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ABSTRACT

We classify finite-dimensional Nichols algebras over finite nilpotent groups

of odd order in group-theoretical terms. The main step is to show that

the conjugacy classes of such finite groups are either abelian or of type C;

this property also holds for finite conjugacy classes of finitely generated

nilpotent groups whose torsion has odd order. To extend our approach

to the setting of finite GK-dimension, we propose a new Conjecture on

racks of type C. We also prove that the bosonization of a Nichols algebra

of a Yetter–Drinfeld module over a group whose support is an infinite

conjugacy class has infinite GK-dimension. We apply this to the study of

the finite GK-dimensional pointed Hopf algebras over finitely generated

torsion-free nilpotent groups.
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Introduction

0.1. The context. Let k be an algebraically closed field of characteristic 0.

This paper contributes to the classification of Hopf algebras with finite Gelfand–

Kirillov dimension, GK-dim for short. Despite recent interest on this question,

see [21, 22] and references therein, the general structure of such Hopf algebras is

still mysterious, so it is justified to focus on the class of pointed Hopf algebras;

under this assumption we may follow the method from [11], first applied in the

GK-dim context in [12], cf. also [38]. By a celebrated theorem of Gromov [27], a

finitely generated group has finite growth if and only if it is nilpotent-by-finite.

Thus, the first major goal within the method of [11] is to classify Nichols algebras

with finite GK-dim over finitely generated nilpotent-by-finite groups. Towards

this goal, the first natural question is to deal with the classification of Nichols

algebras with finite GK-dim over abelian groups. We collect information on this

question needed for the general case. There are various subclasses to consider:

◦ Nichols algebras of diagonal type, corresponding to semisimple Yetter–

Drinfeld modules over finitely generated abelian groups. Those with

finite dimension were classified in [29]. Conjecture 1.2 below from [6] re-

duces the classification of the finitely generated Nichols algebras of diag-

onal type with finite GK-dim to [29]. Also [5] deals with Nichols algebras

of diagonal type with finite GK-dim which are not finitely generated.

◦ Next comes the class of Nichols algebras of blocks & points; here the

classification of those with finite GK-dim was achieved in [6] for finite,

and [5] for infinite, rank; both assume the validity of Conjecture 1.2.

◦ There are decomposable Yetter–Drinfeld modules over abelian groups

that are not of the form blocks & points; they contain components

known as pale blocks. The classification of those with finite GK-dim in

rank 3 was also obtained in [6] while rank 4 is work in progress [7].

Summarizing, in order to have a classification of the finitely generated Nichols

algebras with finite GK-dim over abelian groups it remains to conclude the clas-

sification of the blocks & pale blocks & points giving rise to Nichols algebras

with finite GK-dim and to prove Conjecture 1.2; we believe that both objec-

tives could be attained soon. We should also mention that the classification

of finite-dimensional Nichols algebras over finite groups is far from complete

notwithstanding intense activity in this direction. See [1, 23, 32] and references

therein.
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The focus of this article is on Nichols algebras over nilpotent groups whose

bosonizations have finite GK-dim. The main results of this paper are:

◦ The description of the finite-dimensional Nichols algebras over a finite

nilpotent group of odd order G up to the knowledge of the conjugacy

classes and the representations of the centralizers of G, Theorem 3.11.

◦ The description of the bosonizations B(M)#kG with G a torsion-free

nilpotent group and M ∈ kG
kGYD semisimple having finite GK-dim up

to knowledge of the irreducible representations of G. See Theorem 3.5.

We next describe how we achieve these results.

0.2. Finite nilpotent groups. Let us start with finite nilpotent groups of

odd order. Our first basic result, Theorem 2.1, states that any conjugacy class

of such a group is either abelian or of type C. The notion of rack of type C was

introduced in [8], where it was shown that any Nichols algebra whose support

is of type C has infinite dimension. Thus we are reduced to deal with abelian

conjugacy classes which give rise to braided vector spaces of diagonal type.

To give a more precise answer, we generalize a technique from [41], the only

reference we know on Nichols algebras over nilpotent groups (beyond the abelian

case). A similar analysis could be carried out in the context of finite GK-dim,

but we need to assume the already mentioned Conjecture 1.2 and the new

Conjecture 1.13 extending the criterium of type C from [8] to the setting of

GK-dim.

0.3. Finitely generated nilpotent groups. Our second basic result, The-

orem 2.6, shows that the bosonization B(M)#kG of the Nichols algebra of any

Yetter–Drinfeld M module over any finitely generated group G, whose support

is an infinite conjugacy class, has infinite GK-dim even if B(M) could have

finite GK-dim. It is known that any conjugacy class of a finitely generated

torsion-free nilpotent group G is either infinite or central, thus for such groups

we just need to study Nichols algebras with central support. These arise also

over abelian groups, discussed above in §0.1. For illustration we list those cor-

responding to M semisimple, see Theorem 3.5.

Finally let G be a finitely generated nilpotent group and assume that its

torsion subgroup T has odd order. Then we show that any finite conjugacy

class is either abelian or of type C, see Proposition 2.9, extending Theorem 2.1.

To proceed further we need the validity of Conjectures 1.2 and 1.13. We also

make a reduction when the order of T is coprime to 6.
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The paper has four sections: in the first one we collect preliminary informa-

tion on Nichols algebras. Section 2 deals with conjugacy classes including the

basic theorems mentioned above. In Section 3 we establish the main results,

stating some auxiliary lemmas in more generality for future applications and

discussing a few examples. Comments on the open questions on Hopf algebras

over nilpotent-by-finite groups are in the last Section 4.

Acknowledgment. I thank Caleb Eckhardt and Pavel Shumyatsky for point-

ing out proofs of Lemmas 2.7 and 2.10 to me, respectively. I am also grateful

to Sonia Natale for many interesting discussions (on the matters of this paper).

1. Preliminaries

1.1. Notations. We denote the cardinal of a set X by |X |. If k < � are non-

negative integers, then we set Ik,� = {i ∈ N : k ≤ i ≤ �} and just I� = I1,�.

Given a positive integer �, we denote by G� the group of �-th roots of unity in k,

and by G′
� ⊂ G� the subset of those of order �. The group of all roots of unity

is denoted by G∞ and G′
∞ := G∞ − {1}.

Let G be a group. The identity, the group of characters and the center

of G are denoted by e, Ĝ = Homgroups(G, k×) and Z(G). The notations

F � G, or G � F , mean that F is a subgroup of G, while F � G, or G � F ,

mean that F � G is normal. We shall use the notations x � y = xyx−1,

[x, y] = xyx−1y−1 (the commutator), |x| = the order of x, for x, y ∈ G.

Given x ∈ G, let Ox be its conjugacy class and let Gx be its centralizer. If

emphasis is needed, then we write OG
x = Ox.

The symmetric and exterior algebras of a vector space V are denoted S(V )

and Λ(V ) respectively.

Let Irr C be the set of isomorphism classes of simple objects in an abelian cate-

gory C. If A is an algebra and C is the category of A-modules, then IrrA := Irr C;
if A = kG, then IrrG := IrrA. Also Indec C denotes the set of isomorphism

classes of indecomposable objects in C and corespondingly we have IndecA,

IndecG.

1.2. Yetter–Drinfeld modules. A braided vector space is a pair (V, c)

where V is a vector space and c ∈ GL(V ⊗2) satisfies the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).
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A systematic way of producing braided vector spaces is through Yetter–Drinfeld

modules over a Hopf algebra H (always assumed with bijective antipode); these

are H-modules and H-comodules subject to a compatibility condition, see [36].

The category H
HYD of Yetter–Drinfeld modules over H is a braided monoidal

one. Hence the notion of Hopf algebras in H
HYD is available. We refer to [1] for

the concepts of Nichols algebra of a Yetter–Drinfeld module (a special kind of

Hopf algebra in H
HYD) and Nichols algebra of a braided vector space (a non-

categorical version of the former), central in the approach to the classification

of pointed Hopf algebras pursued in this paper.

If V ∈ H
HYD, or if (V, c) is a braided vector space, then B(V ) denotes its

Nichols algebra and J = J (V ) its ideal of defining relations.

Example 1.1: Yetter–Drinfeld modules of dimension 1 are classified by YD-pairs

over H, that is pairs (g, χ) ∈ G(H)×HomAlg(H, k) satisfying

χ(h)g = χ(h(2))h(1)gS(h(3)), h ∈ H.

Given a YD-pair (g, χ), we denote by kχg ∈ H
HYD the one-dimensional vector

space where H acts by χ and co-acts by g. Let q = χ(g). It is well-known that

B(kχg ) �
⎧⎨
⎩k[T ]/TN , if q ∈ G′

N , N > 1;

k[T ], otherwise,

where T is an indeterminate.

1.3. Nichols algebras of diagonal type. Let θ ∈ N and I := Iθ. Given a

matrix q = (qij)i,j∈I ∈ (k×)I×I, we denote by (V, cq) the braided vector space

of diagonal type associated to q, where V has a basis (xi)i∈I and

cq(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I.(1.1)

In this case we set Jq = J (V ), Bq = B(V ), etc. The Dynkin diagram

associated to q is the graph with θ vertices, where the vertex i is labelled by qii,

and there is an edge between i and j labelled by q̃ij := qijqji. When q̃ij = 1,

the edge is omitted except sometimes for the needs of the exposition.

Assume that a matrix p = (pij)i,j∈I is twist-equivalent to q, that is they

have the same Dynkin diagram, i.e., pii = qii and p̃ij = q̃ij for all i �= j. Then

the Nichols algebras Bp and Bq, which are not necessarily isomorphic, have

the same Hilbert series, hence the same GK-dim by [34, Lemma 6.1]. We shall

express this situation by Bp �tw Bq.
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We may refer to the connected components of the Dynkin diagram and a

fortiori of q. For many purposes we may assume that q is connected as Bq is

the twisted tensor product of the Nichols algebras of the connected components

of q. Under suitable hypotheses, a matrix q gives rise to a generalized root

system [33]; if dimBq <∞, then q has a finite root system. The classification

of all q with finite root system and connected Dynkin diagram was given in

[29]; this contains the classification of the finite-dimensional Nichols algebras of

diagonal type. The Nichols algebras Bq with q in the list of [29] have finite

GK-dim. It was conjectured that these are all.

Conjecture 1.2 ([6, Conjecture 1.5]): The root system of a Nichols algebra

of diagonal type with finite GK-dimension is finite.

The conjecture holds when θ ≤ 3, when q is of Cartan type, or when q is

generic; see [4], [17] and references therein.

The defining relations of the Nichols algebras Bq with q in the list of [29]

appear in [14, 13]. See the survey [2].

We shall apply several times the following result. The first three items are

well-known, the last follows from [4, Theorems 1, 2, 4.1]. The case θ = 1 is

covered by Example 1.1.

Lemma 1.3: Assume that θ ≥ 2. Given q ∈ k×, let V be a braided vector space

of diagonal type with matrix q = (qij)i,j∈I where qij = q for all i, j ∈ I; thus

locally the Dynkin diagram is

q◦
i

q2 q◦
j

for all i �= j.

Then:

(i) If q = 1, then B(V ) � S(V ).

(ii) If q = −1, then B(V ) � Λ(V ).

(iii) If q ∈ G′
3 and dimV = 2, then B(V ) is of Cartan type A2 and has

dimension 27.

(iv) Otherwise GK-dimB(V ) = ∞.

The next result will be useful too. For the first two items we assume Conjec-

ture 1.2 and go through the list of [29]. Here by cycle we mean a closed path.

For (iii), see [6, Lemma 2.8] inspired by [38].
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Lemma 1.4: Let V be a braided vector space of diagonal type such that its

Dynkin diagram contains

(i) either an N -cycle, with N > 3,

(ii) or else a 3-cycle, with no vertex labelled by −1,

(iii) or else a sub-diagram of the form
q◦ r 1◦ , r �= 1.

Then GK-dimB(V ) = ∞.

Remark 1.5: The only 3-cycles with all vertices labelled by −1 in [29] are

−1◦
s r

−1◦ q −1◦
where q, r, s �= 1, qrs = 1.

These are of type D(2, 1;α), [2, §5.4]. When q = r = s ∈ G′
3, dimBq = 2433.

Furthermore, this diagram can not be embedded in a Dynkin diagram of rank

4 with finite root system; see [29, Table 4].

Remark 1.6: The only Dynkin diagrams of rank 2 in the list of [29] with both

vertices labelled by the same q �= 1 are

q◦ q−1 q◦ , of type A2;

q◦ ζ q◦ , where ζ ∈ G′
12 and q = −ζ2; of type ufo(8), see [2, §10.8].

Definition 1.7: Let (V, cq) be a braided vector space of diagonal type. A prin-

cipal realization of (V, cq) over a Hopf algebra H is a family (gi, χi)i∈I of

YD-pairs such that qij = χj(gi) for all i, j. In this case V =
⊕

i k
χi
gi ∈ H

HYD.

Let G be a finite group of odd order. By inspection of the list in [29], we see

that a matrix q with finite root system and connected Dynkin diagram could

have a principal realization over the the group algebra kG only when either it

is of Cartan type, or else its Dynkin diagram is one of

ω◦ q−1 q◦ , ω◦ ω2q ωq−1

◦ ,(1.2)

ζ◦ ζ−1 ζ◦ ζ−1 ζ−3

◦ ζ◦ ζ−1 ζ−4

◦ ζ4 ζ−3

◦ ,(1.3)
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where the order of q divides |G| and is > 3, ω ∈ G′
3 and ζ ∈ G′

9. In particular,

if 3 does not divide |G|, then q could admit a principal realization only if it

is of Cartan type. See [2, §7.2, §7.3] for information on (1.2) of type br(2),

resp. (1.3) of type br(3).

1.4. Yetter–Drinfeld modules over groups. Let G be a group. Recall

that Ox denotes the conjugacy class and Gx the centralizer of x ∈ G. For

any y ∈ Ox we fix gy ∈ G such that gy � x = y. Then for h ∈ G and y ∈ Ox

th,y := g−1
h�yhgy ∈ Gx.(1.4)

A Yetter–Drinfeld module M ∈ kG
kGYD is just a G-graded vector space

M =
⊕

g∈GMg provided with a linear action of G such that

h ·Mg =Mh�g, h, g ∈ G.

In such case, the support of M is suppM = {g ∈ G : Mg �= 0}, which is a

disjoint union of conjugacy classes. If v ∈Mg, then deg v := g.

We next describe Irr kG
kGYD and Indec kG

kGYD. First we consider x ∈ G and a

representation ρ : Gx → GL(W ). We set

M(x,W ) := IndGGx W � kO ⊗W �
⊕
y∈Ox

gy ⊗W.

As is known, M(x,W ) belongs to kG
kGYD with action and grading

h · (gy ⊗ w) = gh�y ⊗ th,y · w, deg(gy ⊗ w) = y,

where th,y is given by (1.4). We also use the notation M(x, ρ) =M(x,W ), and

accordingly

B(x,W ) := B(M(x, ρ)) =: B(x, ρ).

For brevity, we set gyw = gy ⊗ w. Then the braiding of M(x,W ) is given by

c(gzu⊗ gyw) = gz�y(tz,y · w)⊗ gzu, z, y ∈ Ox, u, w ∈ W.(1.5)

Example 1.8: A YD-pair over kG is just a pair (g, χ) ∈ Z(G)× Ĝ; then

kχg �M(Og, χ),

see Example 1.1. If, e.g., g ∈ Z(G) ∩ [G,G] and χ ∈ Ĝ, then B(g, χ) � S(W )

where dimW = 1, thus GK-dimB(g, χ) = 1.
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Proposition 1.9: Irr kG
kGYD is parametrized by pairs (O,W ) where O is a con-

jugacy class and W ∈ IrrGx for a fixed choice of x ∈ O. Similarly Indec kG
kGYD

is parametrized by pairs (O,W ) where now W ∈ IndecGx.

We sketch a proof of this well-known result for completeness, as we have not

found a reference for the case when G is infinite.

Proof. If M is indecomposable, then necessarily suppM = Ox for some x ∈ G

that we fix. Thus M =
⊕

y∈Ox
My and Gx acts on Mx. Let Nx be a Gx-

submodule of Mx. For each y ∈ Ox choose gy ∈ G such that gy � x = y.

Then gy · Nx ⊂ My and N :=
⊕

y∈Ox
gy · Nx is a Yetter–Drinfeld submodule

of M . Thus, if M is indecomposable, respectively simple, then so is Mx as Gx-

module, and M �M(x,Mx). The converse is proved similarly.

Actually, there is an equivalence of categories between RepGx and the full

subcategory of kG
kGYD whose objects have support on Ox. See [30, Prop. 1.4.17].

I thank the referee for pointing out this fact.

1.5. Racks. Nichols algebras over groups are studied systematically through

racks. We refer to [9] for an exposition on racks and Nichols algebras over

groups and [1] for more recent results. Here we collect some material needed

in this paper. A rack is a non-empty set X with a self-distributive operation

� : X × X → X such that ϕx := x � is bijective for every x ∈ X . The

main examples are subsets of groups stable under conjugation. All racks here

are assumed to be subracks of groups. A rack X is abelian if x � y = y

for all x, y ∈ X . The inner group of a rack X is the subgroup InnX of the

group AutX of rack automorphisms generated by ϕx for all x ∈ X .

Lemma 1.10 ([9, Lemma 1.8]): A surjective morphism of racks π : X → Y

extends to a surjective morphism of groups Innπ : InnX → Inn Y .

Proof. Given x ∈ X , define Innπ(ϕx) = ϕπ(x). If z ∈ X satisfies ϕx = ϕz,

then ϕπ(x)(π(y)) = π(x) � π(y) = π(x � y) = π(z � y) = ϕπ(z)(π(y)). Since π is

surjective, then ϕπ(x) = ϕπ(z), i.e., Innπ is well-defined. Consider next

G = {σ ∈ SX : ∃ν ∈ SY such that πσ = νπ}.
Clearly such ν is unique, G ≤ SX and σ �→ ν is a morphism of groups. Thus

Innπ is a morphism of groups which is surjective because π is so.

The following statement is a consequence of [31, Theorem 2.1].
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Theorem 1.11: Let G be a finite non-abelian group and V and W be two

simple Yetter–Drinfeld modules over G such that G is generated by the support

of V ⊕W , dimV ≤ dimW and

c2|V⊗W �= idV ⊗W .(1.6)

If dimB(V ⊕W ) <∞, then (dimV, dimW ) belongs to

{(1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.(1.7)

When dimW = 3 in (1.7), W is the braided vector space associated to the

transpositions in S3 with the cocycle −1, which is not of diagonal type.

Recall from [8, Definition 2.3] that a finite rack X is of type C when there

are a decomposable subrack Y = R
∐
S and elements r ∈ R, s ∈ S such that

r � s �= s (hence s � r �= r),(1.8)

R = OInnY
r , S = OInnY

s ,(1.9)

min{|R|, |S|} > 2 or max{|R|, |S|} > 4.(1.10)

Theorem 1.12 ([8, Theorem 2.9]): A finite rack of type C collapses, that is

dimB(O,q) = ∞
for every finite faithful 2-cocycle q.

The proof of Theorem 1.12 relies on [31, Theorem 2.1], which in turn depends

on the notion of Weyl groupoid [33]. For some of the arguments below we need

the validity of the following conjecture; the adaptation of the proof of [31] does

not appear to be straightforward.

Conjecture 1.13: Let X be a finite rack of type C. Then

GK-dimB(O,q) = ∞
for every faithful 2-cocycle q.

Example 1.14: Assume that G = G1 ×G2. If x = (x1, x2) ∈ G, then

Ox = Ox1 ×Ox2 , Gx = Gx1 ×Gx2 , IrrGx � IrrGx1 × IrrGx2 .(1.11)

Thus if W �W1 ⊗W2 is a simple Gx-module, then

M(x,W ) �M(x1,W1)⊗M(x2,W2).(1.12)
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Correspondingly, the tensor product of two braided vector spaces (V, cV ) (W,cW )

is (V ⊗W, cV⊗W ) where cV⊗W : V ⊗W ⊗ V ⊗W → V ⊗W ⊗ V ⊗W is defined

by

cV⊗W := (id⊗τV,W ⊗ id)(cV ⊗ cW )(id⊗τW,V ⊗ id).

Observe that there is no clear relation between the Nichols algebras B(x,W ),

B(x1,W1) and B(x2,W2). For instance, if all three modules in (1.12) have di-

mension one, then the braidings are given respectively by q, q1 and q2

with q = q1q2 so that any of them could be 1 with the other two being non-trivial

roots of 1. But the criterium of type C propagates in this setting.

Namely, let X = X1 × X2 be a direct product of racks. If either X1 or X2

is of type C, then so is X . Indeed, let Y1 = R1

∐
S1 be a subrack of X1 and

elements r1 ∈ R1, s1 ∈ S1 satisfying (1.8), (1.9) and (1.10). Pick any x2 ∈ X2

and set Y = Y1×{x2}, R = R1×{x2}, S = S1×{x2}, r = (r1, x2), s = (s1, x2).

Then (1.8), (1.9) and (1.10) hold for them.

2. Hopf algebras and conjugacy classes

Recall that the upper central series of a group G is the sequence of subgroups

e = Z0 � Z1 � · · ·� Zi � · · · , where
Zn+1 = Zn+1(G) = {x ∈ G : [x,G] ≤ Zn};

G is nilpotent iff the upper centralizer series stabilizes in G [24, Th. 2.2].

2.1. Conjugacy classes in finite nilpotent groups. Here is our first

basic result on Nichols algebras over finite nilpotent groups.

Theorem 2.1: Let O be a conjugacy class in a finite nilpotent group G of odd

order. Then O is either of type C or else an abelian rack.

There are examples of conjugacy classes of finite nilpotent groups that are of

type C; see Subsection 3.8.3.

Proof. It is well-known that a finite group is nilpotent if and only if it is iso-

morphic to the product of its Sylow subgroups; see, e.g., [24, Theorem 2.13].

Hence, by Example 1.14, we may assume that G is a p-group with p an odd

prime. Let us assume that O is not abelian. That is, there exist r, s ∈ O such

that r � s �= s (and then s � r �= r). Let H = 〈r, s〉 ≤ G.
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If R := OH
r �= S := OH

s , then Y := R
∐
S is a decomposable subrack of O

that satisfies (1.9), because H = 〈Y 〉 so R = OH
r = OInn Y

r and OH
s = OInnY

s .

Now (1.8) holds by assumption. Evidently p divides both |R| and |S|. Since

p ≥ 3, (1.10) holds and O is of type C.

Next suppose that s ∈ OH
r = Y . Then H = 〈Y 〉, hence Y = OH

r = OInnY
r is

indecomposable by [9, Lemma 1.15]. Also InnY � H/Z(H) by [9, Lemma 1.9],

hence InnY is a p-group. Now by a routine recursive argument, there exists a

surjective morphism of racks π : Y → Z where Z is simple. Considering the

surjective morphism of groups Innπ : InnY → InnZ given by Lemma 1.10, we

see that InnZ is a p-group, so in particular |Z| should be a power of p. But then

InnZ could not be a p-group being a semidirect product of a p-group with a

group of order not divisible by p, see [9, Proposition 3.2 and Theorem 3.7], and

also the discussion at the end of page 204 and the beginning of [9, p. 205].

Note that this is not a statement on racks with pn elements, p an odd prime

but on conjugacy classes of p-groups.

When G is a 2-group, Theorem 2.1 is no longer true. Indeed, the group

D4 = 〈x, y|x2 = e = y4, xyx = y3〉 admits a a finite-dimensional Nichols alge-

bra B(V ) where

suppV = Y = Ox

∐
Oxy

which is neither abelian nor of type C. The rack Y can be realized as conjugacy

class in the group D4 � Z/4 determined by the automorphism σ : D4 → D4,

σ(x) = xy, σ(y) = y.

2.2. Hopf algebras and infinite conjugacy classes. Let H be a Hopf

algebra. If R is a Hopf algebra in H
HYD, then the bosonization (or biproduct)

R#H is the Hopf algebra with underlying vector space R⊗H and structure as

in [36, Section 11.6].

Remark 2.2: Recall that an affine algebra is a finitely generated one. Let O be a

conjugacy class in a finitely generated group G. Let x ∈ O and let W ∈ RepGx

be a finitely generated module. Set M =M(O,W ). Then T (M)#kG is affine,

hence so is B(M)#kG.

Proof. Let (gi)i∈I be a family of generators of G and (wj)j∈J be a family

of generators of W . Then the gi’s together with the wj ’s generate the alge-

bra T (M)#kG.



Vol. 259, 2024 ON POINTED HOPF ALGEBRAS 181

Let G be a finitely generated group and let M ∈ kG
kGYD be such that the

action of G is locally finite. By [6, Lemma 2.3.1], we have

GK-dimB(M)#kG ≤ GK-dimB(M) + GK-dim kG.(2.1)

Furthermore, if dimM < ∞, then the equality holds in (2.1). Our second

basic result, Theorem 2.6 (inspired by [6, Example 2.3.3]), roughly states that

GK-dimB(M)#kG = ∞ if the support ofM is an infinite conjugacy class, even

if GK-dimB(M) is finite, in sharp contrast with (2.1). We start by a theorem

of Malcev needed for our approach.

Theorem 2.3 (Malcev [24, Theorems 2.23, 2.24]): Let G be a finitely gener-

ated nilpotent group and let H ≤ G. Assume that there exists a finite set X

of generators such that for any g ∈ X there exists a positive integer n such

that gn ∈ H . Then the index of H in G is finite.

Furthermore, if for any g ∈ X the integer n is a power of a fixed prime p,

then [G : H ] is also a power of p.

Actually, the last claim holds more generally if n is a �-number, where � is

a fixed set of primes.

Corollary 2.4: Let G be a finitely generated nilpotent-by-finite group and

let H ≤ G. Assume that for every g ∈ G there exists a positive integer n such

that gn ∈ H . Then the index of H in G is finite.

Proof. Let N ≤ G be nilpotent of finite index; N is finitely generated by [37,

1.6.11]. If g ∈ N , then there exists n ∈ N such that gn ∈ H∩N ; thus [N : H∩N ]

is finite by Theorem 2.3 and so is [G : H ∩ N ] = [G : N ][N : H ∩ N ]. But

[G : H ∩N ] = [G : H ][H : H ∩N ], so [G : H ] is finite.

Corollary 2.5: Let G be a finitely generated nilpotent-by-finite group,

let O ⊂ G be an infinite conjugacy class and pick x ∈ O. Then there exists

g ∈ G such that gn � x �= x for all n ∈ N.

Proof. If for every g ∈ G there exists n ∈ N such that gn � x = x, then

|O| = [G : Gx] is finite by Corollary 2.4.

Theorem 2.6: Let G be a finitely generated group and M ∈ kG
kGYD such

that O = suppM is an infinite conjugacy class. Then

GK-dimB(M)#kG = ∞.
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Proof. By Gromov’s Theorem we may assume that G is nilpotent-by-finite.

Let x ∈ O. Since Mx is the union of its finitely generated Gx-submodules, we

may assume that it is finitely generated. Let S be a finite set of generators

of the group G and let F be a finite set of generators of the Gx-module Mx.

Pick g ∈ G such that xn = gn�x �= x for all n ∈ N, which exists by Corollary 2.5,

and m0 ∈ F\0. Let V = 〈1, S, g±1, F 〉, a set of generators of B(M)#kG.

For n ∈ N we set mn = gnm0g
−n ∈ V 2n+1. Given s ∈ I0,n, let

Λn,s = {mi1 · · ·mis : 1 ≤ i1 < · · · < is ≤ n}, Λn =
⋃

s∈I0,n

Λn,s.

We claim that (i) |Λn| = 2n (exercise), (ii) Λn ⊂ V (n+1)2 , and (iii) Λn is a

linearly independent set. For (ii), just observe that

Λ1 = {1,m1} ⊂ V 3 ⊂ V 4, Λn ⊂ Λn−1{1,mn} ⊂ V n2

V 2n+1 ⊂ V (n+1)2 .

For (iii), it is enough to prove that Λn,s ⊂ Bs(M) is a linearly independent set.

Clearly, mn ∈Mxn for all n ∈ N0. The claim (iii) is a particular case of

Claim (iv): Given m̃i ∈Mxi\0, i ∈ In, the subset

Λ̃n,s = {m̃i1 · · · m̃is : 1 ≤ i1 < · · · < is ≤ n}

of B(M) is linearly independent.

Proof of Claim (iv). By induction on s and n. The elements xi are all different

by our choice of g, thus the case s = 1 follows. After completing appropriately

the family (m̃i) to a homogeneous basis of M , we know that there exist skew-

derivations ∂j : B(M) → B(M), j ∈ In, such that

∂j(uv) = ∂j(u)(xj · v) + u ∂j(v), ∂j(m̃i) = δi,j .

Set Is = {i = (i1, . . . , is) : 1 ≤ i1 < · · · < is ≤ n}, m̃i = m̃i1 · · · m̃is . Then

∂j(m̃i) =

⎧⎨
⎩0, if j /∈ {i1, . . . , is},
m̃i1 · · · m̃ih−1

(xj · m̃ih+1
) · · · (xj · m̃is) if j = ih, h ∈ Is.

Thus we consider the map ψj from Is;j := {i = (i1, . . . , is) ∈ Is : ∃h, ih = j} to

Is−1;¬j := {i = (i1, . . . , is−1) ∈ Is−1 : �k, ik = j} given by

i �→ (i1, . . . , ih−1, ih+1, . . . , is).
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It is easy to see that this map ψj is bijective. Let now λi, i ∈ Is, be a family of

scalars such that
∑

i∈Is
λim̃i = 0. Then for any j ∈ In

0 = ∂j

(∑
i∈Is

λim̃i

)
=

∑
i∈Is;j

λim̃i1 · · · m̃ih−1
(xj · m̃ih+1

) · · · (xj · m̃is).

If j = n, then

0 =
∑
i∈Is;n

λim̃i1 · · · m̃is−1

	
=⇒ λi = 0 ∀i ∈ Is;n

=⇒ 0 =
∑

i∈Is;¬n

λim̃i =
∑

i∈Is;n−1

λim̃i
�

=⇒ λi = 0 ∀i ∈ Is;¬n,

where � is by the inductive hypothesis on s and � is by the inductive hypothesis

on n. Claim (iv) is proved.

By (i), (ii) and (iii), 2n ≤ dimV (n+1)2 for all n; the Theorem follows.

2.3. Finitely generated torsion-free nilpotent groups. Recall that

the FC-center FC(G) of a group G is the union of all finite conjugacy classes

of G; FC(G) is a characteristic subgroup of G containing Z(G) [18]. The

following result is folklore; see, for instance, [25] for a different proof.

Lemma 2.7: If G is a finitely generated torsion-free nilpotent group, then every

non-central conjugacy class is infinite.

Proof. Since G is finitely generated nilpotent, so is FC(G). By [39, Theo-

rem 1.6], [FC(G), FC(G)] is finite. Since G is torsion-free,

[FC(G), FC(G)] = e,

i.e., FC(G) = Z(FC(G)) = Z(G), the last equality by [25, Lemma 2.2].

2.4. Finite conjugacy classes in nilpotent groups. We generalize The-

orem 2.1 to nilpotent groups whose torsion has odd order, using a well-known

result of Gruenberg.

Theorem 2.8 ([28]): Let G be a finitely generated nilpotent group with tor-

sion T �= e and e �= g ∈ G. Then there exists a prime p that divides |T |, a finite

p-group P and a morphism π : G→ P such that π(g) �= e.
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Proposition 2.9: Let G be a finitely generated nilpotent group whose torsion

subgroup T �= e is non-trivial and has odd order. Then a finite conjugacy

class O of G is either abelian or else of type C.

Proof. Suppose that O is not abelian. Pick r, s ∈ O such that r � s �= s, i.e.,

[r, s] �= e. By Theorem 2.8 there exist an odd prime p and an epimorphism π

from G to a finite p-group P such that [π(r), π(s)] = π([r, s]) �= e. Let

H = 〈π(r), π(s)〉 ≤ P, R̃ := OP
π(r), S̃ := Oπ(r)

P .

Arguing as in the proof of Theorem 2.1, we see that Ỹ := R̃
∐
S̃ is a decompos-

able subrack of P . Let R := π−1(R̃)∩O, S := π−1(R̃)∩O. Then Y := R
∐
S is

a decomposable subrack of O. Now the elements π(s), π(r) � π(s), π(r)2 � π(s)

of S̃, respectively π(r), π(s) � π(r), π(s)2 � π(r) of R̃, are different. Hence

s, r � s, r2 � s ∈ S, respectively r, s � r, s2 � r ∈ R, are different, (1.10) holds

and O is of type C.

Theorem 2.6 and Proposition 2.9 show that the classification of pointed Hopf

algebras with finite GK-dim over a finitely generated nilpotent group whose

torsion has odd order goes through Nichols algebras over abelian groups. For

instance, a Hopf algebra H like this is co-Frobenius if and only if grH � B(V ),

where V is of diagonal type and dimB(V ) <∞, as follows from the preceding

results and [6, Theorem 1.4.2]; see loc. cit. for details. This last claim does not

assume Conjecture 1.13.

We finish this Section with a result needed later, see Lemma 3.13.

Lemma 2.10: Let G be a finitely generated nilpotent group with torsion T and

let O = Ox be a finite conjugacy class in G. Then |O| divides |T |.
Proof. As G/T is torsion-free, FC(G/T ) = Z(G/T ) by Lemma 2.7. Hence the

image of x is central in G/T ; i.e., [G, x] ≤ T . Let φ : G → T be given by

g �→ [g, x], g ∈ G and let S = φ−1(T ∩ Z(G)). If g ∈ G and h ∈ S, then

φ(gh) = [gh, x] = ghxh−1g−1x−1 = g[h, x]xg−1x−1 = φ(g)φ(h).(2.2)

Thus the restriction φ : S → T ∩ Z(G) is a homomorphism; clearly, Gx ≤ S

and S/Gx embeds into T ∩ Z(G). Hence |OS
x | divides |T ∩ Z(G)|. Let now

k = min{k ∈ N0 : T ≤ Zk(G)}.
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We argue by induction on k and |O|. If k = 0, then G is torsion-free and

Lemma 2.7 applies. If k = 1, then T ≤ Z(G), G = S and the claim follows.

Assume that k > 1. Let H = G/(T ∩ Z(G)) and let π : G → H be the

natural projection. Given y ∈ OH
π(x), we fix zy ∈ OG

x = O such that π(zy) = y

and gy ∈ G such that zy = gy � x. For t ∈ OS
x , fix gt ∈ S such that t = gt � x.

We claim that the map

σ : OH
π(x) ×OS

x → O,
σ(y, t) = zytx

−1 = zt[gt, x], y ∈ OH
π(x), t ∈ OS

x ,

is a well-defined bijection. First, since φ(gt) ∈ Z(G),

zytx
−1 = [gy, x]x[gt, x] = φ(gy)φ(gt)x

(2.2)
= φ(gygt)x = gygt � x ∈ O;

we have

σ(y, t) = σ(w, s) =⇒ π(zyφ(gt)) = π(zwφ(gs)) =⇒ y = w =⇒ t = s.

Finally, let z ∈ O and y = π(z); then z = zyu where u ∈ T ∩ Z(G). Now
z = zyu = (gy � x)(gy � u) = gy � (xu) =⇒ xu ∈ O;

pick g ∈ G such that ux = xu = g�x and set t = g�x; since u=(g � x)x−1=φ(g),

we conclude that g ∈ S, t ∈ OS
x and σ(y, t) = z. The claim is proved.

The torsion of H is T1 = T/T ∩ Z(G). Then
Zj(H) ∩ T1 = π(Zj+1(G) ∩ T ), j ∈ N0,

and so Zk−1(H) ∩ T1 = T1. By the inductive hypothesis on k − 1, |OH
π(x)|

divides |T1|; thus |O| = |OH
π(x)||OS

x | divides |T1||T ∩ Z(G)| = |T |.

3. Nichols algebras

3.1. First remarks: dimW ≥ 2. In this subsection, we fix

◦ A group G, a finite conjugacy class O in G, x ∈ O.

◦ W ∈ IrrGx with representation ρ : Gx → GL(W ). We assume that

dimW is countable; this is the case if G is finitely generated. By the

Schur Lemma, aka Dixmier’s Lemma [40, 0.5.2], there exists η ∈ Ẑ(Gx)

implementing the action of Z(Gx) on W .

◦ χ ∈ Ĝx; set q := χ(x).
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Remark 3.1: Pick y ∈ O and gy ∈ G such that gy � x = y. Then Gy = gy � G
x

and
ρy : Gy → GL(W ),

ρy(g) = ρ(g−1
y � g)

is an irreducible representation of Gy. Hence

M(O, ρ) �M(O, ρy) and η(x) = ηy(y).

Similarly,

M(O, χ) �M(O, χy) and q = χy(y).

We start with an argument going back to [26, 3.1], based on Lemma 1.3.

Lemma 3.2: Let W ∈ IrrGx be as above. Assume that dimW ≥ 2.

Let M = kx ⊗ W , a braided subspace of M(O,W ) with dim M = dimW .

Then B(M) is a braided Hopf subalgebra of B(O,W ) and we have

(i) If η(x) = 1, then B(M) � S(M). Thus GK-dimB(O,W ) = ∞ implies

that dimW <∞.

(ii) If η(x) = −1, then B(M) � Λ(M).

(iii) If η(x) ∈ G′
3 and dimW = 2, then B(M) is of Cartan type A2 and has

dimension 27.

(iv) In any other case, GK-dimB(O,W ) = ∞.

Proof. Choose gx = x, thus tx,x = x, cf. (1.4). Fix a basis (wi)i∈I of W , so that

the symbols xwi form a basis of M and its braiding is given by

c(xwi ⊗ xwj) = η(x)xwj ⊗ xwi, i, j ∈ I.

Then GK-dimB(M) can be read off from Lemma 1.3.

We next generalize [41, 3.5].

Lemma 3.3: Let G be a finite group of odd order and let W ∈ IrrGx as above.

(a) If dimW ≥ 2 and GK-dimB(O,W ) is finite, then η(x) = 1 and conse-

quently GK-dimB(O,W ) > 0.

(b) If x ∈ Z(G) and η(x) = 1, then GK-dimB(O,W ) = dimW .

(c) If dimB(x,W ) <∞, necessarily dimW = 1.

Proof. (a) and (b) follow from Lemma 3.2: as |G| is odd η(x) �= −1, and dimW ,

a divisor of |Gx|, could not be 2. In turn (a) implies (c).
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3.2. Nichols algebras with central support. Let M ∈ kG
kGYD with cen-

tral support. Then the braided vector space M can be realized in
kZ(G)
kZ(G)YD,

hence it fits into the theory of Nichols algebras over abelian groups sketched

at the Introduction. For illustration we describe the semisimple M ∈ kG
kGYD of

finite length and central support such that GK-dimB(M) <∞, up to Conjec-

ture 1.2. See [6, 3] for Nichols algebras of indecomposable M .

Proposition 3.4: Let M ∈ kG
kGYD be semisimple of the form

M �M1 ⊕ · · · ⊕Mt ⊕Mt+1 ⊕ · · · ⊕Mθ,(3.1)

where Mi �M(gi,Wi) with gi ∈ Z(G), Wi ∈ IrrG and

• if i ∈ It, then Wi has dimension ≥ 2 and central character ηi;

• if i ∈ It+1,θ, then Wi has dimension 1 and action given by χi ∈ Ĝ.

Let q = (qij)i,j∈It+1,θ
, where qij = χj(gi). Then

GK-dimB(M) <∞

if and only if the following conditions hold:

(a) The connected components of the diagram of q are either points labelled

by 1 or else belong to the list of [29].

(b) If i ∈ It, then ηi(gi) ∈ G2 ∪G3.

(c) If i ∈ It and ηi(gi) = 1, then ηi(gj)ηj(gi) = 1 for all i �= j ∈ It
and ηi(gk)χk(gi) = 1 for all k ∈ It+1,θ.

(d) If i �= j ∈ It and ηi(gi) �= 1 �= ηj(gj), then ηi(gj)ηj(gi) = 1.

(e) If i∈ It, k∈ It+1,θ and ηi(gi)=ω∈G′
3, then ηi(gk)χk(gi)=1 unless {k}

is a connected component of q labelled by −1 and ηi(gk)χk(gi) = ω2.

(f) If i ∈ It, k ∈ It+1,θ and ηi(gi) = −1, then ηi(gk)χk(gi) = 1 except when

dimW = 2 or 3 and the points from gi⊗W together with the connected

component of k appear in one of the following: rows 1, 8, 15 in Table 2,

rows 5, 18 in Table 3, or row 8 in Table 4 from [29].

Proof. If GK-dimB(M) < ∞, then (a) follows from [29] assuming Conjec-

ture 1.2; (b), from Lemma 3.2; (c), from Lemma 1.4(iii); (d), from Lemma 1.4(i).

Now (e) and (f) follow by inspecting the list in [29]; the exception in (e) is from

row 15, Table 2 in [29]. The proof of the converse implication is standard.
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3.3. Hopf algebras over torsion-free nilpotent groups. Combining

Lemma 2.7 with Theorem 2.6 and Proposition 3.4 we get:

Theorem 3.5: Let G be a finitely generated torsion-free nilpotent group.

Let M ∈ kG
kGYD be semisimple of finite length. Then

GK-dimB(M)#kG <∞
if and only if

suppM ⊂ Z(G)

and M is as in Proposition 3.4.

As already mentioned, the classification of all M ∈ kG
kGYD of finite dimension

with GK-dimB(M)#kG < ∞ would follow from the abelian case once this is

settled completely.

3.4. Abelian non-central conjugacy classes. We next study Nichols al-

gebras over finite conjugacy classes that are abelian as racks. We keep the

notation from §3.1 and assume from now on that

O is abelian but not central.

The braided vector space M(O,W ) can be realized in kΓ
kΓYD where Γ = 〈O〉

is an abelian subgroup of G, hence the theory of braided vector spaces over

abelian groups applies again. In order to give more precisions, we start with

some general reductions.

Let y, z ∈ O and gy, gz ∈ G such that gy � x = y, gz � x = z. Since O is

abelian, we see as in (1.4) that tz,y = g−1
y zgy = (g−1

y gz) � x. Now (1.5) says

c(gzu⊗ gyw) = gy(tz,y · w) ⊗ gzu,

c(gyw ⊗ gzu) = gz(ty,z · u)⊗ gyw,
u, w ∈ W.(3.2)

We first consider the case when dimW ≥ 2; we elaborate on Lemma 3.2 using

a result on pale blocks from [6, §8].
Lemma 3.6: Let W ∈ IrrGx such that dimW ≥ 2 and η(x) �= −1. Then

GK-dimB(O,W ) <∞ if and only if dimW <∞, tz,y acts onW by a scalar τz,y

such that τz,y = τ−1
y,z , for any y �= z ∈ O, and either

(i) η(x) = 1; then B(O,W ) �tw S(W
|O|), GK-dimB(O,W ) = dimW |O|;

(ii) or else η(x) ∈ G′
3, dimW = 2; in this case dimB(O,W ) = 27|O|.
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Proof. Fix y �= z ∈ O. Assume that w is an eigenvector for tz,y with eigenvalue λ

and that u ∈ W is an eigenvector for ty,z with eigenvalue μ.

(a) By (3.2), the 2-dimensional braided vector space spanned by gzu, gyw

is of diagonal type with Dynkin diagram
η(x)◦ λμ η(x)◦ .

(b) Assume that ũ ∈W satisfies ty,z · ũ = μ(ũ+ u). Let v1 = gzu, v2 = gzũ

and v3 = gyw. Then the braided vector space V with basis (vi)i∈I3 has

braiding given by

(c(vi ⊗ vj))i,j∈I3 =

⎛
⎜⎝η(x)v1 ⊗ v1 η(x)v2 ⊗ v1 λv3 ⊗ v1

η(x)v1 ⊗ v2 η(x)v2 ⊗ v2 λv3 ⊗ v2

μv1 ⊗ v3 μ(v2 + v1)⊗ v3 η(x)v3 ⊗ v3

⎞
⎟⎠ .

Now [6, Theorem 8.1.3] says that GK-dimB(V ) <∞ if and only if

η(x) = −1 andλμ =

⎧⎨
⎩1, thus GK-dimB(V ) = 1; or

−1, thus GK-dimB(V ) = 2.
(3.3)

First we assume that GK-dimB(O,W ) < ∞. Since one of our assumptions

is that η(x) �= −1, both ty,z and tz,y act diagonally on W by (b).

(i): If η(x) = 1, then dimW < ∞ by Lemma 3.2. Pick eigenvalues λ, μ as

above. Then λμ = 1 by Lemma 1.4 (iii); thus μ and λ = μ−1 are uniquely

determined, i.e., tz,y and ty,z act by inverse scalars.

(ii): Assume that η(x) =: ω ∈ G′
3 and dimW = 2. Let λ1 and λ2 be the

eigenvalues of ty,z acting on W , respectively μ1 and μ2 the eigenvalues of tz,y.

Then the Dynkin diagram of V := gzW ⊕ gyW has the form

ω◦ λ1μ1

ω2
λ1μ2

ω◦

ω2
λ2μ1

ω◦
λ2μ2

ω◦.

If at least two of the λiμj are different from 1, then this diagram has either a

3-cycle or a 4-cycle with all vertices equal to ω, so GK-dimB(V ) = ∞, while if

three of them are 1, then the fourth also is 1. The converse is clear.

The case when dimW ≥ 2 and η(x) = −1 is still open, see §4.2.
Next we treat the case when dimW = 1, i.e., given by a character χ.
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Lemma 3.7: Assume that O is an abelian rack and that

χ((g−1 � x)(g � x)) = 1 for every g ∈ G\Gx.(3.4)

ThenM(O, χ) is a braided vector space of diagonal type whose Dynkin diagram

is totally disconnected with all vertices labelled by q = χ(x). Hence

dimB(O, χ) = N |O|, GK-dimB(O, χ) = 0, if q ∈ G′
N , N ≥ 2;

GK-dimB(O, χ) = |O|, if q = 1 or q ∈ k\G∞.
(3.5)

Proof. By (3.2), we have c(gz ⊗ gy) = χ((g−1
y gz) � x)gy ⊗ gz, therefore

c2(gz ⊗ gy) = χ((g−1
z gy) � x)χ((g

−1
y gz) � x)gz ⊗ gy.

By (3.4) the Dynkin diagram is totally disconnected and (3.5) follows.

If dimW = 1 but (3.4) does not hold, then we apply an argument generalizing

[41, Lemma 3.7]. Given g ∈ G, as Ox is finite, the set

Zx
g := {zi := gi � x : i ∈ Z} ⊂ Ox(3.6)

is finite; |Zx
g | = 1 iff g ∈ Gx and |Zx

g | divides |g| when this last is finite.

Lemma 3.8: Fix g ∈ G\Gx. Assume that

ζ := χ(z−1z1) = χ((g−1 � x)(g � x)) �= 1.(3.7)

If GK-dimB(O, χ) <∞, then

q = χ(x) �= 1,(3.8)

n := |Zx
g | ∈ {2, 3}.(3.9)

Furthermore:

(i) If n = 2, then either ζ = q−1 or else ζ ∈ G′
12 and q = −ζ2.

(ii) If n = 3, then q = −1 and ζ ∈ G′
3.

For this Lemma, we just need Zx
g to be an abelian subrack of O.

Proof. Let J = I0,n−1. In the notation (1.4), choosing gzi = gi we have that

tzi,zj = g−1
zj zigzj = g−jzig

j = zi−j , i, j ∈ J,

since Zx
g is abelian. Set vi = gi1 ∈M(O, χ), V = 〈vi : i ∈ J〉. Then

c(vi ⊗ vj) = χ(zi−j)vj ⊗ vi, i, j ∈ J.(3.10)
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Thus the Dynkin diagram of V has locally the form

· · · q◦
i

χ(z−1z1) q◦ · · ·
i+1

By Lemma 1.4 (iii), q �= 1. If n = 2, then Remark 1.6 applies. If 2 < n <∞,

then this is an n-cycle by (3.7). Thus Lemma 1.4 and Remark 1.5 imply

that n = 3 and (ii).

Assume that G is finite; hence n = |Zx
g | divides |G|. If G has odd order,

then (i) and (ii) could not happen and we have the following consequence.

Lemma 3.9: Assume that G is a finite group of odd order and that O is an

abelian rack. Then GK-dimB(O, χ) <∞ if and only if (3.4) holds. When this

happens, dimB(O, χ) <∞ if and only if q �= 1.

Proof. If (3.4) does not hold, then GK-dimB(O, χ) = ∞ by Lemma 3.8.

If (3.4) holds, then GK-dimB(O, χ) < ∞ by Lemma 3.7. The last claim

follows from (3.5) since G is finite.

Example 3.10: If O is an abelian rack, then O ⊂ Gx. In this case, the extra

assumption O ⊂ kerχ implies (3.4) and q = 1. Thus GK-dimB(O, χ) = |O|.
3.5. Nilpotent groups of odd order. We are now ready to determine the

finite-dimensional Nichols algebras over a finite nilpotent group of odd order in

terms of its group structure and representation theory.

Theorem 3.11: Let G be a finite nilpotent group of odd order. Given a

finite-dimensional M ∈ kG
kGYD, we have that dimB(M) < ∞ if and only if

M �M0 ⊕M1 ⊕ · · · ⊕Mt where:

(i) suppM0 ⊆ Z(G), hence M0 is given by a family of YD-pairs (gi, χi)i∈J

such that the connected components of the matrix q = (qij)i,j∈J belong

to the list in [29].

(ii) For j ∈ It, Mj � M(Oj , χj) where Oj is not central and abelian as

rack; χj ∈ Ĝxj for a fixed xj ∈ Oj that satisfies (3.4); and qj := χj(xj)

has order 2 < Nj <∞. Also dimB(Oj , χj) = N
|Oj|
j .

Furthermore,

c2|Mi⊗Mj
= id|Mi⊗Mj

, i �= j ∈ I0,t.(3.11)
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Proof. Since kG
kGYD is semisimple, we may decompose M =

⊕
i∈I Mi where

the Mi’s are simple. Let

J = {i ∈ I : suppMi ⊆ Z(G)}
andM0=

⊕
i∈JMi. If suppMi is central, thenMi�M({gi},W ) where gi∈Z(G);

by Lemma 3.3(c), dimW = 1. Thus there is a family of YD-pairs (gi, χi) such

that Mi � kχi
gi for all i ∈ J . By [29], dimB(M0) <∞ if and only if (i) holds.

Assume that M � M(O,W ) for some non-central conjugacy class O. By

Theorem 2.1 O is either of type C, or is an abelian rack. In the first case

dimB(M)=∞ by Theorem 1.12. Assume thatO is abelian and dimB(M)<∞;

fix x ∈ O. By Lemma 3.3, dimW = 1, so W is given by χ ∈ Ĝx. By Lemma

3.9, (3.4) should hold. Conversely, if O is abelian, W is given by χ ∈ Ĝx

and (3.4) holds, then dimB(M) <∞ by Lemma 3.9. Up to renumbering I\J ,
we have (ii).

Finally, assume thatM ′,M ′′ ∈ Irr kG
kGYD satisfy dimB(M ′⊕M ′′) <∞, where

M ′ �M(O, χ) and O is a non-central conjugacy class. By (ii),M ′ is of diagonal
type. We may replace G by the subgroup generated by suppM ′ ∪ suppM ′′.
Clearly dimM ′ is odd and > 1. If (3.11) does not hold, then dimM ′ should
be 3 by Theorem 1.11, but thenM ′ is not of diagonal type, a contradiction.

Algorithm 3.12: Let G be a finite nilpotent group of odd order. By Theo-

rem 3.11, to list all Nichols algebras in kG
kGYD we should do the following.

(i) Compute Z(G), [G,G] and Ĝ = [̂G,G]. Thus we have all YD-pairs

(g, χ) ∈ Z(G)× Ĝ.

(ii) For any braided vector space (V, cq) either of Cartan type or of diagonal

type (1.2) or else (1.3), compute all principal realizations over G; see

Definition 1.7 and the subsequent discussion.

(iii) Compute the set of abelian conjugacy classes

Clab(G) = {O conjugacy class of G : [O,O] = e, O �⊂ Z(G)}.(3.12)

Given O ∈ Clab(G), pick x ∈ O and compute Gx and Ĝx. Thus the set

of pairs (with an evident abuse of notation)

{(O, χ) : O ∈ Clab(G), χ ∈ Ĝx satisfies (3.4) and χ(x) �= 1}(3.13)

parametrizes the finite-dimensional Nichols algebras in kG
kGYD of

irreducible objects with abelian non-central support.
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(iv) Compute all pairs (O, χ), (O′, χ′) as in (3.13) such that

[O,O′] = e,

χ((g′z)
−1 � y)χ′((gy)−1 � z) = 1, ∀y ∈ O, z ∈ O′,

where x ∈ O, x′ ∈ O′ and gy, g′z ∈ G satisfy

gy � x = y, g′z � x
′ = z.

(v) Similarly for (O, χ) as in (3.13) and (g′, χ′) ∈ Z(G)× Ĝ.

3.6. Nilpotent groups of odd order, II. Let G be a finite nilpotent group

of odd order. We extend the discussion in the previous subsection to determine

all M ∈ kG
kGYD such that GK-dimB(M) < ∞. To have a complete picture we

still need Conjectures 1.2 and 1.13, and an analogue of Theorem 1.11. Here are

the necessary steps:

1: suppM ⊂ Z(G).

Since every object in kG
kGYD is semisimple, Proposition 3.4 gives a complete

picture, up to Conjecture 1.2.

2: M �M(O,W ) where O is not central.

By Theorem 2.1, O is either abelian or of type C. To discard type C, we need

the validity of Conjecture 1.13.

Assume that O is abelian; fix x ∈ O. If dimW > 1, then η(x) = 1 and

GK-dimB(O,W ) = dimW |O| by Lemma 3.6. If dimW = 1, then (3.4) should

hold and then GK-dimB(M) <∞, given by (3.4); see Lemma 3.9.

3: Braidings between M(O,W ) with O not central and other summands.

We guess that (3.11) holds; this would need an analogue of Theorem 1.11 for

finite GK-dim. Clearly this would be related to Conjecture 1.13.

3.7. Finitely generated nilpotent groups whose torsion has order

coprime to 6. Let G be a finitely generated nilpotent group with torsion

subgroup T , let O be a finite abelian conjugacy class and x ∈ O. Assume

that g ∈ G\Gx satisfies (3.7); recall the set Zx
g from (3.6).
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Lemma 3.13: If p = |Zx
g | is prime, then it divides |T |.

Proof. Let K = 〈g,Gx〉. As gp ∈ Gx, [K : Gx] ∈ pN by Theorem 2.3, thus p

divides |O| = [G : Gx] = [G : K][K : Gx]. Then Lemma 2.10 applies.

Assume now that |T | is coprime to 6. In particular |T | is odd, hence any

finite conjugacy class is either abelian or of type C by Proposition 2.9.

Lemma 3.14: Let χ ∈ Ĝx. Then GK-dimB(O, χ) < ∞ if and only if (3.4)

holds, in which case B(O, χ) is given by (3.5).

Proof. If (3.4) does not hold, then GK-dimB(O, χ) = ∞ by Lemmas 3.8

and 3.13 (that excludes 2 and 3 by the hypothesis). The converse is clear.

In summary, if G is a finitely generated nilpotent group with torsion T

with |T | coprime to 6, and assuming Conjecture 1.13, then the

M =M(O,W ) ∈ IrrGGYD
such that GK-dimB(M) <∞ are either covered by Proposition 3.4, Lemma 3.6

and Lemma 3.14, or else O is abelian non-central, dimW ≥ 2 and η(x) = −1.

For these last, see the discussion in §4.2. Once this is settled, the determination

of the semisimple M such that GK-dimB(M) <∞ can be obtained softly.

3.8. Examples.

3.8.1. Class 2. LetG be a finite nilpotent group of odd order. We discuss how to

prove the following result from [41] by means of Theorem 3.11: If [G,G] = Z(G),

then dimB(M) = ∞ for anyM ∈ kG
kGYD\0. Equivalently any finite-dimensional

pointed Hopf algebra over G is isomorphic to kG.

The contention [G,G] ⊃ Z(G) implies that dimB(M)=∞ for anyM ∈kG
kGYD

with central support. By Theorem 3.11, we are reduced to prove:

Claim:Let x∈G such thatOx is non-central abelian and let χ∈Ĝx with χ(x)�=1.
Then there exists g ∈ G\Gx such that χ((g−1 � x)(g � x)) �= 1.

First, let Γ be a group, x ∈ Γ and g ∈ NΓ(Γ
x), such that [g, [g, x]] = 1.

Then (g−1 � x)(g � x) = x2. Indeed, clearly [g, x]−1 = [g−1, x], hence

(g−1 � x)(g � x) = [g−1, x]x[g, x]x = [g, x]−1[g, x]x2 = x2.

Now NG(G
x) �= Gx since G is nilpotent and any g ∈ NG(G

x)\Gx satis-

fies [g, [g, x]] = 1 because [G,G] ⊂ Z(G).
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3.8.2. Heisenberger groups. Let K be a commutative ring and n ∈ N. We

consider the Heisenberg group H = H2n+1(K) that consists of the matrices⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 . . . an c

0 1 0 . . . 0 b1

0 0 1 . . . 0 b2
...

...
...

. . .
...

0 0 0 . . . 1 bn

0 0 0 . . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ GLn+2(K).(3.14)

For simplicity, we denote a := (a1, a2, . . . , an), b := (b1, b2, . . . , bn) and the

matrix (3.14) by (a,b, c). Let ω : K2n ×K2n → K be the ‘symplectic form’

ω((a,b), (r, s)) =
∑

1≤i≤n

(aisi − biri), a,b, r, s ∈ Kn.

Then

(a,b, c) � (r, s, t) = (r, s, t+ ω((a,b), (r, s))).

Given r, s ∈ Kn, let (r, s)⊥ be the K-submodule of K2n of those (a,b) such

that ω((a,b), (r, s)) = 0; and let 〈r, s〉 be the ideal of K generated by ri, si,

i ∈ In. Clearly Z(H) = 0× 0×K and the conjugacy class of (r, s, t) is

O(r,s,t) := {(r, s, t+ �) : � ∈ 〈r, s〉}.
Fix a non-central class O and (r, s, t) ∈ O, where (r, s) �= (0, 0). Given � ∈ 〈r, s〉
pick (a,b) such that ω((a,b), (r, s)) = � and set

x� = (r, s, t+ �) ∈ O, g� = (a,b, 0),

so that g� � x0 = x�. Then for m ∈ 〈r, s〉, the element (1.4) is given by

tm,� := g−1
� xmg� =

(
− a,−b,

∑
i

aibi

)
(r, s, t+m)(a,b, 0) = (r, s, t+m− �).

The centralizer of (r, s, t) is H(r,s,t) � (r, s)⊥ ×K, which is abelian, so

Ĥ(r,s,t) � (̂r, s)⊥ × K̂

parametrizes Irr H(r,s,t). Let χ = (χ1, χ2) be such a character and

q = χ1(r, s)χ2(t).

Then the braiding of M(O, χ) is given by

c(gm ⊗ g�) = χ1(r, s)χ2(t)χ2(m− �)g� ⊗ gm, m, � ∈ 〈r, s〉.(3.15)
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That is, M(O, χ) is of diagonal type with matrix twist-equivalent to

q = (qij)i,j∈I, qij = q for all i, j. Clearly dimM(O, χ) = |〈r, s〉|. By Lemma 1.3,

GK-dimB(O, χ)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|〈r, s〉|, B(O, χ) �tw S(M(O, χ)) if χ1(r, s) = χ2(t)
−1;

0, B(O, χ) �tw Λ(M(O, χ)) if χ1(r, s) = −χ2(t)
−1;

0, dimB(x, χ) = 27 if χ1(r, s)χ2(t)∈G′
3 and |〈r, s〉| = 2;

∞ in any other case.

The first two lines correspond to the situation in Lemma 3.7 while the third one

is covered by Lemma 3.8 (i); this last case occurs, e.g., with K = Z/6, n = 1,

r = (3, 0) = s, t = 2, χ1 trivial and χ2 non-trivial.

Another family of examples arises taking an ideal I of K and the quotient

H̃ := H2n+1(K)/0× 0× I � K2n ×K/I.

Clearly Z(H̃) = I2n ×K/I. Let π : K → K/I, t �→ t be the natural projection

and let ω : K2n ×K2n → K/I,

ω = πω.

If (r, s) ∈ K2n, and t ∈ K, then

H̃(r,s,t) = (r, s)⊥,I ×K/I; O(r,s,t) = (r, s, t+ 〈r, s〉),

where

(r, s)⊥,I = {(a,b) ∈ K2n : ω((a,b), (r, s)) ∈ I}.
Let χ = (χ1, χ2) ∈ ̂(r, s)⊥,I × K̂/I and q = χ1(r, s)χ2(t). Then M(O, χ) is of

diagonal type with matrix twist-equivalent to q = (qij)i,j∈I, qij = q for all i, j

and B(O, χ) is determined by a similar analysis.

Suppose that K = Z and I = Z/N where N ≥ 2; then H is an FC-

group with torsion � Z/N . Assume further that N = 2d is even, n = 1,

r = (d, 0) �= s = (0, 0), t = 1; thus

(r, s)⊥,I � N

(d,N)
Z× Z3 � Z4.

Then |〈r, s〉| = 2 and q = χ1(r, s)χ2(t) might be in G′
3 even if N is coprime to 3.
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3.8.3. Unitriangular groups. We show examples of classes of type C. Let K be

a commutative ring and G = UT4(K), consisting of the matrices⎛
⎜⎜⎜⎝
1 a12 a13 a14

0 1 a23 a24

0 0 1 a34

0 0 0 1

⎞
⎟⎟⎟⎠ ∈ GL4(K).(3.16)

For simplicity, we denote matrices (3.16) by

a :=

⎛
⎜⎝a12 a23 a34

a13 a24

a14

⎞
⎟⎠ ,

etc. Then

a � b =

⎛
⎜⎝ b12 b23 b34

b13 + a12b23 − b12a23 b24 + a23b34 − b23a34

b14 + b12(a23a34 − a24)− b13a34 − b23a12a34 + b24a12 + b34a13

⎞
⎟⎠ .

Let

r :=

⎛
⎜⎝r12 r23 r34

0 0

0

⎞
⎟⎠

where r12, r23, r34 ∈ U(K) (the group of units of K). Then

Or =

⎧⎪⎨
⎪⎩
⎛
⎜⎝r12 r23 r34

c13 c24

c14

⎞
⎟⎠ : c13, c24, c14 ∈ K

⎫⎪⎬
⎪⎭ .

Then Or is not an abelian, e.g.,

s :=

⎛
⎜⎝r12 r23 r34

1 0

0

⎞
⎟⎠

satisfies

[r, s] =

⎛
⎜⎝0 0 0

0 0

−r34

⎞
⎟⎠ .

Hence H := 〈r, s〉 � H3(K) via (1, 0, 0) �→ r, (0, 1, 0) �→ s, and OH
r ∩ OH

s = ∅.
Thus, if K is finite and |K| is odd, then Or is of type C.
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4. Conclusions

We discuss the problems that remain open as well as some applications.

4.1. Representations. In the previous sections we have argued assuming

some information about the representations and conjugacy classes of finitely

generated nilpotent groups. But the representation theory of such groups is

not completely known to our knowledge. Let H ≤ G and W ∈ RepH . Then

IndG
H W = kG⊗kH W is called the induced representation of W . We need two

definitions. Let π : G→ GL(V ) be a representation.

◦ π is monomial if there are H ≤ G and χ ∈ Ĥ such that π � IndGH χ.

◦ π has finite weight if there are K ≤ G and η ∈ K̂ such that

VK,η := {v ∈ V : π(k)(v) = η(k)v ∀k ∈ K}
is non-zero and finite-dimensional. Generalizing classical results of

Dixmier, Kirillov and Brown, Parshin [35] conjectured the following

result.

Theorem 4.1 ([19]): Let G be a finitely generated nilpotent group. An irre-

ducible representation of G is monomial iff it has a finite weight.

Thus finite-dimensional irreducible representations of G are monomial, but

this was already known [20, Lemma 1].

4.2. Finite nilpotent groups of even order. In order to deal with Ni-

chols algebras over a finite nilpotent group of even order with finite dimension

or finite GK-dim extending Theorem 3.11 (see also Section 3.6), the following

points need to be addressed:

◦ Conjugacy classes: It suffices to consider 2-groups. We need to keep

track of the conjugacy classes that are neither abelian nor of type C;

the information from [31, 32] would be crucial.

◦ Irreducible Yetter–Drinfeld modules, dimW ≥ 2: In the setting of

Lemma 3.6 we still have to consider the case η(x) = −1. We shall

need:

Lemma 4.2: Let Γ be an abelian group and V = Vg ⊕ Vh ∈ kΓ
kΓYD such that

GK-dimB(V ) < ∞, where g �= h. Then the action of h on Vg is locally

finite.
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Therefore we may consider eigenvectors and blocks; see the proof of Lem-

ma 3.6. Since the classification of the Nichols algebras of blocks & pale blocks &

points with finite GK-dim is not yet finished, we could not carry out a complete

analysis that eventually would be straightforward.

◦ Irreducible Yetter–Drinfeld modules, dimW =1: We need to explore

further the possibilities |Zx
g | ∈ {2, 3} in Lemma 3.8, together with other

restrictions.

◦ Braiding between simple modules: The condition (3.11) has to be

adapted, cf. Theorem 1.11; in the even case it does not follow from

finite dimension.

4.3. Finitely generated nilpotent groups with even torsion. The

strategy would be parallel to the one in the previous Subsection.

4.4. Finitely generated nilpotent-by-finite groups. Assume that G is

nilpotent-by-finite and fix N �G a normal nilpotent subgroup of finite index.

Then the image Õ of O in G/N is a conjugacy class. As said, the knowledge of

the Nichols algebras over finite groups is still incomplete, but if Õ is of type C, D

or F, then so would be O and then any Nichols algebra over G with support O
would have infinite dimension, and infinite GK-dim, if Conjecture 1.13 and its

analogues for types D and F are true. See [8] and references therein.

4.5. Applications. Once all the Nichols algebras overG with finite GK-dim or

finite dimension are known, one still needs to (i) compute all post-Nichols alge-

bras with finite GK-dim and (ii) compute all liftings. For (i), when the braided

vector spaces come from the abelian setting, we know: a finite-dimensional

Nichols algebra does not have post-Nichols algebras with finite dimension (ex-

cept itself) [13]. For finite GK-dim see [10, 15]. As for (ii), see [16]. Finally

observe that when G is torsion free, our results contribute to the classification

of pointed Hopf algebras with finite GK-dim that are domains.
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