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ABSTRACT

A theorem of Glasner from 1979 shows that if A ⊂ T = R/Z is infinite,

then for each ε > 0 there exists an integer n such that nA is ε-dense

and Berend–Peres later showed that in fact one can take n to be of the

form f(m) for any non-constant f(x) ∈ Z[x]. Alon and Peres provided a

general framework for this problem that has been used by Kelly–Lê and

Dong to show that the same property holds for various linear actions on

Td. We complement the result of Kelly–Lê on the ε-dense images of integer

polynomial matrices in some subtorus of Td by classifying those integer

polynomial matrices that have the Glasner property in the full torus Td.

We also extend a recent result of Dong by showing that if Γ ≤ SLd(Z) is

generated by finitely many unipotents and acts irreducibly on Rd, then

the action Γ � Td has a uniform Glasner property.

1. Introduction

In 1979 Glasner [7] showed that an infinite subset A ⊂ T = R/Z satisfies

the property that for every ε > 0 there exists n ∈ N such that nA is ε-dense

in T. This was later extended by Berend–Peres [4] in a number of ways. For

example, they showed that for each non-constant polynomial f(x) ∈ Z[x] there

exists n ∈ N such that f(n)A is ε-dense in T. This motivated them to define

a set S ⊂ N to be Glasner if for all infinite A ⊂ T and ε > 0 there exists

an s ∈ S such that sA is ε-dense. Turning our attention to more general

semigroup actions on metric spaces, we extend this definition as follows.
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Definition 1.1: We say that a subset S of a semigroup Γ is Glasner for an

action Γ � X on a compact metric space X by continuous maps if for each

infinite Y ⊂X and ε>0 there exists an s∈S such that sY is ε-dense. We say that

the action Γ � X is Glasner if Γ is a Glasner set with respect to this action.

In fact, Berend–Peres realised that a more uniform notion of the Glasner

property holds for this action on T. This leads us to the following definition.

Definition 1.2: If k : R>0 → N is a function, then we say that a subset S of a

semigroup Γ is k-uniformly Glasner for an action Γ � X on a compact met-

ric spaceX by continuous maps if there is an ε0 > 0 such that for each 0 < ε < ε0

and Y ⊂ X with |Y | ≥ k(ε) there exists an s ∈ S such that sY is ε-dense. We

say that the action Γ � X is k-uniformly Glasner if Γ is a k-uniformly Glasner

set with respect to this action. We will also use the phrase uniformly Glasner

to mean k-uniformly Glasner for some unspecified k : R>0 → N.

In particular, Berend–Peres showed that the multiplicative action of N acting

on T is (c1/ε)
c2/ε-uniformly Glasner.1 Moreover, they also gave a lower bound

by showing that there is a set Aε ⊂ T of cardinality cε−2 such that nAε is

not ε-dense for all n ∈ N. The seminal work of Alon–Peres [1] closed this

significant difference in the lower and upper bounds by showing that in fact

this action is ε−2−δ-uniformly Glasner for all δ > 0. Secondly, Alon–Peres also

quantitatively improved the polynomial example by showing that if f(x) ∈ Z[x]

is a non-constant polynomial of degreeD, then the set {f(n) | n ∈ N} is ε−2D−δ-

uniformly Glasner for all δ > 0.

The Glasner property of linear actions on a higher-dimensional torus Td was

studied by Kelly- Lê [10], where they used the techniques of Alon–Peres [1] to

show that the natural action of the multiplicative semi-group Md×d(Z) of d× d

integer matrices on Td is cdε
−3d2

uniformly Glasner. This was later improved

by Dong in [5] where he showed, using the same techniques of Alon–Peres to-

gether with the deep work of Benoist–Quint [3], that the action SLd(Z) � Td

is cδ,dε
−4d−δ-uniformly Glasner for all δ > 0. Furthermore, Kelly–Lê also gave

the following multidimensional generalization of the aforementioned result on

the Glasner property of polynomial sequences.

1 If k(ε, c, c1, . . . , ) is an expression involving ε and possibly constants c, ci etc., by k(ε)-

uniformly Glasner we always technically mean k-uniformly Glasner for the function k(ε) =

k(ε, c, c1, . . .) for some choice of c, ci > 0.
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Theorem 1.3 (Kelly–Lê, [10, Theorem 2]): Let A(x) ∈ Md×d(Z[x]) be a matrix

with integer polynomial entries. Then the following conditions are equivalent.

(1) The columns of A(x)−A(0) are linearly independent over Z (as elements

in Z[x]d) and whenever v, w ∈ Zd are such that

v · (A(x) −A(0))w = 0

then v ·A(0)w = 0.

(2) For any infinite subset Y ⊂ Td there exists a subtorus (non-trivial

connected closed Lie subgroup) T = T (Y,A(x)) such that for all ε > 0

there exists an n ∈ Z such that, for some Y0 ⊂ Y , the set

A(n)Y0 = {A(n)y | y ∈ Y0}
is ε-dense in a translate of T .

The following main result of this paper characterizes thoseA(x) ∈ Md×d(Z[x])

which satisfy the stronger property that {A(n) | n ∈ Z} is Glasner (for the nat-

ural linear action on Td), i.e., it characterizes when we can take the subtorus T
to be the full Td.

Theorem 1.4: Let A(x) ∈ Md×d(Z[x]) be a matrix with integer polynomial

entries. Then the following conditions are equivalent.

(1) For all v ∈ Zd \ {0} and w ∈ Zd \ {0} we have that

v · (A(x) −A(0))w �= 0.

(2) The set {A(n) | n ∈ Z} is c1ε
−c2-uniformly Glasner for the linear action

Md×d(Z[x]) � Td for some constants c1, c2 > 0 depending on A(x).

That is, for every Y ⊂ Td with |Y | > c1ε
−c2 there exists n ∈ Z such

that A(n)Y is ε-dense in Td.

Remark 1.5: As we shall see in the (2) =⇒ (1) proof, in condition (2) of Theo-

rem 1.4 one can replace c1ε
−c2-uniformly Glasner with the weaker condition of

being just Glasner. So Glasner and c1ε
−c2-uniformly Glasner are equivalent for

sets of the form {A(n) | n ∈ Z} for some A(x) ∈ Md×d(Z[x]).

Let us remark that, as stated, the subtorus T in Theorem 1.3 depends on Y

and not just A(x) and the proof in [10] is not constructive as it makes use of

Ramsey’s Theorem on graph colourings to demonstrate the existence of such

a T . Thus it does not seem that our result can be easily derived from the result

or techniques of Kelly–Lê. Note that in Theorem 2.8 we will provide an effective

estimate on the uniformity (estimates on the constants c1 and c2).
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It will be convenient to give some alternative formulations and geometrically

intuitive extensions of condition (1) in Theorem 1.4.

Definition 1.6: A set S ⊂ Rd is said to be hyperplane-fleeing if for all

proper affine subspaces H of Rd (i.e., H = W + a for some proper vector

subspace W ⊂ Rd and a ∈ Rd) we have that S �⊂ H .

Thus, condition (1) in Theorem 1.4 is equivalent to the statement that for

each non-zero w ∈ Zd \ {0} the orbit

{A(n)w | n ∈ Z}

is hyperplane-fleeing (as it is not a subset of the hyperplane

{x ∈ Rd | v · x− v ·A(0)w = 0}

for any v ∈ Zd \ {0} and in fact any v ∈ Rd \ {0} as A(x) has integer polyno-

mial entries). This hyperplane-fleeing property of the orbits is related to the

irreducibility of linear group actions. Indeed, it is easy to see that if d > 1,

and Γ ≤ Md×d(Z) is a semigroup whose action on Rd is irreducible, then the or-

bit of any non-zero vector v ∈ Rd\{0} is hyperplane-fleeing (we prove a stronger

statement in Lemma 3.2). This enables us to use Theorem 1.4 to deduce the

Glasner property for various irreducible representations. For instance, we re-

cover in a more elementary way (by avoiding the deep work of Benoist–Quint [3])

the aforementioned result of Dong but with weaker (but still polynomial in ε−1)

uniformity bounds. In general, we will demonstrate that subgroups generated

by a finite set of unipotent elements of SLd(Z) that act irreducibly on Td satisfy

the uniform Glasner property.

Theorem 1.7: Let d > 1 and let u1, . . . , um ∈ SLd(Z) be unipotent ele-

ments such that the action of the subgroup Γ = 〈u1, . . . , um〉 on Rd is irre-

ducible. Then there exists c1, c2 (depending on Γ) such that the following is

true: For each ε > 0 there exists an integer k ≤ c1ε
−c2 such that for any distinct

x1, . . . , xk ∈ Td there exists γ ∈ Γ such that {γx1, . . . , γxk} is ε-dense in Td. In

other words, the action of Γ on Td is c1ε
−c2 uniformly Glasner.

This will follow by showing (see Proposition 3.3) that Γ contains such a

polynomial satisfying the condition (1) of Theorem 1.4.

Let us now explore some examples of such subgroups other than SLd(Z)

(which is an example as SLd(Z) is generated by the finitely many elementary

matrices obtained from changing a single 0 to a 1 in the identity matrix).
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Theorem 1.8: Let Q(x, y, z) = xy − z2 or Q(x, y, z) = x2 − y2 − z2.

Let Γ = SOZ(Q) be the subgroup of SLd(Z) preserving this quadratic form.

Then the action of Γ on Td is uniformly Glasner.

Proof. For Q(x, y, z) = xy − z2 this can be seen as follows. By identify-

ing (x, y, z) ∈ Z3 with [
z −y

x −z

]
∈ sl2(Z)

we see that Q(x, y, z) is the determinant. But the determinant is preserved by

the conjugation action (adjoint representation) of SL2(Z) on sl2(R) given by

Ad(g)A = gAg−1 for A ∈ sl2(R) and g ∈ SL2(Z),

which is irreducible. Note that Ad(u) is unipotent for unipotent u since u is

a polynomial map and group homomorphism, Ad(SL2(Z)) thus generated by

unipotents. Of course, this example generalizes to any higher dimensional ad-

joint representation, thus showing that it also has the uniform Glasner property.

For Q(x, y, z) = x2 − y2 − z2 one instead notices

Q(x, y, z) = det

(
z −(x+ y)

x− y −z

)
.

Hence we may regard Q as the determinant map on the abelian subgroup{(
a11 a12

a21 a22

)
∈ sl2(Z) | a21 ≡ a12 mod 2

}
∼= Z3.

Now notice that the conjugation action of〈(
1 2

0 1

)
,

(
1 0

2 1

)〉

preserves this additive subgroup and acts irreducibly on sl2(R). Again, the

generators are unipotent hence have unipotent image under the adjoint repre-

sentation, as required.

We remark that these examples complement a recent work of Dong [6] where

he extended his result from [5] on the Glasner property of SLd(Z) � Td by

showing that the subgroups Γ ≤ SLd(Z) that are Zariski dense in SLd(R) are

also Glasner for the action on Td, but the uniform Glasner property was not

established. The examples above are not Zariski dense in SLd(R), though it is

remarked in Remark 4.2 of [6] that it is possible to also extend his techniques to
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the case where Γ satisfies the Benoist–Quint hypothesis, which these examples

do. However, these techniques are not quantitative and do not establish the

uniform Glasner property provided in Theorem 1.7. It is also worth remarking

that our proofs are more self-contained as they avoid the deep work of Benoist–

Quint.

Acknowledgement. The authors were partially supported by the Australian

Research Council grant DP210100162.

2. Hyperplane fleeing orbits implies Glasner property

In this section we prove Theorem 1.4. We start with the easier direction.

Proof of (2) =⇒ (1) in Theorem 1.4. Suppose that we have v, w ∈ Zd\{0} such
that v · (A(x))w = c where c = v · A(0)w is a constant. Let wm ∈ Td be the

image of 1
mw and cm ∈ T be the image of 1

mc. Notice that C = {cm | m ∈ Z>0}
cannot be dense in T because cm → 0 ∈ T, hence avoids a non-empty open

set U ⊂ T. The map f : Td → T given by f(u) = v ·u is well defined, continuous

and surjective with f(A(n)wm) = cm for all n ∈ Z and m ∈ Z>0. Thus the

infinite set Y = {wm | m ∈ Z>0} ⊂ Td satisfies the property that f(A(n)Y )

will never intersect U and so A(n)Y will never intersect the non-empty open

set f−1(U).

Lemma 2.1: If A(x) ∈ Md×d(Z[x]) is a matrix of integer polynomials, then the

following are equivalent.

(1) The orbit {A(n)w | n ∈ Z} is hyperplane-fleeing for all w ∈ Zd \ {0}.
(2) For all w ∈ Zd \ {0}, the entries of (A(x) − A(0))w are polynomials

in Z[x] that are linearly independent over Z.

(3) The polynomial vt(A(x) −A(0))w is non-zero for all v, w ∈ Zd \ {0}.
(4) For all v ∈ Zd \ {0}, the entries of vt(A(x) − A(0)) are polynomials

in Z[x] that are linearly independent over Z.

If w = (w1, . . . , wd) ∈ Zd we let gcd(w) = gcd(w1, . . . , wd). If �w1, . . . , �wd are

integer vectors (of possibly different dimensions) then we identify ( �w1, . . . , �wd)

with their concatenation, so gcd(�w1, . . . , �wd) makes sense and is equal to

gcd(gcd(�w1), . . . , gcd(�wd)).
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Proposition 2.2: Let v1, . . . , vd ∈ Zr be linearly independent vectors. Then

for all a1, . . . , ad ∈ Z and q ∈ Z>0 with gcd(a1, . . . , ad, q) = 1 we have that

gcd(a1v1 + · · ·+ advd, q) ≤ d! max
i

‖vi‖d∞.

Proof. Let V0 : Zd → Zr be the linear map given by

V0(x1, . . . , xd) =
d∑

i=1

xivi.

It is of full rank, hence there exists a full rank d× d minor of the matrix V0, in

other words there is a projection π : Zr → Zd of co-ordinates so that

V = π ◦ V0 : Zd → Zd

is of full rank. By the Smith normal form for integer matrices, there exists a

linear map D : Zd → Zd and automorphisms R and L of Zd such that

V = LDR

andD is a diagonal matrix with non-zero (the kernel of V and henceD is trivial)

diagonal entries satisfying the divisibility condition D1,1|D2,2| · · · |Dd,d. Since

automorphisms preserve divisors, we have that for �a = (a1, . . . , ad)

with gcd(a1, . . . , ad, q) = 1, gcd(R�a, q) = 1. Hence since all Di,i �= 0, we

get that gcd(DR�a, q) ≤ Dd,d. Since L preserves divisors, we get that

gcd(V�a, q) = gcd(LDR�a, q) ≤ Dd,d.

We have the upper bound

Dd,d ≤ | det(D)| = | det(V )| ≤ d! max
i

‖vi‖d∞.

Finally, since V = π ◦ V0 we have gcd(V0�a, q) ≤ gcd(V�a, q), which completes

the proof.

Definition 2.3: We say that a vector P (x) = (P1(x), . . . , Pr(x)), where

Pi(x) ∈ Z[x], has multiplicative complexity Q if for all �a = (a1, . . . , ar) ∈ Zr

and q ∈ Z with gcd(a1, . . . , ar, q) = 1 we have that the polynomial

D∑
j=1

bjx
j = (P (x) − P (0)) · �a

satisfies gcd(b1, . . . , bD, q) ≤ Q.
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Throughout this paper, if A(x) ∈ Md×d(Z[x]) is a matrix with polynomial

integer matrices, then we let ‖A(x)‖ denote the largest absolute value of a

coefficient appearing in A(x).

Corollary 2.4: Let A(x) ∈ Md×d(Z[x]) be a matrix with integer polynomial

entries and w ∈ Zd \{0} such that the entries of the row vector wt(A(x)−A(0))

are elements of Z[x] that are linearly independent over Z. Then wtA(x) has

multiplicative complexity Q where

Q = Q(A(x), w) = d! · (d · ‖A(x)−A(0)‖‖w‖∞)d.

Proof. Let v1, . . . , vd∈Z[x] denote the entries of the row vector wt(A(x)−A(0)).

These are linearly independent over Z and so we may apply Proposition 2.2 by

viewing vi as an element of Zr, where r − 1 is the maximal degree of the vi, to

obtain the desired estimate.

Throughout this paper, we let e(t) = exp(2πit). We will need the following

classical bound of Hua.

Theorem 2.5 ([8], see also [9]): For a positive integer D and 0 < δ < 1
D there

exists a constant CD,δ such that if f = a0 + a1x + · · · + aDxD ∈ Z[x] is a

polynomial and q is a positive integer such that gcd(a1, . . . , aD, q) = 1, then∣∣∣1
q

q∑
n=1

e
(f(n)

q

)∣∣∣ ≤ CD,δq
δ− 1

D .

We now state some extensions of tools developed by Alon–Peres [1] that

have been used or slightly modified in subsequent works on the Glasner prop-

erty [5], [10]. Let

B(M) = {�m ∈ Zd | �m �= �0 and ‖�m‖∞ ≤ M}

denote the L∞ ball of radius M in Zd around �0 with �0 removed.

Proposition 2.6: For each positive integer d there exists a constant

C1 = C1(d) > 0 such that for all ε > 0, if we set M = �d/ε�, then the fol-

lowing is true: Let γ1, . . . , γN ⊂ Md×d(Z) be a finite sequence of matrices

and X = {x1, . . . , xk} ⊂ Td. Suppose that γnX is not ε-dense in Td for

all n = 1, . . .N . Then

k2 ≤ C1

εd

∑
�m∈B(M)

∑
1≤i,j≤k

1

N

N∑
n=1

e(�m · γn(xi − xj)).
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Proof. This is exactly Proposition 2 in [10] without the limit. See the short

half-page proof that uses the exponential sum estimate from [2].

Proposition 2.7: Fix an integer d > 0 and any real number r > 0. Then

there exists a constant C = C(d, r) such that the following is true: Given any

distinct x1, . . . , xk ∈ Td, let hq denote the number of pairs (i, j) with 1 ≤ i, j ≤ k

such that q is the minimal (if such exists) positive integer such that q(xi−xj)=0.

Then
∞∑
q=2

hqq
−r ≤ Ck2−r/(d+1).

Proof. For r > 1, this is a combination of Proposition 5 and Lemma 4.2 in [5],

which is based on Proposition 1.3 of the Alon–Peres work [1]. It is only stated

in [5] for r > 1 but it is in fact true for r > 0. We reproduce the proof for

the sake of convenience and certifying that indeed only the assumption r > 0 is

needed. Let

Hm =

m∑
q=2

hq for m ≥ 2

and H1 = 0. We first show that Hm ≤ kmd+1. To see this, note that for each

fixed i and q, there are at most qd values of j such that q(xi − xj) = 0. Thus

summing over j = 1, . . . , k and then over q = 1, . . . ,m we get Hm ≤ kmd+1.

Note also that Hm ≤ k2 for all m. Choose large enough Q > k1/(d+1) such

that hq = 0 for all q > Q. We have that

∞∑
q=2

hqq
−r =

Q∑
q=2

hqq
−r

=

Q∑
q=2

(Hq −Hq−1)q
−r

=

Q∑
q=2

Hq(q
−r − (q + 1)−r) +HQ(Q+ 1)−r

=
∑

2≤q<k1/(d+1)

Hq(q
−r − (q + 1)−r)

+
∑

k1/(d+1)≤q≤Q

Hq(q
−r − (q + 1)−r) +HQ(Q+ 1)−r
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Now for the second sum use the bound Hq ≤ k2, telescoping and let Q → ∞.

Then for the first sum use the inequality Hq ≤ kqd+1 to get

∞∑
q=2

hqq
−r ≤

∑
2≤q<k1/(d+1)

kqd+1(q−r − (q + 1)−r) + k2k−r/(d+1)

≤ k
∑

2≤q<k1/(d+1)

rqd−r + k2k−r/(d+1)

≤ Ck2−r/(d+1) + k2−r/(d+1)

for some constant C = C(d− r).

We are now ready to prove the (1) =⇒ (2) direction of Theorem 1.4. We will

actually prove the following stronger quantitative form.

Theorem 2.8: For δ > 0 and integers d,D > 0 there exists a constantCδ,d,D>0

such that the following is true: Let A(x) ∈ Md×d(Z[x]) be a matrix with inte-

ger polynomial entries of degree at most D such that for each w ∈ Zd \ {0} the

orbit {A(n)w | n ∈ Z} is hyperplane-fleeing. Then for each ε > 0 and positive

integers

k > Cδ,d,D‖A(x)−A(0)‖d(d+1)ε−2d(d+1)D−d(d+1)−δ

we have that whenever x1, . . . , xk are k distinct elements of Td, then there exists

an integer n such that {A(n)x1, . . . , A(n)xk} is ε-dense in Td.

Proof. Fix ε > 0 and assume that no such n exists. We will obtain an upper

bound for k by applying Proposition 2.6 with γn = A(n) and letting N → ∞
in the upper bound. We claim that if xi − xj is irrational and �m ∈ B(M),

where M = �d/ε� as in Proposition 2.6, then

lim
N→∞

1

N

N∑
n=1

e(�m · γn(xi − xj)) = lim
N→∞

1

N

N∑
n=1

e(�mtA(n)(xi − xj)) = 0.

To see this, first note that the row vector

�mt(A(x) −A(0)) = [P1(x), . . . , Pd(x)]

has linearly independent entries over Z (see Lemma 2.1) and hence over R

as Pi(x) ∈ Z[x]. Now if θ = (θ1, . . . , θd) ∈ Td is irrational, then we claim that

q(x) = �mt(A(x) −A(0))θ =
∑

θiPi(x)
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is irrational, i.e., not in Q[x]. To see this, note that otherwise we have

that q(x), P1(x), . . . , Pd(x) are linearly dependent over R and hence over Q,

and so as P1(x), . . . , Pd(x) are linearly independent we must have a linear com-

bination q(x) =
∑

θ′iPi(x) with all θ′i ∈ Q. But by linear independence of

P1(x), . . . , Pd(x) we have that θi=θ′i∈Q. So we have shown that �mtA(n)(xi−xj)

has at least one irrational non-constant coefficient when viewed as an element

of R[n] and hence by Weyl equidistribution we get the desired limit

lim
N→∞

1

N

N∑
n=1

e(�mtA(n)(xi − xj)) = 0.

Now we need to focus on the case where xi − xj is rational. Thus we

may write xi − xj = 1
q�a where q ∈ Z>0 and �a = (a1, . . . , ad) ∈ Zd with

gcd(q, a1, . . . , ad) = 1. Now by Corollary 2.4 we have that �mtA(x) has mul-

tiplicative complexity Q where

Q = sup
�m∈B(M)

d! · (d · ‖A(x)−A(0)‖‖�m‖∞)d ≤ d!d2d‖A(x)−A(0)‖dε−d.(1)

Thus the greatest common divisor of q and the non-constant coefficients of

the polynomial �mtA(x)�a ∈ Z[x] is at most Q. Thus if D is the maximum

degree of an entry in A(x), we may apply Hua’s bound (Theorem 2.5) to obtain

a constant C2 = C2(D, δ) depending only on D and any constant 0 < δ < 1
D

such that

lim
N→∞

1

N

N∑
n=1

e(�mtA(n)(xi − xj)) =
1

q

q∑
n=1

e
(1
q
�mtA(n)�a

)
≤ C2

(Q
q

) 1
D−δ

.

Now let hq denote the number of pairs xi, xj such that q is the least positive

integer for which q(xi − xj) = 0. We apply Proposition 2.6 to obtain that

k2 ≤ C1

εd

∑
�m∈B(M)

( ∞∑
q=2

hqC2

(Q
q

) 1
D−δ

+ k

)

≤ Q
1
D−δC2(2M)d

C1

εd

∞∑
q=2

hqq
δ− 1

D +
C1

εd
(2M)dk.

Now apply Proposition 2.7 to get that

∞∑
q=2

hqq
δ− 1

D ≤ C3k
2−( 1

D−δ)/(d+1)



120 K. BULINSKI AND A. FISH Isr. J. Math.

for some constant C3 = C3(d,D) depending only on d and D. Thus we have

shown that

k2 ≤ Q
1
D−δC2(2M)d

C1

εd
C3k

2−( 1
D−δ)/(d+1) +

C1

εd
(2M)dk.

Now using M = �d/ε� and the upper bound (1) on Q we have that

k ≤ Cδ,d,D‖A(x)−A(0)‖d(d+1)ε−2d(d+1)D−d(d+1)−δ

for some constant Cδ,d,D depending only on d,D and any δ > 0.

3. Applications to groups generated by unipotent matrices

3.1. Balls in the Cayley graph of a linear group. Let Γ ⊂ SLd(Z) be a

group generated by elements S ⊂ Γ and suppose that the linear action Γ � Rd

is irreducible. We let

Sr = {s1 · · · sm | 0 ≤ m ≤ r and s1, . . . , sr ∈ S}

denote the elements of Γ that can be written as a product of at most r elements

of S (including 1 ∈ Sr as it is the empty product), i.e., the ball of radius r in

the Cayley graph with respect to S.

Lemma 3.1: For each v ∈ Rd \ {0}, we have that R-span(Sd−1v) = Rd.

Proof. For integers r ≥ 0 let Vr = R-span(Srv). Suppose r ≥ 0 is such

that Vr �= Rd. Then by irreducibility of Γ and v �= 0 we must have that Vr is

not Γ-invariant and hence not S-invariant. Thus SVr �⊂ Vr, and so Sr+1v �⊂ Vr,

which means dimVr+1 ≥ dimVr + 1. That is, we have shown that the nested

sequence of subspaces V0 ⊂ V1 ⊂ V2 ⊂ · · · is strictly increasing in dimension

until the dimension is d, with V0 = Rv of dimension 1, hence Vd−1 = Rd as

required.

Lemma 3.2: If d > 1 and v ∈ Rd \ {0}, then Sdv is hyperplane fleeing.

Proof. Suppose not, thus there exists a proper linear subspaceW �Rd and a∈Rd

such that Sdv ⊂ W +a. As d > 1, there exists an s ∈ S such that sv−v �= 0 (as

otherwise Rv would be a one-dimensional, hence proper, Γ invariant subspace).

Now apply Lemma 3.1 to sv − v �= 0 to get that Sd−1(sv − v) �⊂ W . But this

contradicts Sdv ⊂ W + a since

Sd−1(sv − v) ⊂ Sdv − Sdv ⊂ W + a− (W + a) = W.
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3.2. Constructing polynomials via unipotents. The following Proposi-

tion together with Theorem 2.8 completes the proof of Theorem 1.7.

Proposition 3.3: Suppose that S ⊂ SLd(Z) where d > 1 and each s ∈ S is a

unipotent element, and suppose that the action of Γ = 〈S〉 on Rd is irreducible.

Then there exists a matrix with integer polynomial entries A(x) ∈ Md×d(Z[x])

such that A(n) ∈ Γ for all n ∈ Z and {A(n)w | n ∈ Z} is hyperplane-fleeing for

all w ∈ Rd \ {0}.

Proof. Write S = {u1, . . . , um} where each ui is a unipotent element, and use

cyclic notation so that ui = ui+jm for all i, j ∈ Z. Note that for each fixed i

the matrix un
i has entries that are integer polynomials in n, hence

QN (n1, . . . , nN) =

N∏
i=1

uni

i ∈ Md×d(Z[n1, . . . , nN ])

is a matrix with multivariate integer polynomial entries in the variables

n1, . . . , nN . Now let N = dm and use Lemma 3.2 to get that

{QN(n1, . . . nN )w | n1, . . . nN ∈ Z}

is hyperplane-fleeing for all w ∈ Rd \ {0}. In other words, for each fixed

w ∈ Rd \ {0}, if we let P1, . . . , Pd ∈ R[n1, . . . , nN ] be the polynomials such that

Q(n1, . . . , nN )w = (P1(n1, . . . , nN ), . . . , Pd(n1, . . . , nN)),

then P1, . . . , Pd, 1 are linearly independent over R. But there exists a large

enough R ∈ Z>0 (independent of w) such that the substitutions ni �→ nRi−1

i

induce a map Z[n1, . . . , nN ] → Z[n] that is injective on the monomials appear-

ing in QN(n1, . . . , nN ). Thus P1, . . . , Pd, 1 remain linearly independent over R

after making this substitution, thus {Q(n, nR, . . . , nRN−1

)w | n ∈ Z} is also

hyperplane-fleeing. So the proof is complete with

A(x) = Q(x, xR, . . . , xRN−1

).
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