightforward to check that ĩg

is a Lie algebra homomorphism, as required.

Now we define an automorphism group Gμ on Cg so that C̃g[Gμ] ∼= g̃[μ]. We

first define a linear transformation Rμ on Cg by

Rμ(∂
m ⊗ x) = ∂m ⊗ μ(x),

Rμ(k0) = k0,

Rμ(∂
m ⊗Kn) = ∂m ⊗Kn,

Rμ(∂
m ⊗ (tn1 ⊗ h)) = ∂m ⊗ (tn1 ⊗ μ̇(h)) + ρμ(h)∂

m+1 ⊗Kn,

Rμ(∂
m ⊗Dn) = ∂m ⊗Dn − ∂m+1 ⊗ (tn1 ⊗ h) +

〈h,h〉
2

∂m+2 ⊗Kn,

for x ∈ gα with α ∈ Δ× ∪ {0}, h ∈ ḣ, m ∈ Z and n ∈ Z∗.
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Lemma 6.3: The linear transformation Rμ, as defined above, is an automor-

phism of Cg with order T .

Proof. Note that Rμ◦∂ = ∂◦Rμ on Cg. Then we have a linear map R̂μ : Ĉg → Ĉg
determined by (2.13). Via the isomorphism îg : Ĉg → ĝ given in Proposition

6.2, R̂μ induces a linear map on ĝ determined by

(6.14)

R̂μ(t
m
0 x) = tm0 μ(x),

R̂μ(t
m
0 t

m
1 ⊗ h) = tm0 t

m
1 ⊗ μ̇(h)− ρμ(h)mkm,n,

R̂μ(km,n) = km,n,

R̂μ(dm,n) = dm,n + (m+ 1)tm0 t
n
1 ⊗ h+

〈h,h〉
2

(m+ 1)mkm,n,

for x ∈ gα with α ∈ Δ× ∪ {0}, h ∈ ḣ, m ∈ Z and n ∈ Z∗. Moreover, from

Proposition 4.3 we have a Lie automorphism μ̂ of T (ġ), which preserves ĝ.

And one can check that μ̂ = R̂μ on ĝ. Thus R̂μ is an automorphism of the

Lie algebra Ĉg with order T . The assertion of the lemma then follows from

Lemma 2.8.

Set Gμ = 〈Rμ〉, an automorphism group of Cg, and let χω be the linear char-

acter of Gμ defined by χω(Rμ)=ω
−1. Recall that for any G-conformal algebra C

and any linear character χ of G, there is a Lie algebra C̃[G] defined in (2.20).

By specializing G = Gμ, C = Cg and χ = χω, we obtain a Lie algebra C̃g[Gμ].
Recall also the surjective map ημ : g̃ → g̃[μ] defined in (4.25); we have

Proposition 6.4: The following assignment:

(6.15)
u[m] �→ ημ(t

m
0 u), Kn[m] �→ ημ(km,n), Dn[m] �→ ημ(d̃m,n),

k0[m] �→ δm,0Tk0, d �→ −d0

for u ∈ g, m ∈ Z and n ∈ Z∗, determines an isomorphism from the Lie alge-

bra C̃g[Gμ] to the Lie algebra g̃[μ].

Proof. Corresponding to the automorphism Rμ of Cg, there is an automor-

phism R̃μ of C̃g (see (2.18)). Via the isomorphism ĩg : C̃g → g̃ given in Propo-

sition 6.2, R̃μ induces an automorphism of g̃. It is straightforward to check

that this automorphism of g̃ coincides with μ̃ (see (4.23)). Since Gμ is a cyclic

group of order T , it follows from Remark 2.11 that C̃g[Gμ] is isomorphic to the

subalgebra of C̃g fixed by R̃μ. This implies that C̃g[Gμ] is isomorphic to g̃[μ]

with the isomorphism given in the proposition.
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6.3. The correspondence theorem for g̃[μ]. In this subsection we general-

ize the correspondence theorem (Theorem 3.11) for affine Kac–Moody algebras

to the nullity 2 twisted toroidal extended affine Lie algebras g̃[μ].

Form the following generating functions aμ[z], a ∈ Ag in g̃[μ][[z, z−1]]:

uμ[z] =
∑
n∈Z

ημ(t
n
0u)z

−n, Dμ
m[z] =

∑
n∈Z

ημ(d̃n,m)z
−n,

Kμ
m[z] =

∑
n∈Z

ημ(kn,m)z−n,

for u ∈ g andm ∈ Z∗. Note that all the components of these generating functions

together with k0, d0 span the algebra g̃[μ]. As in the affine Kac–Moody algebra

case, we formulate the following definition.

Definition 6.5: We say that a g̃[μ]-module W is restricted if for any a ∈ Ag,

aμ[z] ∈ Hom(W,W ((z))). And W is said to be of level � ∈ C if the central

element k0 acts as the scalar �/T . Furthermore, if μ is nontransitive, we say

that W is integrable if for any α ∈ Δ̃×
μ , g̃[μ]α acts locally nilpotently on W .

For each i ∈ I = {0, 1, . . . , l}, one recalls the positive integers Ti, si defined

in (4.27), and sets

pi(z) =
1− zsiTi

1− zTi
.

Then we have the following analogue of Proposition 3.12.

Proposition 6.6: Assume that μ is nontransitive. Then for any i ∈ I,

pi(z1/z2)[x
μ
±αi

[z1], x
μ
±αi

[z2]] = 0.(6.16)

Furthermore, if W is a restricted g̃[μ]-module of level �, then W is integrable if

and only if � is a nonnegative integer and for any i ∈ I,( ∏
1≤i<j≤εi�+1

pi(zi/zj)

)
xμ±αi

[z1]x
μ
±αi

[z2]· · ·xμ±αi
[zεi�+1]|z1=z2···=zεi�+1

=0(6.17)

on W .

Proof. For each i ∈ I, denote by g̃[μ]i the subalgebra of g̃[μ] generated by the

elements tm0 x±αi , d0 for m ∈ Z. We first show that g̃[μ]i is isomorphic to

the affine Kac–Moody algebra of type A
(si)
si . For k = 1, 2, we denote by θk

the order k diagram automorphism of the simple Lie algebra slk+1. Then for

each i ∈ I, we have an affine Kac–Moody algebra L̃(slsi+1, θsi) of type A
(si)
si (see
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Section 3.2). Recall that ημ(t
m
0 x±αi) =

∑T−1
p=0 t

m
0 x±αμ(i)

for i ∈ I and m ∈ Z.

In particular, we have ημ(t
m
0 x±αi) �= 0 if and only if m ∈ TiZ. By Lemma 4.7,

it is straightforward to see that the assignment (m ∈ Z and β a fixed simple

root of slsi+1)

ημ(t
Tim
0 x±αi) �→ tm ⊗ (x±β)(m),

T

si
k0 �→ k, d0 �→ Tid

determines an isomorphism from the Lie algebra g̃[μ]i to the Lie algebra

L̃(slsi+1, θsi). This together with (3.9) implies the first assertion of the propo-

sition.

For the second assertion, let W be a restricted g̃[μ]-module of level �. For

each i ∈ I, via the isomorphism g̃[μ]i ∼= L̃(slsi+1, θsi), W becomes a restricted

L̃(slsi+1, θi)-module of level �. Note that the g̃[μ]-module W is integrable if

and only if the elements tm0 x±αi , i ∈ I,m ∈ Z act locally nilpotently (as they

generate the core t(ġ, μ)). Thus, W is integrable if and only if W is integrable

as an L̃(slsi+1, θi)-module for all i ∈ I. Thus the assertion follows from Propo-

sition 3.12.

Note that k0 is a central element in Cg. Thus, for any � ∈ C, the Ĉg-submodule

〈k0 − �〉 of VCg generated by k0 − � is an ideal of VCg (as a vertex algebra). Re-

call the isomorphism îg : Ĉg → ĝ given in Proposition 6.2. One can readily

check that îg(Ĉ+
g ) = ĝ+ and îg(Ĉ−

g ) = ĝ− ⊕ Ck0 (see (2.10) and (6.6)). This

implies that Vĝ(�, 0) is isomorphic to the quotient vertex algebra VCg/〈k0 − �〉.
Recall also that the automorphism group Gμ = 〈Rμ〉 of Cg can be uniquely

lifted to an automorphism group of its universal enveloping vertex algebra VCg .

As Rμ(k0) = k0, Gμ is naturally an automorphism group of Vĝ(�, 0). Further-

more, we have

Lemma 6.7: For each nonnegative integer �, Jĝ(�, 0) is a Rμ-stable ideal

of Vĝ(�, 0).

Proof. The assertion follows from the fact that

Rμ((t
−1
0 x±αi)

εi�+11) = (t−1
0 μ(x±αi))

εi�+11 = (t−1
0 x±αμ(i)

)εμ(i)�+11 ∈ J(�),

where εμ(i) = εi for i ∈ I.

In view of the above lemma, Gμ is also an automorphism group of the vertex

algebra Lĝ(�, 0). Now we state one of the main results of the paper.
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Theorem 6.8: Let � be a complex number. For any restricted g̃[μ]-module W

of level �, there is a (Gμ, χω)-equivariant φ-coordinated quasi-Vĝ(�, 0)-module

structure (Y φW , d) on W , which is uniquely determined by

d = −d0, Y φW (a, z) = aμ[z],

for a ∈ Ag. On the other hand, for any (Gμ, χω)-equivariant φ-coordinated

quasi-Vĝ(�, 0)-module (W,Y φW , d), W is a restricted g̃[μ]-module of level � with

action given by

d0 = −d, aμ[z] = Y φW (a, z),

for a ∈ Ag. Furthermore, if � is a nonnegative integer and μ is nontransitive,

then the integrable restricted g̃[μ]-modules of level � are exactly the (Gμ, χω)-

equivariant φ-coordinated quasi-Lĝ(�, 0)-modules (W,Y φW , d).

Proof. By Propositions 2.6, 2.10 and 6.4, the restricted g̃[μ]-modules are ex-

actly the (Gμ, χω)-equivariant φ-coordinated quasi-VCg-modules. Thus the fact

that Vĝ(�, 0) ∼= VCg/〈k0 − �〉 implies the first assertion of the theorem.

For the second part of the theorem, we assume that � is a nonnegative integer,

μ is nontransitive andW is an integrable restricted g̃[μ]-module of level �. Note

that for each i, we have [x±αi(z1), x±αi(z2)] = 0 on ĝ. This implies that for

any n ∈ N and i ∈ I,

(x±αi)n(x±αi) = 0 on Vĝ(�, 0).(6.18)

Viewing W as a faithful (Gμ, χω)-equivariant φ-coordinated quasi-

Vĝ(�, 0)/ kerY
φ
W -module, by Proposition 6.6, we have

(6.19)

( ∏
1≤i<j≤εi�+1

pi(zi/zj)

)

×Y φW (x±αi ,z1)Y
φ
W (x±αi ,z2)· · ·Y

φ
W (x±αi ,zεi�+1)|z1=z2···=zεi�+1

=0 on W

for all i ∈ I. This together with (6.18) and Proposition 2.6 proves that

((x±αi )−1)
εi�+11 ∈ kerY φW for i ∈ I. Thus, we have Jĝ(�, 0) ⊂ kerY φW and W

becomes a (Gμ, χω)-equivariant φ-coordinated quasi-Lĝ(�, 0)-module.

Conversely, let (W,Y φW , d) be a (Gμ, χω)-equivariant φ-coordinated quasi-

Lĝ(�, 0)-module. Then it is also a (Gμ, χω)-equivariant φ-coordinated quasi-

Vĝ(�, 0)-module, and such that for any i ∈ I, ((x±αi )−1)
εi�+11 acts trivially
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on W . Recall from the first part of the theorem that W is then a g̃[μ]-module

with aμ[z] = Y φW (a, z) for a ∈ Ag. Combining this with (6.16), we obtain( ∏
1≤i<j≤εi�+1

pi(zi/zj)

)
Y φW (x±αi , z1)Y

φ
W (x±αi ,z2) · · ·Y

φ
W (x±αi , zεi�+1)

∈ Hom(W,W ((z1, . . . , zεi�+1))).

Then again by (6.18) and Proposition 2.6, we see that (6.19) holds. This implies,

viewing W as a restricted g̃[μ]-module of level �, that (6.17) holds. Thus, by

Proposition 6.6, W is an integrable g̃[μ]-module. This completes the proof of

the theorem.

Remark 6.9: For any complex number a, two vertex algebras V̂t(g,a)o(�)

and L
̂t(g,a)o(�) were constructed in [CLiT], and such that V̂t(g,0)o(�) = Vĝ(�, 0)

and L
̂t(g,0)o(�) = Lĝ(�, 0). By a similar argument as above, one can prove that

the Lie algebra g̃[μ]τa can be associated with the vertex algebras V̂t(g,a)o(�)

and L
̂t(g,a)o(�) via their equivariant φ-coordinated quasi-modules, where g̃[μ]τa

and the affine cocycle τa are defined in Remark 5.8.

7. Associating s̃lN (Cq) with vertex algebras

Let N ≥ 2 be a positive integer and q ∈ C∗ a generic complex number. In

this section we prove an analog of Theorem 6.8 for the extended affine Lie

algebra s̃lN (Cq).

First, we define the following generating functions in s̃lN (Cq)[[z, z
−1]]:

(Ei,jt
m
1 )[z] =

∑
n∈Z

(Ei,jt
n
0 t
m
1 )z−n,

Hk[z] =
∑
n∈Z

(Ek,k − Ek+1,k+1)t
n
0 z

−n,

HN [z] =
∑
n∈Z

(EN,N t
n
0 − q−nE1,1t

n
0 + δn,0k1)z

−n,

where 1 ≤ i, j ≤ N, m ∈ Z with (i−j,m) �= (0, 0) and 1 ≤ k ≤ N−1. Note that

all the coefficients of these generating functions, together with k0, d0 and d1,

form a basis of s̃lN (Cq).
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Definition 7.1: We say that an s̃lN (Cq)-module W is restricted if

(Ei,jt
m
1 )[z], Hk[z] ∈ Hom(W,W ((z)))

for 1 ≤ i, j, k ≤ N, m ∈ Z with (i − j,m) �= (0, 0). Furthermore, W is said

to be of level � ∈ C if the central element k0 acts as the scalar �. Further-

more, we say that W is integrable if Ei,jt
n
0 t
m
1 acts locally nilpotent on W for

1 ≤ i �= j ≤ N, m, n ∈ Z.

The following result is from [CLiTW, Proposition 3.13].

Proposition 7.2: Let W be a restricted s̃lN (Cq)-module of level �. Then W

is integrable if and only if � is a nonnegative integer and

(Ei,jt
m
1 )[z]�+1 = 0 on W

for 1 ≤ i �= j ≤ N and m ∈ Z.

Let gl∞ be the algebra of all doubly infinite complex matrices with only

finitely many nonzero entries. For m,n ∈ Z, let Em,n denote the unit matrix

whose only nonzero entry is the (m,n)-entry which is equal to 1. Equip gl∞
with a nondegenerate, invariant and symmetric bilinear form 〈·, ·〉 defined by

〈Ei,j , Ek,l〉 = δj,k δi,l,

for i, j, k, l∈Z. Let sl∞ = [gl∞, gl∞] be the derived subalgebra of gl∞. Then 〈·, ·〉
is also nondegenerate on sl∞. And associated to the pair (sl∞, 〈·, ·〉), we have

the corresponding affine Lie algebra L̂(sl∞), the universal affine vertex alge-

bra V
̂L(sl∞)(�, 0), and the simple affine vertex algebra

L
̂L(sl∞)(�, 0) = V

̂L(sl∞)(�, 0)/J ̂L(sl∞)(�, 0)

(see Subsection 3.2). The following result is given in [CLiTW, Lemma 3.11].

Lemma 7.3: If � is a nonnegative integer, then J
̂L(sl∞)(�, 0), as L̂(sl∞)-module,

is generated by the set of vectors

{(t−1 ⊗ EmN+i,nN+j)
�+11 | for 1 ≤ i �= j ≤ N, m, n ∈ Z}.(7.1)

Let σN be the automorphism of the algebra gl∞ defined by

σN (Em,n) = Em+N,n+N ,(7.2)

form,n ∈ Z. Restricting σN to the subalgebra sl∞, we see that σN is also an au-

tomorphism of sl∞ that preserves the bilinear form 〈·, ·〉. Denote by GN = 〈σN 〉
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the automorphism group of sl∞ generated by σN . As pointed out in Section 3.2,

GN can be extended uniquely to an automorphism group of the vertex alge-

bras V
̂L(sl∞)(�, 0) and L ̂L(sl∞)(�, 0). Let χq : GN → C× be the linear character

defined by χq(σ
n
N ) = qn for n ∈ Z.

Define a Z-grading gl∞ =
⊕

n∈Z
gl∞(n) on gl∞ by assigning

degEmN+i,nN+j = m− n,(7.3)

form,n ∈ Z, 1 ≤ i, j ≤ N . Note that sl∞ is a graded subalgebra of gl∞. Denote

by P the derivation of sl∞ defined by P(a) = na if a ∈ sl∞ with deg a = n.

Note that for a, b ∈ sl∞, one has 〈Pa, b〉 + 〈a,Pb〉 = 0. This allows us to lift

the derivation P of sl∞ to be a derivation of the affine Lie algebra L̂(sl∞) with

P(k) = 0, P(tn ⊗ a) = tn ⊗ P(a),(7.4)

for n ∈ Z, a ∈ sl∞. As P(t−1C[t−1] ⊗ sl∞) ⊂ t−1C[t−1] ⊗ sl∞, P is also a

derivation of the associative algebra U(t−1C[t−1]⊗ sl∞). Via the isomorphism

U(t−1C[t−1]⊗ sl∞) ∼= V
̂L(sl∞)(�, 0),

P becomes a derivation of V
̂L(sl∞)(�, 0) (as a vertex algebra). Furthermore, if �

is a nonnegative integer, then by Lemma 7.3, we see that P also preserves the

submodule J
̂L(sl∞)(�, 0). Therefore, it descends to a derivation of L

̂L(sl∞)(�, 0).

Definition 7.4: A (GN , χq)-equivariant φ-coordinated quasi-V
̂L(sl∞)(�, 0)-

module (W,Y φW , d, p) is a (GN , χq)-equivariant φ-coordinated quasi-module

(W,Y φW , d) equipped with a linear transformation p on W such that

[p, Y φW (v, z)] = Y φW (Pv, z),

for v ∈ V
̂L(sl∞)(�, 0). Similarly, when � is a nonnegative integer, we can define

the notion of (GN , χq)-equivariant φ-coordinated quasi-L
̂L(sl∞)(�, 0)-module

(W,Y φW , d, p).

Theorem 7.5: Let � be a complex number. IfW is a restricted s̃lN (Cq)-module

of level �, then there is a (GN , χq)-equivariant φ-coordinated quasi-V
̂L(sl∞)(�, 0)-

module structure (Y φW , d, p) on W uniquely determined by

p = −d1, d = −d0,

Y φW (Ei,mN+j , z) = (Ei,jt
m
1 )[z], Y φW (Ek,k − Ek+1,k+1, z) = Hk[z]
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for 1 ≤ i, j, k ≤ N , m ∈ Z with (i − j,m) �= (0, 0). On the other hand, if

(W,Y φW , d, p) is a (GN ,χq)-equivariant φ-coordinated quasi-V
̂L(sl∞)(�, 0)-module,

then W is a restricted s̃lN (Cq)-module of level � with action given by

d1 = −p, d0 = −d,

(Ei,jt
m
1 )[z] = Y φW (Ei,mN+j , z), Hk[z] = Y φW (Ek,k − Ek+1,k+1, z)

for 1 ≤ i, j, k ≤ N , m ∈ Z with (i− j,m) �= (0, 0).

Furthermore, if � is a nonnegative integer, then the integrable restricted

s̃lN (Cq)-modules of level � are exactly the (GN , χq)-equivariant φ-coordinated

quasi-L
̂L(sl∞)(�, 0)-modules (W,Y φW , d, p).

Proof. Recall that s̃lN (Cq) = ŝlN (Cq)⊕Cd0 ⊕Cd1. It was proved in [CLiTW,

Proposition 3.8] that the restricted ŝlN (Cq)-modules W of level � are exactly

the (GN , χq)-equivariant quasi-V ̂L(sl∞)(�, 0)-modules (W,YW ) with

z−1(Ei,jt
m
1 )[z] = YW (Ei,mN+j , z), z−1Hk[z] = YW (Ek,k − Ek+1,k+1, z)

for 1 ≤ i, j, k ≤ N , m ∈ Z with (i − j,m) �= (0, 0). It then follows from

Proposition 3.5 that the restricted ŝlN (Cq)-modules W of level � are exactly

the (GN , χq)-equivariant φ-coordinated quasi-V
̂L(sl∞)(�, 0)-modules (W,Y φW )

with

(Ei,jt
m
1 )[z] = Y φW (Ei,mN+j , z), Hk[z] = Y φW (Ek,k − Ek+1,k+1, z).

Furthermore, by (7.3) and Lemma 2.2 we have

[−d1, (Ei,jt
m
1 )[z]] = −m(Ei,jt

m
1 )[z] = −mY φW (Ei,mN+j , z)

= Y φW (P(Ei,mN+j), z),

[−d1, Hk[z]] = 0 = Y φW (P(Ek,k − Ek+1,k+1), z),

[−d0, (Ei,jt
m
1 )[z]] = z

d

dz
(Ei,jt

m
1 )[z]

= z
d

dz
Y φW (Ei,mN+j , z) = Y φW (D(Ei,mN+j), z),

[−d0, Hk[z]] = z
d

dz
Hk[z] = z

d

dz
Y φW (Ek,k − Ek+1,k+1, z)

= Y φW (D(Ek,k − Ek+1,k+1), z).

Therefore, we have finished the proof for the first part of the theorem.
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To prove the second part of the theorem, we suppose that � is a nonnega-

tive integer and W an integrable restricted s̃lN (Cq)-module of level �. Then

for 1 ≤ i �= j ≤ N and m,n ∈ Z, we have (EnN+i,mN+j)r(EnN+i,nmN+j) = 0

for r ≥ 0 in V
̂L(sl∞)(�, 0). And as a (GN , χq)-equivariant φ-coordinated quasi-

V
̂L(sl∞)(�, 0)-module we have

Y φW (EnN+i,mN+j , z) = Y φW (σnN (Ei,(m−n)N+j), z)

= Y φW (Ei,(m−n)N+j , χq(σN )nz) = (Ei,jt
m−n
1 )(qnz).

This implies that

[Y φW (EnN+i,mN+j , z1), Y
φ
W (EnN+i,mN+j , z2)]

= [(Ei,jt
m−n
1 )(qnz1), (Ei,jt

m−n
1 )(qnz2)] = 0.

Thus, by Propositions 2.6 and 7.2, we have ((EnN+i,mN+j)−1)
�+11 = 0

in V
̂L(sl∞)(�, 0)/ kerY

φ
W . This together with Lemma 7.3 implies that

J
̂L(sl∞)(�, 0) ⊂ kerY φW ,

and hence (W,Y φW, d, p) is a (GN,χq)-equivariant φ-coordinated quasi-L
̂L(sl∞)(�,0)-

module. Conversely, let (W,Y φW , d, p) be a (GN , χq)-equivariant φ-coordinated

quasi-L
̂L(sl∞)(�, 0)-module. Then it is a restricted s̃lN (Cq)-module of level �.

Again by Lemma 7.3, Proposition 2.6 and Proposition 7.2, one deduces that W

is integrable as required.
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