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ABSTRACT

Bonamy et al. [4] showed that graphs of polynomial growth have finite

asymptotic dimension. We refine their result showing that a graph of

polynomial growth strictly less than nk+1 has asymptotic dimension at

most k. As a corollary Riemannian manifolds of bounded geometry and

polynomial growth strictly less than nk+1 have asymptotic dimension at

most k.

We show also that there are graphs of growth < n1+ε for any ε > 0

and infinite asymptotic Assouad–Nagata dimension.

1. Introduction

Asymptotic dimension is a large scale analog of topological dimension that

was introduced by Gromov [12]. It is invariant under quasi-isometries and

even stronger under coarse embeddings, so one can think of it as a large scale

topological notion (see [2] for an introduction to the subject).

Asymptotic dimension is relevant in several contexts: in geometric group the-

ory, as groups of finite asymptotic dimension satisfy the Novikov conjecture [25],

in geometry [17], [7] and in graph theory [21], [11],[4].

The asymptotic dimension asdimX of a metric space X is defined as

follows: asdimX ≤ n if and only if for every m > 0 there exists D(m) > 0

and a covering U of X by sets of diameter ≤ D(m) (D(m)-bounded sets) such
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that any m-ball in X intersects at most n+ 1 elements of U . We say that the

m-multiplicity of the cover U is at most n+ 1. If D(m) in the definition above

is a linear function of m, then we say that the asymptotic Assouad–Nagata

dimension of X is bounded by n ([8], [5]).

Špakula and Tikuisis ask in [23] (see the footnote in page 1021) whether

spaces of polynomial growth have finite asymptotic dimension (and apparently

as this is a quite natural question, it was considered by other people as well).

A different notion of dimension was considered earlier by Linial, London

and Rabinovich [19], and Linial [18], namely one defines the dimension of a

graph G to be the smallest n for which there is an embedding f : G → R
n so

that d(f(u), f(v)) ≥ 1 for u �= v and for some c > 0, d(f(u), f(v)) ≤ c if u, v

are adjacent. Krauthgamer and Lee [16] showed that graphs of polynomial

growth γ(r) ≤ Crk embed in this sense in R
O(k log k).

Using the result of [16] Bonamy et al. prove in [4] that graphs of polynomial

growth ≤ Crk have asymptotic dimension bounded by O(k log k) answering the

question of Špakula–Tikuisis. It is further shown that graphs of superpolyno-

mial growth can have infinite asymptotic dimension.

Benjamini and Georgakopoulos [3] show that planar triangulations of sub-

quadratic growth are quasi-isometric to trees (and so they have asdim = 1).

From the geometric point of view it is interesting to calculate the exact as-

ymptotic dimension of a space. This has been accomplished for several ‘natural’

classes of spaces: It is shown in [7] that the asymptotic dimension of a hyperbolic

group G is equal to dim(∂G)+1, and in [12] that n-dimensional Hadamard man-

ifolds of pinched negative curvature have asymptotic dimension n (see also [17]

for a detailed proof and an extension of this to asymptotic Assouad–Nagata

dimension). It is shown in [11], [15],[4] that planar graphs (or more generally

planar geodesic metric spaces) have asymptotic dimension at most 2. In this pa-

per we extend this list to the class of spaces with polynomial growth. Note that

spaces with polynomial growth appear in several settings. For example, dou-

bling spaces have polynomial growth [14] and manifolds of non-negative Ricci

curvature have polynomial volume growth [13]. It is shown in [17] that dou-

bling metric spaces have finite asymptotic dimension (in fact also finite Nagata

dimension) and a sharp bound of their Nagata dimension (hence also asymp-

totic dimension) in terms of Assouad dimension is given in [10]. Tessera in [24]

studies geometric properties of general graphs of polynomial growth.



Vol. 255, 2023 POLYNOMIAL GROWTH AND ASYMPTOTIC DIMENSION 987

We state now our results. We view a connected graph as a geodesic metric

space where each edge has length 1.

Definition 1.1: We define the growth function of a connected graphG=(V,E)

to be

γ(r) = sup{|Bv(r)| : v ∈ V },
where we denote above by |X | the number of vertices of a subset X of G. Due

to the independence from a base vertex, some authors call γ(r) the uniform

growth function.

We prove the following:

Theorem 2.4: Let G = (V,E) be a connected graph with growth function γ(r)

satisfying

lim
r→∞

γ(r)

rk+1
= 0 for some k ∈ N.

Then asdimG ≤ k.

As a corollary we have:

Corollary 3.3: If Mn is a Riemannian manifold of bounded geometry and

volume growth function Vol(r) satisfying

lim
r→∞

Vol(r)

rk+1
= 0 for some k ∈ N,

then asdimMn ≤ k.

We define the volume growth function for Mn as for graphs

Vol(r) = sup{Vol(Bx(r)) : x ∈ Mn}.
We say that Mn is of bounded geometry if there are a > 0, b > 1 such that for

any open ball of radius a in Mn there is a b-bilipschitz map to a Euclidean open

ball of radius 1. Recall that a map f : X → Y is b-bilipschitz if it is onto and

1/b d(x, y) ≤ d(f(x), f(y)) ≤ b d(x, y) for all x, y ∈ X.

We remark that other common definitions of bounded geometry for non-compact

manifolds imply ours.

It turns out that Theorem 2.4 applies more generally to metric spaces for an

appropriate definition of volume (see section 3). However, one does not have a

similar bound for the asymptotic Assouad–Nagata dimension. We have:
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Theorem 3.5: There is a metric space X with growth function satisfying

lim
r→∞

γ(r)

r
= 0

and infinite asymptotic Assouad–Nagata dimension.

There is a graph (G,E) with growth function γ(r) satisfying

lim
r→∞

γ(r)

r1+ε
= 0

for any ε > 0 and infinite asymptotic Assouad–Nagata dimension.

We note it follows from this theorem that the bound on the asymptotic di-

mension in terms of Assouad dimension implied by [10] is far from optimal.

Since the Assouad dimension bounds the Nagata dimension, for the graphs of

the theorem the Assouad dimension is infinite while the asymptotic dimension

is equal to 1.

Acknowledgements. I thank Agelos Georgakopoulos for interesting discus-

sions. I thank Urs Lang, Romain Tessera and Panagiotis Tselekidis for their

comments on a first draft of this paper and Alexander Engel for bringing [23]

to my attention. I would like to thank the referee for a carefull reading of the

paper and several suggestions that improved the exposition.

2. Graphs of polynomial growth

Definition 2.1: Let G be a metric space and r > 0. We say that X ⊂ G is r-

scale connected if for any x, y ∈ X there is a sequence x1 = x, x2, . . . , xn = y

in X such that d(xi, xi+1) ≤ r for all i = 1, . . . , n−1. If A ⊂ X we say that A is

an r-connected component of X if A is a maximal r-scale connected subset

of X .

So, for example, ifG = (V,E) is a connected graph, V has a single 1-connected

component (equal to itself) and each singleton {v} is a 1/2-connected compo-

nent of V .

Definition 2.2: Let G be a metric space and r > 0. We say that X ⊂ G has

r- dim X ≤ n if there is a D > 0 and a cover U of X by sets of diameter ≤ D

such that any r-ball intersects at most n+ 1 elements of U .
Clearly asdimG ≤ n if r- dim G ≤ n for all r.
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Definition 2.3: Let G = (V,E) be a connected graph and let X ⊂ G. We define

the growth function of X to be

γX(t) = sup{|Bv(t) ∩X | : v ∈ V }.
Lemma 2.1: Let G = (V,E) be a connected graph and let X ⊂ G. If there is

some t so that γX(t) < 1
2r t then r- dim X = 0.

Proof. It suffices to show that the r-connected components of X are bounded.

By hypothesis there is a t such that γX(t) < t/2r. It follows that any r-

connected component of X has diameter bounded by t.

Definition 2.4: Let G = (V,E) be a connected graph and let Y ⊂ V . We

say that Y is (D, r)-separating if all r-connected components of V \ Y have

diameter bounded by D.

More generally, if X ⊂ V and Y ⊂ X we say that that Y is a (D, r)-

separating subset of X if all r-connected components of X \ Y have diameter

bounded by D.

Before proceeding to give the formal proof of Theorem 2.4 we give here a rough

sketch. We argue by induction where the case n = 0 is done in Lemma 2.1.

Our aim is to show that a set of vertices X ⊂ V that has growth � tk, has

r- dim X ≤ k. In order to do this it suffices to find a (D, r)-separating subset

Y ⊂ X of growth � tk−1 (for an appropriately chosen D 	 r) and then apply

induction. Indeed by induction we have r- dim Y ≤ k − 1, and using this

and the r-connected components of X \ Y one produces a cover showing that

r- dim X ≤ k. So the problem is reduced to showing that there is such a Y

with growth � tk−1.

It is natural to use a (D, r)-separating subset of ‘minimal growth’. Suppose

say that we have a (D, r)-separating subset Y with the property that

(1) |Be(n) ∩ Y | ≤ |Be(n) ∩ Z|

for any other (D, r)-separating subset Z, where the vertex e is fixed and the

inequality holds for any n ∈ N. We show that such a subset has growth

γY (t) � tk−1. We note that since for the growth of X we have γX(t) � tk,

we can find around any point v for any sufficiently large s an r-thick annu-

lus As of X of radii ∼ s and volume � sk−1. If now around a point v of Y the

growth is greater than ∼ sk−1, we replace the ball of radius s of Y around v
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by As, i.e., we replace Y by the set

Y1 = (Y \Bv(s)) ∪As.

This produces a (D, r)-separating subset ofX violating inequality (1) (forD∼s),
which shows that indeed the growth of Y is � tk−1.

One technical complication arises: it is not possible to show that there is

a (D, r)-separating subset Y that satisfies (1) for every n. However, it is easy

to see that such a set exists for any fixed n. So we define minimal sets instead

as ‘limits’ of subsets Yn that are minimizing for fixed n’s. It turns out that this

weaker definition of minimality is sufficient for our purposes.

We present now the formal proof starting by giving this somewhat technical

definition of minimality.

Definition 2.5: We fix a vertex e ∈ G. We say that a (D, r)-separating subset Y

of V is minimal if there is a sequence of (D, r)-separating subsets Yn of V such

that the following hold:

(1) For any (D, r)-separating subset Z of V and for all n ∈ N

|Be(n) ∩ Z| ≥ |Be(n) ∩ Yn|.

(2) For any k > 0 there is some nk ≥ k such that

Be(k) ∩ Y = Be(k) ∩ Ynk+t
for all t ∈ N.

More generally, if Y ⊂ X ⊂ V and Y is a (D, r)-separating subset ofX , we say

that Y is minimal if the same two conditions are satisfied for (D, r)-separating

subsets of X .

Lemma 2.2: LetG=(V,E) be a locally finite connected graph. For anyD, r>0,

minimal (D, r)-separating subsets exist. The same is true for minimal (D, r)-

separating subsets of a subset X .

Proof. Clearly (D, r)-separating sets exist, e.g., take the complement of a D/2-

ball. Let Yn be a (D, r)-separating subset of V for which |Be(n) ∩ Yn| attains
the minimal value among all (D, r)-separating subsets. Since G is locally finite

we can pass to a subsequence Ynk
such that

Ynk
∩Be(k) = Ynk+t

∩Be(k)
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for all t ∈ N. Then set

Y =

∞⋃
k=1

(Ynk
∩Be(k)).

Clearly Y is a minimal (D, r)-separating subset of V .

The same proof applies for a (D, r)-separating subset of subsets of V .

Definition 2.6: Let G = (V,E) be a graph. An annulus with center v ∈ G and

radii m < n is the set

A(v,m, n) = {x ∈ V : m ≤ d(v, x) ≤ n}.
We say that n−m is the thickness of the annulus.

Lemma 2.3: Let k, r ∈ N and let G = (V,E) be a connected locally finite

graph. If X ⊂ G is such that for some m the growth at t0 = 4mr satisfies

γX(t0) ≤
( 1

4r

)k

tk0 ,

then r- dim (X) ≤ k − 1.

Proof. We will prove this by induction on k. By Lemma 2.1 the assertion holds

for k = 1. Assume inductively that the assertion holds for k − 1. Let X be a

subset satisfying

γX(t0) ≤
( 1

4r

)k

tk0 .

Let D = 2t0 and let Y be a minimal (D, r)-separating subset of X . If t1 = t0/4

we claim that

(∗) γY (t1) ≤
( 1

4r

)k−1

tk−1
1 .

Indeed assume that this is not the case, so there is some v such that

|Bv(t1) ∩ Y | >
( 1

4r

)k−1

tk−1
1 .

Consider the annulus ofX , A(v, t1, t0). Since t0 = 4t1, A(v, t1, t0) contains t0/2r

disjoint annuli Ai of thickness r. Clearly

∑
|Ai| ≤

( 1

4r

)k

tk0 ,

so some annulus, say Aj , satisfies

|Aj | ≤ 2r

t0

( 1

4r

)k

tk0 <
( 1

4r

)k−1

tk−1
1 .

Let N = d(e, v) + 4t0 (where e is as in Definition 2.5).
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Since Y is minimal there is a sequence Yn of (D, r)-separating subsets of X

satisfying the properties of Definition 2.5. If we set Y ′ = YnN , then by the

property (1) of the definition it follows that

Be(nN ) ∩ Y = Be(nN ) ∩ Y ′.

By the property (2) of the definition we have that for any (D, r)-separating

subset Z of X

|Be(N) ∩ Z| ≥ |Be(N) ∩ Y ′|.
Recall that nN ≥ N , so we have

Be(N) ∩ Y = Be(N) ∩ Y ′.

In particular

Bv(4t0) ∩ Y = Bv(4t0) ∩ Y ′.

Consider now the set Y1 = (Y ′\Bv(t1))∪Aj . We show that Y1 is also a (D, r)-

separating subset of X . Note that the thickness of Aj is r and t1 = D/8, so

the r-connected component of X \ Y1 containing v has diameter < D. Assume

that v1, v2 lie in distinct r-connected components of X \ Y ′ and neither of

them lies in the r-connected component of X \ Y1 containing v. We will show

that v1, v2 lie in distinct r-connected components of X \ Y1. Indeed for any

sequence of points x1 = v1, . . . , xm = v2 that joins them with d(xi, xi+1) ≤ r

for i ≤ m−1 we have that some xj lies on Y ′. Since Y1 ⊃ Y ′ \Bv(t1)) either xj

lies on Y1 or xj lies in Bv(t1). But since Aj is r-thick this implies that one

of v1, v2 is in the r-connected component of X \Y1 containing v. Hence xj ∈ Y1

so v1, v2 lie in distinct connected components of X \ Y1. This completes the

proof that Y1 is a (D, r)-separating subset of X .

However, this contradicts the second property of Definition 2.5 for Y ′ since
clearly

|Be(N) ∩ Y1| < |Be(N) ∩ Y ′|.
This proves the inequality (∗) of our claim. Note now that Y satisfies the

inductive hypothesis so r- dim Y ≤ k−2. Take now a uniformly bounded cover V
of Y of r-multiplicity ≤ k−1 and add to it the r-connected components ofX\Y ,

that have diameter at most D by hypothesis. We obtain a uniformly bounded

cover U of X of r-multiplicity ≤ k. We note that the diameter of the sets in the

cover is bounded by 2t0. In particular, the diameter of the sets in the cover that

we constructed depends only on the function γX (and r) and not on X .
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Theorem 2.4: Let G = (V,E) be a connected graph with growth function γ(t)

satisfying

lim
t→∞

γ(t)

tk+1
= 0 for some k ∈ N.

Then asdimG ≤ k.

Proof. By assumption, for any r > 0 there is an m such that for t0 = 4mr

γ(t0) ≤
( 1

4r

)k+1

tk+1
0 .

So by lemma 2.3 r- dim G ≤ k. Since this holds for every r, asdimG ≤ k.

Example 2.5: The Cayley graph of Zk has growth γ(r) ∼ rk. The above the-

orem implies that there is no graph of growth between rk and rk+1 that has

asymptotic dimension k + 1; i.e., there is nothing ‘smaller’ than the Cayley

graph of Zk+1 with asdim = k + 1. It is important of course for this that we

define growth ‘uniformly’ independently of a base vertex. If one defines growth

with respect to a base point, paraboloids of dimension k have strictly smaller

growth than R
k but asymptotic dimension = k.

Example 2.6: It is clear that there is no lower bound on asdim in terms of

volume. For example, 3-regular trees have exponential volume growth and

asdim = 1. It is easy to create similar examples of trees with polynomial

growth as well by taking a sparse set of branch points.

For example, take an infinite complete binary tree T , with root e (so every

vertex has two ‘children’), and subdivide edges so that an edge at distance n

from e in T has length 2�n/k� after the subdivision, for some fixed k. Then

γ(r) ∼ rk+1.

3. Assouad–Nagata dimension and metric spaces

There are several ways to assign volume functions to general metric spaces. A

quite naive definition is appropriate for this paper:

Definition 3.1: Let X be a metric space and ε, δ > 0. Then N is an (ε, δ)-net

of X if for any x ∈ X there is n ∈ N with d(x, n) ≤ ε and for any n1, n2 ∈ N ,

d(n1, n2) ≥ δ.

Using Zorn’s lemma it is easy to see that any metric spaceX contains an (ε, ε)-

net for any ε > 0.
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Definition 3.2: Let X be a metric space and let t ∈ R. We define the t-growth

function of a metric space to be

γt(r) = sup{|Bv(r) ∩N | : v ∈ X,N (t, t)-net}.
The supremum is over all (t, t)-nets (and v ∈ X).

We say that X has polynomial growth if there are t > 0, k, C > 0 such

that

γt(r) < Crk

for all r.

Observe that γt(r) ≤ γs(r) if t > s. Note also that if γt(r) �= ∞ for any r,

then for any s > t there is some Cs > 0 such that γt(r) ≤ Csγ
s(r). Indeed this

is because there is a C > 0 such that if N is a (t, t)-net, any ball of radius 2s

contains at most C points of N .

It follows that if γt(r) �= ∞ for any r for some t, then the specific ‘scale’ s > t

that we pick to define the growth function does not affect much the asymptotic

behavior of the growth function. For these reasons we will omit below the

reference to scale and we will denote the growth function for a specific scale

simply by γ(r).

Similarly one sees that the growth does not depend much on the net we pick.

If γt(r) �= ∞ for all r and N1, N2 are (t, t)-nets, then there is C > 0 such that

|Bv(r) ∩N1| ≤ C|Bv(r) ∩N2|.
Note however that if γt(r) = ∞ for some r, it is possible that |Bv(r)∩N | < ∞

for some specific net N :

Example 3.1: Consider the linear graph with vertices N where we attach n

extra edges to the vertex n for every n. Then γ1(1) = ∞, but if we take N as

a (1, 1)-net, |Bv(1) ∩ N| ≤ 3 for all v.

We note that for a graph, γ(r) is finite for all r > 0 if and only if it has

uniformly bounded degree if and only if γ(r) is finite for some r > 0.

Lemma 3.2: Let X be a metric space with 1-growth function γ(r) satisfying

lim
r→∞

γ(r)

rk+1
= 0 for some k ∈ N.

Then asdimX ≤ k.
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Proof. Let N be a (1, 1)-net of X . Given m > 0 we define a graph G = (N,E)

where (x, y) ∈ E if and only if d(x, y) ≤ 2m. Now G could have several

connected components, however for each connected component Γ we have that

its growth function satisfies

γΓ(r) ≤ γ(2mr),

so

lim
r→∞

γΓ(r)

rk+1
= 0.

By Theorem 2.4 the asymptotic dimension of Γ is at most k, so the m- dim

of Γ is bounded by k. In fact as we showed in Lemma 2.3, there is a cover U
of Γ with m-multiplicity ≤ k + 1 such that the diameter of every set in U is

bounded by a constant that depends only on γ (see the last line of the proof of

Lemma 2.3).

Since this is true for every connected component of G we have that m- dim

of X is bounded by k. As this is true for every m, asdimX ≤ k.

Corollary 3.3: If Mn is a Riemannian manifold of bounded geometry and

volume growth function Vol(r) satisfying

lim
r→∞

Vol(r)

rk+1
= 0 for some k ∈ N,

then asdimMn ≤ k.

Proof. Let us say that any a-ball Bx(a) of Mn is b-bilipschitz with the 1-ball

of Rn. Then

c1 ≤ VolBx(a) ≤ c2

for some c1, c2 > 0 and for any x ∈ Mn.

If N is an (a, a)-net of Mn and Bv(r+a) is a ball of radius r+a, we consider

the set C = Bv(r) ∩ N . The open balls Bc(a) where c ∈ C are disjoint, each

has volume ≥ c1 and they are all contained in Bv(r + a). It follows that

c1 · |C| ≤ Vol(Bv(r + a)).

Hence if we see Mn as a metric space, its a-growth function satisfies

γa(r) ≤ Vol(r + a)

c1
,

so by Lemma 3.2, asdimMn ≤ k.
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Example 3.4: The bounded geometry hypothesis is necessary: Consider any

graph G of bounded degree with infinite asymptotic dimension. ‘Thicken’ the

graph to a 2-manifold S (so edges become thin cylinders). By replacing the edges

by thinner and thinner ‘tubes’ as we go to infinity, we obtain a 2-manifold of

finite area and infinite asymptotic dimension.

Theorem 3.5: There is a metric spaceX with 1-growth function γ(r) satisfying

lim
r→∞

γ(r)

r
= 0

and infinite asymptotic Assouad–Nagata dimension.

There is a connected graph G = (V,E) with growth function γ(r) satisfying

lim
r→∞

γ(r)

r1+ε
= 0

for any ε > 0 and infinite asymptotic Assouad–Nagata dimension.

Proof. We give first a sketch of this proof. Both parts are similar so we explain

the idea for the case of graphs, which is more involved. To ensure that G has

infinite asymptotic Assouad–Nagata dimension it suffices that for every n, G

will contain a subgraph isomorphic to an n-ball of the Cayley graph of Zn. Of

course such balls would lead to big growth, however this can be corrected by

rescaling the length of the edges (or equivalently subdividing each edge many

times so that most vertices have degree 2 after this subdivision). There remains

the problem that the degree of the original vertices (before subdivisions) is n

(so unbounded), but this can be mended by replacing the vertices with trees

with sublinear growth and n-end points.

We proceed now with the details. Let Γn be the Cayley graph of Zn with re-

spect to the standard generating set. Let Ce(n) be the n-‘cube’ of side length 2n.

Let Gn be the metric space obtained by Ce(n) by changing the length of edges

from 1 to 2n
2

(so we rescale the metric by a factor of 2n
2

). We consider a metric

on ⋃
n∈N

Gn

so that the Gn’s are far apart. For example, we may consider the linear graph

with vertex set N and identify an arbitrary vertex of Gn with 10n
2

. In this way

we get a graph Γ, which we see as a metric space containing
⋃

n∈N
Gn, and so

we obtain an induced metric on
⋃

n∈N
Gn. Let X be the vertex set of

⋃
n∈N

Gn.
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We note that for the metric we just defined on X , the 1-growth function γ(r)

of X satisfies

lim
r→∞

γ(r)

r
= 0.

As X contains bigger and bigger copies of the vertex sets of Gn’s it is easy

to see that the asymptotic Assouad–Nagata dimension of X is infinite. Indeed

suppose that the Assouad–Nagata dimension of X is equal to k. Then there

is a C > 0 such that for any sufficiently big r there is a cover of X by sets

of diameter ≤ Cr such that any r-ball intersects at most k + 1 of these sets.

Let us denote by V (n) the vertex set of the [n]k+1 grid in Γk+1 and let dn be

the induced metric on V (n) by the inclusion in Γk+1; then it is clear that X

contains copies of (V (n), 2n
2

dn) for any n > 0. So for any sufficiently big r

there is a cover Un of (V (n), 2n
2

dn) by sets of diameter ≤ Cr2n
2

such that

any 2n
2

r-ball intersects at most k + 1 of these sets. By rescaling the metric we

have that (V (n), dn) has a cover U ′
n by sets of diameter ≤ Cr such that any

r-ball intersects at most k + 1 of these sets. However, as this is true for any n

it implies that the asymptotic dimension of Γk+1 is at most k, a contradiction.

This proves the first part of the theorem.

To prove the second part we make a similar construction. Let Ce(n, k) be

the n-cube of side length 2k in Γn (the Cayley graph of Zn). Let G(n, k) be

the metric space obtained by Ce(n, k) by changing the length of edges from 1

to 2k (so we rescale the metric by a factor of 2k). Clearly we can turn this into

a graph by subdividing the original edges into 2k edges. We consider the linear

graph with vertex set N and identify a vertex of G(n, k) with 10k. We obtain

in this way a graph Yn with asymptotic Assouad–Nagata dimension at least n

and growth γ(r) that satisfies

lim
r→∞

γ(r)

r1+ε
= 0

for any ε > 0. We note that the maximum degree of a vertex in Yn is 2n+2, so it

is not possible to obtain a graph of bounded degree taking a ‘union’ of Yn’s. For

this reason the growth function of such a union would be infinite for any r ≥ 1.

To correct this we replace each vertex v of degree 2n > 2 of Ce(n, k) in Yn

by a finite binary tree Tn with diameter 2n and 2n end vertices. Then we

identify each end-vertex of Tn with a vertex of an edge adjacent to v. We

call the graph obtained by replacing vertices in this way Xn. More specifi-

cally, Tn is a finite rooted binary tree with ∼ logn branch points and edges
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of length ∼ 2n/ log(logn). As usual we subdivide the edges of Tn into edges of

length 1 to get a simplicial graph.

The growth function γn of Xn satisfies

lim
r→∞

γn(r)

r1+ε
= 0

for any ε > 0. We claim that Xn has Assouad–Nagata dimension at least equal

to n. Indeed we have a map fn : Xn → Yn obtained by collapsing the Tn’s to

points. Clearly fn is a quasi-isometry as the fibers of this map have uniformly

bounded diameter, so Xn and Yn have the same asymptotic Assouad–Nagata

dimension.

Finally we may take X to be the ‘union’ of Xn’s. More precisely take L

to be the linear graph with vertex set n and identify a vertex of Xn with the

vertex 22
n

of L. Each vertex of the graph X obtained in this way has bounded

degree. We note that if we consider the union of Tn’s, its growth is bounded

by 10r1+ε for any ε > 0 and any r ≥ 1. It is easy to see that the growth

function γ(r) of X satisfies

lim
r→∞

γ(r)

r1+ε
= 0

and X has infinite asymptotic Assouad–Nagata dimension since it contains a

copy of Xn for all n.

4. Discussion and questions

We say that a proper metric space Mn is universal for a class C of proper metric

spaces of asymptotic dimension n if any metric space in C admits a coarse

embedding in Mn. This is in analogy to the topological dimension theory where

compact spaces of dimension n embed in the Menger compactum μn. It is shown

in [8] that there is no such space for n = 1 if we take C to be the class of all

proper metric spaces of asymptotic dimension n.

On the other hand, for hyperbolic spaces Buyalo, Dranishnikov and Schroeder

[6] show that if X is visual hyperbolic metric space such that its boundary ∂X

is a doubling metric space and asdimX = n, then X quasi-isometrically embeds

in a product of n+ 1-binary metric trees.

As the asymptotic dimension is a ‘coarse topology’ notion, it makes sense to

consider coarse embeddings of such spaces rather than quasi-isometries.
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It is not clear how much bigger dimension one needs in order to achieve a

coarse embedding of a graph of growth ∼ rk in R
n instead of an embedding

considered by Linial, London and Rabinovich [19] and Krauthgamer–Lee. Note

that the embeddings of [16] are weaker than coarse embeddings, as one only re-

quires that distinct vertices map at distance ≥ 1 from each other. For example,

there is an onto embedding in their sense from the linear graph with vertices N

to the standard Cayley graph of Z2—so these embeddings may raise asdim.

Question 4.1: Let G = (V,E) be a graph such that its growth function satisfies

γ(n) ≤ Cnk for some C > 0. Is there a coarse embedding f : G → R
O(k log k)?

One can ask also whether there is a ‘universal’ space for spaces with polyno-

mial growth:

Question 4.2: Is there a proper metric space Pk such that if X is a metric space

of polynomial growth < Cnk, then X coarsely embeds in Pk? If so, can one

take Pk so that asdimPk = k and Pk is of polynomial growth ∼ nk? (it might

be necessary here to fix C).

Manifolds with nonnegative Ricci curvature have been extensively studied

(see, e.g., [1], [22], [20]). Our result implies that if Mn is a complete Rie-

mannian manifold of nonnegative Ricci curvature and bounded geometry, then

asdimMn ≤ n. One wonders whether the bounded geometry assumption is

necessary:

Question 4.3: Let Mn be a complete Riemannian manifold of nonnegative Ricci

curvature. Is it true that asdimMn ≤ n?
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