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ABSTRACT

The aim of this paper is to prove the existence and several selected prop-

erties of a global fundamental Heat kernel Γ for the parabolic operators

H =
∑m

j=1 X
2
j −∂t, where X1, . . . ,Xm are smooth vector fields on Rn sat-

isfying Hörmander’s rank condition, and enjoying a suitable homogeneity

assumption with respect to a family of non-isotropic dilations. The proof

of the existence of Γ is based on a (algebraic) global lifting technique,

together with a representation of Γ in terms of the integral (performed

over the lifting variables) of the Heat kernel for the Heat operator as-

sociated with a suitable sub-Laplacian on a homogeneous Carnot group.

Among the features of Γ we prove: homogeneity and symmetry proper-

ties; summability properties; its vanishing at infinity; the uniqueness of

the bounded solutions of the related Cauchy problem; reproduction and

density properties; an integral representation for the higher-order deriva-

tives.
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1. Introduction

Given a certain class of Hörmander PDOs (Partial Differential Operators, here

and throughout), the availability of some ‘explicit’ integral representation for-

mulas for an associated global fundamental solution Γ and for its derivatives in

terms of well-behaved kernels defined on richer higher dimensional structures

(such as homogeneous Carnot groups) can lead to global pointwise estimates

of Γ and of its derivatives. This can be achieved only through profound results

on the underlying geometry of Hörmander operators; see, e.g., the recent inves-

tigation [9]. A considerable amount of work needs to be accomplished in order

to obtain both the existence of a global Γ and of well-behaved representation

formulas, as shown in [7].

The aim of the present study is to accomplish this work for a class of Heat-

type evolution PDOs not contained in the stationary case faced in [7]. As the

approach in the latter paper proved fruitful, we shall try to adapt some ideas

therein contained to the evolutive case; with respect to the stationary case, this

programme is complicated by the preliminary need for a Gaussian behavior of

the lifted Heat kernels (see, e.g., [25, 35, 34, 40]). The parabolic setting features

interesting problems, such as the study of the initial Cauchy problem, and the

richer properties of the associated potentials.

The results established in the present work provide a starting point to obtain

Gaussian pointwise estimates of the Heat kernel herein constructed and of its

X-derivatives (of arbitrary order); see the recent paper [11].

The aim of this paper is to prove, via a construction as explicit as possible,

the existence of a well-behaved global fundamental solution Γ (also referred

to as a Heat kernel) for the (degenerate) evolution Heat-type PDOs H of the

form

(1.1) H =
m∑
j=1

X2
j −

∂

∂t
on R1+n = Rt ×Rn

x ,

where X1, . . . , Xm are smooth vector fields on Rn
x satisfying Hörmander’s rank

condition in space Rn
x , and enjoying a suitable homogeneity assumption w.r.t. a

family of non-isotropic dilations, which we shall describe subsequently. Our ap-

proach is two-fold: it relies on a (algebraic) global ‘lifting’ procedure, and on an

integral ‘saturation’ technique. Roughly put, we construct a lifting operator H̃
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for H of the form

(1.2) H̃ =

m∑
j=1

(Xj(x) +Rj(x, ξ))
2 − ∂

∂t
on R1+n+p = Rt ×Rn

x ×R
p
ξ ,

where R1(x, ξ), . . . , Rm(x, ξ) are vector fields operating only in the variables

ξ = (ξ1, . . . , ξp) (with coefficients possibly depending on (x, ξ) ∈ Rn × Rp),

in such a way that the existence of a global (i.e., defined throughout R1+n+p)

fundamental solution Γ̃ for H̃ be ensured. Then, we want to redeem a funda-

mental solution Γ for H by integrating Γ̃ over the lifting variables ξ ∈ Rp; to

this end, it is necessary to know that Γ̃ be globally integrable w.r.t. ξ ∈ Rp,

which is one of the crucial points of our approach. We refer to this integration

procedure as a ‘saturation’ argument.

In the analysis of fundamental solutions for linear PDOs, the idea of passing

through a lifting procedure and a saturation of the lifting variables is certainly

not new, and it traces back to Rothschild and Stein’s pivotal paper [37] (see also

Nagel, Stein, Wainger [36]); however, Rothschild and Stein’s lifting is a local

tool, whereas, as we stressed, we need a global technique since we aim to obtain

fundamental solutions defined on the whole space (and vanishing at infinity).

Global integrability (at infinity) over the saturation variables is a non-trivial

fact. We shall describe in a moment how we face these problems. Incidentally,

we observe that in [37] only suitable parametrices of a fundamental solution

are studied, which again reflects the local/approximation nature of the lifting

in [37].

The basic idea of obtaining fundamental solutions for Heat-type operators via

saturation arguments is very well described in the Euclidean setting. Indeed,

it is well known that a global fundamental solution (with pole at the origin

of R1+n) for the classical Heat operator Hn := Δn − ∂/∂t on R1+n is given by

(we use the notation χA for the indicator function of a set A)

Γn(t, x) = χ(0,∞)(t)
1

(4 π t)n/2
exp

(
−

∑n
j=1 x

2
j

4 t

)
, (t, x) ∈ R×Rn.

Then, if we consider the Heat operator Hn+p on R1+n+p and if we integrate its

fundamental solution Γn+p (with pole at the origin of R1+n+p) with respect to
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the last p variables, we obtain (upon the trivial fact
∫
R
exp(− ξ2

4t ) dξ =
√
4πt )∫

Rp

Γn+p(t, x, ξ) dξ

= χ(0,∞)(t)
1

(4π t)(n+p)/2
exp

(
−

∑n
j=1 x

2
j

4 t

)∫
Rp

exp

(
−

∑p
j=1 ξ

2
j

4 t

)
dξ

= χ(0,∞)(t)
1

(4 π t)n/2
exp

(
−

∑n
j=1 x

2
j

4 t

)
= Γn(t, x).

In other words, the Heat kernel Γn of Hn can be recovered by the Heat ker-

nel Γn+p of Hn+p by a saturation technique:

Γn(t, x) =

∫
Rp

Γn+p(t, x, ξ) dξ, (t, x) ∈ R×Rn.

A global lifting/saturation process may likely occur in other interesting cases

(for non-elliptic operators): see, e.g., Bauer, Furutani and Iwasaki [2]; Calin,

Chang, Furutani and Iwasaki [19, Sect. 10.3]; Beals, Gaveau, Greiner and Kan-

nai [5]. Explicit formulas for some Heat kernels on nilpotent Lie groups can be

found in: Agrachev, Boscain, Gauthier and Rossi [1]; Beals, Gaveau and Greiner

[3, 4]; Boscain, Gauthier and Rossi [17]; Cygan [20]; Furutani [23]; Gaveau [24].

The same process was exploited in the paper [7], which provides some gen-

eral structural assumptions showing when lifting/saturation can be successfully

applied (see Theorem 2.3). We fix once and for all the definition of a lifting of a

PDO P , while postponing the precise notion of a global fundamental solution Γ

to Theorem 1.4; for the time being, by Γ we mean a function of two variables

(z; ζ) ∈ R1+n ×R1+n (the first of which is called the ‘pole’) such that, for any

fixed pole z, we have P (Γ(z; ·)) = −Dirz in the weak sense of distributions (Dirz

is the Dirac mass at z).

In order to distinguish it from the local Rothschild and Stein’s lifting tech-

nique, we define a simpler notion of the lifting of P as follows: if P is a smooth

linear PDO on R1+n
z , we say that the PDO P̃ defined on R1+n

z ×R
p
ξ is a lifting

of P (or simply that P̃ lifts P ) if:

• P̃ has smooth coefficients, possibly depending on (z, ξ) ∈ R1+n ×Rp;

• for every fixed f ∈ C∞(R1+n
z ), one has

(1.3) P̃ (f ◦ π)(z, ξ) = (Pf)(z), for every (z, ξ) ∈ R1+n ×Rp,

where π(z, ξ) = z is the canonical projection of R1+n ×Rp onto R1+n.

For example, with this definition, H̃ in (1.2) is a lifting of H in (1.1).
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In general, the idea of obtaining a fundamental solution Γ for P via a funda-

mental solution Γ̃ for P̃ by integration over the lifting R
p
ξ-variables is natural

but subtle, as we now describe. Let us start by writing down the definition of

the distributional identity

(1.4) P̃{(ζ, η) �→ Γ̃((z, ξ); (ζ, η))} = −Dir(z,ξ),

by first conveniently freezing the variable ξ at 0 ∈ Rp: this boils down to the

identity (valid for every ψ ∈ C∞
0 (R1+n+p) and every (z, 0) ∈ R1+n+p)

(1.5)

∫
R1+n

dζ

∫
Rp

dη Γ̃((z, 0); (ζ, η)) P̃ ∗(ψ(ζ, η)) = −ψ(z, 0).

Then, we aim to recover a fundamental solution Γ for P starting from iden-

tity (1.5) in the most direct way, if possible. To this end, it seems appropriate

to define Γ by the inner η-integral in (1.5), that is

(1.6) Γ(z; ζ) :=

∫
Rp

Γ̃((z, 0); (ζ, η)) dη (for z �= ζ in R1+n).

If in (1.5) we were allowed to take as a test function ψ any function of the

form ϕ(z) in C∞
0 (R1+n), then (1.5) would easily prove that Γ is a fundamental

solution of P , in view of the fact that P̃ (ϕ ◦ π) = Pϕ. Unfortunately, a test

function ϕ(z) on R1+n does not become a test function ψ on R1+n+p by simply

considering ψ = ϕ ◦ π (where π is the projection in (1.3)).

A more promising procedure (still based on (1.5)) is the “product-like” choice

ψ(z, ξ) = ϕ(z) θj(ξ),

where θj ∈ C∞
0 (Rp

ξ) is such that θj → 1 as j → ∞: indeed, one may formally

let j → ∞ in the following identity (resulting from (1.5) with this choice of ψ)

(1.7)

∫
R1+n

dζ

∫
Rp

dη Γ̃((z, 0); (ζ, η)) P̃ ∗(ϕ(ζ) θj(η)) = −ϕ(z) θj(0),

with the hope that, when j → ∞ (by again exploiting the fact that P̃ lifts P ),

this may lead to∫
R1+n

(∫
Rp

Γ̃((z, 0); (ζ, η)) dη

)
P ∗ϕ(ζ) dζ = −ϕ(z).

In the end, the latter identity would produce the fact that the function Γ in (1.6)

is indeed a global fundamental solution for P .



94 S. BIAGI AND A. BONFIGLIOLI Isr. J. Math.

In order to make this argument more than heuristic, it appears that some a

priori assumptions must be conveniently made, namely:

• we need to know that Γ in (1.6) is well posed as a convergent integral;

we also need to know some summability properties of Γ (implicit in the

definition of a fundamental solution, see Section 2);

• some structural and growth assumptions on the formal adjoint of the

“remainder” operator R := P̃ − P (which operates on the lifting vari-

ables ξ only) should be conveniently made to rigorously pass to the limit

in (1.7).

This discussion fully motivates the technical assumptions that we shall make in

the saturation Theorem 2.3, postponed to the next section.

It is now time to describe in detail the assumptions on the vector fields Xj

in (1.1). Let X = {X1, . . . , Xm} be a set of smooth and linearly independent1

vector fields on Rn satisfying the following assumptions:

(H.1) there exists a family of (non-isotropic) dilations {δλ}λ>0 of the form

δλ : Rn −→ Rn, δλ(x) = (λσ1x1, . . . , λ
σnxn),

where 1 = σ1 ≤ . . . ≤ σn are integer numbers, such that X1, . . . , Xm

are δλ-homogeneous of degree 1, i.e.,

Xj(f ◦ δλ) = λ (Xjf) ◦ δλ, ∀ λ > 0, f ∈ C∞(Rn), j = 1, . . . ,m;

(H.2) the set X satisfies Hörmander’s rank condition at 0, i.e.,

dim{Y (0) : Y ∈ Lie{X}} = n.

By Lie{X} we mean the smallest Lie sub-algebra of the smooth vector

fields X(Rn) on Rn containing X . Here X(Rn) is equipped with its obvious

structures of vector space and of Lie algebra.

In the literature, the use of a dilation-invariance property as in assumption

(H.1) has been already proved to be fruitful in order to establish ‘global’ prop-

erties for L =
∑m

j=1X
2
j and for its parabolic counterpart H =

∑m
j=1X

2
j − ∂t;

we refer, e.g., to the series of papers [26, 31, 30, 28, 29, 27] and to the references

1 The linear independence of X1, . . . ,Xm is meant in the vector space X(Rn) of the smooth

vector fields on Rn, and it must not be confused with the linear independence of the

(tangent) vectors X1(x), . . . ,Xm(x); for example, the Grushin vector fields in R2 defined

by X1 = ∂x1 and X2 = x1∂x2 are linearly independent in X(R2), despite that the vectors

of R2 given by X1(x) ≡ (1, 0) and X2(x) ≡ (0, x1) are dependent when x1 = 0.



Vol. 259, 2024 PARABOLIC HOMOGENEOUS HÖRMANDER OPERATORS 95

therein. We also point out that, in the absence of a homogeneity property of

the Xi’s, another assumption leading to a ‘global’ analysis of L and H is the

invariance of X1, . . . , Xm with respect to a (Lie) group of translations (see,

e.g., [12, 33, 32]); however, in our context we do not assume any left-invariance

property on the vector fields in X (see Theorem 1.2 below).

Remark 1.1: It is not difficult to show that, since X1, . . . , Xm are δλ-homoge-

neous of degree 1, the validity of Hörmander’s rank condition at 0 implies the

validity of the latter at any x ∈ Rn, and that n ≤ dim(Lie{X}) <∞.

Thus, the Hörmander parabolic operator H in (1.1) is C∞-hypoelliptic on

every open subset of R1+n. Moreover, H satisfies the Weak Maximum Principle

on every bounded open subset of R1+n: this follows from (H.1)–(H.2), as is

proved in [8, Sect. 8.4].

The following result is relevant for our purposes, and it can be proved starting

from [6, Thm. 1.4] and [7, Thm3.1]. We refer to [15, §1.4] for the notions of

sub-Laplacian and of homogeneous2 Carnot group on RN .

Theorem 1.2: Assume that X = {X1, . . . , Xm} satisfies the above assump-

tions (H.1) and (H.2). Moreover, let N = dim(Lie{X}). Then the following

facts hold:

(1) If N = n, there exists a homogeneous Carnot group G (with underlying

manifold Rn and the same dilations δλ as in (H.1)) such that X is

a system of Lie-generators of Lie(G); hence L :=
∑m

j=1X
2
j is a sub-

Laplacian on G.

(2) If N > n, there exist a homogeneous Carnot group G (with underlying

manifold RN ) and a system {Z1, . . . , Zm} of Lie-generators of Lie(G)

such that Zi is a lifting of Xi for every i = 1, . . . ,m (in the previously

defined sense); hence the sub-Laplacian
∑m

j=1 Z
2
j is a lifting of L.

The demonstration of Theorem 1.2 is quite delicate: for example, the proof

of (2) makes use of the global lifting method for homogeneous vector fields

proved by Folland [22], a notable refinement of the local lifting technique intro-

duced by Rothschild and Stein in [37] for Hörmander PDOs: a proof of (2) can

be found in [7]. As for assertion (1) in Theorem 1.2, one argues as follows:

2 Essentially, this is a triple (RN , �, Dλ) of a Lie group (RN , �) and a family of dilations

Dλ which are group automorphisms.
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Remark 1.3: Consider the following facts:

• Lie{X} is an n-dimensional Lie algebra of analytic vector fields in Rn

(analyticity follows from the fact that the Xj ’s have polynomial com-

ponent functions, due to (H.1));

• X is a Hörmander system, due to (H.1)–(H.2) (see Remark 1.1);

• any vector field Y ∈ Lie{X} is complete, i.e., the integral curves of Y

are defined on the whole of R (this can be proved as a consequence

of (H.1)).

Under these three conditions, Theorem 1.4 in [6] proves that Lie{X} coincides

with the Lie algebra of a Lie group G on Rn. As a matter of fact, under

assumption (H.1), this Lie group G turns out to be a homogeneous Carnot

group with dilations δλ (see, e.g., [8, Chapter 16]). Thus (1) follows.

All this being said, our aim in this paper is to prove that a saturation/lifting

approach can be performed for the Heat type operators H =
∑m

j=1X
2
j − ∂t,

where X1, . . . , Xm satisfy (H.1) and (H.2). To this end, it is enough to assume

that N > n, since (by Theorem 1.2-(1)) the case N = n is already known (see

Folland, [21]). When N > n we will obtain the existence of a global funda-

mental solution (also called Heat kernel) Γ for H obtained via the saturation

formula (1.6), taking in this case the following special form

Γ(t, x; s, y) :=

∫
Rp

ΓG(t, x, 0; s, y, η) dη,

where ΓG is a fundamental solution for the Heat-type operator

HG :=

m∑
j=1

Z2
j −

∂

∂t

on the Lie group R×G (here the Carnot group G and Z1, . . . , Zm are the same

as in Theorem 1.2). The existence of ΓG was proved in [21] (see also [13]), where

it was also shown that it takes a group-convolution form; this will lead to the

even more profitable expression

(1.8) Γ(t, x; s, y) =

∫
Rp

γG(s− t, (x, 0)−1 � (y, η)) dη,

where γG is the fundamental solution of HG with pole at the origin, and � is

the group law of the Carnot group in Theorem 1.2-(2). In showing that H

satisfies the assumptions for the saturation procedure heuristically described

above, one must also use the global Gaussian estimates of γG (see, e.g., Jerison
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and Sánchez-Calle [25]; Kusuoka, Stroock [35, 34]; Varopoulos, Saloff-Coste and

Coulhon [40]).

Strictly speaking, formula (1.8) does not equip Γ with a translation-invariance

property, as is shown by the Grushin-type example (see, e.g., [19])

G =
( ∂

∂x1

)2

+
(
x1

∂

∂x2

)2

− ∂

∂t
.

Nonetheless, (1.8) is a nicely “hybrid” expression of the fundamental solution

of H as an integral of a translation-invariant kernel; this expression is indeed

worthwhile since we shall derive from it plenty of properties of Γ, as is shown

in the following theorem, our main result:

Theorem 1.4 (Existence and properties of the global Heat-kernels for homo-

geneous Hörmander PDOs): Let X be a set of smooth vector fields on Rn

satisfying assumptions (H.1) and (H.2), and let us assume that

N = dim(Lie{X}) > n.

Let H be the Heat-type operator on R1+n defined in (1.1), and let us denote

by z = (t, x) the points of R1+n = Rt × Rn
x . Then H admits a global fun-

damental solution Γ(z; ζ); this means that Γ(z; ζ) is defined for any couple of

points z, ζ ∈ R1+n and it satisfies the following property: for any z ∈ R1+n

(the pole), Γ(z; ·) is in L1
loc(R

1+n) and∫
R1+n

Γ(z; ζ)H∗ϕ(ζ) dζ = −ϕ(z), for every ϕ ∈ C∞
0 (R1+n),

where H∗ =
∑
j X

2
j + ∂/∂t is the formal adjoint of H =

∑
j X

2
j − ∂/∂t.

More precisely, we take as Γ the integral function

(1.9) Γ(z; ζ) = Γ(t, x; s, y) =

∫
Rp

γG(s− t, (x, 0)−1 � (y, η)) dη,

where γG is the unique fundamental solution, with pole at 0 and vanishing at

infinity, of the Heat-type operator HG :=
∑m

j=1 Z
2
j − ∂/∂t on R× G (which is

a lifting of H); the Carnot group G = (RN , �) and the vector fields Z1, . . . , Zm

are as in Theorem 1.2-(2). The existence of γG is granted by [21].

Moreover, Γ in (1.9) also enjoys the following list of properties:

(i) Γ ≥ 0 and we have

Γ(t, x; s, y) = 0 if and only if s ≤ t.
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(ii) We have Γ(t, x; s, y) = Γ(−s, x;−t, y), and Γ depends on t and s only

through s− t:

Γ(t, x; s, y) = Γ(0, x; s− t, y) = Γ(t− s, x; 0, y).

Furthermore Γ is symmetric in the space variables x and y, i.e.,

Γ(t, x; s, y) = Γ(t, y; s, x).

(iii) For every λ > 0 we have

Γ(λ2t, δλ(x);λ
2s, δλ(y)) = λ−q Γ(t, x; s, y), where q =

m∑
j=1

σj .

(iv) Γ is smooth out of the diagonal of R1+n ×R1+n.

(v) For every compact set K ⊆ R1+n, we have

lim
‖ζ‖→∞

(sup
z∈K

Γ(z; ζ)) = lim
‖ζ‖→∞

(sup
z∈K

Γ(ζ; z)) = 0.

(vi) Γ ∈ L1
loc(R

1+n ×R1+n) and, for every fixed z ∈ R1+n, we have

Γ(z; ·), Γ(·; z) ∈ L1
loc(R

1+n).

(vii) For every fixed (t, x) ∈ R1+n we have∫
Rn

Γ(t, x; s, y) dy = 1, for every s > t.

(viii) For every fixed ϕ ∈ C∞
0 (R1+n), the map defined by the potential func-

tion

R1+n  ζ �→ Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz

is smooth, it vanishes at infinity and H(Λϕ) = −ϕ on R1+n.

(ix) If ϕ ∈ C(Rn) is bounded, then the potential-type function

u(t, x) :=

∫
Rn

Γ(0, y; t, x)ϕ(y) dy

defined for (t, x) ∈ Ω = (0,∞) × Rn is the unique bounded classical

solution of the homogeneous Cauchy problem⎧⎨
⎩Hu = 0 in Ω,

u(0, x) = ϕ(x) for x ∈ Rn.

(x) For every x, y ∈ Rn and every s, t > 0, we have the reproduction formula

Γ(0, y; t+ s, x) =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw.
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Finally, if we consider the function Γ∗ defined by

Γ∗(t, x; s, y) := Γ(s, y; t, x), for every (t, x), (s, y) ∈ R1+n,

then Γ∗ is a global fundamental solution for H∗ =
∑m

j=1X
2
j + ∂/∂t, satisfying

dual statements of (i)–(x).

We observe that there exists at most one fundamental solution Γ of H such

that, for any fixed z ∈ R1+n, it holds that Γ(z; ·) is continuous out of z, and
lim

‖ζ‖→∞
Γ(z; ζ) = 0

(see Remark 2.2-(c)). As a consequence (see properties (iv,v) above) the func-

tion Γ satisfying the properties of Theorem 1.4 is unique.

Remark 1.5: Many of the properties (i)–(x), albeit not unexpected, are based on

quite technical arguments made possible by the very formula (1.9), which there-

fore proves to be fruitful. From a recent investigation with Marco Bramanti [9],

it appears that, in the case of the stationary operator L =
∑m
j=1X

2
j , one can

pass from the integral representation analogous to (1.9) to pointwise estimates

of the fundamental solution (and of its derivatives) in terms of the Carnot–

Carathéodory distance associated with X1, . . . , Xm: this requires some work,

also based on results by Nagel, Stein and Wainger [36], by Sánchez-Calle [38],

and by Bramanti, Brandolini, Manfredini and Pedroni [18].

In the recent paper [11], we have exploited in a crucial way formula (1.9)

(together with the aforementioned results on the geometry of Hörmander op-

erators) to derive pointwise Gaussian estimates of the Heat kernel Γ. We also

point out that the techniques of this paper are the starting point to prove

uniform and global estimates for the fundamental solutions of the operators∑
i,j ai,jXiXj − ∂/∂t, as the matrix (ai,j) ranges over the m × m symmetric

and positive-definite matrices satisfying a suitable (uniform) ellipticity condi-

tion, see [10]. In its turn, these uniform estimates are used in [10] to study the

parametrices for non-constant ai,j ’s (see also [14]).

Our integral representation is also sufficiently helpful that it produces analo-

gous representations for any higher order derivative, as this theorem shows:

Theorem 1.6 (Representation of the derivatives of Γ): Let the assumptions

of Theorem 1.4 hold (from which we inherit the notation), and let Γ be the

fundamental solution of H in (1.9).
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Then, for any α, β ∈ N ∪ {0}, any h, k ≥ 1 and any choice of indexes

i1, . . . , ih, j1, . . . , jk in {1, . . . ,m}, we have the following representation formulas

(holding true for (t, x) �= (s, y) in R1+n), respectively concerning X-derivatives

in the y-variable, in the x-variable, and in the mixed (x, y)-case:( ∂

∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)

= (−1)β
∫
Rp

(( ∂

∂τ

)α+β
Zi1 · · ·ZihγG

)
(s− t, (x, 0)−1 � (y, η)) dη;

(1.10)

( ∂

∂s

)α( ∂
∂t

)β
Xx
j1 · · ·Xx

jk
Γ(t, x; s, y)

= (−1)β
∫
Rp

(( ∂

∂τ

)α+β
Zj1 · · ·ZjkγG

)
(s− t, (y, 0)−1 � (x, η)) dη;

(1.11)

( ∂

∂s

)α ( ∂
∂t

)β
Xx
j1 · · ·Xx

jk
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)

= (−1)β
∫
Rp

(( ∂

∂τ

)α+β
Zj1 · · ·Zjk((Zi1 · · ·ZihγG) ◦ ι̃)

)
× (s− t, (y, 0)−1 � (x, η)) dη .

(1.12)

Here ι̃ : R1+N → R1+N is the map defined by

ι̃(t, (x, ξ)) = (t, (x, ξ)−1) (with t ∈ R, x ∈ Rn, ξ ∈ Rp),

and (x, ξ)−1 is the inverse of (x, ξ) in the Lie group G = (RN , �); moreover,

Z1, . . . , Zm are the lifting vector fields of X1, . . . , Xm as in Theorem 1.2.

Similarly to what was described in Remark 1.5, formulas (1.10)–(1.12) lead to

global upper Gaussian estimates for the X-derivatives of arbitrary order of Γ,

see [11].

The plan of the paper is now in order:

- in Section 2 we use Theorem 1.2 to prove the existence of Γ as in

Theorem 1.4;

- in Section 3 we prove Theorem 1.6, furnishing the integral representa-

tion of the higher order derivatives of Γ;

- in Section 4 we briefly study the existence and the uniqueness of the

solutions of the Cauchy problem for H;

- in Section 5 we prove all the distinguished features of Γ in Theorem 1.4.



Vol. 259, 2024 PARABOLIC HOMOGENEOUS HÖRMANDER OPERATORS 101

2. Existence of a global fundamental solution for H

In the sequel, we tacitly inherit all the notations and assumptions in Theo-

rem 1.4. In this section we shall prove the existence of a global fundamental

solution for H. To begin with, for the sake of clarity, we recall the definition of

a (global) fundamental solution for a generic smooth linear PDO P .

Definition 2.1: On Euclidean space RN , we consider a linear PDO

P =
∑
|α|≤d

aα(x)D
α
x ,

with smooth real-valued coefficients aα(x) on RN . We say that a function

Γ : {(x, y) ∈ RN ×RN : x �= y} −→ R

is a (global) fundamental solution for P if it satisfies the following property: for

every x ∈ Rn, the function Γ(x; ·) is locally integrable on RN and

(2.1)

∫
RN

Γ(x; y)P ∗ϕ(y) dy = −ϕ(x) for every ϕ ∈ C∞
0 (RN ,R),

where P ∗ denotes the formal adjoint of P .

Remark 2.2: (a) The existence of a global fundamental solution for P is far from

being obvious and it is, in general, a very delicate issue. In the particular case

of C∞-hypoelliptic linear PDOs P having a C∞-hypoelliptic formal adjoint P ∗,
it is possible to prove the local existence of a fundamental solution on a suitable

neighborhood of each point of RN (see, e.g., [39]; see also [16]).

(b) Fundamental solutions are, in general, not unique since the addition of

a P -harmonic function (that is, a smooth function h such that Ph = 0 in RN )

to a fundamental solution produces another fundamental solution.

(c) Nonetheless, if P is C∞-hypoelliptic and fulfills the Weak Maximum

Principle on every bounded open set of RN , then there exists at most one

fundamental solution Γ for P such that

lim
‖y‖→∞

Γ(x; y) = 0, for every x ∈ RN .

Indeed, if Γ1,Γ2 are two such functions, then (for every fixed x ∈ RN ) the

map ux := Γ1(x, ·)−Γ2(x, ·) belongs to L1
loc(R

N ) and it is a solution of Pux = 0

in the weak sense of distributions onRN ; the hypoellipticity of P ensures that ux

is (a.e. equal to) a smooth function on RN which vanishes at infinity by the

assumptions on Γ1,Γ2; from the Weak Maximum Principle for P it is standard

to obtain that Γ1 ≡ Γ2 (a.e.).
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Next, as explained in Section 1, we need the following theorem. Despite its

seemingly technical assumptions, this theorem is applicable in many interesting

situations, as we shall discuss in Example 2.4.

Theorem 2.3 (see [7, Theorem 2.5]): Let P be a smooth linear PDO on RN
z ,

and let P̃ be a lifting of P on RN
z ×R

p
ξ which satisfies the following structural

assumptions:

(S.1) the formal adjoint R∗ of R := P̃ −P annihilates any u ∈ C2(RN
z ×R

p
ξ)

independent of ξ, i.e.,

(2.2) R∗ =
∑
β �=0

r∗α,β(z, ξ)
( ∂

∂z

)α( ∂

∂ξ

)β
,

for (finitely many, possibly identically vanishing) smooth functions

r∗α,β(z, ξ);
(S.2) there exists a sequence {θj(ξ)}j in C∞

0 (Rp, [0, 1]) such that3

{θj = 1} ↑ Rp as j ↑ ∞,

with the following property: for every compact set K ⊂ Rn and for

any coefficient function r∗α,β of R∗ as in (2.2) one can find constants

Cα,β(K) s.t. ∣∣∣r∗α,β(z, ξ)( ∂

∂ξ

)β
θj(ξ)

∣∣∣ ≤ Cα,β(K),

uniformly for every z ∈ K, ξ ∈ Rp and j ∈ N.

Assume that P̃ admits a global fundamental solution Γ̃ = Γ̃((z, ξ); (ζ, η))

(with pole (z, ξ)) satisfying the following integrability assumptions:

(i) for every fixed z, ζ ∈ RN with z �= ζ, we have that

η �→ Γ̃((z, 0); (ζ, η)) belongs to L1(Rp),

(ii) for every fixed z ∈ RN and every compact set K ⊆ RN , we have that

(ζ, η) �→ Γ̃((z, 0); (ζ, η)) belongs to L1(K ×Rp).

Then the function Γ defined by (1.6) is a global fundamental solution for P

on RN with pole z.

3 By this we mean that, denoting by Ωj the set {ξ ∈ Rp : θj(ξ) = 1}, one has
⋃

j∈N

Ωj = Rp and Ωj ⊂ Ωj+1 for any j ∈ N.
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Example 2.4: Theorem 2.3 can be applied in the following examples:

(1) The choices of lifting pairs (P, P̃ ) given by

(Δn,Δn+p) and (Hn,Hn+p)

trivially satisfy assumptions (S.1)–(S.2) and (i)–(ii) of Theorem 2.3.

(2) A less trivial example is given (as a very particular case of the PDOs

in the present paper) by the “parabolic Grushin operator” on R3
z ≡ Rt × R2

x

(where z = (t, x)), i.e.,

G =
∂2

∂x21
+ x21

∂2

∂x22
− ∂

∂t
,

with a lifting given by

G̃ =
∂2

∂x21
+
( ∂

∂ξ
+ x1

∂

∂x2

)2

− ∂

∂t
on Rt ×R2

x ×Rξ.

As we shall see, for this last example not only (S.1)–(S.2) are satisfied, but

there also exists a fundamental solution Γ̃ for G̃ satisfying hypotheses (i)–(ii)

of Theorem 2.3. Therefore, we can infer that G admits a global fundamental

solution given by the saturation function (1.6).

(3) More generally, in the paper [7] a meaningful case is described where

Theorem 2.3 can always be applied: namely, any Hörmander sum of squares

P =
∑m
j=1X

2
j , where X1, . . . , Xm satisfy axioms (H.1)–(H.2), fulfils the as-

sumptions of Theorem 2.3, thus admitting a global fundamental solution.

Now, we proceed as follows: first we use Theorem 1.2 to prove the existence

of a lifting H̃ for H satisfying assumptions (S.1) and (S.2) of Theorem 2.3;

then we show the existence of a fundamental solution Γ̃ for H̃ fulfilling condi-

tions (i) and (ii) of Theorem 2.3: the latter will then ensure the existence of a

fundamental solution Γ for H.

According to Theorem 1.2, given a family X of vector fields in Rn satisfy-

ing axioms (H.1)–(H.2), and setting N = dim(Lie{X}), it is possible to find a

homogeneous Carnot group G = (RN , �,Dλ) on RN = Rn
x ×R

p
ξ (with m gener-

ators and nilpotent of step r = σn) and a system {Z1, . . . , Zm} of Lie-generators

of Lie(G) such that, for every i = 1, . . . ,m, Zi is a lifting of Xi. It can also be

shown that the dilations {Dλ}λ>0 on G take the form

(2.3) Dλ(x, ξ) = (δλ(x), δ
∗
λ(ξ)), for every (x, ξ) ∈ RN = Rn

x ×R
p
ξ ,



104 S. BIAGI AND A. BONFIGLIOLI Isr. J. Math.

where δ∗λ is another family of non-isotropic dilations on Rp which we write as

(2.4) δ∗λ(ξ) = (λσ
∗
1 ξ1, . . . , λ

σ∗
pξp), ξ ∈ Rp.

Note that, at this stage, three homogeneous dimensions naturally arise:

(2.5) q :=
n∑
j=1

σj , q∗ :=

p∑
j=1

σ∗
j , Q = q + q∗,

which are, respectively, the homogeneous dimensions of

(Rn, δλ), (Rp, δ∗λ), (RN , Dλ).

Accordingly, we fix the canonical homogeneous norms S,N, h on the

spaces Rn,Rp,RN respectively, defined by

(2.6) S(x) :=

n∑
j=1

|xj |1/σj , N(ξ) :=

p∑
j=1

|ξj |1/σ∗
j , h(x, ξ) := S(x) +N(ξ).

We note that, if d is any homogeneous norm on G, then by [15, Proposition

5.1.4] we have

(2.7) ϑ−1h(x, ξ) ≤ d(x, ξ) ≤ ϑh(x, ξ) ∀ (x, ξ) ∈ G,

where ϑ = ϑ(G) ≥ 1 is a suitable constant.

Remark 2.5: For strictly technical reasons, following [7], we need to look at the

following “convolution-like” map

F : Rn ×Rn ×Rp −→ RN , F (x, y, η) := (x, 0)−1 � (y, η).

As in [15, Chapter 1.3]), one can prove that

(2.8)

F1(x, y, η) = y1 − x1,

Fi(x, y, η) = yi − xi + pi(x, y, η) (i = 2, . . . , n),

Fn+k(x, y, η) = ηk + qk(x, y, η), (k = 1, . . . , p),

where, pi and qk are polynomials with the following features:

- pi only depends on those variables xh, yh and ηj such that σh, σ
∗
j < σi;

- qk only depends on those variables xh, yh and ηj such that σh, σ
∗
j < σ∗

k;

- pi(0, y, η) = qk(0, y, η) = 0, for every (y, η) ∈ RN .
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Let now x, y ∈ Rn be fixed. Since q1 does not depend on η1, . . . , ηp and since,

for every k ∈ {2, . . . , p}, qk only depends on η1, . . . , ηk−1, we see that the map

(2.9) Ψx,y : R
p −→ Rp, Ψx,y(η) := (Fn+1(x, y, η), . . . , Fn+p(x, y, η))

defines a C∞-diffeomorphism of Rp, with polynomial components. Hence, in

particular, Ψx,y is a proper map, which is equivalent to saying that

lim
‖η‖→∞

‖Ψx,y(η)‖ = ∞.

Furthermore, by (2.8), one has

det(JΨx,y (η)) = 1, for every η ∈ Rp.

The map Ψx,y will be repeatedly used as a change of variable in integral esti-

mates; indeed, one has

(x, 0)−1 � (y,Ψ−1
x,y(η

′)) = (F1(x, y,Ψ
−1
x,y(η

′)), . . . , Fn(x, y,Ψ−1
x,y(η

′)), η′);

consequently, with the notation in (2.6), Ψx,y enjoys the nice (technical) feature

(2.10) h((x, 0)−1 � (y,Ψ−1
x,y(η

′))) ≥ N(η′).

Up to some constant, here h can be replaced by any homogeneous norm d on G,

see (2.7).

If LG =
∑m
j=1 Z

2
j , it is straightforward to recognize that the Heat opera-

tor HG = LG − ∂t is a lifting of H = L − ∂t on R1+N = Rt × Rn
x × R

p
ξ , that

is,

HG(u ◦ π)(t, x, ξ) = (Hu)(t, x), ∀ t ∈ R, (x, ξ) ∈ RN , u ∈ C2(R1+n),

where π : R1+N → R1+n is the canonical projection of R1+N onto R1+n.

Our aim is now to prove that the operator HG, as a lifting of H, satisfies the

assumptions (S.1) and (S.2) in Theorem 2.3.

Lemma 2.6:The operatorHG, as a lifting ofH, satisfies assumptions (S.1)–(S.2)

in Theorem 2.3.

Proof. (S.1): First of all we observe that, by definition, we have

R := HG −H = LG − L on R1+N ;

thus, since both LG and L are self-adjoint (as they are sums of squares of

homogeneous vector fields) we get R∗ = R; moreover, as LG is a lifting of L,

we infer that R annihilates any C2 function independent of ξ.
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(S.2): If N is as in (2.6), we choose a function θ ∈ C∞
0 (Rp, [0, 1]) such that

supp(θ) ⊆ {ξ ∈ Rp : N(ξ) ≤ 2}; θ ≡ 1 on {ξ ∈ Rp : N(ξ) < 1}.
We define a sequence {θj}j in C∞

0 (Rp) by setting, for every j ∈ N,

θj(ξ) := θ(δ∗2−j (ξ)), for ξ ∈ Rp.

By arguing exactly as in [7, Theorem 4.4], after several technical computations

(based on the homogeneity of the Zj and on the structure of δ∗λ) one can rec-

ognize that {θj}j satisfies the properties in assumption (S.2).

With Lemma 2.6 at hand, the path towards the existence of a global funda-

mental solution for H is traced in Theorem 2.3, and it consists of two parts:

(1) firstly, we prove that HG admits a fundamental solution ΓG;

(2) secondly, we show that such a ΓG satisfies the integrability assumptions

(i)–(ii) in Theorem 2.3.

As for (1), it follows from the first statement in the next result; in the sequel, in

order to avoid the cumbersome notation (t, (x, ξ)) for the points in the product

space R×RN = Rt × (Rn
x ×R

p
ξ) we often write (t, x, ξ).

Theorem 2.7 ([13, Theorems 2.1, 2.5]): There exists a map

γG : R1+N ≡ R1+n+p → R,

smooth away from the origin, such that

(2.11) ΓG(t, x, ξ; s, y, η) := γG(s− t, (x, ξ)−1 � (y, η))

is a global fundamental solution of the operator HG = LG − ∂t. In its turn,

there exists a unique symmetric homogeneous norm on G (in the sense of [15])

d ∈ C∞(RN \ {0}) such that

d2−Q((x, ξ)−1 � (y, η)), (x, ξ) �= (y, η)

is the global fundamental solution of LG (where Q is as in (2.5)). The following

Gaussian estimates for γG hold: there exists a constant c > 0 such that, for

every (x, ξ) ∈ RN and every t > 0, one has

(2.12) c−1 t−Q/2 exp
(
− c d2(x, ξ)

t

)
≤ γG(t, x, ξ) ≤ c t−Q/2 exp

(
− d2(x, ξ)

c t

)
.

Via (2.11), global Gaussian estimates analogous to (2.12) hold true for ΓG.
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Moreover, γG satisfies the following additional properties:

(i) γG ≥ 0 and γG(t, x, ξ) = 0 if and only if t ≤ 0;

(ii) γG(t, x, ξ) = γG(t, (x, ξ)
−1) for every (t, x, ξ);

(iii) for every λ > 0 and every (t, x, ξ), we have

γG(λ
2t, δλx, δ

∗
λξ) = λ−Q γG(t, x, ξ),

where Q = q + q∗ is the homogeneous dimension of the group G;

(iv) γG vanishes at infinity, that is, γG(t, x, ξ) → 0 as ‖(t, x, ξ)‖ → ∞;

(v) for every t > 0, we have∫
Rn×Rp

γG(t, x, ξ) dxdξ = 1.

Finally, if we consider the function Γ∗
G
defined by

Γ∗
G(t, x, ξ; s, y, η) := ΓG(s, y, η; t, x, ξ),

then Γ∗
G
is a global fundamental solution for the adjoint operatorH∗

G
= LG+∂t.

As for (2), the needed integrability properties of ΓG rely on the Gaussian

estimates of γG in (2.12), as we prove in the next result.

Theorem 2.8: Let the notation of Theorem 2.7 apply. Then the global funda-

mental solution ΓG of HG satisfies the integrability assumptions (i) and (ii) in

Theorem 2.3.

Proof. We first prove that ΓG satisfies assumption (i). According to Theo-

rem 2.3, we have to show that, for fixed (t, x) �= (s, y) ∈ R1+n, one has

(2.13) η �→ ΓG(t, x, 0; s, y, η) ∈ L1(Rp).

If s ≤ t, the above (2.13) is an immediate consequence of Theorem 2.7, since

ΓG(t, x, 0; s, y, η)
(2.11)
= γG(s− t, (x, 0)−1 � (y, η)) = 0, for every η ∈ Rp.

We can then assume that s > t. In this case, by (2.12) and by performing

the change of variables η = Ψ−1
x,y(u) (see (2.9) in Remark 2.5), we obtain the

estimate∫
Rp

ΓG(t, x, 0; s, y, η) dη ≤ c

(s−t)Q/2
∫
Rp

exp
(
− d2((x, 0)−1 � (y,Ψ−1

x,y(u)))

c (s− t)

)
du.

On the other hand, since d is a homogeneous norm on G, by (2.7) we know

that there exists a constant ϑ = ϑ(G) ≥ 1 such that, for every u ∈ Rp and
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every x, y ∈ Rn,

d2((x, 0)−1 � (y,Ψ−1
x,y(u)) ≥ ϑ−2 h2((x, 0)−1 � (y,Ψ−1

x,y(u)))
(2.10)

≥ ϑ−2N2(u),

where h,N are as in (2.6). Hence, (2.13) will follow if we show that

(2.14) u �→ ϕ(u) := exp
(
− N2(u)

cϑ2 (s− t)

)
∈ L1(Rp).

Now, since ϕ ∈ C(Rp), we obviously have ϕ ∈ L1
loc(R

p); moreover, since

exp(−|r|) ≤ βQ (1 + |r|)−Q/2 (for some constant βQ > 0), we get

ϕ(u) ≤ βQ (cϑ2 (s− t))Q/2

(cϑ2 (s− t) +N2(u))Q/2
≤ β (s− t)Q/2N−Q(u), ∀u ∈ Rp \ {0}.

We are then left to prove that N−Q is integrable away from 0, namely on the

set {N ≥ 1}. This follows from Q > q∗ and by a standard diadic/homogeneous

argument using the annuli

Cj := {u ∈ Rp : 2j−1 ≤ N(u) < 2j}.

To complete the proof, we are left to show that ΓG also satisfies (ii) in Theorem

2.3: for any fixed (t, x) ∈ R1+n and any compact set K ⊆ R1+n, we prove

((s, y), η) �→ ΓG(t, x, 0; s, y, η) ∈ L1(K ×Rp).

Let a, b be such that K ⊆ [a, b]×Rn. We have (see (i)–(v) in Theorem 2.7)∫
K×Rp

ΓG(t, x, 0; s, y, η) ds dy dη

≤
∫ b

a

(∫
Rn×Rp

ΓG(t, x, 0; s, y, η) dy dη

)
ds

=

∫ b

a

(∫
RN

γG(s− t, (x, 0)−1 � (y, η)) dy dη

)
ds

(change of variables (y, η) = (x, 0) � (u, v))

=

∫ b

a

(∫
RN

γG(s− t, u, v) du dv

)
ds

≤
∫ b

a

1 ds = b− a,

and the proof is complete.
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Remark 2.9: The proof of Theorem 2.8 contains the following fact: there exists

a constant β > 0 such that, for every (t, x), (s, y) ∈ R1+n with s > t and for

every u ∈ Rp \ {0}, one has

(2.15) ΓG(t, x, 0; s, y,Ψ
−1
x,y(u)) = γG(s− t, (x, 0)−1 � (y,Ψ−1

x,y(u))) ≤ β N(u)−Q.

On the other hand, since γG identically vanishes on {t ≤ 0}, the above estimate

holds for every (t, x) ∈ R1+n and every (s, y, u) ∈ R1+n+p.

By gathering together Lemma 2.6, Theorem 2.8 and Theorem 2.3, we are in

a position to prove the existence of a global fundamental solution for H.

Theorem 2.10 (Existence of a fundamental solution for H): Let γG, ΓG and d

be as in Theorem 2.7. Then the following function

(2.16) Γ(t, x; s, y) :=

∫
Rp

ΓG(t, x, 0; s, y, η) dη=

∫
Rp

γG(s−t, (x, 0)−1 � (y, η)) dη

is a fundamental solution for H. Moreover, one has the estimates

c−1 (s−t)−Q/2
∫
Rp

exp
(
− c d2((x, 0)−1 � (y, η))

s− t

)
dη

≤ Γ(t, x; s, y) ≤ c (s− t)−Q/2
∫
Rp

exp
(
− d2((x, 0)−1 � (y, η))

c (s− t)

)
dη,

holding true for every (t, x), (s, y) ∈ R1+n with s > t. Here, c > 0 is a constant

only depending on the homogeneous Carnot groupG and on the operatorH. Fi-

nally, d can be replaced by any homogeneous norm on the homogeneous Carnot

group G = (RN , �).

3. Representation formulas for the derivatives

In this section, in order to prove Theorem 1.6, we use a quite versatile technique,

only based on homogeneity arguments. Some of our previous arguments (of

dominated-convergence type) may be attacked with this technique also; howe-

ver, in the previous sections, we preferred to contain the use of homogeneity, in

view of future investigations where the latter is not available.

The key ingredients for the proof of Theorem 1.6 are the following technical

Lemmas 3.1 and 3.2 (where we use the notations in (2.3) and (2.5)):
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Lemma 3.1: Let Ω := {(z, ζ, η) ∈ R1+n×R1+n×Rp : (z, 0) �= (ζ, η)}. Suppose
g ∈ C∞(Ω) is homogeneous of degree α < −q∗ with respect to the family of

dilations (with our usual notation)

Eλ(z, ζ, η) = Eλ((t, x), (s, y), η) = (λ2t, δλ(x), λ
2s, δλ(y), δ

∗
λ(η)).

Let Z be any smooth vector field in the (z, ζ)-variables, homogeneous of positive

degree with respect to the family of dilations

(z, ζ) = ((t, x), (s, y)) �→ (λ2t, δλ(x), λ
2s, δλ(y)).

Then, the following facts hold:

(1) for any fixed (z, ζ) ∈ R1+n ×R1+n with z �= ζ, the map η �→ g(z, ζ, η)

belongs to L1(Rp);

(2) Z can pass under the integral sign as follows

(3.1) Z

{
(z, ζ) �→

∫
Rp

g(z, ζ, η) dη

}
=

∫
Rp

Z{(z, ζ) �→ g(z, ζ, η)} dη,

for every z, ζ ∈ R1+n with z �= ζ.

Proof. (1) Let us fix z0, ζ0 ∈ R1+n such that z0 �= ζ0, and let S, N be the

homogeneous norms on the spaces Rn and Rp, respectively, introduced in (2.6).

Moreover, we define

Ŝ(z) = Ŝ(t, x) := |t|1/2 + S(x) = |t|1/2 +
n∑
i=1

|xi|1/σi .

Since, obviously, η �→ g(z0, ζ0, η) belongs to L
1
loc(R

p), we need to prove that∫
{N>1}

g(z0, ζ0, η) dη <∞.

To this end, we first choose ρ > 0 in such a way that z0, ζ0 ∈ {Ŝ(z) ≤ ρ} and

we observe that, since the set

K := {Ŝ ≤ ρ}2 × {N = 1}

is compact and contained in Ω, there exists c > 0 such that

(3.2) |g(z, ζ, η)| ≤ c for every z, ζ ∈ {Ŝ ≤ ρ} and η ∈ {N = 1}.
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On the other hand, if η∈Rp is such thatN(η)>1 and if we set λ:=1/N(η)∈(0, 1),
it is readily seen that (z′0, ζ′0, η′) = Eλ(z0, ζ0, η) ∈ K; thus, by (3.2) and the Eλ-

homogeneity of g, we get

|g(z0, ζ0, η)| ≤ cN(η)α for every η ∈ Rp with N(η) > 1.

Since α < −q∗, the map

η �→ g(z0, ζ0, η)

is integrable on {N > 1}, as desired.
(2) We first prove that, if Z is a smooth vector field as in the statement of

the lemma, fixing z, ζ ∈ R1+n with z �= ζ, the function

Φ(η) := Z{(z, ζ) �→ g(z, ζ, η)}

is η-integrable on the whole of Rp.

To this end we observe that, if we think of Z as a vector field defined

on R1+n
z × R1+n

ζ × Rp
η but acting only in the (z, ζ) variables (and not on η),

then Z is Eλ-homogeneous of degreem; as a consequence, Φ is Eλ-homogeneous

of degree α −m. Since, by assumption, m ≥ 0 and α < −q∗, we derive from

statement (1) that Φ(η) belongs to L1(Rp) for every z, ζ ∈ R1+n with z �= ζ.

We now turn to prove identity (3.1). To this aim, we first write∫
Rp

Φ(η) dη =

∫
{N(η)≤1}

Φ(η) dη +

∫
{N(η)>1}

Φ(η) dη.

We then fix z0, ζ0 ∈ R1+n such that z0 �= ζ0 and we show that the function Φ

can be dominated, both on A = {N ≤ 1} and on B = {N > 1}, by an

integrable function which does not depend on (z, ζ) (at least for every (z, ζ) in

a small neighborhood of (z0, ζ0)). As for the first set, we choose two bounded

neighborhoods V1, V2 ⊆ R1+n of z0 and ζ0, respectively, such that

(3.3) V 1 ∩ V 2 = ∅;

then, we set K := V 1 × V 2 × {N ≤ 1}. On account of (3.3), we see that K is

a compact subset of Ω; thus, there exists a constant c > 0 such that

|Φ(η)| = |Z{(z, ζ) �→ g(z, ζ, η)}| ≤ c,

for every z, ζ ∈ V 1 × V 2 and every η ∈ {N ≤ 1}.
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As for the set B, we argue as in the previous statement (1): if ρ > 0 is such

that z0, ζ0 ∈ {Ŝ ≤ ρ}, from the Eλ-homogeneity of Φ we infer the existence of

another constant c′ > 0 such that

|Φ(η)| = |Z{(z, ζ) �→ g(z, ζ, η)}| ≤ c′N(η)α−m,

for every z, ζ ∈ {Ŝ ≤ 1} and every η ∈ {N > 1}; since α −m ≤ α < −q∗, the
function Nα−m is integrable on B. This ends the proof.

Lemma 3.2: Let ρ ∈ C∞(R1+N \ {0}) be homogeneous of degree d < −q∗ with

respect to the family of dilations (see (2.3))

Fλ(t, x, ξ) := (λ2t,Dλ(x, ξ)) = (λ2t, δλ(x), δ
∗
λ(ξ)).

Then, for every j = 1, . . . ,m we have

(3.4)

∫
Rp

Xy
j {y �→ ρ(s−t, (x, 0)−1 � (y, η))} dη

=

∫
Rp

(Zjρ)(s− t, (x, 0)−1 � (y, η)) dη,

where Zj is the lifting vector field of Xj as in Theorem 1.2.

Proof. First of all, by Lemma 3.1-(1), the two integrand functions appearing

in (3.4) are η-integrable on Rp; moreover, since Zj is a lifting of Xj, one has

Z
(y,η)
j = Xy

j +Rj , where Rj =

p∑
k=1

rj,k(y, η)
∂

∂ηk
,

where rj,k is smooth and Dλ-homogeneous of degree σ∗
k − 1 (see (2.4)). In

particular, rj,k does not depend on ηk. Now, since Zj is left-invariant on the

group G = (RN , �), it is not difficult to recognize that4

Z
(y,η)
j {(y, η) �→ ρ(s− t, (x, 0)−1 � (y, η))} = (Zjρ)(s− t, (x, 0)−1 � (y, η)).

4 In fact, Zj is left-invariant on the product group (R1+N , •), where

(t, x, ξ) • (s, y, η) := (t + s, (x, ξ) � (y, η)).
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As a consequence, we have the following chain of identities∫
Rp

Xy
j {y �→ρ(s− t, (x, 0)−1 � (y, η))} dη

=

∫
Rp

(Z
(y,η)
j −Rj){(y, η) �→ ρ(s− t, (x, 0)−1 � (y, η))} dη

=

∫
Rp

(Zjρ)(s− t, (x, 0)−1 � (y, η)) dη

−
∫
Rp

Rj{η �→ ρ(s− t, (x, 0)−1 � (y, η))} dη.

In view of this computation, the desired Equality (3.4) follows if we show that

(3.5)

∫
Rp

Rj{η �→ ρ(s− t, (x, 0)−1 � (y, η))} dη = 0.

In its turn, identity (3.5) can be proved as follows: first of all, since rj,k is

independent of ηk, by Fubini’s theorem we can write∫
Rp

Rj{η �→ ρ(s− t, (x, 0)−1 � (y, η))} dη

=

p∑
k=1

∫
Rp

rj,k(y, η)
∂

∂ηk
{η �→ ρ(s− t, (x, 0)−1 � (y, η))} dη

=

p∑
k=1

∫
Rp

∂

∂ηk
{rj,k(y, η) ρ(s− t, (x, 0)−1 � (y, η))} dη

=

p∑
k=1

∫
Rp−1

(∫ ∞

−∞

∂

∂ηk
{rj,k(y, η) ρ(s− t, (x, 0)−1 � (y, η))} dηk

)
dη̂k,

where η̂k denotes the (p − 1)-tuple of variables obtained by removing ηk from

η. On the other hand, since ρ vanishes at infinity (as it is Fλ-homogeneous of

negative degree) and since ‖(x, 0)−1 � (y, η)‖ → ∞ as ηk → ±∞, one has

lim
ηk→±∞ rj,k(y, η) ρ(s− t, (x, 0)−1 � (y, η))

= rj,k(y, η) · lim
ηk→±∞ ρ(s− t, (x, 0)−1 � (y, η))

= 0.

This ends the proof.

Thanks to Lemmas 3.1 and 3.2, we can now provide the
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Proof of Theorem 1.6. For the sake of readability, we split the proof of formulas

(1.10)–(1.12) into three different steps.

Step I: We first prove formula (1.10). To this end we observe that, by repeat-

edly applying Lemma 3.1, we have the representation

(3.6)

( ∂

∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)

=

∫
Rp

( ∂

∂s

)α( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
{(t, s, y) �→γG(s−t, (x, 0)−1�(y, η))} dη

=(−1)β
∫
Rp

Xy
i1
· · ·Xy

ih
{y �→((∂τ )

α+βγG)(s−t, (x, 0)−1�(y, η))} dη.

Formula (1.10) can now be obtained from (3.6) by repeatedly applying Lem-

ma 3.2: in fact, on account of Theorem 2.7-(iii) we know that the functions

ρ1 = (∂τ )
α+βγG,

ρ2 = Zih(∂τ )
α+βγG,

...

ρh+1 = Zi2 · · ·Zih(∂τ )α+βγG
are smooth on R1+N \ {0} and Fλ-homogeneous of degrees

d1 = −Q− 2α− 2β,

d2 = −Q− 2α− 2β − 1,

...

dh+1 = −Q− 2α− 2β − h+ 1,

respectively. Since Q = q + q∗, we clearly have d1, . . . , dh+1 < −q∗.
Step II: We prove formula (1.11). To this end, in order to apply Lemma 3.2,

we first introduce the following map:

φx,y : Rp → Rp, φx,y(u) := πp((x, 0) � (x, u)
−1 � (y, 0)),

where πp is the projection of RN = Rn × Rp onto Rp. By exploiting the Dλ-

homogeneity of the component functions of �, it is not difficult to check that φx,y

is a smooth diffeomorphism of Rp, further satisfying

det|Jφx,y (u)| = 1, for every u ∈ Rp.
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Moreover, by using the explicit construction of the group G in Theorem 2.3

(see [7] for all the details), one can prove that

(x, 0)−1 � (y, φx,y(u)) = (x, u)−1 � (y, 0), ∀ x, y ∈ Rn, u ∈ Rp.

Gathering together the above facts, and performing the change of variable

η = φx,y(u), we then obtain the following alternative representation of Γ (also

recall the symmetry of γG, see Theorem 2.7-(ii)):

(3.7)

Γ(t, x; s, y) =

∫
Rp

γG(s− t, (x, u)−1 � (y, 0)) du

=

∫
Rp

γG(s− t, (y, 0)−1 � (x, u)) du.

Now, starting from (3.7) and repeatedly using Lemma 3.1, we get

( ∂

∂s

)α( ∂
∂t

)β
Xx
j1 · · ·Xx

jk
Γ(t, x; s, y)

=

∫
Rp

( ∂

∂s

)α( ∂
∂t

)β
Xx
j1 · · ·Xx

jk{(t, s, x) �→ γG(s− t, (y, 0)−1 � (x, u))} du

= (−1)β
∫
Rp

Xx
j1 · · ·Xx

jk{x �→ ((∂τ )
α+βγG)(s− t, (y, 0)−1 � (x, u))} du.

From this, by repeatedly applying Lemma 3.2 (with x in place of y) and by

arguing exactly as in the previous step, we obtain the desired (1.11).

Step III: We finally prove formula (1.12). To begin with, we use (1.10) and

the change of variable η = φx,y(u) introduced in Step II to write

( ∂

∂s

)α ( ∂
∂t

)β
Xy
i1
· · ·Xy

ih
Γ(t, x; s, y)

= (−1)β
∫
Rp

(Zi1 · · ·Zih(∂τ )α+βγG)(s− t, (x, u)−1 � (y, 0)) du

(setting ρ := (Zi1 · · ·Zih(∂τ )α+βγG) ◦ ι̃ )

= (−1)β
∫
Rp

ρ(s− t, (y, 0)−1 � (x, u)) du.

From this, by repeatedly applying Lemma 3.2 and by arguing exactly in

Step II (notice that ρ, Zjkρ, . . . , Zj2 · · ·Zjkρ are all Fλ-homogeneous of degree

less than −q∗), we obtain the desired (1.12). This ends the proof.
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4. An application to the Cauchy problem for H

In this section we turn our attention to the Cauchy problem for H. In doing

this, we shall use many of the properties of Γ in Theorem 1.4, whose proof is

postponed to Section 5.

To begin with, let ϕ ∈ C(Rn) and Ω = (0,∞) × Rn. We say that a func-

tion u : Ω → R is a (classical) solution of the Cauchy problem

(4.1)

⎧⎨
⎩Hu = 0 in Ω,

u(0, x) = ϕ(x) for x ∈ Rn,

if the following conditions are satisfied: u ∈ C2(Ω) and Hu = 0 on Ω; u is

continuous up to Ω and u(0, ·) = ϕ pointwise on Rn. By the C∞-hypoellipticity

of H, any classical solution of (4.1) is smooth on Ω. The following theorem is

the main result of this section.

Theorem 4.1: In the above notations, if ϕ is continuous and bounded, then

(4.2) u : Ω −→ R u(t, x) :=

∫
Rn

Γ(0, y; t, x)ϕ(y) dy

is the unique bounded classical solution of (4.1); furthermore, it satisfies

(4.3) sup
Ω

|u| ≤ sup
Rn

|ϕ|.

Proof. Since the uniqueness problem is of independent interest (and since we

prove it with a totally different technique), this is postponed to Proposition 4.2.

Then we focus on the rest of the assertion.

First of all, by (ii), (vii) in Theorem 1.4, u is well posed and it satisfies (4.3):

indeed, for t > 0,

|u(t, x)| ≤ ‖ϕ‖∞
∫
Rn

Γ(0, y; t, x) dy = ‖ϕ‖∞
∫
Rn

Γ(0, x; t, y) dy = ‖ϕ‖∞.

The rest of the proof is split in three steps.

Step I: In this step we prove that u ∈ C(Ω). To this end, let z0 = (t0, x0) be

a fixed point in Ω and let r > 0 be such that

K := [t0 − r, t0 + r]×B(x0, r) ⊆ Ω.

Moreover, let zn → z0; we can assume that zn ∈ K. By arguing as in the proof

of Lemma 5.3-(b), one can easily recognize that

(y, η) �→ ΓG(0, y, 0; t, x, η) is in L1(RN ), for every (t, x) ∈ R1+n.
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Therefore, by Fubini’s theorem, for every n ≥ 0 we can write

u(zn) = u(tn, xn)
(2.11)
=

∫
Rn×Rp

γG(tn, (y, 0)
−1 � (xn, η))ϕ(y) dy dη

=

∫
Rn×Rp

γG(tn, u, v)ϕ(C
−1
xn

(u, v)) du dv,

where we have used the smooth diffeomorphism Cx(y, η) := (y, 0)−1 � (x, η)

(whose Jacobian determinant is 1). A dominated convergence argument is now

in order; we skip the details, apart from the non-trivial estimate (based on the

Gaussian bound in (2.12))

|γG(tn, u, v)ϕ(C−1
xn

(u, v))|

≤ c (t0 − r)−Q/2 ‖ϕ‖∞ exp
(
− d2(u, v)

c (t0 − r)

)
=: f(u, v).

In turn, the integrability of f is ensured by the estimate

exp
(
− d2(u, v)

c (t0 − r)

)
≤ exp

(
− S2(u)

cϑ2 (t0 − r)

)
exp

(
− N2(v)

cϑ2 (t0 − r)

)
,

where S,N are as in (2.6), and ϑ = ϑ(G) ≥ 1 is as in (2.7) (by arguing as in the

few lines after (2.14), one gets the integrability of the above right-hand side).

Step II: Since u is continuous by Step I, if we show that Hu = 0 in D′(Ω), the
hypoellipticity of H will imply that u ∈ C∞(Ω) and Hu = 0 on Ω. To this end,

let ψ ∈ C∞
0 (Ω). We have∫

R1+n

u(t, x)H∗ψ(t, x) dt dx

=

∫
Rn

(∫
R1+n

Γ(0, y; t, x)H∗ψ(t, x) dt dx
)
ϕ(y) dy

(2.1)
= −

∫
Rn

ψ(0, y)ϕ(y) dy = 0.

Here we applied Fubini’s Theorem, whose legitimacy is due to the estimate (see

also (vii) in Theorem 1.4)∫
supp(ψ)

(∫
Rn

Γ(0, x; t, y) dy

)
dt dx ≤ meas(supp(ψ)) <∞.
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Step III: To end the proof, we must show that u satisfies the needed initial

condition. To this end, let x ∈ Rn be fixed and let tn ∈ (0, 1) be vanish-

ing, as n → ∞. Arguing as in Step I (and with the aid of (ii) and (vii) of

Theorem 1.4), one gets

|u(tn, x)− ϕ(x)|

≤
∫
Rn×Rp

γG(tn, u, v) |ϕ(C−1
x (u, v))− ϕ(x)| du dv

(2.12)

≤ c (tn)
−Q/2

∫
Rn×Rp

exp
(
− d2(u, v)

c tn

)
|ϕ(C−1

x (u, v))− ϕ(x)| du dv

= c

∫
Rn×Rp

exp
(
− d2(u′, v′)

c

)
|ϕ((C−1

x ◦D√
tn)(u

′, v′))− ϕ(x)| du′ dv′.

In the last equality we used the change of variable (u, v) = D√
tn(u

′, v′), and
Dλ-homogeneity of d. Since one clearly has (due to the continuity of ϕ)

lim
n→∞ϕ((C−1

x ◦D√
tn)(w, z)) = ϕ(C−1

x (0, 0)) = ϕ(x),

we deduce that u(tn, x) → ϕ(x), thanks to a dominated-convergence argument

(see Step I) based on

exp
(
− d2(u′, v′)

c

)
|ϕ((C−1

x ◦D√
tn)(u

′, v′))− ϕ(x)|

≤ 2 ‖ϕ‖∞ exp
(
− d2(u′, v′)

c

)
.

This ends the proof.

We now turn to the uniqueness of the solution of the Cauchy problem for H:

Proposition 4.2: The only bounded classical solution of (4.1) when ϕ≡0 is the

null function. As a consequence, (4.2) is the unique bounded solution of (4.1).

Proof. Let u be a bounded classical solution of the homogeneous Cauchy pro-

blem for H, and let v(t, x, ξ) := u(t, x) defined on R×Rn ×Rp.

Clearly, v(0, x, ξ) = u(0, x) = 0 for every (x, ξ) ∈ Rn × Rp; moreover,

since HG is a lifting of H on R × Rn ×Rp, we get HGv = Hu = 0 point-wise

on (0,∞)×Rn ×Rp. Summing up, v is a bounded solution of the homoge-

neous Cauchy problem for HG. Since we have transferred our setting to that

of Carnot groups G, we are consequently entitled to apply [13, Theorem 2.1],

which ensures that v ≡ 0, and this ends the proof.
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5. Further properties of Γ

This appendix is completely devoted to establishing the properties (i)–(x) of Γ

in Theorem 1.4. Throughout the section, Γ is as in (1.9) and all the notations

used so far are tacitly understood.

Some of the properties we aim to prove are consequences of Theorem 2.7:

• (i) is a trivial consequence of the integral form of Γ in (1.8) jointly with

Theorem 2.7-(i).

• The first part of (ii) comes from (1.8); the symmetry in x, y will be

proved later on.

• (iii) follows from (iii) of Theorem 2.7 together with the change of vari-

able η = δ∗λ(η
′) (see also (2.3) and (2.5)).

• (vii) follows from (v) of Theorem 2.7 by making use of the change of

variable (y, η) = (x, 0) � (y′, η′).
• (ix) has been proved in Section 4.

Despite the simplicity of its statement, the proof of the following proposition is

technical and is a prototype for many of the next proofs.

Proposition 5.1: The following facts hold true:

(a) Γ is continuous out of the diagonal of R1+n ×R1+n.

(b) For every fixed compact set K ⊆ R1+n, we have

sup
z∈K

Γ(z; ζ) → 0 as ‖ζ‖ → ∞.

(c) For every fixed ζ ∈ R1+n, we have

Γ(z; ζ) → 0 as ‖z‖ → ∞.

Proof. (a) It is a dominated-convergence argument applied to the limit

lim
n→∞Γ(zn; ζn) = lim

n→∞

∫
Rp

γG(sn − tn, (xn, 0)
−1 � (yn, η)) dη,

where zn = (tn, xn) → z0, ζn = (sn, yn) → ζ0 and z0 �= ζ0; this argument is

based on the ingredients:

- a proper use of the change of variable η = Ψ−1
xn,yn(η

′) in Remark 2.5;

- the continuity of γG out of the origin of R1+N ;

- the bound (2.15) in Remark 2.15 (together with the integrability

of N−Q(η′) on the set {N(η′) > 1}).
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(b) It is dominated-convergence, applied to the right-hand limit

lim
n→∞ sup

z∈K
Γ(z; ζn) ≤ lim

n→∞

∫
Rp

sup
(t,x)∈K

γG(sn − t, (x, 0)−1 � (yn, η)) dη,

where z = (t, x), ζn = (sn, yn) → ∞ and K is compact in R1+n; we also used:

- another use of the change of variable η = Ψ−1
x,yn(η

′);
- the vanishing of γG at infinity (see (iv) in Theorem 2.7), together with

the change of variable η = Φx,yn(η
′) and the fact that

(5.1) lim
n→∞ ‖(sn − t, (x, 0)−1 � (yn,Ψx,yn(η

′)))‖ = ∞,

uniformly for z ∈ K and η′ ∈ Rp;

- the bound (2.15) in Remark 2.15.

(c) This is similar to (b); (5.1) is replaced by the (weaker) information

lim
n→∞ ‖(s− tn, (xn, 0)

−1 � (y,Ψxn,y(η
′)))‖ = ∞ uniformly for η′ ∈ Rp,

for any fixed ζ = (s, y). This ends the proof.

Corollary 5.2: For every fixed z ∈ R1+n, the map ζ �→ Γ(z; ζ) is smooth and

H-harmonic on R1+n \ {z} (i.e., H(Γ(z; ·)) = 0 on R1+n \ {z}).
Proof. By the C∞-hypoellipticity of H, we infer that Γ(z; ·) coincides almost

everywhere with a smooth H-harmonic function on R1+n \ {z}; the ‘almost

everywhere’ can be dropped in view of (a) in Proposition 5.1.

The following results (a) and (c) establish property (vi) of Theorem 1.4,

whereas (b) is technical for the study of the Cauchy problem for H.

Lemma 5.3: The following facts hold true:

(a) Γ ∈ L1
loc(R

1+n ×R1+n).

(b) For every fixed (s, y) ∈ R1+n, we have

(5.2) (t, x, η) �→ ΓG(t, x, 0; s, y, η) ∈ L1
loc(R

1+n+p).

(c) For every fixed ζ ∈ R1+n, we have Γ(·; ζ) ∈ L1
loc(R

1+n).

Proof. (a) Let K1,K2 ⊆ R1+n be compact sets and let T > 0 be so large

that K2 ⊆ [−T, T ]× Rn. By Tonelli’s Theorem and (vii) in Theorem 1.4, we

have ∫
K1×K2

Γ(z; ζ) dz dζ ≤ 2T meas(K1).
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(b) Let ζ = (s, y) ∈ R1+n, and let K ⊆ R1+N be compact. It can be proved

(see Remark 2.5) that the map

Hy : R1+n+p −→ R1+n+p, Hy(t, x, η) := (s− t, (x, 0)−1 � (y, η))

is a smooth diffeomorphism with identically 1 Jacobian determinant. Therefore∫
K

ΓG(t, x, 0; s, y, η) dt dxdη =

∫
K

γG(s− t, (x, 0)−1 � (y, η)) dt dxdη

=

∫
H−1

y (K)

γG(τ, z) dτ dz <∞,

since γG is locally integrable and H−1
y (K) is compact.

(c) Let K ⊆ R1+n be a compact set. The map T (t, x, u) := (t, x,Ψ−1
x,y(u)) is

a diffeomorphism of R1+n+p with Jacobian determinant equal to 1. Thus∫
K

Γ(z; ζ) dz =

∫
K×Rp

γG(s− t, (x, 0)−1 � (y,Ψ−1
x,y(u))) dt dxdu

=

∫
K×{N≤1}

{· · · } dt dxdu+

∫
K×{N>1}

{· · · } dt dxdu =: I + II,

where N is as in (2.6). (5.2) implies I <∞, and (2.15) gives II <∞.

Thanks to Lemma 5.3, we can prove property (viii) of Theorem 1.4:

Proposition 5.4: For every fixed ϕ ∈ C∞
0 (R1+n), the function

Λϕ : R1+n −→ R, Λϕ(ζ) :=

∫
R1+n

Γ(z; ζ)ϕ(z) dz

is well-defined and it satisfies the following properties:

(a) Λϕ ∈ C∞(R1+n) and H(Λϕ) = −ϕ on R1+n;

(b) Λϕ(ζ) −→ 0 as ‖ζ‖ → ∞;

(c) for every ζ ∈ R1+n, we have

ΛHϕ(ζ) =

∫
R1+n

Γ(z; ζ)Hϕ(z) dz = −ϕ(ζ).

Proof. By Lemma 5.3-(c), Λϕ is well-defined. Property (b) is a consequence

of Proposition 5.1-(b). By the C∞-hypoellipticity of H, (a) will follow if we

show that Λϕ is continuous and H(Λϕ) = −ϕ in the sense of distributions.

To begin with, let ζn = (sn, yn) → ζ0 = (s0, y0). Let T > 0 be so large
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that supp(ϕ) ⊆ [−T, T ]×Rn. We then have

Λϕ(ζn) =

∫ sn+T

sn−T

∫
RN

γG(τ, u, v)ϕ(sn − τ, C−1
yn (u, v)) dτ du dv

=

∫
[−T0,T0]×RN

γG(τ, u, v)ϕ(sn − τ, C−1
yn (u, v)) dτ du dv,

where Cy is as in the proof of Theorem 4.1, and T0 � 1 satisfies

[sn − T, sn + T ] ⊆ [−T0, T0] for any n.

We can now get Λϕ(ζn) → Λϕ(ζ0) by a standard dominated convergence argu-

ment, based on the integrability of γG on the strip [−T0, T0]×RN (see Theorem

2.7-(v)). Finally, H(Λϕ) = −ϕ in D′(R1+n) is a consequence of the definition

of fundamental solution (and of Lemma 5.3-(a)).

We prove (c). We consider u := ΛHϕ+ϕ. From property (a), we see that u is

smooth and H-harmonic on R1+n; moreover, from (b) we get that u vanishes at

infinity. Since H satisfies the Weak Maximum Principle on every bounded open

set (and therefore on the whole space R1+n as well; see [15, Corollary 5.13.7]),

we conclude that u ≡ 0 throughout R1+n, as desired.

Theorem 5.5 (Fundamental Solution for H∗): The function

Γ∗(z; ζ) := Γ(ζ; z)

is a global fundamental solution for the adjoint operator H∗ = L+ ∂t.

Proof. This follows immediately from (c) of Proposition 5.4.

We can now prove property (iv) of Theorem 1.4.

Theorem 5.6: Γ is smooth out of the diagonal of R1+n ×R1+n.

Proof. We consider the PDO on R1+n ×R1+n defined by

Q :=

m∑
j=1

X2
j (x) + ∂t +

m∑
j=1

X2
j (y)− ∂s,

where x, y ∈ Rn and t, s ∈ R. Obviously, Q is a Hörmander operator

on R1+n × R1+n since this is true of
∑m

j=1X
2
j on Rn. By Theorem 5.6 we

deduce that, for any (t, x) �= (s, y), one has

Q(Γ(t, x; s, y)) = H∗((t, x) �→ Γ(t, x; s, y)) +H((s, y) �→ Γ(t, x; s, y))

= H∗((t, x) �→ Γ∗(s, y; t, x)) +H((s, y) �→ Γ(t, x; s, y)) = 0.

The C∞-hypoellipticity of Q and the continuity of Γ out of the diagonal prove

the thesis.
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The next result establishes the second part of property (ii) of Theorem 1.4.

Theorem 5.7: For every (t, x), (s, y) ∈ R1+n we have

Γ(t, x; s, y) = Γ(t, y; s, x).

Proof. To ease the reading, we split the proof into two steps.

Step I: We first prove that the function G defined by

G(t, x; s, y) := Γ(t, y; s, x)

is a global fundamental solution for H, i.e., for every fixed z = (t, x) ∈ R1+n,

(a) G(z; ·) ∈ L1
loc(R

1+n);

(b) HG(z; ·) = −Dirz in D′(R1+n).

As for assertion (a), let K ⊆ R1+n be a compact set and let T > 0 be such

that K ⊆ [−T, T ]×B(0, T ) =: C(T ). Since Γ ≥ 0 and Γ(·; ζ) ∈ L1
loc(R

1+n) for

every ζ ∈ R1+n, one then has∫
K

G(t, x; s, y) ds dy ≤
∫
C(T )

Γ(t− s, y; 0, x) ds dy

=

∫ t+T

t−T

∫
B(0,T )

Γ(τ, y; 0, x) dτ dy <∞.

We now turn to prove assertion (b). To this end, let ϕ ∈ C∞
0 (R1+n) and

let ψ(s, y) := ϕ(−s, y). Since Γ∗(w; ζ) = Γ(ζ;w) is a global fundamental solu-

tion for H∗ (see Theorem 5.5), we have

−ϕ(t, x) = −ψ(−t, x) =
∫
R1+n

Γ(s, y;−t, x)Hψ(s, y) ds dy

=

∫
R1+n

Γ(0, y;−t− s, x)Hψ(s, y) ds dy

=

∫
R1+n

Γ(0, y;−t+ τ, x)Hψ(−τ, y) dτ dy

(since (Hψ)(−τ, y) = H∗ϕ(τ, y))

=

∫
R1+n

Γ(t, y; τ, x)H∗ϕ(τ, y) dτ dy

=

∫
R1+n

G(t, x; τ, y)H∗ϕ(τ, y) dτ dy,

and this proves that HG(z; ·) = −Dirz in D′(R1+n), as desired.
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Step II: In this step we show that, for every z = (t, x) ∈ R1+n, one has

G(z; ·) ∈ C(R1+n \ {z}) and G(z; ζ) → 0 as ‖ζ‖ → ∞.

On the one hand, the continuity of G(z; ·) out of z is a direct consequence of

the continuity of Γ out of the diagonal; on the other hand, since Γ(·; ζ) vanishes
at infinity, we have

G(t, x; s, y) = Γ(t, y; s, x) = Γ(t− s, y; 0, x) −→ 0, as ‖(s, y)‖ → ∞.

Due to the uniqueness of Γ, this ends the proof.

The next fact proves what remains to be proved of (v) in Theorem 1.4.

Remark 5.8: (1) In view of Γ(t, x; s, y) = Γ(−s, x;−t, y) and the symmetry of Γ

in x↔ y, we recognize that, for every compact set K ⊆ R1+n,

lim
‖ζ‖→∞

(sup
z∈K

Γ(ζ; z)) = lim
‖ζ‖→∞

(sup
z∈K

Γ(z; ζ)) = 0.

Here we used (b) of Proposition 5.1.

(2) By Theorem 5.7, it is not difficult to prove the following identity:

Γ∗(t, x; s, y) =
∫
Rp

Γ∗
G(t, x, 0; s, y, η) dη

(where Γ∗
G
is the fundamental solution of H∗

G
= LG + ∂t on G) which shows

that Γ∗
G
lifts Γ∗.

Furthermore, by the same tricks as above, Γ∗ satisfies the dual statement of

Proposition 5.4, that is, for every ϕ ∈ C∞
0 (R1+n), the function Λ∗

ϕ defined by

Λ∗
ϕ(ζ) :=

∫
R1+n

Γ∗(z, ζ)ϕ(z) dz, ζ ∈ R1+n,

is well-defined and it satisfies the following properties: Λ∗
ϕ ∈ C∞(R1+n)

and H∗(Λ∗
ϕ) = −ϕ point-wise on R1+n; Λ∗

ϕ(ζ) → 0 as ‖ζ‖ → ∞.

Finally, the next proposition proves (x) in Theorem 1.4.

Proposition 5.9: For every x, y ∈ Rn and every s, t > 0, we have the following

so-called Reproduction Identity:

(5.3) Γ(0, y; t+ s, x) =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw.
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Proof. We fix a point (s, y) ∈ (0,∞)×Rn and we define ϕs,y(w) := Γ(0, y; s, w).

Since Γ(0, y; ·) is smooth out of (0, y) and since s > 0, it is immediate to check

that ϕs,y ∈ C∞(RN ,R); moreover, since Γ(0, y; ·) vanishes at infinity, we see

that ϕs,y is also bounded on RN . Thus, Theorem 4.1 implies that

u(t, x) :=

∫
Rn

Γ(0, w; t, x)ϕs,y(w) dw =

∫
Rn

Γ(0, w; t, x) Γ(0, y; s, w) dw

is the unique bounded solution of the Cauchy problem

Hu = 0 in Ω = (0,∞)×Rn, u(0, x) = Γ(0, y; s, x) for x ∈ Rn.

We now claim that the function Ω  (t, x) �→ v(t, x) := Γ(0, y; t + s, x) is also

a bounded solution of the same Cauchy problem. Indeed, since s > 0 is fixed,

Corollary 5.2 shows that v ∈ C∞(Ω,R) and that Hv = 0 on Ω; moreover,

since Γ(0, y; ·) vanishes at infinity, we deduce that v is bounded on Ω. Since,

obviously, v(0, x) = Γ(0, y; s, x), we then conclude that v ≡ u on the whole of Ω,

and the Reproduction Identity (5.3) follows.
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Cauchy pour les opérateurs elliptiques dégénérés, Annales de l’Institut Fourier 19 (1969),

277–304.

[17] U. Boscain, J.=P. Gauthier and F. Rossi, The hypoelliptic heat kernel over three-

step nilpotent Lie groups. Sovremennaya Matematika. Fundamental’nye Napravleniya

42 (2011), 48–61; English translation in Journal of Mathematical Sciences (New York)

199 (2014), 614–628.

[18] M. Bramanti, L. Brandolini, M. Manfredini and M. Pedroni, Fundamental solutions
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New York, 2011

[20] J. Cygan, Heat kernels for class 2 nilpotent groups, Studia Mathematica 64 (1979),

227–238.

[21] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv

för Matematik 13 (1975), 161–207.

[22] G. B. Folland, On the Rothschild–Stein lifting theorem, Communications in Partial Dif-

ferential Equations 2 (1977), 165–191.



Vol. 259, 2024 PARABOLIC HOMOGENEOUS HÖRMANDER OPERATORS 127
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