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ABSTRACT

Let S be a closed topological surface. Haupt’s theorem provides necessary

and sufficient conditions for a complex-valued character of the first integer

homology group of S to be realized by integration against a complex-

valued 1-form that is holomorphic with respect to some complex structure

on S. We prove a refinement of this theorem that takes into account the

divisor data of the 1-form.
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1. Introduction

Let S be an oriented connected topological surface without boundary having

genus g ≥ 2. We say that a character χ : H1(S;Z) → C is realized by a

complex-valued 1-form ω if and only if for each integral cycle γ we have∫
γ

ω = χ(γ).

In this case, the image Λχ of χ is the set of periods of ω.

In 1920, O. Haupt [Hpt20] determined those characters that are realized by

some 1-form that is holomorphic with respect to some complex structure on S.

More recently, M. Kapovich [Kpv17] rediscovered Haupt’s characterization in

the following form: A character χ is realized by a holomorphic 1-form ω if and

only if

(1) its area

A(χ) := Im
∑

χ(ai)χ(bi)

is positive where {ai, bi} is a symplectic basis of H1(S;Z), and

(2) if Λχ is discrete, then Λχ is a lattice and the induced homotopy class of

maps from S to the torus C/Λχ has degree dχ strictly greater than 1.

In addition, if Λχ is discrete, then the induced map is realized by a branched

covering p : S → C/Λχ and the pullback p∗(dz) realizes χ.
In this note we provide a refinement of Haupt’s theorem that involves the

divisor data of the 1-form. To be precise, let

Z(ω) = {z1, z2, . . . , zk}

be the set of zeros of a nontrivial holomorphic 1-form ω, and for each i let αi

denote the multiplicity of the zero zi. The divisor data, α(ω), is the unordered

n-tuple (α1, . . . , αk), whose sum is

α1 + α2 + · · ·+ αk = 2g − 2.

Theorem 1.1: A character χ : H1(S,Z) → C is realized by a 1-form ω with

divisor data α(ω) = (α1, . . . , αk) if and only if

(1) A(χ) is positive, and

(2’) if Λχ is discrete, then the induced map S → C/Λχ has degree

dχ > max {αi}.
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The proof of the sufficiency is immediate. Indeed, one applies Haupt’s theo-

rem and notes that the Riemann–Hurwitz formula shows that the degree of an

induced branched covering is at least 1 + max {αi}.
To prove the necessity, we will recast the problem in terms of the moduli

space theory of 1-forms (see §2). The Hodge bundle ΩMg is the moduli space

of complex-valued 1-forms that are holomorphic with respect to some complex

structure on S. It is a disjoint union of the strata ΩMg(α), consisting of forms

with divisor data α. A connected component of the set of 1-forms that have

a prescribed set of periods constitutes a leaf of the ‘isoperiodic foliation’. Cal-

samiglia, Deroin, and Francaviglia [CDF15] classified the closures of the leaves

of the isoperiodic foliation. We use this classification to prove the following.

Theorem 1.2: If L is an isoperiodic leaf whose associated set of periods is not

a lattice, then L intersects each connected component of each stratum of the

Hodge bundle.

To prove Theorem 1.1, one combines Theorem 1.2 with the following propo-

sition.

Proposition 1.3: Let Γ be a lattice in C. For each connected component K

of each stratum ΩMg(β) of ΩMg and for each integer d > max {βk}, there
exists a primitive degree d branched covering p : S → C/Γ such that (S, p∗(dz))
belongs to K.

Recall that a branched cover of a torus is primitive if the induced map on

homology is surjective.

In §2, we construct the Hodge bundle over Teichmüller space, define the

isoperiodic foliation, recall the main result of [CDF15], and prove Theorem 1.2.

In §3, we prove Proposition 1.3.

Soon after we posted this paper on the arXiv, Thomas Le Fils shared a

preprint [LFs20] containing his independent proof of Theorem 1.1. His proof

differs from ours in that it does not pass through Theorem 1.2 and instead uses

a study of the mapping class group action on the space of characters in the spirit

of [Kpv17]. We note that his paper does not consider connected components of

strata.

Acknowledgement. We thank an anonymous referee for very helpful com-

ments.
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2. The Hodge bundle and the isoperiodic foliation

In this section we describe the Hodge bundle and the absolute and relative

period mappings. We define the isoperiodic foliation and show that each leaf

that passes near a stratum must intersect the stratum. We use this to prove

Theorem 1.2. Finally we prove Theorem 1.1 modulo the proof of Proposition 1.3.

We begin by describing the Hodge bundle as a bundle over Teichmüller

space. A marked Riemann surface is a closed Riemann surface X together

with an orientation-preserving homeomorphism f : S → X . Two marked sur-

faces (f1, X1) and (f2, X2) are considered to be equivalent if f2 ◦ f−1
1 is isotopic

to a conformal map. The set of equivalence classes of marked genus g surfaces

may be given the structure of a complex manifold homeomorphic to C3g−3 called

the Teichmüller space Tg.
The Hodge bundle ΩTg → Tg is the (trivial) vector bundle over Tg whose

fiber above (f,X) consists of (equivalence classes of) holomorphic 1-forms onX .

In other words, ΩTg is the space of triples (f,X, ω) up to natural equivalence.

The total space of ΩTg is naturally a complex manifold of dimension 4g − 3.

The absolute period map P : ΩTg → H1(S;C) is the holomorphic map that

assigns to each triple (f,X, ω) the cohomology class f∗(ω).
Let Ω∗Tg ⊂ ΩTg denote the set of one-forms that do not vanish identically.

The map that assigns divisor data to each 1-form defines a stratification of Ω∗Tg.
In particular, for each partition α=(α1, . . . , αk) of 2g−2, we define the stra-

tum ΩTg(α) to consist of those triples (f,X, ω) such that the divisor data

of ω equals α.

One may also define a relative period map in a neighborhood of each non-

trivial marked one-form (f0, X0, ω0) in the stratum ΩTg(α). Let Z ⊂ S be

a set of k marked points. Over a contractible neighborhood U ⊂ ΩTg(α)
of (f0, X0, ω0), one may choose representative marking maps to identify Z with

the zero sets Z(ω). Pulling back by these marking maps the class

[ω] ∈ H1(X,Z(ω);C)

then defines the relative period map

Prel : U → H1(S,Z;C).

The relative period map is well-known to be a local biholomorphism [Vch90].

Moreover, the relative and absolute period maps are related by P |U = r ◦ Prel

where r is the natural map from H1(S,Z;C) to H1(S;C). By considering the
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long exact sequence in cohomology, one finds that r is surjective, and hence P |U
is a submersion. Since every non-trivial one-form lies in some stratum, we have

the following.

Lemma 2.1: The restriction of the absolute period map P to Ω∗Tg is a sub-

mersion, as is its restriction to any stratum in ΩTg.

Since P is a submersion, it defines a holomorphic foliation of Ω∗Tg called

the isoperiodic (or Rel) foliation. Each isoperiodic leaf is a connected

component of a level set of P .

The mapping class group Mod(S) naturally acts biholomorphically and prop-

erly discontinuously on the Hodge bundle. The quotient of this action is the

classical Hodge bundle ΩMg → Mg where the base Mg is the moduli space of

Riemann surfaces. In particular, each point in ΩMg may be regarded as (the

equivalence class of) a pair (X,ω) where X is a Riemann surface and ω is a

holomorphic 1-form on X .

If ϕ ∈ Mod(S) then we have

P (ϕ∗(ω)) = ϕ∗(P (ω)).

It follows that the isoperiodic foliation descends to a foliation of ΩMg that we

will also refer to as the isoperiodic foliation. Moreover, we have a well-defined

map from the set of leaves to the orbit space H1(S;C)/Mod(S), and the set of

periods

ΛL :=

{∫
γ

ω : γ ∈ H1(S;Z)

}
depends only on the isoperiodic leaf L to which ω belongs.

Each stratum ΩTg(α) is invariant under the action of Mod(S). Each quotient,

ΩMg(α) := ΩTg(α)/Mod(S),

is the stratum that consists of pairs (X,ω) with divisor data α.

Proposition 2.2: Let K be a connected component of a stratum. There exists

a neighborhood Z ⊂ ΩMg of K such that if an isoperiodic leaf L intersects Z,

then L also intersects K.

Proof. Let K̃ be a connected component of the preimage of K in Ω∗Tg. By

Lemma 2.1, the map P is a holomorphic submersion from the 4g − 3 dimen-

sional complex manifold Ω∗Tg onto the complex vector space H1(S;C) which
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has dimension 2g. Thus, given (f,X, ω), the inverse function theorem provides

an open ball B2g−3 ⊂ C2g−3, an open ball B2g ⊂ H1(S;C), and a biholomor-

phism ϕ from B2g−3 ×B2g onto a neighborhood U of (f,X, ω) so that

P ◦ ϕ(z, w) = w.

Suppose that (f,X, ω) lies in K̃. Since the restriction of P to K̃ is a submer-

sion, the image V := P (U ∩ K̃) is open. Note that

(P ◦ ϕ)−1(V ) = B2g−3 × V.

If L is a connected component of P−1(χ) that intersects

W := ϕ(B2g−3 × V ),

then χ ∈ V and L ∩ U = ϕ(B2g−3 × {χ}). In particular, L intersects K̃.

The neighborhood Z is constructed by taking the image in ΩMg of the union

of all such neighborhoods W as (f,X, ω) varies over K̃.

Next, we describe the result of Casamiglia, Deroin, and Francaviglia [CDF15]

that classifies the closures of leaves L in terms of the associated set of periods ΛL.

The closure, ΛL, is a closed real Lie subgroup of C ∼= R2. Thus, ΛL is either

equal to C, is isomorphic to Z⊕ R, or is discrete.

Let Ω1Mg ⊂ ΩMg denote the locus of unit-area forms. Since the area

functional

A(ω) =
i

2

∫
S

ω ∧ ω

depends only on absolute periods, Ω1Mg is saturated by leaves of the isoperiodic

foliation.

Given any closed subgroup Γ ⊂ C, let ΩΓ
1Mg ⊂ Ω1Mg denote the union of the

leaves L such that there exists a connected subgroup Γ′ ⊂ Γ with Γ = ΛL +Γ′.
If Γ = C, then

ΩΓ
1Mg = Ω1Mg.

If Γ is isomorphic to R +
√
−1 · Z, then L ⊂ ΩΓ

1Mg if either ΛL = Γ or ΛL

is a discrete subgroup of Γ with ‘primitive imaginary part’. If Γ is discrete,

then ΩΓ
1Mg is nonempty only if Γ has covolume 1/d for some integer d > 1,

in which case ΩΓ
1Mg is a closed isoperiodic leaf which parameterizes primitive

degree d branched covers of C/Γ.
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Proposition 2.3: If Γ is a lattice, then the space ΩΓ
1Mg is connected.

Proof. By Theorem 9.2 of [GabKaz87], given two primitive, simply branched

coverings p : S → C/Γ and q : S → C/Γ of the same degree, there exists a

homeomorphism h : S → S and a homeomorphism k : C/Γ → C/Γ isotopic to

the identity so that k ◦p = q ◦h. Let kt be the isotopy with k0 = k and k1 = id.

For each t, the 1-form (kt◦p)∗(dz) is holomorphic with respect to the pulled-back

complex structure. We have

(k0 ◦ p)∗(dz) = h∗(q∗(dz)) and (k1 ◦ p)∗(dz) = p∗(dz).

Hence the path in ΩΓ
1Mg associated to (kt ◦ p)∗(dz) joins the point represented

by q∗(dz) to the point represented by p∗(dz). Since simply branched coverings

are generic, the space ΩΓ
1Mg is connected.

Because ΩΓ
1Mg is connected, we may simplify the statement of the main

theorem of [CDF15].

Theorem 2.4 ([CDF15]): Let L ⊂ Ω1Mg be a leaf of the isoperiodic foliation

and let Γ = ΛL. If g > 2, then the closure of L is ΩΓ
1Mg. If g = 2, then either

the closure of L is ΩΓ
1M2 or L lies in the eigenform locus E ⊂ Ω1M2.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first suppose that g > 2 or g = 2 and L �⊂ E . By

assumption, L is an isoperiodic leaf such that ΛL is not a lattice, and so ΛL

either equals C or equals R·z1⊕Z·z2 where zi ∈ C. By Lemma 2.1 the restriction

of the absolute period map to a given componentK of a given stratum is an open

map. It follows that there exists (X,ω) ∈ K of area 1 so that the periods of ω

lie in Q ·z1⊕Q ·z2. In particular, the set of periods constitute a lattice and there

exists A ∈ SL2(R) so that the periods of A·(X,ω) lie in ΛL. Hence A·(X,ω) lies

in the closure L by Theorem 2.4. Thus K intersects L, and hence K intersects L

by Proposition 2.2.

It remains to consider the case where g = 2 and L ⊂ E . In this case, Theo-

rem 1.2 follows from work of McMullen [McM03, McM05]. Indeed, ΩM2 con-

sists of two strata, the principal stratum ΩM2(1, 1) and the stratum ΩM2(2),

and both of these strata are connected. McMullen shows that the eigenform

locus E ⊂ Ω1M2 is a countable union of orbifolds Ω1ED where D belongs to a

subset of the positive integers. Moreover, each Ω1ED is saturated by leaves of
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the isoperiodic foliation. The intersection Ω1ED ∩Ω1M2(2) is his “Weierstrass

curve” Ω1WD. The eigenform locus Ω1ED is a circle bundle over a Hilbert

modular surface, which is covered by H × H. In this covering, the isoperiodic

foliation is simply the “vertical” foliation with leaves {c}×H. Each component

of the Weierstrass curve is covered by a graph of a holomorphic function H → H

which a fortiori must intersect each vertical leaf, and hence every isoperiodic leaf

in Ω1ED must intersect Ω1WD. Finally, each Ω1WD is nonempty unless D = 4,

in which case Ω1E4 parameterizes degree 2 torus-covers, a case that is excluded

by hypothesis.

We remark that if ΛL is a lattice, then the associated space ΩΛL
1 M2

need not intersect every stratum ΩM2(α). Indeed, for such an intersection

to be nonempty, it is necessary for the covolume of ΛL to be strictly less

than 1/maxαi. Proposition 1.3 implies that this condition is also sufficient.

Finally, we prove our variant of Haupt’s theorem modulo Proposition 1.3.

Proof of Theorem 1.1. Suppose that χ ∈ Hom(H1(S;Z),C) ∼= H1(S;C) is a

character which satisfies the hypotheses of Theorem 1.1. By applying a real

rescaling, we may assume moreover that A(χ) = 1. Haupt’s theorem then

provides a unit-area holomorphic 1-form (X,ω) ∈ Ω1Tg representing χ. Note

that each 1-form that lies in the isoperiodic leaf, L, that contains (X,ω) also

represents χ. Hence it suffices to show that π(L) intersects Ω1M(α).

If Γ := ΛL is a lattice, then ω = p∗(dz) for some degree d primitive branched

covering p : X → C/Γ. By Proposition 1.3, there exists a degree d primitive

branched covering q : X ′ → C/Γ so that

q∗(dz) ∈ Ω1M(α).

In particular, both π(X ′, q∗(dz)) and π(X, p∗(dz)) lie in ΩΓ
1M. Proposition 2.3

implies that

π(L) = ΩΓ
1M,

and so π(X ′, q∗(dz)) lies in π(L) ∩ Ω1M(α).

If Γ is not a lattice and g > 2, then Theorem 1.2 implies that the projec-

tion π(L) is dense in ΩΓ
1Mg, and hence π(L) intersects Ω1M(α) by Proposi-

tion 2.2.

If Γ is not a lattice and g = 2, then one can directly construct a 1-form

in Ω1M(1, 1) (resp. Ω1M(2)) that represents χ by gluing together two well-

chosen slit tori (resp. gluing a cylinder to a slit torus).
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3. Primitive torus covers

In this section we complete the proof of Theorem 1.1 by proving Proposition 1.3.

That is, for each connected component K of a stratum ΩM(α), we construct a

primitive branched torus covering p : S → C/(Z+ iZ) so that p∗(dz) lies in K.

Since the component K is invariant under the GL+
2 (R) action, Proposition 1.3

follows.

To prove Theorem 1.1, we will explicitly construct torus coverings that lie

in connected components of strata having one or two zeros, and then we ap-

ply a sequence of ‘surgeries’ to obtain torus coverings with additional zeros.

In §3.1 we construct torus coverings for each connected component of each min-

imal stratum ΩM(2g − 2). In §3.2 we construct covers for each component

of ΩMg(g − 1, g − 1). In §3.3 we introduce surgeries that add zeros to a torus

cover while preserving the degree, and we check the effect of surgery on the

spin parity. In §3.4 we construct torus covers such that the 1-form has exactly

two zeros and each zero has odd order. We use surgeries to construct torus

covers when maxαi is odd. In §3.5 we describe the algorithm that can be used

to construct a torus cover any desired connected component. We also provide

some examples.

In what follows we will let T denote the ‘unit square’ torus C/(Z+ iZ).

According to [KoZo03], the connected components of strata are distiguished

by hyperellipticity and spin parity. To be precise, we will need to determine

whether a torus covering p : S → T admits a hyperelliptic involution, a

holomorphic involution τ : S → S such that the quotient S/〈τ〉 is a sphere.

Because

τ∗(ω) = −ω,

a hyperelliptic involution maps each vertical (resp. horizontal) cylinder to a ver-

tical (resp. horizontal) cylinder. Moreover, if τ preserves a vertical or horizontal

cylinder C, then τ preserves the central curve of the cylinder and fixes exactly

two points on the central curve. The Riemann–Hurwitz formula implies that τ

has exactly 2g + 2 fixed points.

We will also need to check the spin parity of a holomomorphic 1-form. Given

a Riemann surface X with a holomorphic one-form ω and a loop γ : S1 → X

disjoint from the zeros of ω, the Gauss map Gγ : S
1 → S1 is defined by

Gγ(t) =
ω(γ′(t))
|ω(γ′(t))| .
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The index of γ is the degree of Gγ . Note that if γ is a geodesic with respect to

the natural flat structure on the surface, then Gγ is a constant map and hence

ind(γ) = 0.

Following Thurston and Johnson [Jns80], Kontsevich and Zorich [KoZo03]

gave the following formula for the spin parity of a holomorphic 1-form ω all

of whose zeros have even order. Given a symplectic basis a1, b1, . . . , ag, bg

for H1(X ;Z) consisting of curves that do not pass through a zero, the spin

parity of ω equals

(1)

g∑
i=1

(ind(ai) + 1)(ind(bi) + 1) (mod 2).

In particular, this invariant of a holomorphic 1-form with zeros of even order

lies in Z/2Z. We refer to a 1-form as even if its spin parity equals 0 mod 2,

and as odd otherwise.

3.1. Minimal strata. In this subsection, for each d > 2g − 2, we construct a

degree d primitive branched torus covering for each connected component of the

‘minimal stratum’ ΩMg(2g − 2). For g ≥ 4, the minimal stratum has exactly

three connected components [KoZo03]:

• hyperelliptic: The 1-forms in ΩMg(2g − 2) that are canonical double

covers of meromorphic quadratic differentials on the Riemann sphere

with one zero of order 2g − 3 and 2g + 1 simple poles.

• even: The non-hyperelliptic 1-forms with even spin parity.

• odd: The non-hyperelliptic 1-forms with odd spin parity.

Denote these components by

ΩMg(2g − 2)hyp, ΩMg(2g − 2)odd and ΩMg(2g − 2)even.

In the case g = 3, there is no even component, and in the case g = 2, there is

only the hyperelliptic component [KoZo03].

For each of the above connected components we will first construct a de-

gree 2g − 1 primitive branched cover p so that p∗(dz) lies in the component. A

slight modification of the construction will provide primitive branched coverings

of each degree d > 2g − 2.

For a torus covering to lie in the minimal stratum, it is necessary that it

be branched over a single point. To describe such coverings, consider the un-

branched covers of the punctured torus C/((Z+ iZ) \ {0}). Each such degree d
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covering corresponds to a homomorphism ρ from the fundamental group of the

once punctured torus to the symmetric group on d letters (the ‘monodromy

representation’). The fundamental group of the once punctured torus is freely

generated by the central curve h of the horizontal cylinder and the central curve

v of the vertical cylinder. It follows that each degree d covering that is branched

over 0 is determined by ρ(h) and ρ(v). In sum, each branched covering is deter-

mined by a pair of permutations that we will denote h and v respectively. This

description is unique up to simultaneous conjugation of h and v.

There is a one-to-one correspondence between the zeros of p∗(dz) and the

nontrivial cycles of the commutator [h, v]. Each cycle of length 1 in [h, v] cor-

responds to a point in the fiber above [0] that is not ramified. In particular,

since in this section, we wish to construct torus coverings with a single ramifi-

cation point of degree 2g − 1, we will need to check that [h, v] has one cycle of

length 2g − 1 and d− (2g − 1) cycles of length 1.

Torus coverings branched over one point are often called square-tiled sur-

faces. Indeed, given a pair of permutations h, v of {1, . . . , d}, we can construct

the covering by gluing together d disjoint unit squares labeled 1, . . . , d as fol-

lows: Glue the right side of square i to the left side of square h(i) and the top

of square i to the bottom of square v(i). Note that the group generated by h

and v must act transitively on {1, 2, . . . , d} for the surface to be connected.

3.1.1. The hyperelliptic component. Let p : Hg → T be the degree d = 2g − 1

torus covering branched over one point that is defined by the following permu-

tations on 2g − 1 letters (in cycle notation)

h = (1, 2)(3, 4) · · · (2g − 3, 2g − 2)(2g − 1),

v = (1)(2, 3)(4, 5) · · · (2g − 2, 2g − 1).

See Figure 1. The commutator [h, v] has order 2g − 1 and so p has only one

ramification point, and thus p∗(dz) has exactly one zero z of order 2g − 2.

Hence each vertical edge (resp. horizontal edge) of each unit square is a 1-cycle

in H1(Hg;Z), and the covering map sends this 1-cycle to the standard vertical

(resp. horizontal) generator of H1(C/Z
2;Z). Hence p is primitive.

The 1-form p∗(dz) admits a unique hyperelliptic involution τ . Indeed, the

map τ may be constructed by rotating each square in Figure 1 about its center

by π radians. The involution τ has 2g + 2 fixed points consisting of the zero

of p∗(dz), the centers of each of the 2g − 1 squares, the midpoint of the top
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1 2

3 4

5 · · ·

· · · 2g − 2

2g − 1

Figure 1. A hyperelliptic surface, Hg, in the minimal stratum

that is a degree 2g−1 primitive branched covering of the torus.

(and bottom) edge of square 1, and the midpoint of the left (and right) edge

of square 2g − 1. The quotient Hg/〈τ〉 is a sphere and it follows that p∗(dz) is
hyperelliptic.

To construct primitive branched covers of degree d > 2g−1, we lengthen one

of the vertical cylinders by placing d − (2g − 1) additional squares on top of

the square 2g − 1 in Figure 1. To be precise, let p : Hd
g → C/Z be the covering

determined by the permutations

h = (1, 2)(3, 4) · · · (2g − 3, 2g − 2)(2g − 1)(2g − 2) · · · (d− 1)(d),

v = (1)(2, 3)(4, 5) · · · (2g − 2, 2g − 1, . . . , d− 1, d).

The commutator [h, v] has one cycle of length 2g − 1 and d − (2g − 1) cycles

of length 1. In other words, p∗(z) has a single zero of order 2g − 2. The cov-

ering p is primitive for the same reason that the covering Hg → T is primitive.

The surface Hd
g admits a hyperelliptic involution τ which rotates by π each

of the squares labeled 1 through 2g − 2 about their respective centers. The

involution τ preserves the horizontal Euclidean cylinder C consisting of the
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squares 2g − 1, . . . , d, and its restriction to C has two fixed points. The only

remaining fixed point of τ is the unique zero of p∗(dz).

3.1.2. The odd component. Let p : Og → T be the degree d = 2g − 1 torus

covering branched over one point that is defined by the following permutations

on 2g − 1 letters (in cycle notation):

h = (1, 3, 5, . . . , 2g − 1) · (2) · (4) · · · (2g − 2),

v = (1, 2)(3, 4) · · · (2g − 3, 2g − 2).

See Figure 2.

Figure 2. The odd spin parity torus cover Og in the minimal

stratum. The odd numbered squares together form a horizon-

tal cylinder of length g and each even numbered square corre-

sponds to a horizontal cylinder of length 1.

To see that the surface is not hyperelliptic, we suppose that Og admits a

hyperelliptic involution τ and then derive a contradiction. The horizontal cylin-

der C that consists of the odd numbered squares is the only horizontal cylinder

of length greater than 1, and hence τ(C) = C.1 In particular, the map τ pre-

serves the union V of the vertical saddle connections that are contained in C.

The complement of V consists of the vertical cylinder corresponding to the

square labeled 2g − 1 and the g − 1 slit tori Si corresponding to the cycles

(i, i+ 1) for i odd. If τ(Si) = Sj for some i �= j, then the sphere Og/〈τ〉 would
contain a once holed torus. This is not possible, and so τ(Si) = Si for each i. In

1 In fact, for each 1-form in the minimal stratum, each cylinder is preserved by the hyper-

elliptic involution. See, for example, the proof of Lemma 8 in [KoZo03].
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particular, τ preserves each odd numbered square, and the center of each odd

numbered square is a fixed point. That is, τ has at least g− 1 > 2 fixed points.

But each (non-null homologous) cylinder C has exactly 2 fixed points, and this

is the desired contradiction.

To see that the spin parity of Og is odd, we exhibit Og as the slit tori de-

composition mentioned in the previous paragraph. See Figure 3. Here we have

chosen a symplectic basis {ai, bi} for the first homology of Og. The curve ag

‘turns’ once as it traverses each slit torus and hence has index equal to g−1. All

other curves in this symplectic basis are geodesics and hence have index equal

to zero. Thus, it follows from formula (1) that the spin parity equals 2g − 1

mod 2.

The map p is primitive because, for example, the classes p∗(a1) and p∗(bg)
generate the first homology of C/(Z+ iZ).

Figure 3. The simple closed curves {ai, bi} form a symplectic

basis for the first homology of Og. Note that the curve ag

intersects each slit torus, and each intersection contributes 1 to

the index of ag.

To construct a primitive branched cover p : Od
g → C/(Z + iZ) of degree

d > 2g − 1, replace the cycle (2g − 1) in the horizontal permutaion h

with (2g − 1, 2g, . . . , d− 1, d). This is equivalent to replacing the vertical cylin-

der that corresponds to the square labeled 2g − 1 with a vertical cylinder of

width d− (2g − 2).
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3.1.3. The even component. For g ≥ 4, let p : Eg → T be the degree d = 2g− 1

branched covering of C/(Z+ iZ) defined by the permutations

h = (1, 3, 5, . . . , 2g − 1, 4),

v = (1, 2)(3, 4) · · · (2g − 3, 2g − 2)(2g − 1).

See Figure 4. The surface Eg differs from Og in the way that the squares

labeled 3 and 4 are attached. Arguments similar to the ones given in §3.1.2
show that p is not hyperelliptic, is of even spin parity, and is primitive. For

example, the horizontal cylinder C consisting of the square labeled 4 and the

odd numbered squares would be preserved by a hyperelliptic involution, and

one can use this to argue that Eg is not hyperelliptic. All of the elements in the

symplectic basis in Figure 4 have index zero except for a2 and ag which have

indices 1 and g − 1 respectively. In particular, the spin parity is 2g mod 2.

Figure 4. The even parity torus cover Eg in the minimal stra-

tum. The simple closed curves {ai, bi} form a symplectic basis

for the first homology of Og. The intersection of ag with each

vertical cylinder of height two contributes 1 to the index of ag.

All other basis elements have index 0 except for a2 which has

index 1.

To obtain a degree d cover p : Ed
g → C/(Z+ iZ), replace the vertical cylinder

of width 1 corresponding to the square labeled 2g − 1 with a vertical cylinder

of width d − (2g − 2). In other words, replace the cycle (2g − 1) that appears

in v with the cycle (2g − 1, 2g, . . . , d− 1, d).
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3.2. The strata with two zeros of equal order. According to [KoZo03],

if g ≥ 5 is odd, then the stratum ΩM(g− 1, g− 1) has three connected compo-

nents: hyperelliptic; even spin parity and non-hyperelliptic; and odd parity and

non-hyperelliptic. When g = 2, 3 or g ≥ 4 and even, the stratum has exactly

two components: hyperelliptic and non-hyperelliptic. In §3.2.1 we exhibit a sur-

face in each hyperelliptic component, regardless of the parity of g, and then in

§3.2.2 we construct examples in the remaining non-hyperelliptic component(s).

Our constructions will be based on gluing together surfaces with slits.

3.2.1. ΩM(g − 1, g − 1)hyp. If g = 2m is even, we construct a degree g hy-

perelliptic torus cover as follows. First, create a genus two surface by gluing

together two copies of C/Z2 that each have a horizontal slit. Take m distinct

copies, S1, . . . , Sm, of this genus two surface. Each genus two surface Si has

exactly four horizontal saddle connections, two that correspond to the slits and

two that do not. See Figure 5.

3 3 4 4
1

2

2

1

Figure 5. A genus two surface constructed from two slit tori

has four horizontal saddle connections.

From both S1 and Sm remove one of the ones that do not correspond to a

slit and from each of the remaining genus two surfaces, S2, . . . , Sm−1, remove

both of the horizontal saddle connections that do not correspond to a slit. Glue

the top (resp. bottom) of the new slit on S1 to the bottom (resp. top) of one

of the (new) slits on S2. Then, inductively, glue the top (resp. bottom) of the

remaining slit on Si to the bottom (resp. top) of one of the slits on Si+1. Let Xg

denote the resulting degree g cover of C/(Z+ iZ) when g is even.

If g = 2m + 1 is odd, then remove the horizontal saddle connection of X2m

that lies in Sm and then glue in an additional horizontally slit torus to obtain

the torus cover X2m+1. The surfaces X6 and X7 are described in Figure 6.
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Figure 6. Primitive degree g torus covers in

ΩMg(g−1, g−1)hyp in the cases g=6 and g=7. Each square

corresponds to a slit torus.

A torus cover Xd
g of degree d = k+ g− 1 can be constructed in the same way

if one replaces a slit copy of C/(Z + iZ) in the construction of the genus two

surface S1 with a slit copy of C/(kZ+ iZ). The hyperelliptic involution on Xd
g

corresponds to the elliptic involution of each slit torus that fixes the center of

each slit. A vertical curve in S1 (resp. horizontal curve in S2) is mapped to the

standard vertical (resp. horizontal) generator of H1(C/(Z+ iZ),Z). Hence the

covering is primitive.

Remark 3.1: A degree g, primitive, hyperelliptic torus covering can also be de-

fined in terms of the classical Chebyshev polynomial Pg, the unique polynomial

satisfying

Pg(cos θ) = cos(g · θ)
for each θ ∈ R. Given a ∈ (0, 1) such that Pg(a) �= ±1, let q be the unique

quadratic differential on the Riemann sphere Ĉ with simple poles at {±1,±a}.
The set P−1

g {+1,−1} consists of all g− 1 critical points of degree two together

with the two additional points at which Pg is not branched. The map Pg is

not branched at any of the 2g points in P−1
g {+a,−a}. It follows that P ∗

g (q)

has 2 + 2g simple poles and one zero of degree 2g − 2 at ∞ ∈ Ĉ. Let (X,ω)

and (C/Λ, dz) be the respective canonical double covers of (Ĉ, P ∗
g (q)) and (Ĉ, q).

The map Pg : Ĉ → Ĉ lifts to a primitive degree g branched cover P̃g : X → C/Λ
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so that P̃ ∗
g (dz) = ω. It follows that (X,ω) lies in the hyperelliptic component

of ΩM(g − 1, g − 1).

3.2.2. Non-hyperelliptic components of ΩMg(g − 1, g − 1). Recall that if g = 3

or g ≥ 4 and g is even, then there is exactly one non-hyperelliptic component.

If g ≥ 5 and g is odd, then there are exactly two non-hyperelliptic components,

one consisting of odd spin parity 1-forms and one consisting of even spin parity

1-forms. We first construct a torus covering that is non-hyperelliptic in each

genus and then observe that if g is odd, then its spin parity is odd. Then we

separately construct an even spin torus covering for g odd.

For each g ≥ 2, define a degree g torus cover Xg by cyclically gluing together

distinct horizontally slit tori S1, . . . , Sg. To be more precise, glue the top of the

slit on Si to the bottom of the slit on Si+1. The case of g = 5 is illustrated in

Figure 7.

Figure 7. A cyclically glued g-slit torus cover Xg when g = 5.

To prove that the surfaceXg is not hyperelliptic, let us assume to the contrary

that a hyperelliptic involution τ exists and derive a contradiction. Let C be the

vertical cylinder that contains each of the slits si ⊂ Si. The cylinder C is the

only vertical cylinder that has length greater than one, and hence it would be

preserved by a hyperelliptic involution τ . Thus, τ would preserve the union of

horizontal saddle connections that belong to C, and hence would preserve the

complement A, that is the disjoint union of the slit tori Si. If τ were to map one

slit torus Si onto a distinct slit torus Sj , then the quotient Xg/〈τ〉 would contain

the embedded one-holed torus Si∪Sj/〈τ〉, and hence the quotient would not be

a sphere. Thus the hyperelliptic involution τ would have to preserve each Si,

and hence would act as an elliptic involution on each Si. It follows that the

involution τ |Si has a fixed point xi ∈ C. Hence C contains g fixed points, and

since g ≥ 3, this is the desired contradiction.



Vol. 252, 2022 HAUPT’S THEOREM 447

When g is odd, then the spin parity of Xg is well-defined, and a straight-

forward argument shows that the spin parity of Xg is odd. Indeed, choose a

homology basis for each slit torus Si consisting of a vertical and a horizontal

curve. The index of each of these curves is zero. Thus, the spin parity of Xg

is
∑g

i=1 1 ≡ g mod 2.

To obtain non-hyperelliptic covers p : Xd
g → T of degree d = g − 1 + k,

one may modify the construction by replacing, for example, S1 with the slit

torus obtained by removing a horizontal slit s from the torus C/(kZ + iZ).

Similar arguments show that Xd
g is not hyperelliptic and has spin parity equal

to g mod 2.

It remains to construct, for each odd g≥5 and each d≥g, a non-hyperelliptic,

even spin parity, torus cover in ΩM(g − 1, g − 1) of degree d. To construct it

for degree d = g, we will perform a surgery to the surfaces X2 and Xg−2. More

precisely, we begin with the disjoint union of slit tori S1, . . . , Sg as above. We

construct the surface X2 by cyclically gluing together S1 and S2 as above. We

construct the surface Xg−2 by cyclically gluing the slit tori S3, . . . , Sg−1.

Let δ2 ⊂ S2 ⊂ X2 denote the unique horizontal saddle connection that is

parallel but disjoint from the horizontal saddle connections associated to the

slit σ2. Let δ3 ⊂ S3 ⊂ Xg−3 denote the unique horizontal saddle connection

that is parallel but disjoint from the horizontal saddle connections associated

to the slit σ3. Remove δ2 from X2 and remove δ3 from Xg−2. Glue the top

(resp. bottom) of δ2 to the bottom (resp. top) of δ3. See Figure 8 for the case

of g = 5. The resulting surface Yg covers T , and using a homology basis like the

one illustrated in Figure 8, one finds that the spin parity is g−2+2+3 ≡ g+3

mod 2.

Figure 8. A genus 5 torus covering Yg in the even spin parity

component of ΩM(4, 4). The top of the slit δ2 and the bottom

of the slit δ3 are labeled with α, and the bottom of δ2 and the

top of δ3 are labeled by β.
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To obtain torus covers of higher degree one need only, as above, replace one

of the slit tori with the slit torus coming from C/(kZ + iZ). To see that the

surface Yg is not hyperelliptic, apply the argument used for Xg to the unique

vertical cylinder C in Xg−2 that has circumference greater than 2.

3.3. Surgeries that add zeros and preserve degree. Thus far, we have

produced torus coverings in each connected component of both the minimal

stratum ΩMg(2g − 2) and the stratum ΩMg(g − 1, g − 1). To obtain torus

covers in all connected components of all other strata, we will perform certain

‘surgeries’ on the torus covers Ed
g and Od

g in the minimal strata as well as a

variant, Zd
g , of these that will be described in §3.4. Each surgery described here

modifies the torus covering by adding zeros, increasing genus, and preserving

degree. Each surgery can be performed on a torus cover branched over one

point that has at least one vertical cylinder of circumference one and that has

sufficiently many vertical cylinders of circumference at least two.

To be precise, let p : X → T be a torus covering of degree d such that there

exists a vertical (open) cylinder C ⊂ T that does not contain a branch point

of p.2 We will say that the torus covering p is surgery admissible with

respect to C and k if the components of p−1(C) consist of

• at least k cylinders each having circumferences at least two, and

• at least one nonseparating cylinder whose circumference equals one.

In particular, to be surgery admissible p must have degree d ≥ 2k + 1.

In §3.3.1, we show how to add a zero of order 2k to a surgery admissible

covering, and in §3.3.2 we show how to add a pair of odd order zeros. Each

of these surgeries produces a surgery admissible torus covering. Therefore, we

may apply any finite sequence of these surgeries. In §3.3.3, we show how to

calculate the change in the spin parity so as to be sure that we can obtain a

torus covering in each connected component of a stratum.

According to Theorem 1 in [KoZo03], components consisting of hyperelliptic

surfaces only occur in the strata ΩM(2g − 2) and ΩM(g − 1, g − 1). Thus, we

will not need to consider the effect of surgeries on hyperellipticity.

2 The boundary of C may contain a branch point.
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3.3.1. Adding a zero of order 2k. Let p : X → T be a surgery admissible torus

cover. In this subsection, we describe a ‘surgery’ on this torus covering that

yields a surgery admissible torus covering p : X → T with the same degree d

and an additional zero of order 2k.

Let C ⊂ T be the vertical (open) cylinder that does not contain a branch

point of p. Let C0 be a component of p−1(C) that has circumference 1, and

let C1, . . . , Ck be components of circumference at least two. Choose a vertical

closed geodesic σ ⊂ C and choose P ∈ σ. The inverse image p−1(σ) consists

of disjoint closed geodesics. The set p−1(σ \ {P}) consists of d disjoint vertical

segments. Choose exactly one segment σi from each cylinder Ci. See Figure 9.

Cut along each σi and glue the left side of σi to the right side of σi+1. Let X

be the resulting surface.

Figure 9. Adding a zero of order 2k. Cut along each σi and

identify the left side of σi to the right side of σj . The red

endpoints are thus all identified with one another and they

represent a ramification point of local index 2k + 1 over P .

The covering p determines a surgery admissible torus covering p : X → T of

degree d that is branched over 0 and P . Moreover, the 1-form p∗(dz) has an

additional zero of order 2k, and the genus of X is k greater than the genus of X .

3.3.2. Adding a pair of zeros of odd order. In this subsection we describe a

surgery on p : X → T that adds a zero of order 2k−1 and a zero of order 2k′−1

where k′ ≤ k.3 We will first assume that k′ = k and then show how to modify

this surgery when k′ < k.

3 The orders of zeros of a holomorphic 1-form ω on a genus g Riemann surface must sum to

2g−2, and so ω has even number of zeros of odd order. Thus, any surgery that increases
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To add a pair of zeros that have the same order 2k − 1, choose a horizontal

segment τ that lies in C and has length strictly less than the width of C. Let τ0

be the unique component of p−1(τ) that lies in C0. For each i ∈ {1, . . . , k− 1},
choose two connected components, τ2i−1 and τ2i, of p

−1(τ) that lie in Ci, and

choose one component, τ2k−1, of p
−1(τ) that lies in Ck. See Figure 10. Cut the

surface X along each τi. Then identify the top of τi with the bottom of τi+1.

The resulting surface is a degree d torus cover with two new zeros of order 2k−1.

Figure 10. The white points are ramification points over one

endpoint of τ , and the red points are ramifications over the

other endpoint of τ .

We next modify the construction to show how to add one zero of order 2k−1

and one zero of order 2k′ − 1 where k′ < k. Roughly speaking, the surgery is a

combination of the surgery that adds two zeros of order 2k′−1 and the surgery

that adds a zero of order 2(k − k′). To be precise, let σ be a vertical closed

geodesic that lies in C and let τ be a horizontal segment in C that has one

endpoint P on σ. Let τ0 be the component of p−1(τ) that lies in C0 and let σ0

be the lift of σ to C0. For i ∈ {1, . . . , k′ − 1} choose two components, τ2i−1

and τ2i, of p
−1(τ) that lie in Ci, choose one component, τ2k′−1, of p

−1(τ) that

lies in Ck′ . For i ∈ {k′ + 1, . . . , k} choose one component, σi, of p
−1(σ \ {P})

that lies in Ci. Cut along each σi and each τi, cyclically reglue the σi, and

cyclically reglue the τi. The new zero that corresponds to the point P has order

2k − 1 and the new zero that corresponds to the other endpoint, Q, of τ has

order 2k′ − 1. See Figure 11 for an example of this construction.

the number of odd order zeros will necessarily increase the number of odd order zeros by

an even integer.



Vol. 252, 2022 HAUPT’S THEOREM 451

Figure 11. Adding zeros of different odd orders to X . The new

zero that corresponds to the white points has order 5, and the

zero corresponds to the red points has order 3.

3.3.3. Change of parity computations. In this subsection we consider how the

spin parity changes when the surgery described in §3.3.1 is applied. In particu-

lar, we find that adding a zero of order 2k preserves the spin parity if k is even

and it changes the spin parity if k is odd. Recall that the spin parity is not

defined for 1-forms with zeros of odd order, and hence we will not consider the

surgery of §3.3.2.
Let p : X → T be a surgery admissible torus covering, and let p : X → T be

the result of applying the surgery of §3.3.1.

Lemma 3.2: If k is even, then the spin parity of p∗(dz) equals the spin parity

of p∗(dz). If k is odd, then the spin parity of p∗(dz) does not equal the spin

parity of p∗(dz).

Proof. Let C,C0, C1, . . . , Ck, σ, σ0, σ1, . . . , σk, and P be as in §3.3.1.
We first prove the statement in the special case of k = 1. Let b be a vertical

closed geodesic in C that is disjoint from σ and let b0 be the component of p−1(b)

that lies in C0. Since X is surgery admissible, the simple closed curve b0 is not

null-homologous. Let a0 be a simple closed curve on X so that the geometric

intersection number i(a0, b0) = 1, so that a0 does not intersect a ramification

point of p, and so that a0 ∩ C0 is a horizontal segment. We further suppose

that a0 intersects σ1 orthogonally at a point in p−1(a0 ∩σ). Thus, after cutting
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along σ0 and σ1 and regluing as described in §3.3.1, the closed curve a0 becomes

two simple closed curves, a+0 and a−0 . Let a
+
0 be the resulting simple closed curve

that intersects b+0 := b0 and let a−0 be the other curve. Let b−0 be a vertical

geodesic in C0 that intersects a−0 . See Figure 12.

Figure 12. The first four elements of symplectic basis for the

surface that results from adding one zero of order two.

Complete {a0, b0} to a symplectic basis {a0, b0, . . . , ag−1, bg−1} for H1(X ;Z)

so that no ai nor bi intersects a ramification point or σ1 if i > 0. Then the

collection

{a+0 , b+0 , a−0 , b−0 , a1, b1, . . . , ag−1, bg−1}

is a symplectic basis for the surface that results from the surgery. The curves ai

and bi do not change if i > 0 and hence their indices do not change. The

curves b0 = b+0 and b−0 are geodesics and hence their indices equal zero. The

index of a0 equals the sum of the indices of a+0 and a−0 . It follows that the spin

parity ‘increases’ by 1. Hence the claim is proven in the case k = 1.
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To prove the claim for k > 1, we will consider, for i ≤ k, the result pi : Xi → T

of adding a zero of order 2i using C0, C1, . . . , Ci and curves σ0, . . . , σi, and we

will consider the result qi : Y i → T of adding a zero of order 2 to X i−1. It

suffices to show that for each i ≤ k, the spin parity of p∗i (dz) equals the spin

parity of q∗i (dz). Indeed, an inductive argument using the case k = 1 would

then imply the claim.

To prove that the spin parity p∗i (dz) equals the spin parity of q∗i (dz), we real-
ize Y i as an arbitrarily small perturbation of Xi. In particular, we choose δ > 0

and add a zero of order two to Xi−1 as follows: Let σ′ ⊂ C be the vertical ge-

odesic to the ‘right’ of σ such that the distance between σ and σ′ equals δ.

Let α ⊂ T be the horizontal geodesic that intersects σ at P . Let P ′ denote the

intersection point of α and σ′. Let σ′
0 be the component of p−1(σ′) ∩ C0 that

has distance δ from σ0. Let Ri be the connected component of p−1(C \ α)∩Ci

that contains σi, and let σ′
i be the component of p−1(σ′ \ P ) contained in Ri

that has distance δ from σi. Cut along σ′
0 and σ′

1 and glue the left (resp. right)

side of σ′
0 to the right (resp. left) side of σ′

1. The resulting torus covering is

qi : Y i → T.

We next construct a piecewise differentiable homeomorphism f : Y i → Xi as

follows. Define f to be the identity on the complement of C0∪Ci. The right side

of the segment σi corresponds to a simple closed curve γ ⊂ X i. Let A be the

annular neighborhood of γ consisting of points of distance at most δ/2 from γ.

Let A+ be the connected component of A \ γ that lies in C0 ∪ Ci. Define f

so that it maps the annulus A′ ⊂ C0 bounded by σ0 and the right by σ′
0 onto

the annulus A+. Define f so that it maps the cylinder in C0 that lies to the

right of σ′
0 to the part of the cylinder in C0 that lies to the right of σ0 that is

exterior to A+. Define f to map the thrice holed sphere Ci \ σ′
i to the thrice

holed sphere Ci \A+. See Figure 13.

The construction of f can be made to depend continuously on the param-

eter δ. By pulling back the 1-form q∗(dz) using the inverse f−1 we obtain a

continuous family of 1-forms ωδ on Xi. Each zero of ωδ defines a simple arc

on X i that is parametrized by δ. These arcs are disjoint, and hence we may

choose a symplectic basis for H1(Xi;Z) that avoids these arcs. It follows that

the spin parity of ωδ is constant in δ. Thus, for each δ, the spin parity of q∗(dz)
equals the spin parity of p∗(δ).
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Figure 13. The homeomorphism f that maps Y i to Xi. The

map f is the identity on the complement of the cylinders C0

and Ci. Each colored region in C0∪Ci is mapped to the region

of the same color in C0 ∪ Ci.

3.4. Surgery admissible torus covers with highest order odd. In the

next subsection, we will describe an algorithm which produces a degree d torus

cover in a prescribed connected component of a stratum that satisfies the hy-

potheses of Proposition 1.3. The algorithm will be based on the surgeries de-

scribed above. If the highest order of a zero in the prescribed stratum is even,

then we will choose the initial surface to be either the torus covering Ed
g or

the torus covering Od
g (see §3.1) depending on the desired spin parity. In this

section we construct a surgery admissible degree d torus covering q : Zd
m,n → T

which will be the starting point of the algorithm when the zero of highest order

in the prescribed stratum is odd. The surface Zd
m,n will have genus m+ n and

the associated 1-form q∗(dz) will have exactly two zeros, one with order 2m− 1

and the other with order 2n− 1. We will assume that m ≥ n.

We will describe the construction of Zd
m,n in the case where d = 2m. See

Figure 14 for an example with m = 3. The surfaces for d > 2m are obtained by

adding additional squares as before. Let p : Om → T be the degree 2m−1 torus

covering described in §3.1.2. Let S denote the disjoint union of Om and T .

Define the degree 2m torus covering p̃ : S → T by letting p̃(z) = p(z) for

each z ∈ Om, and by letting p̃(z) = z for each z ∈ T .
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Choose a horizontal segment τ in T of length ε < 1 that has one endpoint

at the origin in T . The inverse image p̃−1(τ) has 2m connected components.

Let τ2n denote the unique connected component of p̃−1(τ) that lies in T , and

choose components τ1, . . . , τ2n−1, from among the remaining 2m−1 components

that lie in Om.

We will cut along each τi and reglue, but the choice of gluing must be made

with some care to ensure that the resulting 1-form has no more than two zeros.

To describe precisely the gluing, we will suppose that for i < 2n, the τi are

labeled in the order that they appear as one winds clockwise around the zero

of degree 2m− 2 on Om. More precisely, suppose that γ : R/Z → T gives the

standard clockwise parameterization of the circle of radius ε/2 centered at the

origin 0 ∈ T . Then γ lifts via p to a map

γ̃ : R/(2m− 1)Z → Om,

and for each i ∈ {1, . . . , 2n− 1}, there exists a unique ti ∈ R/(2m− 1)Z such

that

γ̃(ti) ∈ τi.

By relabeling if necessary, we may assume that i < j if and only if ti < tj .

Cut along each τi and reglue the bottom of τi to the top of τi+1. Let

q : Zd
m,n → C/(Z+ iZ)

denote the resulting (connected) torus covering of degree d. Because 2n is even,

the point q−1(0) is a zero of order 2m− 1, and if Q denotes the other endpoint

of τ , then q−1(Q) is a single zero of order 2n− 1. The genus of Zd
m,n is m+ n.

3.5. An algorithm and examples. In this section we describe an algorithm

for constructing a primitive torus cover of degree d in any desired connected

component K of a stratum ΩMg(α). We then illustrate the algorithm with

some examples.

Otherwise, we suppose that the desired divisor data α = (α1, . . . , αn) satisfies

α1 ≤ α2 ≤ · · · ≤ αn,

and if each αi is even, we define θ ∈ Z/2Z by

θ := spin +
α1

2
+

α2

2
+ · · ·+ αn−1

2
mod 2

where ‘spin’ denotes the desired spin parity.
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Figure 14. The degree 6 torus cover Z3,2 ∈ ΩM(5, 3) obtained

from the surface O3 ∈ ΩM(4)odd. The purple points corre-

spond to the zero of order 5, and the white points correspond

to the zero of order 3. The labeling of the τi for i < 2n is

induced by the simple closed curve γ̃ (in orange) on O3 that

winds clockwise around the pre-image of 0.

• If each αi is an even integer, and

– n = 1, then apply one of the constructions in §3.1,
– n = 2 and α1 = α2, then apply one of the constructions in §3.2,
– otherwise

∗ if θ = 0 mod 2, then apply the surgery of §3.3.1 to the torus

cover Ed
g to add zeros of order α1, α2, . . . , αn−1,

∗ if θ = 1 mod 2, then apply the surgery of §3.3.1 to the torus

cover Od
g to add zeros of order α1, α2, . . . , αn−1;

• otherwise (when some αi is odd)

– if αn is even, then apply the surgeries of §3.3.1 and §3.3.2 to the

torus cover Od
g to add zeros of order α1, α2, . . . , αn−1,

– if αn is odd, then some other zero, say αj , is odd. Begin with the

torus cover Zd
m,n where m = (αn + 1)/2 and n = (αj + 1)/2, and

apply the surgeries of §3.3.1 and §3.3.2 to add zeros of order αi

for i �= j or n.
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3.5.1. Torus covers in ΩM4(1, 2, 3). Suppose that we wish to construct a de-

gree 4 torus cover p so that p∗(dz) has a zero of order 3, a zero of order 2, and

a zero of order 1. That is, we have α3 = 3 which is odd, and α1 = 1 is odd as

well. Hence we begin with the torus cover Z4
2,1 whose construction is described

in §3.4. Then we perform the surgery described in §3.3.1 to add a zero of order

two. See Figure 15. In more detail, the surface Z4
2,1 is obtained by slitting the

L-shaped surface O2 that lies in ΩM2(2) along the segment τ2, slitting a square

torus along a segment τ2, and then gluing the top (resp. bottom) of τ1 to the

bottom (resp. top) of τ2. The resulting surface is cut along the segments σ0

and σ1 and the the left (resp. right) of σ0 to the right (resp. left) of σ1.

Note that by adjoining d − 4 squares to the right—that is, by replacing the

unit square torus with the rectangular torus C/((d− 3)Z+ iZ)—one obtains a

degree d > 4 torus covering in ΩM4(1, 2, 3).

Figure 15. A degree 4 torus cover in the stratum ΩM4(1, 2, 3).

The blue points correspond to a zero of order 3, the white points

correspond to a zero of order 2, and the red points correspond

to a zero of order 1.

3.5.2. Torus covers in ΩModd
7 (2, 4, 6). We describe the construction of a torus

cover of degree 7 that has odd spin parity and has one zero of order 6, one

zero of order 4, and one zero of order 2. Since θ = 1 + 2 + 1 = 0 mod 2, we

begin with the degree 7 torus cover p : E7
4 → T such that p∗(dz) ∈ ΩM4(6),

and we then we use the surgery of §3.3.1 to add zeros of order 2 and 4 while
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preserving the degree. See Figure 16. In detail, ‘opposing sides’ of the polygon

in Figure 16 are identified with the exception of the sides labeled γi in which

case we identify γ1 with γ3 and identify γ2 with γ4. To add the additional zero

of order 4 (resp. 2) we cut along σ0 and σ1 (resp. σ′
0 and σ′

1) and reglue.

Figure 16. A degree 7 torus cover in the odd component of

ΩM7(2, 4, 6). The blue points correspond to the zero of order 6,

the red points correspond to the zero of order 4, the white

points correspond to the zero of order 2.

By adjoining d−7 additional squares to the right, one obtains a degree d > 7

torus covering in ΩModd
7 (2, 4, 6).
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