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ABSTRACT

We systematically develop a theory of graded semigroups, that is, semi-

groups S partitioned by groups Γ, in a manner compatible with the mul-

tiplication on S. We define a smash product S#Γ, and show that when

S has local units, the category S#Γ -Mod of sets admitting an S#Γ-

action is isomorphic to the category S -Gr of graded sets admitting an

appropriate S-action. We also show that when S is an inverse semi-

group, it is strongly graded if and only if S -Gr is naturally equivalent

to Sε -Mod, where Sε is the partition of S corresponding to the iden-

tity element ε of Γ. These results are analogous to well-known theorems

of Cohen/Montgomery and Dade for graded rings. Moreover, we show

that graded Morita equivalence implies Morita equivalence for semigroups

with local units, evincing the wealth of information encoded by the grad-

ing of a semigroup. We also give a graded Vagner–Preston theorem, pro-

vide numerous examples of naturally-occurring graded semigroups, and

explore connections between graded semigroups, graded rings, and graded

groupoids. In particular, we introduce graded Rees matrix semigroups,

and relate them to smash product semigroups. We pay special attention

to graded graph inverse semigroups, and characterise those that produce

strongly graded Leavitt path algebras.

Received October 29, 2020 and in revised form June 5, 2021

249



250 R. HAZRAT AND Z. MESYAN Isr. J. Math.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 250

2. Definitions and basics . . . . . . . . . . . . . . . . . . . . 254

3. Smash products and matrices . . . . . . . . . . . . . . . . 267

4. Graded Morita theory . . . . . . . . . . . . . . . . . . . . 277

5. Graded inverse semigroups . . . . . . . . . . . . . . . . . 285

6. Graded groupoids and inverse semigroups . . . . . . . . . 293

7. Semigroup rings . . . . . . . . . . . . . . . . . . . . . . . 298

8. Graph inverse semigroups . . . . . . . . . . . . . . . . . . 302

9. Further directions . . . . . . . . . . . . . . . . . . . . . . 316

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

1. Introduction

The purpose of this paper is to build a theory of graded semigroups that parallels

the theory of graded rings. We start with an overview of the motivating features

of graded ring theory, which has become a vibrant subject, thanks to crucial

applications to various areas of mathematics.

Graded rings frequently appear when there is a group acting on an algebraic

structure, or when the ring structure arises from a free construction modulo

“homogeneous” relations. A ring A is graded by a group Γ when, roughly, A

can be partitioned by Γ in a way that is compatible with the structure of A.

(See §7 for more details.) Studying graded rings also naturally leads to study-

ing representations of such rings, which can be compatibly partitioned by the

relevant group, namely graded modules. Consequently, three categories play

a prominent role in this setting: the category of left A-modules A -Mod, the

category of graded left A-modules A -Gr, and the category of left Aε-modules

Aε -Mod, where Aε is the subring of A consisting of elements in the partition

corresponding to the identity element ε of Γ. A substantial portion of the the-

ory of graded rings concerns the relationships between these categories. While

the applications of this theory are numerous, one prominent example is the

fundamental theorem of K-theory, proved by Quillen [34], using the category

of graded modules in a crucial way (see also [21]).
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Three constructions that play an essential role in the study of graded rings

are strongly graded rings, smash products, and graded matrix rings. According

to a theorem of Dade [12], a ring A is strongly graded if and only if A -Gr is

naturally equivalent to Aε -Mod. The smash product, constructed by Cohen

and Montgomery [10], allows one to produce a ring A#Γ such that A#Γ -Mod

is isomorphic to A -Gr. Finally, graded matrix rings, aside from providing

interesting examples, can be used to describe the relationship between graded

rings A and B that are Morita equivalent, i.e., for which the categories A -Gr

and B -Gr are equivalent.

In this note we study grading on another class of algebraic objects, namely

that of semigroups. Analogously to the case of rings, we say that a semigroup S

(with zero) is Γ-graded, for some group Γ, if there is a partition or “degree”

map φ : S \ {0} → Γ such that φ(st) = φ(s)φ(t) whenever st �= 0. Our motiva-

tion for systematically studying graded semigroups comes from recent advances

in the theory of combinatorial algebras, where graded rings played a promi-

nent role. These algebras first arose in the work of Cuntz, in the context of

operator algebras, and Leavitt, in the context of noncommutative rings. Ideas

arising from these investigations were subsequently extended in various direc-

tions, leading to the paradigm summarised in the following diagram. (See [14]

for an account of these developments from the C∗ perspective, [7] for the alge-

braic side, and [28] for an exploration of the connections between some of the

relevant semigroups and groupoids.)

(1.1)

combinatorial data

inverse semigroup C∗-algebra

groupoid

noncommutative algebra

The now well-trodden path in (1.1) starts with a natural inverse semigroup

constructed from combinatorial data. The groupoid of germs of the semigroup

turns out to be very well-behaved, and the corresponding convolution algebras

(i.e., the groupoid C∗-algebra and the Steinberg algebra, discussed below in

more detail) have very rich structures. These algebras are naturally graded, via

lifting grading from the combinatorial data, and the grading plays a crucial role
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in describing their structure. For example, Cuntz and Krieger used it in their

early work in the field, to prove graded uniqueness theorems. Our intention

is to introduce and study the grading earlier along the path, pushing it from

algebras to groupoids and inverse semigroups.

The idea of assigning degrees to the elements of a semigroup has appeared

in the literature before. For example, Howie [20, p. 239] calls a semigroup S

equipped with a map | · | : S → N, such that |st| = |s|+ |t|, a semigroup with

length. He uses this construction to measure the lengths of words in a free

semigroup. More relevantly to the paradigm described above, graded inverse

semigroups have been studied in connection with étale groupoids and Steinberg

algebras [3, 37]. A more general notion has been explored in connection with

congruences and Cayley graphs [22, 23]. However, no systematic investigation

of graded semigroups seems to have been undertaken before.

In addition to their relation to combinatorial algebras, graded semigroups

actually arise quite naturally on their own. For example, it is well-known that

any semigroup can be embedded in the full transformation semigroup of a setX .

Now, if X happens to come equipped with a map to a group, i.e., an assignment

of degrees, then the collection of transformations of X that respect the degrees

constitutes a graded semigroup, and any graded semigroup can be embedded

in one of this sort (Proposition 2.5). An analogous statement can be proved for

inverse semigroups (Proposition 5.4), giving a graded Vagner–Preston theorem.

Also, for any Γ-graded ring A, the multiplicative semigroup of A is likewise a

Γ-graded semigroup. Moreover, one can construct graded analogues of Rees

matrix semigroups (§3.2), and graph inverse semigroups are naturally Z-graded

(§8). Finally, as mentioned before, free semigroups are likewise naturally Z-

graded, and this grading can be used to induce ones on various quotients of

free semigroups, i.e., semigroups presented by generators and relations. Other

examples are given below.

The heart of this paper consists of three categorical results, which parallel

the aforementioned ones from ring theory. To state them, we require some no-

tation. For a semigroup S and a set X , we say that X is a (unital pointed

left) S-set if there is an action of S on X such that SX = X , and X has a dis-

tinguished “zero” element 0X (see §2.3 for more details). Also, if S is Γ-graded,

for some group Γ, then we say that an S-set X is Γ-graded if there is a func-

tion X \ {0X} → Γ that respects the S-action. Let S -Mod denote the category
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of unital pointed left S-sets, with functions that respect the S-action as mor-

phisms, and let S -Gr denote the subcategory of S -Mod whose objects are the

Γ-graded S-sets, and whose morphisms respect the Γ-grading. We show in The-

orem 3.5 that, analogously to the Cohen/Montgomery result mentioned above,

if S has local units, then S -Gr is isomorphic to S#Γ -Mod, where S#Γ is a

suitably defined smash product for semigroups. We also show in Theorem 5.8

that when S is an inverse semigroup, it is strongly Γ-graded if and only if S -Gr

and Sε -Mod are naturally equivalent, in parallel to the aforementioned result

of Dade. Our third categorical result, Theorem 4.4, shows that for a pair of

graded semigroups with local units, being graded Morita equivalent implies be-

ing Morita equivalent, using the notion of Morita equivalence for semigroups

introduced by Talwar [38] (see §4 for more details).

Aside from providing examples of graded semigroups, and studying the rel-

evant categories, another goal of this paper is to investigate the relationships

between graded semigroups, graded rings, and graded groupoids. In §6 we re-

call the relevant concepts about groupoids, show that strongly graded inverse

semigroups produce strongly graded groupoids of germs, and describe the grad-

ings on inverse semigroups constructed from strongly graded ample groupoids.

In §7 we review semigroup rings, show that strongly graded semigroups produce

strongly graded semigroup rings, and relate smash product rings with smash

product semigroups. In §8 we characterise the strongly graded graph inverse

semigroups (Theorem 8.8) and relate graph inverse semigroups to smash prod-

uct semigroups (Theorem 8.19).

We are particularly interested in graph inverse semigroups, since they are

built from graphs, as are other well-studied algebraic objects alluded to above,

namely certain combinatorial algebras and groupoids. More specifically, start-

ing from a graph E, in addition to the graph inverse semigroup S(E), one

can construct the graph groupoid GE and the inverse semigroup G h
E of slices

of GE (see §6.3 for more details, and [24] for an explanation of the relations be-

tween these objects). From these groupoids and semigroups one can then build

algebras, namely the Cohn path algebra CK(E) (which is a semigroup rings

over S(E)), the Leavitt path algebra LK(E) (which is a certain quotient of the

former), the graph groupoid Steinberg algebra AK(GE) (which is a convolution

algebra over GE), and the enveloping algebra K〈G h
E〉 of G h

E (see §8.3). All these
algebras inherit natural Z-gradings from S(E) or GE, and the last three are
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graded isomorphic, for a fixed graph [9, 7]; see the diagram below.

(1.2)

E

S(E) G h
E GE

LK(E) ∼=gr K〈G h
E〉 ∼=gr AK(GE)

In Theorem 8.13 and Corollary 8.16 we characterise the graph inverse semi-

groups S(E) for which the Leavitt path algebras LK(E) and graph groupoids GE
are strongly graded in the natural Z-grading. We also describe the strongly

graded Cohn path algebras CK(E) in Corollary 8.15.

The paper concludes with some ideas for further research on our topic.

2. Definitions and basics

We begin by recalling relevant concepts from semigroup theory, defining graded

semigroups and related concepts, and providing some simple examples and ob-

servations.

2.1. Graded semigroups. Recall that a semigroup is a nonempty set

equipped with an associative binary operation. A monoid is a semigroup with

an identity element 1. Throughout this note we assume that semigroups have

a zero element 0, unless specified otherwise. A semigroup S is called regular

if every element s ∈ S has an inner inverse t ∈ S such that sts = s. One

can show that S is regular if and only if for any s ∈ S there exists t ∈ S such

that sts = s and tst = t. If every s ∈ S has a unique inner inverse, denoted s−1,

then S is called an inverse semigroup.

We say that a semigroup S has local units if for every s ∈ S there ex-

ist u, v ∈ E(S) such that us = s = sv, where E(S) denotes the set of idem-

potents of S. It is easy to see that every regular semigroup has local units.

A semigroup S has common local units if for all s, t ∈ S there are idempo-

tents u, v ∈ S such that us = s = sv and ut = t = tv. Clearly, every monoid has

common local units. We refer the reader to [20] for the theory of semigroups

and [26] for that of inverse semigroups.

Next we define the main object of our interest.
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Definition 2.1: Let S be semigroup and Γ a group. Then S is called a Γ-graded

semigroup if there is a map φ : S \ {0} → Γ such that φ(st) = φ(s)φ(t),

whenever st �= 0. For each α ∈ Γ, we set

Sα := φ−1(α) ∪ {0}.

Equivalently, S is a Γ-graded semigroup if there exist subsets Sα of S

(α ∈ Γ) such that

S =
⋃
α∈Γ

Sα,

where SαSβ ⊆ Sαβ for all α, β ∈ Γ, and Sα ∩ Sβ = {0} for all distinct α, β ∈ Γ.

Let S be a Γ-graded semigroup. For each α ∈ Γ we refer to Sα as the

component of S of degree α. Also, for each α ∈ Γ and s ∈ Sα \ {0}, we
say that the degree of s is α, and write deg(s) = α. Note that deg(s) = ε

for all s ∈ E(S) \ {0}, and deg(s−1) = deg(s)−1 for all s ∈ S \ {0} in the

case where S is an inverse semigroup. (Here, and throughout the article, the

identity element of Γ is denoted by ε.) The set {α ∈ Γ | Sα �= {0}} is called

the support of S. We say that S is trivially graded if the support of S is

contained in the trivial group {ε}, that is Sε = S, in which case Sα = {0} for

each α ∈ Γ \ {ε}. Any semigroup admits a trivial grading by any group. It is

also easy to see that Sε is a semigroup (with zero), and that Sε is an inverse

semigroup whenever S is.

A homomorphism φ : S → T of Γ-graded semigroups is called a graded

homomorphism if φ(Sα) ⊆ Tα for every α ∈ Γ. Thus a graded homomorphism

is a homomorphism that preserves the degrees of the elements.

Example 2.2: Given a group Γ, any free semigroup (with or without zero)

F = 〈xi | i ∈ I〉 can be made into a Γ-graded semigroup by assigning (freely)

elements of Γ to the generators xi of the semigroup. In particular, if Γ = Z,

the group of the integers, and we assign 1 ∈ Z to every generator of F ,

then F =
⋃
i∈N

Fn, where Fn is the set of words of length n, and so F be-

comes a Z-graded semigroup with support N.

Example 2.3: Given a group Γ, a semigroup S = 〈xi | rk = sk〉, defined by

generators and relations, can be graded by assigning φ(xi) ∈ Γ to each gener-

ator xi, so that φ(rk) = φ(sk), where φ : F \ {0} → Γ. In particular, any free

inverse semigroup (with or without zero) can be graded in this manner. More
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concretely,

B = 〈a, b | ab = 1〉,
B′ = 〈a, b | a2 = 0, b2 = 0, aba = a, bab = b〉

are Γ-graded semigroups, via assigning any α ∈ Γ to a and assigning α−1 to b.

In §8, we investigate graph inverse semigroups, which constitute a vast class

of semigroups that includes B above. See also Example 2.8.

Example 2.4: Let S =
⋃
α∈Γ Sα be a Γ-graded semigroup, where Γ is a torsion-

free abelian group. For each n ∈ Z define the n-th Veronese semigroup by

S(n) :=
⋃
α∈Γ

Snα,

where S
(n)
α = Snα for each α ∈ Γ. Clearly S(n) is a subsemigroup of S, and if S

is a regular or an inverse semigroup, then so is S(n). Note that S(−1) = S as

semigroups, but with the components flipped, i.e., S
(−1)
α = S−α.

Recall that given a set X , the set T (X) of all functions ψ : X → X is a

semigroup under composition of functions, with the empty function as the zero

element, called the full transformation semigroup of X . Our next goal

is to show that every graded semigroup can be embedded in an appropriately

defined graded subsemigroup of T (X).

We say that a set X is pointed if there is a distinguished element 0X ∈ X .

Given a group Γ, we say that a pointed set X is Γ-graded if there is a map

φ : X\{0X} → Γ. In this situation we set Xα = φ−1(α) ∪ {0X} for each α ∈ Γ.

(In §2.3 we define a more elaborate version of this notion.) Denote by T ′(X)

the set of all pointed maps ψ : X → X , i.e., ones for which ψ(0X) = 0X .

Clearly T ′(X) is a subsemigroup of T (X), with 0T ′ ∈ T ′(X), defined by

0T ′(x) = 0X

for all x ∈ X , as the zero element. For each α ∈ Γ define

T (X)α := {ψ ∈ T ′(X) | ψ(Xβ) ⊆ Xαβ for all β ∈ Γ},

and

T gr(X) :=
⋃
α∈Γ

T (X)α.

Then it is easy to check that T gr(X) is a Γ-graded subsemigroup of T ′(X).
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Proposition 2.5: Let S be a Γ-graded semigroup. Then there is a graded

injective homomorphism ψ : S → T gr(X) for some Γ-graded set X .

Proof. Let X = S1 := S ∪{1} be the monoid obtained by adjoining an identity

element 1 to S. Then letting deg(1) = ε, turns X into a Γ-graded set, under

the grading induced from that of S. For each s ∈ S define θs : X → X by

θs(x) = sx,

and let

ψ : S −→ T gr(X)

s 
−→ θs.

To show that this is a well-defined graded function, let α, β ∈ Γ, s ∈ Sα,

and x ∈ Xβ . If sx = 0, then θs(x) = 0 ∈ Xαβ . Otherwise deg(θs(x)) = αβ, and

so, once again, θs(x) ∈ Xαβ . Thus θs ∈ T (X)α, from which it follows that ψ

is well-defined and graded. Moreover, ψ is injective, since θs = θt implies

that s = θs(1) = θt(1) = t, for all s, t ∈ S. Finally, it is easy to see that ψ is a

homomorphism.

We note that the “regular” transformation semigroup T (X) would not have

worked in the above context, since every grading on T (X) is trivial. To see

this, note that if φ ∈ T (X) is any constant map (i.e., one whose image has

cardinality 1), then φ2 = φ, and hence deg(φ) = ε in any grading on T (X).

Thus, for all nonzero ψ ∈ T (X) we have

deg(φ) deg(ψ) = deg(φψ) = deg(φ) = ε,

which implies that deg(ψ) = ε. Similar reasoning shows that every grading

on T ′(X) is trivial as well.

A recurring theme of this paper is that there tends to be a close connection

between the structure of S and that of Sε, for a graded semigroup S. We

give the first two instances of this next. (See also, e.g., Proposition 2.13 and

Theorem 5.8.)

Recall that for an inverse semigroup S, the natural partial order ≤ on S

is defined by s ≤ t (s, t ∈ S) if s = tu for some u ∈ E(S). Equivalently, s ≤ t

if s = ut for some u ∈ E(S). (See [20, §5.2] for more details.) In particular,

if u, v ∈ E(S), then u ≤ v amounts to u = uv = vu. Recall also that an
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inverse semigroup (with zero) S is called 0-E-unitary if for all s ∈ S and

u ∈ E(S) \ {0}, such that u ≤ s, one has s ∈ E(S).

Proposition 2.6: Let S be a Γ-graded inverse semigroup. Then S is 0-E-

unitary if and only if the inverse semigroup Sε is 0-E-unitary.

Proof. Suppose that Sε is 0-E-unitary. Let s ∈ S and u ∈ E(S) \ {0} such that

u ≤ s, i.e., u = sv for some v ∈ E(S). Then

deg(v) = ε = deg(s) deg(v),

and so s ∈ Sε. Thus, by hypothesis, s ∈ E(Sε), from which it follows that S

is 0-E-unitary.

The converse follows from the fact that E(Sε) = E(S).

Proposition 2.7: Let S be a Γ-graded regular semigroup. Then sending each

left (respectively, right) ideal I of S to Iε := Sε ∩ I gives a one-to-one inclusion-

preserving correspondence between the left (respectively, right) ideals of S and

the left (respectively, right) ideals of Sε.

Proof. We treat only the case of left ideals, as the proof for right ideals is very

similar.

Clearly, Iε is a left ideal of Sε, for each left ideal I of S, and the map I 
→ Iε is

inclusion-preserving. Now, for each left ideal J of Sε it is easy to see that SJ is

a left ideal of S. We conclude the proof by showing that SIε = I and (SJ)ε = J

for each relevant left ideal.

Let I be a left ideal of S. Then clearly SIε ⊆ I. For the opposite inclusion,

let s ∈ I \ {0}. Then s = sts for some t ∈ S, and so comparing the degrees

gives deg(ts) = ε. Thus s = sts ∈ SIε, from which it follows that SIε = I.

Next, let J be a left ideal of Sε, and let s ∈ J \ {0}. Writing s = sts

for some t ∈ S, a degree comparison again gives st ∈ Sε, and so

s = sts ∈ Sε ∩ SJ = (SJ)ε.

It follows that J ⊆ (SJ)ε. Now let r ∈ (SJ)ε \ {0}. Then r = st for some

s ∈ S and t ∈ J . Since deg(r) = ε = deg(t), necessarily s ∈ Sε, and so r ∈ J .
Thus (SJ)ε=J .

We show in Example 3.6 that the above proposition cannot be extended to

two-sided ideals.
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Example 2.8: Recall that the McAlister inverse semigroupMn (for n a positive

integer) is the inverse semigroup generated by {x1, . . . , xn}, subject to the re-

lations xix
−1
j = 0 = x−1

i xj , for all i �= j. (See [26, §9.4] for more details.) Then

sending xi 
→ 1 and x−1
i 
→ −1 for each 1 ≤ i ≤ n induces a Z-grading on Mn

(see Example 2.3).

Using the normal form for elements of Mn [26, Proposition 9.4.11], it is easy

to show that (Mn)0 = E(Mn). Thus, by Proposition 2.6, each McAlister in-

verse semigroup is 0-E-unitary, giving an alternative quick proof of this well-

known fact. Moreover, by Proposition 2.7, the left (and right) principal ideals

of Mn are in one-to-one correspondence with the sets {u ∈ E(Mn) | u ≤ v},
for v ∈ E(Mn).

2.2. Strongly graded semigroups. Let us next introduce strongly graded

semigroups—a particularly interesting class of graded semigroups, which we

study in detail throughout the rest of the paper.

Definition 2.9: Let S be a Γ-graded semigroup. We say that S is strongly

Γ-graded if SαSβ = Sαβ for all α, β ∈ Γ.

Here are a couple of simple examples of strongly graded semigroups.

Example 2.10: Let Γ′ be any group, and let T = Γ′ ∪ {0} (the group with zero

corresponding to Γ′). For any group homomorphism φ : Γ′ → Γ, it is easy to see

that T is a strongly Γ-graded (inverse) semigroup if and only if φ is surjective.

Example 2.11: Let I ⊆ Z be an interval, i.e., a subset with the property that

if i, k ∈ I and i < j < k for some i, j, k ∈ Z, then j ∈ I. Set

B := (I × I) ∪ {0B},

and define multiplication on B by

(p, q)(s, t) =

⎧⎨
⎩(p, t) if q = s,

0B otherwise,

and

(p, q) · 0B = 0B = 0B · (p, q) for all (p, q), (s, t) ∈ B \ {0B}.
Then it is easy to see that B is an inverse semigroup, with (p, q)−1 = (q, p) for

each (p, q) ∈ B\{0B}. Moreover, sending (p, q) 
→ p−q turns B into a Z-graded

semigroup.
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Now, if I = Z, then for all i, j ∈ Z and (p, q) ∈ Bi+j we have (p, p− i) ∈ Bi,

(p− i, q) ∈ Bj , and

(p, p− i)(p− i, q) = (p, q).

Thus, Bi+j ⊆ BiBj , and so B is strongly Z-graded in this case. It is also easy

to show that, conversely, if I �= Z, then B is not strongly Z-graded.

Recall that given a semigroup S and s, t ∈ S we write

sL t if S1s = S1t

and

sR t if sS1 = tS1,

where S1 denotes the monoid obtained from S by adjoining an identity element.

These (along with J , H , and D , which we will not review here) are known as

Green’s relations.

For a Γ-graded unital ring A (see §7 for more details), being strongly graded

is equivalent to 1 ∈ AαAα−1 for all α ∈ Γ. The following is an analogue of this

statement for semigroups, which gives various convenient characterisations of

strongly graded semigroups.

Proposition 2.12: Let S be a Γ-graded semigroup with local units. Then the

following are equivalent:

(1) S is strongly graded;

(2) SαSα−1 = Sε for every α ∈ Γ;

(3) SαSα−1 contains all the local units of S, for every α ∈ Γ.

Moreover, if S is an inverse semigroup, then these are also equivalent to the

following:

(4) E(S) = {ss−1 | s ∈ Sα}, for every α ∈ Γ;

(5) E(S) = {s−1s | s ∈ Sα}, for every α ∈ Γ;

(6) for all u ∈ E(S) and α ∈ Γ, there exists s ∈ Sα such that uL s;

(7) for all u ∈ E(S) and α ∈ Γ, there exists s ∈ Sα such that uR s.

Proof. (1)⇒(2) This follows immediately from Definition 2.9.

(2)⇒(3) Since the local units of S are idempotent, they are elements Sε. Thus

if Sε = SαSα−1 for some α ∈ Γ, then SαSα−1 contains the local units.
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(3)⇒(1) Let α, β ∈ Γ and s ∈ Sαβ. Then there is a local unit u ∈ S such

that su = s. By (3), u = rt, for some r ∈ Sβ−1 and t ∈ Sβ , and so

s = su = (sr)t ∈ SαSβ.

It follows that Sαβ = SαSβ, and so S is strongly graded.

Suppose now that S is an inverse semigroup.

(2)⇒(4) Let α ∈ Γ. Then clearly {ss−1 | s ∈ Sα} ⊆ E(S). For the opposite

inclusion, let u ∈ E(S). Then, by (2), u = st for some s ∈ Sα and t ∈ Sα−1 .

Since u ∈ E(S), we have u = u−1, and hence

(2.1) u = st = st(st)−1 = (stt−1)(tt−1s−1),

where stt−1 ∈ Sα. It follows that u ∈ {ss−1 | s ∈ Sα}.
(4)⇒(2) Let s ∈ Sε and α ∈ Γ. Then, by (4), s−1s = t−1t for some t ∈ Sα−1 .

Hence s = ss−1s = (st−1)t ∈ SαSα−1 . Thus Sε = SαSα−1 .

(4)⇔(5) This follows from the fact that s ∈ Sα if and only if s−1 ∈ Sα−1 .

(5)⇒(6) Given u ∈ E(S) and α ∈ Γ, we have u = s−1s for some s ∈ Sα,

by (5). Since s = su, it follows that uL s.

(6)⇒(5) Given u∈E(S) and α∈Γ, we have u=st for some s∈S and t∈Sα,
by (6), where necessarily s ∈ Sα−1 . Then u = (stt−1)(tt−1s−1), by (2.1), where

tt−1s−1 ∈ Sα. Therefore u ∈ {s−1s | s ∈ Sα}, from which (5) follows.

(4)⇔(7) Since (5) is equivalent to (6), this follows, by symmetry.

The next result gives a first glimpse at the special nature of strongly graded

semigroups.

Proposition 2.13: Let S be a strongly Γ-graded semigroup with local units.

Then the following hold:

(1) S is a regular semigroup if and only if Sε is a regular semigroup.

(2) S is an inverse semigroup if and only if Sε is an inverse semigroup.

Proof. (1) Suppose that S is regular, and let s ∈ Sε\{0}. Then there exists t ∈ S

such that sts = s and tst = t. A degree comparison shows that

deg(s) = deg(t) = ε,

and hence Sε is regular.
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Conversely, suppose that Sε is regular, and let s ∈ S \ {0}. Then s ∈ Sα, for

some α ∈ Γ, and s = su, for a local unit u ∈ Sε. Since S is strongly graded,

u = rt for some r ∈ Sα−1 and t ∈ Sα. Now, sr ∈ Sε, and so sr = srpsr for

some p ∈ Sε, as Sε is regular. Hence

s = su = srt = srpsrt = s(rp)s,

which shows that S is regular.

(2) Recall that a regular semigroup S is an inverse semigroup if and only

if E(S) is commutative [20, Theorem 5.1.1]. Since E(S) = E(Sε), the statement

follows from (1).

Next we use the natural partial order to define a weaker version of “strongly

graded” for inverse semigroups, which will be of use in the sequel.

Definition 2.14: Let S be a Γ-graded inverse semigroup. We say that S is

locally strongly Γ-graded if for all α, β ∈ Γ and s ∈ Sαβ \ {0}, there exists

t ∈ SαSβ \ {0} such that t ≤ s.

Clearly any strongly graded inverse semigroup is locally strongly graded.

Now, given a Γ-graded inverse semigroup S and α ∈ Γ, set

E(S)α := {ss−1 | s ∈ Sα}.
According to Proposition 2.12, S is strongly graded if and only if u ∈ E(S)α

for all u ∈ E(S) and α ∈ Γ. In the next proposition we show that S is locally

strongly graded if and only if a local version of this condition holds, and provide

other equivalent statements.

Proposition 2.15: Let S be a Γ-graded inverse semigroup. Then the following

are equivalent:

(1) S is locally strongly graded;

(2) for all α ∈ Γ and u ∈ E(S) \ {0}, there exists v ∈ E(S)α \ {0} such

that v ≤ u;

(3) for all α, β ∈ Γ and s ∈ Sαβ \ {0}, there exists u ∈ E(S) \ {0} such

that u ≤ s−1s and su ∈ SαSβ ;

(4) for all α, β ∈ Γ and s ∈ Sαβ \ {0}, there exists u ∈ E(S) \ {0} such

that u ≤ ss−1 and us ∈ SαSβ .

Proof. (1)⇒(4) Let α, β∈Γ and s∈Sαβ\{0}. By (1), there exists t ∈ SαSβ \ {0}
such that t ≤ s. Then t = vs for some v ∈ E(S) \ {0}. Setting u = tt−1, and

using the fact that E(S) is commutative, gives u = vss−1v = vss−1 ≤ ss−1.

Moreover, us = t(t−1s) ∈ SαSβ, since deg(t−1) = β−1α−1.



Vol. 253, 2023 GRADED SEMIGROUPS 263

(4)⇒(3) Let α, β ∈ Γ and s ∈ Sαβ \ {0}. By (4), there exists u ∈ E(S) \ {0}
such that u ≤ ss−1 and us ∈ SαSβ. Then we have us = uss−1s = s(s−1us),

where s−1us ∈ E(S) \ {0} and s−1us ≤ s−1s.

(3)⇒(2) Let α ∈ Γ and u ∈ E(S) \ {0}. Then u ∈ Sε = Sαα−1 . By (3), there

exists v ∈ E(S)\{0} such that v ≤ u and uv ∈ SαSα−1 . Since uv = v, it follows

that v = st for some s ∈ Sα and t ∈ Sα−1 . The computation in (2.1) then gives

v = (stt−1)(tt−1s−1), where stt−1 ∈ Sα. Hence v ∈ E(S)α.

(2)⇒(1) Let α, β ∈ Γ and s ∈ Sαβ\{0}. By (2), there exists v ∈ E(S)β−1 \{0}
such that v ≤ s−1s. Then v = rr−1, where r ∈ Sβ−1 and r−1 ∈ Sβ . Therefore,

setting t = sv, we have t ≤ s and t = (sr)r−1 ∈ SαSβ . Moreover, v �= 0

and v ≤ s−1s imply that t �= 0.

In Proposition 5.3 we exhibit a class of locally strongly graded inverse semi-

groups that are not strongly graded. Also, in §8 we discuss locally strongly

graded graph inverse semigroups.

2.3. Graded S-sets. Next we introduce S-sets, which are of central impor-

tance to much of what follows.

Let S be a semigroup and X a set. Then X is a left S-set, or a left S-act, if

there is an action S×X → X of S on X , such that s(tx) = (st)x for all s, t ∈ S

and x ∈ X . We say that a left S-set X is unital if SX = X (i.e., for all

x ∈ X there exist y ∈ X and s ∈ S such that sy = x). Also, a left S-set X is

called pointed if there exists a “zero” element 0X ∈ X such that 0x = 0X for

all x ∈ X (in which case, necessarily s0X = 0X for all s ∈ S). The right (unital

pointed) S-set is defined analogously. We say that X is an S-biset if it is both

a left S-set and a right S-set, and (sx)t = s(xt) for all s, t ∈ S and x ∈ X . Note

that this condition implies that the zero elements corresponding to the left and

right S-set structures of an S-biset are equal. Throughout the paper, unless

mentioned otherwise, all S-sets are assumed to be pointed.

For left (respectively, right) S-sets X and Y , a function φ : X → Y is

called an S-map if φ(sx) = sφ(x) (respectively, φ(xs) = φ(x)s) for all s ∈ S

and x ∈ X . If X and Y are S-bisets, then φ : X → Y is called an S − S-map

if φ(sx) = sφ(x) and φ(xs) = φ(x)s for all s ∈ S and x ∈ X . Note that in each

of these situations we have φ(0X) = 0Y .
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To extend the S-set construction to the graded setting, let us now

assume that S is Γ-graded. A left S-set X is Γ-graded if there is a function

φ : X \ {0X} → Γ that satisfies φ(sx) = deg(s)φ(x), for all s ∈ S and x ∈ X ,

whenever sx �= 0X . For each α ∈ Γ, we set Xα := φ−1(α) ∪ {0}. Equivalently,

X is a Γ-graded left S-set if there exist subsets Xα of X (α ∈ Γ) such that

X =
⋃
α∈Γ

Xα,

where SαXβ ⊆ Xαβ for all α, β ∈ Γ, and Xα ∩ Xβ = {0X} for all dis-

tinct α, β ∈ Γ. For all α ∈ Γ and x ∈ Xα \ {0}, we say that the degree

of x is α and write deg(x) = α. Γ-graded is defined analogously for right

S-sets. An S-biset X is Γ-graded if it is Γ-graded as a left S-set, and addi-

tionally XβSα ⊆ Xαβ for all α, β ∈ Γ.

For a semigroup S, we denote by S -Mod the category whose objects are

unital (pointed) left S-sets, and whose morphisms are S-maps. We denote

by S -Gr the category whose objects are Γ-graded unital (pointed) left S-sets,

and whose morphisms are graded S-maps, that is, S-maps φ : X → Y such

that φ(Xα) ⊆ Yα for all α ∈ Γ. We refer the reader to [6] for general category-

theoretic information.

Given a Γ-graded left S-set X , for all α, β ∈ Γ let X(α)β := Xβα. Then

(2.2) X(α) :=
⋃
β∈Γ

X(α)β

is a Γ-graded left S-set, called the α-shift of X . That is, X(α) = X as sets,

but the grading is “shifted” by α. For a Γ-graded right S-set X , the α-shift

is defined by setting X(α)β := Xαβ for all β ∈ Γ. This construction leads to a

shift functor for each α ∈ Γ, defined by

(2.3)
Tα : S -Gr −→ S -Gr

X 
−→ X(α),

which takes each morphism to itself. It is easy to see that for all α, β ∈ Γ, the

functor Tα is an isomorphism, and that TαTβ = Tαβ . Shifting plays a crucial

role in our theory of graded semigroups, similarly to the analogous concept in

the graded ring theory.

The following lemma gives a characterisation of strongly graded semigroups S

in terms of their actions on graded S-sets, which will be needed in §5.2.
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Lemma 2.16: Let S be a Γ-graded semigroup with local units. Then the fol-

lowing are equivalent:

(1) S is strongly graded;

(2) SαXβ = Xαβ for all α, β ∈ Γ and unital Γ-graded left S-sets X ;

(3) SXα = X for all α ∈ Γ and unital Γ-graded left S-sets X .

Proof. (1)⇒(2) Let X be a unital Γ-graded left S-set, α, β ∈ Γ, and x ∈ Xαβ.

Since X is unital, sy = x for some s ∈ S and y ∈ X . Let γ = α−1 deg(s).

By (1), we can then find r ∈ Sα and t ∈ Sγ such that s = rt. Then, comparing

degrees on the two sides of rty = x, gives ty ∈ Xβ, and so x ∈ SαXβ . It follows

that SαXβ = Xαβ.

(2)⇒(3) By (2), we have Sβα−1Xα = Xβ for all α, β ∈ Γ and unital Γ-graded

left S-sets X , from which (3) follows.

(3)⇒(1) Let α, β ∈ Γ, and let s ∈ Sαβ . Since S has local units, X = S is a

unital left S-set. Thus, by (3), we can find r ∈ S and t ∈ Sβ such that s = rt.

Then deg(r) = αββ−1 = α, and so s ∈ SαSβ. It follows that SαSβ = Sαβ ,

proving (1).

Next we recall tensor products for left S-sets, and extend them to the graded

setting. Let S be a semigroup, and let X , respectively Y , be a right, respec-

tively left, S-set. Then X ⊗S Y is defined as the cartesian product X × Y

modulo the equivalence relation generated by identifying (xs, y) with (x, sy) for

all x ∈ X, y ∈ Y, s ∈ S. The equivalence class of (x, y) is denoted by x⊗ y. (See
[20, §8] for more details.) If X is an S-biset, then X ⊗S Y can be made into

a left S-set, by defining s(x ⊗ y) := sx ⊗ y. (It follows from [20, Proposition

8.1.8] that this is well-defined.) Similarly, if Y is an S-biset, then X ⊗S Y can

be made into a right S-set, by defining (x⊗ y)s := x⊗ ys. Note that

x⊗ 0Y = 0X ⊗ y = 0X ⊗ 0Y

for all x ∈ X and y ∈ Y , and that this acts as the zero element in each case,

making X ⊗S Y pointed. Next, if S, X , and Y are Γ-graded, then X ⊗S Y can

be turned into a Γ-graded (left or right) S-set by letting

(2.4) (X ⊗S Y )α = {x⊗ y | deg(x) deg(y) = α} ∪ {0X ⊗ 0Y }

for all α ∈ Γ. (Again, it follows from [20, Proposition 8.1.8] that this is well-

defined.) We note that if T is a subsemigroup of S, X is a (Γ-graded) S-

biset, and Y is a (Γ-graded) left S-set, then a slight modification of the above
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construction turns X ⊗T Y into a (Γ-graded) left S-set, and analogously for

right S-sets.

Given a Γ-graded semigroup S, clearly S and Sα are Sε-bisets for each α ∈ Γ.

This fact, together with the tensor construction, can be used to give yet another

characterisation of strongly graded semigroups.

Proposition 2.17: Let S be a Γ-graded semigroup with local units. Then the

following are equivalent:

(1) S is strongly graded;

(2) for every α ∈ Γ, the function φα : Sα ⊗Sε Sα−1 → Sε, defined by

x⊗ y 
→ xy, is a surjective Sε − Sε-map;

(3) for every α ∈ Γ, the function ψα : S⊗SεSα → S, defined by x⊗y 
→ xy,

is a graded surjective S − Sε-map.

Furthermore, if S has common local units then the above maps are bijective.

Proof. (1)⇒(2) From the definition of tensor product it is easy to check that φα

is well-defined and is an Sε−Sε-map. If S is strongly graded, then SαSα−1 = Sε

for every α ∈ Γ, which implies that φα is surjective.

(2)⇒(3) Again it is easy to see that ψα is well-defined and an S − Sε-map.

For all α, β ∈ Γ, using (2.4), we have

ψα((S ⊗Sε Sα)β) = ψα(Sβα−1 ⊗Sε Sα) ⊆ Sβα−1Sα ⊆ Sβ,

which shows that ψα is a graded map. To show that ψα is surjective, let

s ∈ S \ {0}, and let u ∈ E(S) be a local unit such that s = su. By (2), u = rt,

where r ∈ Sα and t ∈ Sα−1 . Therefore, ψα(sr ⊗ t) = srt = su = s, as desired.

(3)⇒(1) Let s ∈ Sε and α ∈ Γ. Then, by (3), there are r ∈ S and t ∈ Sα

such that ψα(r ⊗ t) = rt = s. It follows that r ∈ Sα−1 , and thus Sε = Sα−1Sα.

Therefore, S is strongly graded, by Proposition 2.12.

Now suppose that S has common local units and that S is strongly graded. To

show that φα is injective (for α ∈ Γ), suppose further that φα(x⊗y) = φα(x
′⊗y′)

for some x⊗y, x′⊗y′ ∈ Sα⊗Sε Sα−1 . Then xy = x′y′. Let u ∈ Sε be a common

local unit for y and y′, so that yu = y and y′u = y′. Since S is strongly graded,

u = rt for some r ∈ Sα and t ∈ Sα−1 . Since yr, y′r ∈ Sε, we then have

x⊗ y = x⊗ yu = x⊗ yrt = xyr⊗ t = x′y′r⊗ t = x′ ⊗ y′rt = x′ ⊗ y′u = x′ ⊗ y′,

showing φα is injective, and hence bijective. The argument for ψα being injective

is similar.
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We conclude this section with an example, where we build new semigroups

from graded ones.

Example 2.18: Let S be a Γ-graded semigroup, where Γ is a totally-ordered

abelian group (e.g., Z). Then it is easy to see that

S≥0 :=
⋃
α≥0

Sα and S≤0 :=
⋃
α≤0

Sα

are semigroups, and that S≥β :=
⋃
α≥β Sα is an S≥0-biset for each β ∈ Γ. When

S is strongly graded, tensor product calculus similar to that in Proposition 2.17

can be used here. Specifically, S≥β ⊗S≥0
S≥γ → S≥βγ , defined by

x⊗ y 
→ xy,

is a surjective S≥0 − S≥0-map, for all β, γ ∈ Γ.

3. Smash products and matrices

3.1. Smash product semigroups. In this section we prove the first of our

main results, which is an analogue of a theorem [10, Theorem 2.2] about graded

modules over algebras. It says that for a Γ-graded semigroup S with local units,

the category S -Gr of graded unital left S-sets is isomorphic to the category of

non-graded unital left sets over a certain other semigroup. This construction

requires the smash product, which we introduce next.

Definition 3.1: Let S be a Γ-graded semigroup. We define the smash product

of S with Γ as

S#Γ := {sPα | s ∈ S \ {0}, α ∈ Γ} ∪ {0}.

Also, define a binary operation on S#Γ by

(3.1) (sPα)(tPβ) =

⎧⎨
⎩stPβ if st �= 0 and t ∈ Sαβ−1

0 otherwise

and

0 = 02 = (sPα)0 = 0(sPα),

for all s, t ∈ S and α, β ∈ Γ.
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We will next show that S#Γ is a semigroup, which inherits various charac-

teristics of S. It is easy to see that S#Γ is Γ-graded via

(3.2)
S#Γ\{0} −→ Γ

sPα 
−→ deg(s).

Lemma 3.2: Let S be a Γ-graded semigroup. Then the following hold:

(1) S#Γ is a semigroup.

(2) E(S#Γ) = {uPα | u ∈ E(S)\{0}, α ∈ Γ} ∪ {0}.
(3) S has local units if and only if S#Γ has local units.

(4) S is an inverse semigroup if and only if S#Γ is an inverse semigroup.

Proof. (1) It suffices to check that multiplication of nonzero elements is asso-

ciative. Thus let r, s, t ∈ S and α, β, γ ∈ Γ. Then

((rPα)(sPβ))(tPγ) =

⎧⎨
⎩rstPγ if rst �= 0, s ∈ Sαβ−1 , and t ∈ Sβγ−1

0 otherwise

=

⎧⎨
⎩rstPγ if rst �= 0, st ∈ Sαγ−1 , and t ∈ Sβγ−1

0 otherwise

= (rPα)((sPβ)(tPγ)),

giving the desired conclusion.

(2) This follows immediately from the definition of the multiplication on S#Γ.

(3) Suppose that S has local units, and let s ∈ S \{0} and α ∈ Γ. Then there

are idempotents u, v ∈ E(S) such that s = vs = su. Hence

sPα = vPβαsPα = sPαuPα,

where β = deg(s), and vPβα, uPα ∈ E(S#Γ), by (2). It follows that S#Γ has

local units. A similar argument gives the converse.

(4) Suppose that S is an inverse semigroup, and let s∈S\{0} and α∈Γ. Then

(sPα)(s
−1Pβα)(sPα) = sPα,

where β = deg(s), from which it follows that S#Γ is a regular semigroup.

Since E(S) is commutative, by [20, Theorem 5.1.1], so is E(S#Γ), by (2).

Thus S#Γ is an inverse semigroup.

Conversely, suppose that S#Γ is an inverse semigroup, and let s∈S\{0}. Then

(sPε)(tPα)(sPε) = sPε
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for some t ∈ S and α ∈ Γ, which implies that sts = s. Thus S is regular.

Since E(S#Γ) is commutative, by (2), it follows that E(S) is commutative,

and so S is an inverse semigroup.

In preparation for Theorem 3.5, we next relate S-sets to S#Γ-sets.

Lemma 3.3: Let S be a Γ-graded semigroup and X a Γ-graded left S-set.

Then X is a left S#Γ-set via the action defined by 0x = 0, and

(3.3) (sPα)x =

⎧⎨
⎩sx if x ∈ Xα

0 otherwise

for all s ∈ S, α ∈ Γ, and x ∈ X . Moreover, if X is a unital left S-set, then it is

a unital left S#Γ-set.

Proof. Let s, t ∈ S \ {0}, α, β ∈ Γ, and x ∈ X . Then

((sPα)(tPβ))x =

⎧⎨
⎩stx if t ∈ Sαβ−1 and x ∈ Xβ

0 otherwise

=

⎧⎨
⎩stx if tx ∈ Xα and x ∈ Xβ

0 otherwise

= (sPα)((tPβ)x).

Upon dealing with trivial cases involving zero, it follows that X is a (pointed)

left S#Γ-set. The final claim is immediate.

Lemma 3.4: Let S be a Γ-graded semigroup with local units, and let X be a

unital left S#Γ-set. For all s ∈ S, α ∈ Γ, and x ∈ X let

(3.4) Xα = {y ∈ X | ∃uPα ∈ E(S#Γ) such that (uPα)y = y},
define

(3.5) sx =

⎧⎨
⎩(sPα)x if x ∈ Xα and s �= 0,

0 otherwise,

and define φ : X\{0} → Γ by x 
→ α whenever x ∈ Xα. Then X is a Γ-graded

unital left S-set via the above operations.

Proof. To show that the operations are well-defined, we need to prove that

(3.6) X =
⋃
α∈Γ

Xα,
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and Xα ∩ Xβ = {0} for all distinct α, β ∈ Γ. Let x ∈ X \ {0}. Since X is a

unital left S#Γ-set, there exist sPα ∈ S#Γ and y ∈ X such that x = (sPα)y.

Since S has local units, us = s for some u ∈ E(S). Then

(uPβα)x = (uPβα)(sPα)y = (sPα)y = x,

where β = deg(s). Since uPβα ∈ E(S#Γ), by Lemma 3.2(2), we have x ∈ Xβα,

from which (3.6) follows.

Next let α, β ∈ Γ be distinct, and let x ∈ Xα ∩Xβ. Then we have

x = (uPα)x = (vPβ)x

for some u, v ∈ Sε, and so

x = (uPα)x = (uPα)(vPβ)x = 0x = 0.

Thus Xα ∩Xβ = {0}, as desired.
For all s, t ∈ S \ {0} and x ∈ X we have

s(tx) =

⎧⎨
⎩(sPα)((tPβ)x) if x ∈ Xβ and tx ∈ Xα

0 otherwise

=

⎧⎨
⎩((sPα)(tPβ))x if x ∈ Xβ and t ∈ Sαβ−1

0 otherwise

=

⎧⎨
⎩(stPβ)x if x ∈ Xβ and st �= 0

0 otherwise

= (st)x,

from which it follows that X is a (pointed) left S-set. Also, given α ∈ Γ

and x ∈ Xα \ {0}, there exist uPα ∈ E(S#Γ) such that x = (uPα)x = ux, by

the definition of Xα, from which it follows that X is a unital left S-set.

Finally, to show that X is Γ-graded as a left S-set, it suffices to check

that SαXβ ⊆ Xαβ for all α, β ∈ Γ. Thus let s ∈ Sα \ {0} and x ∈ Xβ.

Since S has local units, there is an idempotent u ∈ S such that us = s. Then

sx = (sPβ)x = (uPαβ)((sPβ)x) ∈ Xαβ ,

as desired.

We are now ready to show that the category of Γ-graded left S-sets is iso-

morphic to the category of left S#Γ-sets. In the process we will show that
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shifting (2.2) is preserved by our isomorphism. For this we first define func-

tors Tα : S#Γ -Mod → S#Γ -Mod which behave in a manner analogous to

the shifting functors (2.3) on S -Gr.

Given a Γ-graded semigroup S, for each α ∈ Γ define

τα : S#Γ −→ S#Γ

sPβ 
−→ sPβα.

Letting τα(0) = 0, it is easy to see that τα is a semigroup isomorphism. Each

such isomorphism τα induces a new S#Γ-set structure on any left S#Γ-set X

via

(3.7) (sPβ).x = τα(sPβ)x = (sPβα)x,

for all sPβ ∈ S#Γ \ {0} and x ∈ X . We denote this induced left S#Γ-set

by X(α). It is easy to check that sending each left S#Γ-set X to X(α) and

each morphism to itself gives an isomorphism Tα : S#Γ -Mod → S#Γ -Mod

of categories. Moreover TαTβ = Tαβ for all α, β ∈ Γ.

Theorem 3.5: Let S be a Γ-graded semigroup with local units. Then there is

an isomorphism of categories F# : S -Gr → S#Γ -Mod such that the following

diagram commutes for every α ∈ Γ.

(3.8)

S -Gr
F#

Tα

S#Γ -Mod

Tα

S -Gr
F#

S#Γ -Mod .

Proof. We begin by defining mappings

F# : S -Gr → S#Γ -Mod and Fgr : S#Γ -Mod → S -Gr .

For each object X in S -Gr let

F#(X) = X#,

where X# is defined to be X , viewed as a left S#Γ-set, as in Lemma 3.3. For

each morphism φ in S -Gr let

F#(φ) = φ#,

where φ# = φ. Next, for each object X in S#Γ -Mod let

Fgr(X) = Xgr,
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where Xgr is defined to be X , viewed as a Γ-graded left S-set, as in Lemma 3.4.

For each morphism φ in S#Γ -Mod let

Fgr(φ) = φgr,

where φgr = φ. We claim that F# and Fgr are functors. To show this, it suffices

to prove that each φ# is a morphism in S#Γ -Mod, and each φgr is a morphism

in S -Gr.

Let φ : X → Y be a morphism in S -Gr, i.e., a function that commutes with

the S-action and respects the Γ-grading, and let sPα ∈ S#Γ \ {0} and x ∈ X#.

Then, by (3.3) in Lemma 3.3, we have

φ#((sPα)x) =

⎧⎨
⎩φ(sx) if x ∈ Xα

0 otherwise

=

⎧⎨
⎩sφ(x) if x ∈ Xα

0 otherwise

= (sPα)φ#(x).

It follows that φ# : X# → Y# is a morphism in S#Γ -Mod.

Next, let φ : X → Y be a morphism in S#Γ -Mod, and let s ∈ S \ {0}
and x ∈ X . Also, let α ∈ Γ be such that x ∈ Xα, as in Lemma 3.4. To see that

φgr : Xgr → Ygr is a morphism in S -Gr, first notice that

(uPα)φ(x) = φ((uPα)x)

for any u ∈ E(S)\{0}, and so, by (3.4), x ∈ Xα implies that φgr(x) = φ(x) ∈ Yα.

Thus, by (3.5), we have

φgr(sx) = φ((sPα)x) = (sPα)φ(x) = sφgr(x).

We conclude that φgr : Xgr → Ygr is a morphism in S -Gr.

It remains to prove that F# ◦ Fgr and Fgr ◦ F# are the identity functors.

Clearly, Fgr ◦ F#(φ) = φ for any morphism φ in S -Gr, and F# ◦ Fgr(φ) = φ

for any morphism φ in S#Γ -Mod.

Let X be an object in S#Γ -Mod. Note that for all s ∈ S\{0}, x ∈ X ,

and α, β ∈ Γ, if x ∈ Xβ and β �= α, then

(sPα)x = (sPα)(uPβ)x = 0x = 0,
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where u ∈ S is such that (uPβ)x = x (see (3.4)). It follows that (sPα)x = 0

unless x ∈ Xα \ {0}. Thus, for all s ∈ S\{0}, α ∈ Γ, and x ∈ X , applying (3.5)

and then (3.3), it is immediate that (sPα)x, viewed as an element of X , agrees

with (sPα)x, viewed as an element of (Xgr)#. Therefore the S#Γ-action on X

is the same as that on (Xgr)#.

Next let X be an object in S -Gr, let s ∈ S\{0}, and let x ∈ X . Apply-

ing (3.3) and then (3.5), it is apparent that sx, viewed as an element of X ,

agrees with sx, viewed as an element of (X#)gr. Finally, using (3.3) and (3.4),

it is easy to see that (X#)α = Xα, for any α ∈ Γ. Thus the S-action on X

agrees with that on (X#)gr, as does the Γ-grading. Hence F#◦Fgr and Fgr◦F#

are the identity functors, and so S -Mod is isomorphic to S -Gr.

Finally, to show that diagram (3.8) commutes for α ∈ Γ, it suffices to check

that TαF#(X) = F#Tα(X) for all objects X of S -Gr, i.e., that (X#)(α)

and X(α)# agree as objects of S#Γ -Mod. Let sPβ ∈ S#Γ \ {0} and x ∈ X .

Viewing x as an element of (X#)(α), by (3.7) and (3.3), we have

(sPβ).x = (sPβα)x =

⎧⎨
⎩sx if x ∈ Xβα,

0 otherwise.

On the other hand, viewing x as an element of X(α)#, by (2.2), we have

(sPβ).x =

⎧⎨
⎩sx if x ∈ X(α)β = Xβα,

0 otherwise.

Thus (3.8) commutes.

3.2. Graded Rees matrix semigroups. Matrix semigroups were introduced

by Rees, who proved that all primitive 0-simple semigroups are of this form.

(See [20, §3.2] for details, and the Introduction of [13] for historical background

and further motivating examples.) Here we construct graded versions of Rees

matrix semigroups, thereby obtaining another class of examples of graded semi-

groups, which turn out to be related to smash product semigroups. Our con-

struction parallels that of graded matrix rings [19, §1.3]. In §7 we further use

these semigroups to build an interesting class of graded rings.

Let S be a Γ-graded semigroup, and let I and J be nonempty (index) sets.

For all i ∈ I and j ∈ J , fix αi, βj ∈ Γ, and set

α = (αi)i∈I ∈ ΓI and β = (βj)j∈J ∈ ΓJ .
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For each δ ∈ Γ, denote by

Mδ := MI,J(S)[α][β]δ

the subset of I × S × J consisting of all matrices (sij), such that sij ∈ S and

deg(sij) = αiδβ
−1
j , for all i ∈ I and j ∈ J . For all k ∈ I, l ∈ J , and a ∈ S with

deg(a) = αiδβ
−1
j , we denote by ekl(a) the elementary matrix (sij) ∈ Mδ,

where skl = a, and sij = 0 for (i, j) �= (k, l). We denote by 0 the matrix all of

whose entires are zero. (So 0 = ekl(0) for all k ∈ I, l ∈ J .) Let

(3.9) EI,J(S)[α][β]δ := {eij(a) | i ∈ I, j ∈ J, a ∈ Sαiδβ
−1
j

} ⊆Mδ,

and

(3.10) EI,J(S)[α][β] :=
⋃
δ∈Γ

EI,J (S)[α][β]δ.

To define a multiplication operation on this set, first choose a sandwich matrix

p = (pji) ∈ MJ,I(S
1)[β][α]ε,

where, as usual, S1 denotes the monoid obtained by adjoining an identity ele-

ment to S. Then for all eij(a), ekl(b) ∈ EI,J (S)[α][β], define

(3.11) eij(a)ekl(b) := eil(apjkb).

It is easy to see that this operation is associative, and so EI,J(S)[α][β], which

we denote by E
p
I,J (S)[α][β] in this context, is a semigroup with respect to it.

Next, let us check that by letting Tδ = EI,J (S)[α][β]δ for all δ ∈ Γ, we

have TγTλ ⊆ Tγλ for all γ, λ ∈ Γ. Thus let eij(a) ∈ Tγ and ekl(b) ∈ Tλ. Then

deg(a) = αiγβ
−1
j , deg(b) = αkλβ

−1
l , and deg(pjk) = βjεα

−1
k . Therefore

apjkb ∈ Sαiγβ
−1
j
Sβjεα

−1
k
Sαkλβ

−1
l

⊆ Sαiγλβ
−1
l
.

It follows from (3.11) that eij(a)ekl(b) ∈ Tγλ, and so TγTλ ⊆ Tγλ. We conclude

that E
p
I,J(S)[α][β] is a Γ-graded semigroup, to which we refer as a graded

Rees matrix semigroup. Note that if Γ is the trivial group, then the above

construction reduces to the usual Rees matrix semigroup [20, §3.2].
If I and J are finite, say I = {1, . . . ,m} and J = {1, . . . , n}, then taking

[α] = (α1, . . . , αm) and [β] = (β1, . . . , βn), each component set Mδ, defined



Vol. 253, 2023 GRADED SEMIGROUPS 275

above, can be visualised as⎛
⎜⎜⎜⎜⎝
Sα1δβ

−1
1

Sα1δβ
−1
2

· · · Sα1δβ
−1
n

Sα2δβ
−1
1

Sα2δβ
−1
2

· · · Sα2δβ
−1
n

...
...

. . .
...

Sαmδβ
−1
1

Sαmδβ
−1
2

· · · Sαmδβ
−1
n

⎞
⎟⎟⎟⎟⎠ .

Example 3.6: Let G be a group and S = G∪ {0} the corresponding group with

zero. Also let I = J = {1, 2} and let

p =

(
ε 0

0 ε

)
.

Then the corresponding Rees matrix semigroupR = I×S×J can be represented

as follows:

R =

(
S 0

0 0

)⋃(
0 S

0 0

)⋃(
0 0

S 0

)⋃(
0 0

0 S

)
,

where multiplication becomes the usual matrix multiplication. By the Rees

theorem [20, Theorem 3.2.3], R is regular and completely 0-simple (i.e., it has

no nonzero proper ideals, and possesses a minimal idempotent).

Now let S\{0} → Z/2Z be the trivial grading for S (so S0 = S and S1 = {0}).
Also, keeping I, J , and p as before, let α1 = β1 = 0 and α2 = β2 = 1. Then the

graded Rees matrix semigroup T has the following graded components (see (3.9)

and (3.10)):

T0 =

(
S 0

0 0

)⋃(
0 0

0 S

)
and T1 =

(
0 S

0 0

)⋃(
0 0

S 0

)
.

Thus T = R as semigroups, and therefore T is also 0-simple. On the other

hand, T0 has two nontrivial two-sided ideals (cf. Proposition 2.7).

Next, we consider a special case of the graded Rees matrix semigroup con-

struction, which will shed additional light on the smash product semigroups dis-

cussed above. Let S be a Γ-graded semigroup, let I = J = Γ, let α = β = (δ)δ∈Γ,

and let p = (pji) ∈ MJ,I(S
1)[β][α]ε be the identity matrix. (That is, pji = 1

if j= i, and pji=0 otherwise.) In this case we denote the semigroup E
p
I,J(S)[α][β]

by SΓ. So

SΓ = {eαβ(s) | α, β ∈ Γ, s ∈ S},
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with multiplication given by

(3.12) eαβ(s)eδγ(t) =

⎧⎨
⎩eαγ(st) if β = δ

0 otherwise

(see (3.11)), and grading given by

(3.13)
SΓ\{0} −→ Γ

eαβ(s) 
−→ α−1 deg(s)β.

We refer to SΓ as a stable graded Rees matrix semigroup. The semi-

group T constructed in Example 3.6 is of this sort.

Proposition 3.7: Let S be a Γ-graded semigroup with local units and SΓ the

corresponding stable graded Rees matrix semigroup. Then the following hold:

(1) E(SΓ) = {eαα(u) | u ∈ E(S), α ∈ Γ}.
(2) SΓ has local units.

(3) SΓ is strongly graded.

(4) Defining

φ : S#Γ −→ (SΓ)ε

sPα 
−→ edeg(s)α,α(s)

for all sPα ∈ S#Γ \ {0}, and φ(0) = 0, gives an isomorphism between

S#Γ and (SΓ)ε.

(5) S is an inverse semigroup if and only if SΓ is an inverse semigroup.

Proof. (1) This follows easily from the above description (3.12) of multiplication

in SΓ.

(2) Let eαβ(s) ∈ SΓ, and let u, v ∈ E(S) be such that us = sv = s.

Then eαα(u), eββ(v) ∈ E(SΓ), by (1), and

eαα(u)eαβ(s) = eαβ(s) = eαβ(s)eββ(v),

by (3.12). Hence SΓ has local units.

(3) By Proposition 2.12, it suffices to show that (SΓ)ε ⊆ (SΓ)γ(SΓ)γ−1 , for

all γ ∈ Γ. Thus let eαβ(s) ∈ (SΓ)ε \ {0}, let γ ∈ Γ, and let v ∈ E(S) be such

that sv = s. Then we have

eαβ(s) = eα,βγ(s)eβγ,β(v).
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Also, by (3.13), deg(s) = αβ−1, and

deg(eα,βγ(s)) = α−1 deg(s)βγ = α−1αβ−1βγ = γ.

Similarly deg(eβγ,β(v)) = γ−1, and so eαβ(s) ∈ (SΓ)γ(SΓ)γ−1 . Thus,

(SΓ)ε ⊆ (SΓ)γ(SΓ)γ−1 .

(4) For all sPα, tPβ ∈ S#Γ \ {0}, we have

φ(sPα)φ(tPβ) = edeg(s)α,α(s)edeg(t)β,β(t)

=

⎧⎨
⎩edeg(st)β,β(st) if deg(t) = αβ−1 and st �= 0

0 otherwise

=

⎧⎨
⎩φ(stPβ) if t ∈ Sαβ−1 and st �= 0

0 otherwise

= φ((sPα)(tPβ)),

and so φ is a homomorphism, which is clearly surjective. Also, if

edeg(s)α,α(s) = edeg(t)β,β(t)

for some s, t ∈ S \ {0} and α, β ∈ Γ, then necessarily s = t and α = β, from

which it follows that φ is injective.

(5) By Lemma 3.2(4), S being an inverse semigroup is equivalent to S#Γ

being such, which is, in turn, equivalent to (SΓ)ε being an inverse semigroup,

by (4). The desired conclusion now follows from Proposition 2.13(2).

Proposition 3.7(4) is analogous to a theorem about the smash product for

rings. Specifically, if Γ is a finite group, and A is a Γ-graded ring, then A#Γ is

isomorphic to a graded matrix ring [30, 7.2.1(2) Theorem].

4. Graded Morita theory

Morita theory for semigroups with local units was first explored in the 1990s

by Talwar [38]. Many papers on the subject have appeared since then, cul-

minating in the work of Lawson [27], on semigroups with local units, and

Funk/Lawson/Steinberg [15], on inverse semigroups.
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To obtain a Morita theory having a flavour similar to that in ring theory,

Talwar worked with closed sets. Specifically, given a semigroup S with local

units, a left S-set X is called closed (or fixed, or firm, or fermé) if the

S-map S ⊗S X → X , defined by

s⊗ x 
→ sx,

is bijective (see §2.3). Note that a closed left S-set is necessarily unital. The

subcategory of S -Mod consisting of closed left S-sets (or S-acts) is denoted

by S -FAct (where “F” stands for “fixed”). Talwar [38] proved that for semi-

groups S and T with local units, S -FAct is equivalent to T -FAct if and only if

there is a 6-tuple Morita context between S and T . Other interesting statements

equivalent to this one can be found in [27, Theorem 1.1].

Graded Morita theory for rings was first studied by Gordon and Green [16]

in the setting of Z-graded rings. For Γ-graded rings, with Γ arbitrary, it was

studied in [19, §2]. There it is shown that for unital Γ-graded rings A and B,

an equivalence of the categories of graded modules A -Gr and B -Gr, which

respects the shift functors, gives a 6-tuple Morita context between the rings,

and, consequently, gives an equivalence of the categories of modules A -Mod

and B -Mod. This lifting of equivalence from the subcategories of graded mod-

ules to the categories of modules plays a crucial role in classifications of Leavitt

path algebras [19].

Our next goal is to build a graded Morita theory for semigroups, in an anal-

ogous fashion. For a Γ-graded semigroup S, denote by S -GrFAct the subcat-

egory of S -Gr consisting of closed Γ-graded left S-sets. Then S -GrFAct, as

a subcategory of S -Gr, admits shift functors Tα as in (2.3).

Definition 4.1: Let S and T be Γ-graded semigroups.

(1) A functor F : S -Gr → T -Gr (or between their subcategories) is called

a graded functor if FTα = TαF , for any α ∈ Γ.

(2) A graded functor F : S -Gr → T -Gr (or between their subcate-

gories) is called a graded equivalence if there exists a graded functor

F ′ : T -Gr → S -Gr such that

F ′F ∼= 1S -Gr and FF ′ ∼= 1T -Gr.

(3) If there is a graded equivalence between S -GrFAct and T -GrFAct,

we say that S and T are graded Morita equivalent.
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It is also possible to define graded Morita contexts between graded semi-

groups, and use them to develop a theory for graded semigroups in a manner

analogous to that in [38] and [27], but we do not pursue that line of inquiry

here. Instead, in Theorem 4.4 we show that, analogously to the case of graded

rings, if two Γ-graded semigroups S and T are graded Morita equivalent, then

the equivalence can be lifted to the categories of closed left sets, implying that S

and T are Morita equivalent. (See diagram below, where U denotes the forgetful

functor.)

S -FAct
?

T -FAct

S -GrFAct
F

U

T -GrFAct

U

Note that this is not a priori obvious, since S -FAct is “bigger” than S -GrFAct.

Given a semigroup S, we denote by C(S) the Cauchy completion cate-

gory of S, whose objects are the idempotents of S, and whose morphisms are

triples (e, s, f) ∈ E(S)× S × E(S) such that

esf = s.

Here morphisms are composed using the rule

(e, s, f)(f, t, g) = (e, st, g).

Lawson [27, Theorem 3.4] showed that two semigroups with local units, S and T ,

are Morita equivalent if and only if the corresponding Cauchy completion cate-

gories, C(S) and C(T ), are equivalent. We will use this theorem to relate graded

categories to non-graded ones in Theorem 4.4.

It should be noted that in [27] semigroups S and left S-sets are not assumed to

have zero elements. Since zero elements can be adjoined to any such semigroups

and S-sets, the results and proofs in [27] readily transfer to our setting, with one

adjustment. While in the category of left S-sets with no zeros the coproduct

of a collection of objects is their disjoint union, in our categories the coproduct

is the 0-disjoint union (since the disjoint union does not have a universal zero

element), which we recall next. This observation is used liberally by Talwar in

the original paper [38] on Morita theory for semigroups.
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Given a semigroup S and a collection {Xi | i ∈ I} of left S-sets, we denote

by

⊔
i∈I

Xi

the 0-disjoint union of the relevant sets. That is,
⊔
i∈I Xi is the disjoint union

of the sets Xi \ {0}, together with a single zero element. It is immediate

that
⊔
i∈I Xi is a left S-set whenever the Xi are, upon identifying the zero

of each Xi with the common zero. If S and the Xi are Γ-graded, then
⊔
i∈I Xi

inherits the grading from the Xi.

For a semigroup S, an object X of S -FAct, respectively S -GrFAct, is

said to be indecomposable if X is not isomorphic to Y � Z (the 0-disjoint

union of Y and Z), for any nonzero objects Y and Z of S -FAct, respectively

S -GrFAct. Recall also that an object X in a category is projective if for

every epimorphism φ : Y → Z and morphism ψ : X → Z in the category, there

is a morphism θ : X → Y such that φθ = ψ. To prove Theorem 4.4, we require

a description of the projective indecomposable objects in S -GrFAct.

Lemma 4.2: Let S be a Γ-graded semigroup with local units, and let X be a

closed Γ-graded left S-set. Then the following hold:

(1) X is projective in S -GrFAct if and only if it is projective as an object

of S -FAct.

(2) X is indecomposable in S -GrFAct if and only if it is indecomposable

as an object of S -FAct.

Proof. (1) Suppose that X is projective, viewed as an object of S -FAct, by for-

getting the grading. Let Y and Z be objects in S -GrFAct, and let ψ : X → Z

and φ : Y → Z be morphisms (i.e., graded S-maps) in S -GrFAct, such that φ

is surjective. We wish to find a morphism θ : X → Y such that the following

diagram commutes.

X

ψ
θ

Y
φ

Z
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Since X is projective in S -FAct, there is an S-map θ′ : X → Y such

that φθ′ = ψ. Define a map θ : X → Y by

θ(p) =

⎧⎨
⎩θ

′(p) if ψ(p) �= 0,

0 otherwise.

Then clearly φθ = ψ. We claim that θ is a graded map.

Let α ∈ Γ, and let p ∈ Xα be such that ψ(p) �= 0. Since ψ is graded, we

have ψ(p)∈Zα\{0}. Since φ is graded, it could not be the case that deg(θ(p)) = β

for some β ∈ Γ\ {α}, since otherwise we would have φθ(p) = φθ(p)′ ∈ Zβ \ {0},
contradicting ψ(p) ∈ Zα \ {0}. Thus θ(p) ∈ Yα, from which it follows that θ

is graded, and hence is a morphism in S -GrFAct. Thus X is projective in

S -GrFAct.

Conversely, suppose that X is projective in S -GrFAct. Since X is closed

and S has local units, for each α ∈ Γ and each x ∈ Xα \ {0} we can choose an

idempotent ex ∈ E(S) such that exx = x. Define a function

φ :
⊔

x∈Xα\{0}
α∈Γ

Sex(α
−1) −→ X

sex 
−→ sx.

(See (2.2) for the notation.) Then φ is clearly a surjective S-map. Moreover,

for all s ∈ S, α ∈ Γ, and x ∈ Xα such that sx �= 0, we have

deg(sex) = deg(s)α = deg(sx),

and so φ is a graded map. Since X is projective in S -GrFAct, there is a graded

S-map

ψ : X −→
⊔

x∈Xα\{0}
α∈Γ

Sex(α
−1)

such that φψ = 1X . Now, by [27, Lemma 3.1 (2)] and [27, Lemma 3.2 (1)], the

S-set
⊔
x,α Sex(α

−1) is projective, viewed as an object of S -FAct. Hence, by

[27, Lemma 3.2 (3)], X is also projective in S -FAct, upon viewing ψ and φ as

morphisms in S -FAct.

(2) Suppose that X is indecomposable as an object of S -FAct. Then it could

not be the case thatX = Y �Z for some nonzero objects Y and Z in S -GrFAct,

since viewing Y and Z as objects of S -FAct, would give a decomposition of X

in S -FAct. Thus X is indecomposable in S -GrFAct.
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Conversely, suppose that X is indecomposable in S -GrFAct, and

that X = Y � Z for some nonzero objects Y and Z in S -FAct. As closed left

S-subsets of X , the sets Y and Z inherit a Γ-grading from X , and hence can

be viewed as objects of S -GrFAct. This contradicts X being indecomposable

in S -GrFAct, and so it must also be indecomposable in S -FAct.

Lemma 4.3: Let S be a Γ-graded semigroup with local units. Then an object

of S -GrFAct is projective and indecomposable if and only if it is isomorphic

to Se(α) for some e ∈ E(S) and α ∈ Γ.

Proof. First, note that each Se(α) in S -GrFAct reduces to Se, when viewed

as an object of S -FAct. Moreover, for any object of S -GrFAct having Se as

the underlying left S-set, the grading is completely determined by the degree

of e. Hence the objects of S -GrFAct that reduce to ones of the form Se, when

viewed as objects of S -FAct, are precisely those of the form Se(α).

Now, according to [27, Proposition 3.3], the projective indecomposable ob-

jects of S -FAct are exactly the objects that are isomorphic to Se for

some e ∈ E(S). The desired conclusion now follows from Lemma 4.2.

Theorem 4.4: Let S and T be Γ-graded semigroups with local units. If S

and T are graded Morita equivalent, then they are Morita equivalent.

Proof. Let F : S -GrFAct → T -GrFAct be a graded equivalence of categories.

Also, let EPgr
S , respectively EPgr

T , denote the full subcategory of S -GrFAct,

respectively T -GrFAct, consisting of indecomposable projective objects and

morphisms between them. Since F preserves coproducts and projective ob-

jects, F induces a graded equivalence F : EPgr
S → EPgr

T . Finally, let EPS , re-
spectively EPT , denote the full subcategory of S -FAct, respectively T -FAct,

consisting of indecomposable projective objects and morphisms between them.

We will define a functor

H : EPS → EPT ,

and show it to be faithful, full, and dense, implying that EPS and EPT are

equivalent (see [6, Lemma 7.9.6]). In the (short) proof of [27, Theorem 3.4]

it is shown that EPS is equivalent to the Cauchy completion C(S), for any

semigroup S. Hence EPS and EPT being equivalent implies that so are C(S)
and C(T ). According to [27, Theorem 1.1] this, in turn, implies that S and T

are Morita equivalent.
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To defineH we first need some additional information about EPS , EPT , EPgr
S ,

and EPgr
T . By [27, Proposition 3.3], the objects of EPS are of the form Se,

where e ∈ E(S), and analogously for EPT . Likewise, by Lemma 4.3, the ob-

jects of EPgr
S are of the form Se(α), where e ∈ E(S) and α ∈ Γ, and analo-

gously for EPgr
T . Next, suppose that π : Se → Sf is a morphism in EPS , for

some e, f ∈ E(S), and let a = π(e). Then

π(se) = sπ(e) = sa

for all s ∈ S. So from now on we will denote morphisms in EPS as πa : Se→ Sf ,

where a = πa(e). We also note that for any object Se of EPS and any α ∈ Γ,

we can view Se(α) as an object of EPgr
S , where for each se ∈ Se(α) \ {0} we

have deg(se) = deg(s)α−1. Since F : EPgr
S → EPgr

T is a graded equivalence, for

each α ∈ Γ we have TαF(Se(ε)) = FTα(Se(ε)) = F(Se(α)), and hence

(4.1) UF(Se(α)) = UTαF(Se(ε)) = UF(Se(ε)),

where U : EPgr
S → EPS denotes the forgetful functor.

Now, for each object Se of EPS let H(Se) = UF(Se(ε)). For each morphism

πa : Se→ Sf in EPS , let

α =

⎧⎨
⎩deg(a) if a �= 0

ε otherwise

and let πa : Se(ε) → Sf(α) be the the same function, viewed as a morphism

in EPgr
S . Note that for all se ∈ Se(ε) \ {0} and a �= 0 we have

deg(se) = deg(s) = deg(s)αα−1 = deg(sa) = deg(πa(se)),

from which it follows that πa is indeed a graded S-map. In view of (4.1), we

can define H(πa) = UF(πa); see the diagram below.

EPS
H EPT

EPgr
S

F

U

EPgr
T

U

To show that H is a functor it suffices to take two composable morphisms,

πa :Se→ Sf and πb : Sf → Sg, in EPS , and prove thatH(πbπa) = H(πb)H(πa).

Viewing these as morphisms in EPgr
S , we have πa : Se(ε) → Sf(α) and

πb : Sf(ε) → Sg(β), where α = deg(a) (or α = ε if a = 0), and analogously
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for β. Writing πbπa = πc for some c ∈ Sg (with c ∈ SαSβ), we also have

πc : Se(ε) → Sg(γ), where γ = αβ if ab �= 0, and γ = ε otherwise. Now, let

πb
′ : Sf(α) → Sg(γ) be the morphism in EPgr

S , which agrees with πb : Sf → Sg

as a function. Then πc = (πb
′)(πa), and by an argument similar to that for

(4.1), we have UF(πb
′) = UF(πb). Hence

H(πbπa) = H(πc) = UF(πc) = UF((πb
′)(πa))

= UF(πb
′)UF(πa) = UF(πb)UF(πa) = H(πb)H(πa),

as desired.

To show that H is faithful, let Se and Sf be objects of EPS , and let

πa, πb : Se → Sf be distinct morphisms. Then πa : Se(ε) → Sf(α) and

πb : Se(ε) → Sf(β) must be distinct as well (where α, β ∈ Γ are the ap-

propriate degrees). Moreover, since F is faithful, we have F(πa) �= F(πb).

Now F(πa) = πa′ : Te′(γ) → Tf ′(δ) and F(πb) = πb′ : Te′(γ) → Tf ′(δ′)

in EPgr
T , for some a′, b′ ∈ T and γ, δ, δ′ ∈ Γ. Since F(πa) �= F(πb), we necessar-

ily have a′ �= b′. Thus U(πa′ ) �= U(πb′), and so H(πa) �= H(πb).

To show that H is full, let Se and Sf be objects of EPS , and

let φ : H(Se) → H(Sf) be a morphism. Write H(Se) = Tg and H(Sf) = Th

for some g, h ∈ E(T ). Then we can find δ ∈ Γ and πa : Tg(ε) → Th(δ) such

that U(πa) = φ. Since F is full, there exists a morphism ψ : Se(α) → Sf(β)

in EPgr
S such that F(ψ) = πa, and hence UF(ψ) = φ. Viewing ψ as a function

ψ : Se→ Sf , and hence a morphism in EPS , we have H(ψ) = φ.

Finally, to show that H is dense, let Te be an object in EPT . Then

Te = U(Te(ε)),

where Te(ε) is in EPgr
T . Since F is dense, Te(ε) is isomorphic to F(Sf(α)) for

some object Sf(α) in EPgr
S . Hence

H(Sf) = UF(Sf(ε)) = UF(Sf(α))

is isomorphic to Te, as desired.

In most of this paper we work with the categories S -Mod and S -Gr, rather

than S -FAct and S -GrFAct. We conclude this section by observing that if

the semigroup S happens to have common local units, then these categories

coincide, respectively.
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Proposition 4.5: Let S be a Γ-graded semigroup with common local units.

Then S -Mod = S -FAct and S -Gr = S -GrFAct.

Proof. For both claims it suffices to show that every unital left S-setX is closed.

To conclude this, it is enough to show that the function S ⊗S X → X , defined

by s⊗x 
→ sx, is injective for each X . So let s⊗x, t⊗ y ∈ S⊗SX , and suppose

that sx = ty. Since S has common local units, there exists u ∈ E(S) such

that us = s and ut = t. Then

s⊗ x = us⊗ x = u⊗ sx = u⊗ ty = ut⊗ y = t⊗ y,

giving the desired conclusion.

5. Graded inverse semigroups

5.1. Graded Vagner–Preston theorem. By Cayley’s theorem, any group

can be embedded in a group of symmetries of a set. Similarly, by the Vagner–

Preston theorem (see [20, Theorem 5.1.7] or [26, Theorem 1.5.1]), any inverse

semigroup can be embedded in an inverse semigroup of partial symmetries of a

set. Next we recall the relevant terminology, examine gradings on inverse semi-

groups of this sort, and give a graded version of the Vagner–Preston theorem.

LetX be a nonempty set. For any A,B ⊆ X , a bijective function φ : A→ B is

called a partial symmetry of X . Here we let Dom(φ) := A and Im(φ) := B.

We also denote the set of all partial symmetries of X by I(X). Then I(X)

is an inverse semigroup with respect to composition of relations, known as

the symmetric inverse monoid. Specifically, for all φ, ψ ∈ I(X), φψ is

taken to be the composite of φ and ψ as functions, restricted to the domain

ψ−1(Im(ψ) ∩ Dom(φ)). The empty function plays the role of the zero element

in I(X).

We denote the cardinality of a set X by |X |.

Proposition 5.1: LetX be a set such that |X | ≥ 3. Then any grading on I(X)

is trivial.

Proof. Let Γ be a group, let χ : I(X) \ {0} → Γ be a grading, and let

φ ∈ I(X) \ {0}. We will show that deg(φ) = χ(φ) = ε.
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First, suppose that φ(x) = x for some x ∈ Dom(φ), and let ψ ∈ I(X) be the

unique element with Dom(ψ) = {x} = Im(ψ). Then, ψ is an idempotent and

so deg(ψ) = ε. Since ψφ = ψ, it follows that

ε = deg(ψ) = deg(ψφ) = deg(ψ) deg(φ) = deg(φ).

Now, take φ ∈ I(X) \ {0} to be arbitrary, and let x ∈ Dom(φ). Then, by our

hypothesis on X , we can find some y ∈ X \ {x, φ(x)}. Let ψ ∈ I(X) be defined

by

Dom(ψ) = {φ(x), y}, Im(ψ) = {x, y}, ψ(φ(x)) = x and ψ(y) = y.

Then, by the previous paragraph, we have deg(ψ) = ε = deg(ψφ), and therefore

ε = deg(ψφ) = deg(ψ) deg(φ) = deg(φ),

as desired.

If |X | = 1, then I(X) \ {0} consists of one idempotent element, and so any

grading on I(X) is trivial. However, if |X | = 2, then I(X) has a nontrivial

grading, as the next example shows.

Example 5.2: Let X = {x, y}, and write

I(X) = {0, 1, τ, θxx, θxy, θyx, θyy},

where τ denotes the one nontrivial permutation of X , and θij is the only element

of I(X) such that

Dom(θij) = {j} and Im(θij) = {i} (i, j ∈ X).

Define φ : I(X) \ {0} → Z2 by

φ(1) = φ(θxx) = φ(θyy) = 0

and

φ(τ) = φ(θxy) = φ(θyx) = 1.

Then it is easy to check that φ is a grading.

In view of Proposition 5.1, a graded version of the Vagner–Preston theo-

rem requires a graded analogue of I(X), which we construct next. Let X be

a nonempty Γ-graded set. For each nonempty A ⊆ X and α ∈ Γ, we set

Aα := A ∩Xα. For each α ∈ Γ let

(5.1) I(X)α := {φ ∈ I(X) |φ(Dom(φ)β) ⊆ Xαβ for all β ∈ Γ},
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and set

(5.2) Igr(X) :=
⋃
α∈Γ

I(X)α.

Next we show that Igr(X) is a graded inverse semigroup. Among other

things, it is a useful platform for exploring the differences between gradings,

strong gradings (Definition 2.9), and locally strong gradings (Definition 2.14).

Proposition 5.3: Let X be a nonempty Γ-graded set. Then the following

hold:

(1) Igr(X) is a Γ-graded inverse semigroup.

(2) Igr(X) is strongly Γ-graded if and only if |Xα| = |Xβ| for all α, β ∈ Γ.

(3) Igr(X) is locally strongly Γ-graded if and only if Xα �= ∅ for all α ∈ Γ.

Proof. (1) By (5.1) and (5.2), we have Igr(X) ⊆ I(X), 0 ∈ I(X)α for

every α ∈ Γ, and

I(X)α ∩ I(X)β = {0}
for all distinct α, β ∈ Γ. Thus, to conclude that Igr(X) is a Γ-graded sub-

semigroup of I(X) it suffices to show that for all α, β ∈ Γ, φ ∈ Igr(X)α, and

ψ ∈ Igr(X)β, such that ψφ �= 0, we have ψφ ∈ Igr(X)βα. Taking φ and ψ as

above, let γ ∈ Γ and x ∈ Dom(ψφ)γ . Then, by (5.1),

φ(x) ∈ (Im(φ) ∩Dom(ψ))αγ ,

and, consequently, ψ(φ(x)) ∈ Im(ψφ)βαγ , showing that ψφ ∈ Igr(X)βα.

Next, let α, β ∈ Γ, φ ∈ Igr(X)α, and x ∈ Dom(φ−1)β = Im(φ)β , and

write φ(y) = x for some y ∈ Dom(φ). Then

φ−1(x) = y ∈ Dom(φ)α−1β = Im(φ−1)α−1β ,

and so φ−1 ∈ Igr(X)α−1 ⊆ Igr(X). It follows that Igr(X) is an inverse sub-

semigroup of I(X).

(2) Suppose that |Xδ1 | = |Xδ2 | for all δ1, δ2 ∈ Γ, and let α, β ∈ Γ and

φ ∈ I(X)αβ . By hypothesis, for each γ ∈ Γ, we can find Yβγ ⊆ Xβγ such that

|Yβγ | = |Dom(φ)γ |. Now let ψ ∈ I(X) be such that

Dom(ψ)γ = Dom(φ)γ and ψ(Dom(ψ)γ) = Yβγ

for each γ ∈ Γ, and let ρ ∈ I(X) be such that

Dom(ρ) =
⋃
δ∈Γ

Yβδ = Im(ψ)
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and ρψ = φ. Then clearly, ψ ∈ I(X)β and ρ ∈ I(X)α. Thus φ ∈ I(X)αI(X)β ,

which implies that Igr(X) is strongly graded.

Conversely, suppose that |Xα| < |Xβ| for some α, β ∈ Γ. Let φ ∈ I(X) be

such that Dom(φ) = Xβ = Im(φ). Then φ ∈ I(X)ε. Suppose that φ = ρψ for

some ρ ∈ I(X)βα−1 and ψ ∈ I(X)αβ−1 . Then necessarily Xβ ⊆ Dom(ψ) and

ψ(Xβ) ⊆ Xα, which contradicts |Xα| < |Xβ|. Hence φ /∈ I(X)βα−1I(X)αβ−1 ,

and so Igr(X) is not strongly graded.

(3) Suppose that Xγ �= ∅ for all γ ∈ Γ, and let α, β ∈ Γ and φ ∈ I(X)αβ \{0}.
Since φ �= 0, we can find some x ∈ Dom(φ), where, say, x ∈ Xγ (γ ∈ Γ). By

hypothesis, there exists y ∈ Xβγ . Now let ρ ∈ I(X) be the map determined by

Dom(ρ) = {x} and Im(ρ) = {y}.

Then clearly ρ ∈ I(X)β \ {0}, and so φ(ρ−1ρ) = (φρ−1)ρ ∈ I(X)αI(X)β \ {0}.
Since φρ−1ρ ≤ φ, we conclude that Igr(X) is locally strongly Γ-graded.

Conversely, suppose thatXα=∅ for some α∈Γ. Let β∈Γ be such thatXβ �=∅,
and let φ ∈ E(Igr(X)) be such that Dom(φ) = Xβ = Im(φ). Seeking a contra-

diction to Proposition 2.15, suppose that there exists ρ ∈ E(Igr(X))α−1β \ {0},
such that ρ ≤ φ. Then ρ = ψψ−1 for some ψ ∈ Igr(X)α−1β , and

Dom(ρ) ⊆ Dom(φ) = Xβ.

Since ψ−1 ∈ Igr(X)αβ−1 , we have ψ−1(Xβ) ⊆ Xα = ∅. It follows that ρ = 0,

producing the desired contradiction. Hence, if Xα = ∅ for some α ∈ Γ,

then Igr(X) cannot be locally strongly Γ-graded.

We are now ready for our graded version of the Vagner–Preston theorem.

The construction is fundamentally the same as in the original theorem, but

with some key differences.

Proposition 5.4 (Graded Vagner–Preston Theorem): Let S be a Γ-graded in-

verse semigroup. Then there is a graded injective homomorphism ψ :S→Igr(X)

for some Γ-graded set X .

Proof. Let X = S\{0}. Then X is a Γ-graded set, with respect to the grading

induced by that on S. For each α ∈ Γ and s ∈ Sα\{0} define a function

θs : s
−1sS\{0} −→ ss−1S\{0}

x 
−→ sx.
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Note that if s−1sx �= 0 for some x ∈ S, then θs(s
−1sx) = ss−1sx = sx �= 0,

from which it follows that θs is well-defined. Also, if θs(s
−1sx) = θs(s

−1sy)

for some x, y ∈ S, then sx = ss−1sx = ss−1sy = sy, and so s−1sx = s−1sy.

Thus θs is injective. Since θs(s
−1ss−1x) = θs(s

−1x) = ss−1x for all x ∈ S, θs

is bijective. Moreover, for all β ∈ Γ and appropriate x ∈ Sβ we have

θs(s
−1sx) = sx ∈ Sαβ ,

from which it follows that θs ∈ I(X)α.

We can therefore define a map

ψ : S −→ Igr(X)

s 
−→ θs,

where θ0 is understood to be the zero element of Igr(X). The last computation

in the previous paragraph implies that ψ(Sα) ⊆ I(X)α for all α ∈ Γ, and

so ψ is a graded map. To show that θ is injective, suppose that θs = θt for

some s, t ∈ S. Then s−1sS = t−1tS, and so according to [20, Lemma 5.1.6(1)],

s−1s = t−1t. Hence s = θs(s
−1s) = θt(t

−1t) = t, and so ψ is injective.

It remains to show that ψ is a homomorphism. Clearly, θsθ0 = θ0 = θ0θs for

any s ∈ S. Showing that θsθt = θst for s, t ∈ S \ {0} can be accomplished using

exactly the same, somewhat lengthy, argument as in the textbook proof of the

Vagner–Preston theorem (see, e.g., [20, Theorem 5.1.7] or [26, Theorem 1.5.1]),

so we will not repeat it here.

5.2. Strongly graded inverse semigroups. Our next goal is to provide

an analogue for inverse semigroups of Dade’s theorem [12, Theorem 2.8] (see

also [19, §1.5] and [31, Theorem 3.1.1]), which describes strongly graded rings

using equivalences of appropriate categories. We begin with several lemmas.

Lemma 5.5: Let S be a Γ-graded semigroup with local units. Then the follow-

ing hold:

(1) Let (−)ε : S -Gr → Sε -Mod be the mapping defined by

X 
−→ Xε

φ 
−→ φ|Xε

for all objects X and morphisms φ : X → Y in S -Gr, where φ|Xε

denotes the restriction of φ to Xε. Then (−)ε is a functor, to which we

refer as the restriction functor.
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(2) Let S ⊗Sε − : Sε -Mod → S -Gr be the mapping defined by

X 
−→ S ⊗Sε X

φ 
−→ 1S ⊗ φ

for all objects X and morphisms φ : X → Y in Sε -Mod, where

(1S ⊗ φ)(s⊗ x) = s⊗ φ(x)

for all s⊗ x ∈ S ⊗Sε X . Here the Γ-grading on S ⊗Sε X is as in (2.4),

with X given the trivial grading (X = Xε). Then S ⊗Sε − is a functor,

to which we refer as the induction functor.

Proof. (1) Since Sε is a subsemigroup of S, any left S-set is automatically a left

Sε-set. Now let X be any object of S -Gr. Then, clearly SεXε ⊆ Xε. Moreover,

since X is a unital left S-set, and since S has local units, for each x ∈ X there

exists u ∈ E(S) ⊆ Sε such that ux = x. It follows that Xε is a unital left Sε-set,

and therefore an object in Sε -Mod.

Next, let φ : X → Y be a morphism in S -Gr, i.e., a function that commutes

with the S-action and respects the Γ-grading. Then φ(Xε) ⊆ Yε, and so re-

stricting φ to Xε gives a function φ|Xε : Xε → Yε. Also, for all s ∈ Sε and

x ∈ Xε we have
φ|Xε(sx) = φ(sx) = sφ(x) = sφ|Xε(x),

and so φ|Xε : Xε → Yε is a morphism in Sε -Mod.

Finally, it is immediate that (−)ε preserves all identity morphisms, and that

(φ ◦ ψ)|Xε = φ|Xε ◦ ψ|Xε for all composable morphisms φ and ψ in S -Gr.

Therefore (−)ε is a functor.

(2) As discussed in §2.3, S ⊗Sε X is a Γ-graded left S-set for each object X

in Sε -Mod. Since S has local units, it is easy to see that S ⊗Sε X is a unital

left S-set, and therefore an object of S -Gr.

Next, let φ : X → Y be a morphism in Sε -Mod. Then the usual considera-

tions about tensors (see §2.3), along with the fact that φ is an Sε-map, imply

that 1S ⊗ φ : S ⊗Sε X → S ⊗Sε Y is well-defined. Also, for all s⊗ x ∈ S ⊗Sε X

and t ∈ S we have

(1S⊗φ)(t(s⊗x)) = (1S⊗φ)(ts⊗x) = ts⊗φ(x) = t(s⊗φ(x)) = t(1S⊗φ)(s⊗x),
and

deg(s⊗ x) = deg(s) deg(x) = deg(s) = deg(s⊗ φ(x)) = deg((1S ⊗ φ)(s⊗ x)).

Thus 1S ⊗ φ is a morphism in S -Gr.
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Finally, it is easy to see that S ⊗Sε − preserves all identity morphisms, and

that 1S ⊗ (φ ◦ ψ) = (1S ⊗ φ) ◦ (1S ⊗ ψ) for all composable morphisms φ and ψ

in Sε -Mod. Therefore S ⊗Sε − is a functor.

Lemma 5.6: Let S be a Γ-graded inverse semigroup, T a subsemigroup of S

such that Sε ⊆ T , Y a Γ-graded left S-set, and X ⊆ Yε. Then the function

φ : S ⊗T X → SX , defined by s⊗ x 
→ sx, is a graded bijective S-map.

Proof. It is easy to see that φ is well-defined, surjective, graded (using (2.4)),

and an S-map. To show that it is injective, suppose that φ(s ⊗ x) = φ(t ⊗ y)

for some s⊗ x, t⊗ y ∈ S ⊗T X . Then sx = ty, and so ty = ss−1ty. Next, note

that if sx = 0, then s⊗ x = s⊗ s−1sx = 0 ⊗ 0, and likewise t⊗ y = 0 ⊗ 0. So

we may assume that sx = ty is nonzero. Since X ⊆ Yε, and deg(sx) = deg(ty),

we have deg(s) = deg(t). In particular, s−1tt−1t ∈ Sε ⊆ T . Thus, using the

fact that idempotents commute in any inverse semigroup [20, Theorem 5.1.1],

we have

s⊗ x = ss−1s⊗ x = s⊗ s−1sx = s⊗ s−1ty

= s⊗ s−1tt−1ty = ss−1tt−1t⊗ y = tt−1ss−1t⊗ y

= t⊗ t−1ss−1ty = t⊗ t−1ty

= tt−1t⊗ y = t⊗ y.

Hence φ is injective.

Lemma 5.7: Let S be a Γ-graded inverse semigroup, and let (−)ε and S⊗Sε −
be as in Lemma 5.5. For each object Y in Sε -Mod define a function

(5.3)
μY : (S ⊗Sε Y )ε −→ Y

s⊗ y 
−→ sy,

and for each object X in S -Gr define a function

(5.4)
νX : S ⊗Sε Xε −→ X,

s⊗ x 
−→ sx.

Then μ : (S ⊗Sε −)ε → 1Sε -Mod and ν : S ⊗Sε (−)ε → 1S -Gr are natural

transformations, and each μY is an isomorphism in Sε -Mod.
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Proof. Since, as stipulated in Lemma 5.5, each object Y of Sε -Mod is given

the trivial grading in the construction S ⊗Sε Y , we see from (2.4) that

(S ⊗Sε Y )ε = Sε ⊗Sε Y.

Moreover, since Y is a unital left Sε-set, we have SεY = Y . Thus, by Lemma 5.6

(taking X = Y and T = Sε), μY is a bijective Sε-map for each Y , and therefore

is an isomorphism in Sε -Mod. Likewise, for each object X in S -Gr, map-

ping s ⊗ x 
→ sx gives a graded bijective S-map S ⊗Sε Xε → SXε ⊆ X , by

Lemma 5.6 (taking T = Sε). Thus, each νX is a morphism in S -Gr.

Now let φ : X → Y be an arbitrary morphism in S -Gr. Then for all

s⊗ x ∈ S ⊗Sε Xε, we have

φνX(s⊗ x) = φ(sx) = sφ(x) = νY (s⊗ φ(x)) = νY (1S ⊗ φ|Xε)(s⊗ x),

from which it follows that the diagram

S ⊗Sε Xε

1S⊗φ|Xε

νX

S ⊗Sε Yε

νY

X
φ

Y

commutes. Hence ν : S ⊗Sε (−)ε → 1S -Gr is a natural transformation. A

nearly identical computation shows that μ : (S⊗Sε −)ε → 1Sε -Mod is a natural

transformation.

We are ready for the main result of this section, which amounts to saying

that S is strongly graded if and only if each νX in (5.4) is an isomorphism.

Theorem 5.8: Let S be a Γ-graded inverse semigroup. Then S is strongly

graded if and only if the categories S -Gr and Sε -Mod are equivalent via

the functors defined in Lemma 5.5 and natural transformations defined in

Lemma 5.7.

Proof. Suppose that S is strongly graded. By Lemma 5.7, to conclude that

S -Gr and Sε -Mod are equivalent, it suffices to show that, for each object X

in S -Gr, the morphism νX in (5.4) is an isomorphism. But by Lemma 5.6, νX

is an isomorphism, when viewed as a function S⊗Sε Xε → SXε, and SXε = X ,

by Lemma 2.16.

Conversely, suppose that S -Gr and Sε -Mod are equivalent via the relevant

functors and natural transformations. Then for any object X in S -Gr and
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any α ∈ Γ we have an isomorphism

νX(α) : S ⊗Sε X(α)ε −→ X(α)

s⊗ x 
−→ sx

(see (2.2)). This implies that SXα = X for all α ∈ Γ, and therefore S is strongly

graded, by Lemma 2.16.

6. Graded groupoids and inverse semigroups

There has been recent interest [4, 8] in systematically studying graded groupoids,

as a result of their association with groupoid algebras. As mentioned in the In-

troduction (see (1.1)), there is a connection between groupoids of germs and

inverse semigroups, as building blocks for combinatorial algebras. In this section

we show that there is a tight relationship between the gradings on an inverse

semigroup and those on the corresponding groupoid of germs. We also explore

gradings on a class of inverse semigroups arising from ample groupoids. We

begin with a brief review of groupoids and the associated notation.

6.1. Groupoids. A groupoid is a small category in which every morphism is

invertible. It can also be viewed as a generalisation of “group”, where multipli-

cation is partially defined.

Let G be a groupoid. We denote the set of objects of G , also known as the

unit space of G , by G (0), and we identify these objects with the corresponding

identity morphisms. For each morphism x in G , the object

d(x) := x−1x

is the domain of x, and

r(x) := xx−1

is its range. Thus, two morphisms x and y are composable as xy if and only

if d(x) = r(y). Let

G (2) := {(x, y) ∈ G × G | d(x) = r(y)}

denote the set of composable pairs of morphisms of G . For subsets X,Y ⊆ G

of morphisms, we define

(6.1) XY = {xy | x ∈ X, y ∈ Y, and d(x) = r(y)},
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and

(6.2) X−1 = {x−1 | x ∈ X}.

If G is a groupoid and Γ is a group, then G is a Γ-graded groupoid if there

is a functor φ : G → Γ (which can be viewed as a function from the set of

all morphisms of G to Γ, such that φ(x)φ(y) = φ(xy) for all (x, y) ∈ G (2)).

Setting Gα := φ−1(α) for each α ∈ Γ, we have

G =
⋃
α∈Γ

Gα,

where GαGβ ⊆ Gαβ for all α, β ∈ Γ, and Gα ∩ Gβ = ∅ for all distinct α, β ∈ Γ.

Note that G (0) ⊆ Gε. We say that G is strongly graded if GαGβ = Gαβ for

all α, β ∈ Γ. Analogously to Proposition 2.12, it is shown in [8, Lemma 3.1]

that for a Γ-graded groupoid G the following are equivalent:

(1) G is strongly graded;

(2) GαGα−1 = Gε for every α ∈ Γ;

(3) d(Gα) = G (0) for every α ∈ Γ;

(4) r(Gα) = G (0) for every α ∈ Γ.

6.2. Groupoids of germs. Let X be a nonempty set, and let S be an in-

verse semigroup. We say that there is a partial action of S on X if there is a

semigroup homomorphism S → I(X) that preserves zero, where I(X) denotes

the symmetric inverse monoid, discussed in §5.1. (A more common name for

this notion in the literature is action, however, we append “partial” to avoid

confusion with the concept described in §2.3. See [17] for a discussion of other

uses of “partial action” in connection with semigroups.) We denote the image

of s under such a homomorphism by θs, and set Xs := Dom(θs). In partic-

ular, θ0 is the empty function. We say that the partial action of S on X is

non-degenerate if X =
⋃
e∈E(S)Xe. Using the fact that ss−1s = s, one can

show that Xs = Xs−1s and Im(θs) = Xss−1 , for all s ∈ S.

Now let

G :=
⋃
s∈S

({s} ×Xs) ⊆ S ×X,

and define a binary relation ∼ on G by letting (s, x) ∼ (t, y) whenever x = y,

and there exists e ∈ E(S) such that x ∈ Xe and se = te. It is easy to see

that ∼ is an equivalence relation. We denote the equivalence class of (s, x) ∈ G
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by [s, x], and call it the germ of s at x. Also, let S �X := G / ∼, and let

(S �X)(0) := {[e, x] | e ∈ E(S), x ∈ Xe}.

Assuming that the partial action of S on X is non-degenerate, we identify

the latter set with X , via the mapping [e, x] 
→ x. For each [s, x] ∈ S � X

let d([s, x]) = x and r([s, x]) = θs(x). Finally, for all [s, x], [t, y] ∈ S � X

let [s, x]−1 = [s−1, sx], and let [s, x][t, y] = [st, y], in case d([s, x]) = r([t, y]).

It is routine to show that these operations are well-defined, making S � X a

groupoid, called the groupoid of germs. (See [14, §4] or [32, p. 140] for more

details.) If S is Γ-graded, then mapping

(6.3) [s, x] 
→ deg(s),

which is easily seen to be well-defined, induces a grading S �X → Γ.

Proposition 6.1: Let S be a Γ-graded inverse semigroup equipped with a

non-degenerate partial action on a nonempty set X . If S is strongly graded,

then the groupoid of germs S �X is strongly graded in the induced Γ-grading.

Proof. For each α ∈ Γ, we have

(S �X)α = {[s, x] ∈ S �X | s ∈ Sα}.

Since S is strongly graded, by Proposition 2.12, we have

E(S) = {s−1s | s ∈ Sα},

and hence

d((S �X)α) =
⋃
s∈Sα

Xs−1s =
⋃

e∈E(S)

Xe = X = (S �X)(0).

Thus S �X is strongly graded, by [8, Lemma 3.1] (see §6.1).

It is natural to ask whether the converse of Proposition 6.1 holds. In §8 we

investigate gradings on graph inverse semigroups S(E), and, in particular, we

show in Corollary 8.5 that S(E) cannot be strongly Z-graded if the graph E

has a source vertex. On the other hand, it is known that for any finite graph E

with no sinks, the graph groupoid GE (see [8, §4.1.1]) is strongly Z-graded (see

Corollary 8.16). Since GE is the universal groupoid of S(E) (i.e., the groupoid

of germs of a certain partial action of S(E), see [36, Definition 5.14]), it follows

that the converse of Proposition 6.1 does not hold in general.
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6.3. Topological groupoids. A topological groupoid is a groupoid (whose

set of morphisms is) equipped with a topology making inversion and composition

continuous. A topological groupoid G is an étale groupoid if G (0) is locally

compact and Hausdorff in the topology induced by that on G , and d : G → G (0)

is a local homeomorphism. An open subset X of an étale groupoid G is called

a slice or local bisection if the restrictions d|X and r|X are injective (and

hence are homeomorphisms onto their images). The collection of all slices forms

a base for the topology of an étale groupoid G [14, Proposition 3.5], and G (0) is

a slice [14, Proposition 3.2]. An étale groupoid is ample if the compact slices

form a base for its topology.

Let G be an ample groupoid, and set

G a = {X | X is a compact slice of G }.

Then G a, sometimes denoted S(G ) [14] or G co [32], is an inverse semigroup

under the operations given in (6.1) and (6.2) [32, Proposition 2.2.4], with ∅ as

the zero element. Supposing that G is Γ-graded, we can build a graded version

of G a. Specifically, we say that a slice X of G is homogeneous if X ⊆ Gα for

some α ∈ Γ, and set

G h = {X | X is a homogeneous compact slice of G }.

Since Gα−1 = G −1
α for each α ∈ Γ, we see that G h is an inverse subsemigroup

of G a. Moreover, it is easy to see that defining φ : G h\{∅} → Γ by φ(X) = α,

whenever X ⊆ Gα, turns G h into a graded inverse semigroup.

The following proposition relates the gradings on G to those on the associ-

ated graded inverse semigroup G h. More specifically, G is strongly graded if

and only if G h satisfies a condition similar to “locally strongly graded” (see

Proposition 2.15).

Proposition 6.2: Let G be an ample Γ-graded groupoid. Then G is strongly

Γ-graded if and only if for all α, β ∈ Γ, X ∈ G h
αβ\{∅}, and u ∈ d(X), there is a

compact open set U ⊆ G (0) such that u ∈ U and XU ∈ G h
αG h

β .

Proof. We begin by defining a homomorphism π :G h→I(G (0)). Given X∈G h,

since X is a slice, we see that

XX−1 = {xx−1 | x ∈ X} and X−1X = {x−1x | x ∈ X},
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and hence XX−1, X−1X ⊆ G (0). Also, Xx−1x = {x} for all x ∈ X , and so we

can define

πX : X−1X −→ XX−1

u 
−→ r(Xu).

Then, clearly, πX ∈ I(G (0)). Also, it is easy to check that

π−1
Y (Y Y −1 ∩X−1X) = Y −1X−1XY and πXπY = πXY ,

for all X,Y ∈ G h. Hence

π : G h −→ I(G (0))

X 
−→ πX

is a homomorphism. Thus, there is a partial action of G h on G (0), and so we

can construct the groupoid of germs G h
� G (0). Next, we note that according

to [14, Proposition 5.4] and its proof,

φ : G h
� G (0) −→ G

[X, u] 
−→ Xu

is a groupoid isomorphism. Moreover, φ respects the gradings on the above

groupoids. For, letting α ∈ Γ and [X, u] ∈ (G h
� G (0))α, we have X ∈ G h

α ,

by (6.3), and hence Xu ∈ Gα.

Now, suppose that G is strongly graded, and let α, β ∈ Γ, X ∈ G h
αβ\{∅},

and u ∈ d(X). Then [X, u] ∈ (G h
� G (0))αβ , and so x := Xu ∈ Gαβ . Hence,

there exist y ∈ Gα and z ∈ Gβ such that x = yz. Since G is ample, we can

choose compact slices Y ∈ G h
α and Z ∈ G h

β such that y ∈ Y and z ∈ Z. Since X

and Y Z are slices, we have Xu = Y Zu, and so φ([X, u]) = φ([Y Z, u]). Since φ

is injective, it follows that [X, u] = [Y Z, u]. By the definition of the groupoid

of germs, this means that there is a compact open set U ⊆ G (0)(⊆ Gε) such

that u ∈ U and XU = Y ZU . It follows that XU = Y (ZU) ∈ G h
αG h

β .

For the converse, suppose that for all α, β ∈ Γ, X ∈ G h
αβ\{∅}, and u ∈ d(X),

there is a compact open set U ⊆ G (0) such that u ∈ U and XU ∈ G h
αG h

β . Now

let α, β ∈ Γ and x ∈ Gαβ. Since G is ample, there exists X ∈ G h
αβ\{∅} such

that x ∈ X . Then, by hypothesis, we can find a compact open set U ⊆ G (0)

such that d(x) ∈ U and XU ∈ G h
αG h

β . It follows that x = x(x−1x) ∈ GαGβ, and

so G is strongly graded.
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7. Semigroup rings

As mentioned before, our theory of graded semigroups was inspired by results

about graded rings. Next we recall graded rings in more detail, as well as

semigroup rings. We utilise these throughout the rest of the paper to draw

closer connections between graded rings and graded semigroups.

Given a ring A and group Γ, we say that A is Γ-graded if A =
⊕

α∈ΓAα,

where the Aα are additive subgroups of A, and AαAβ ⊆ Aαβ for all α, β ∈ Γ

(with AαAβ denoting the set of all sums of elements of the form ab, for a ∈ Aα

and b ∈ Aβ). In this situation, A is strongly graded if AαAβ = Aαβ for all

α, β ∈ Γ. Each a ∈ A can be written uniquely as a =
∑

α∈Γ aα, where aα ∈ Aα

for each α ∈ Γ, and all but finitely many of the aα are zero. Here we refer to aα

as the homogeneous component of a of degree α.

Next, given a ring A and a semigroup S, we denote by AS the corresponding

semigroup ring, and by A[S] the resulting contracted semigroup ring, where

the zero of S is identified with the zero of AS. That is, A[S] = AS/I, where I

is the ideal of AS generated by the zero of S. We denote an arbitrary element

of A[S] by
∑

s∈S a
(s)s (or

∑
s∈S\{0} a

(s)s), where a(s) ∈ A, and all but finitely

many of the a(s) are zero.

When the semigroup S is Γ-graded, one can naturally equip the ring A[S]

with a Γ-grading, producing a pleasant relationship between these two graded

structures. Specifically, it is easy to check that defining

(7.1) A[S]α := A[Sα] =

{∑
s∈S

a(s)s | s ∈ Sα whenever a(s) �= 0

}
,

for each α ∈ Γ, turns A[S] into a Γ-graded ring. We refer to this as the grading

on A[S] induced by the grading of S.

Similarly, if A is a unital ring, A[S] is Γ-graded, and S =
⋃
α∈Γ(S ∩ A[S]α),

then setting Sα := S ∩ A[S]α, for each α ∈ Γ, induces a grading on S.

(Here we identify each t ∈ S with 1t ∈ A[S], i.e., the element
∑

s∈S a
(s)s,

where a(t) = 1, and the other coefficients are 0.) We note that, generally speak-

ing, S �=
⋃
α∈Γ(S ∩ A[S]α) for a Γ-grading on A[S], as the following example

shows.

Example 7.1: Let K be a field, and let S = {eij(k) | 1 ≤ i, j ≤ 2, k ∈ K} be

the Rees matrix semigroup (with multiplication as in (3.12)). It is easy to show

that K[S] ∼= M2(K), the ring of 2 × 2 matrices with coefficients in K. Also, it
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is easy to see that defining

K[S]0 =

{(
a b − a

0 b

)
| a, b ∈ K

}
and K[S]1 =

{(
d c

d −d

)
| c, d ∈ K

}

gives a Z2-grading on K[S]. Then

S ∩K[S]0 =

{(
0 0

0 0

)}
and S ∩K[S]1 =

{(
0 c

0 0

)
| c ∈ K

}
,

which implies that the grading on K[S] does not induce a grading on S.

We will show that when the grading on A[S] does induce a grading on S, the

two objects share certain properties. Before stating the next result, let us review

the smash product for rings, first introduced by Cohen and Montgomery [10].

Let A =
⊕

α∈ΓAα be a Γ-graded ring, and let A#Γ denote the set of formal

sums
∑

α∈Γ a
(α)Pα, where each a(α) ∈ A, and all but finitely many of the a(α)

are zero. We define addition on A#Γ via

(7.2)
∑
α∈Γ

a(α)Pα +
∑
α∈Γ

b(α)Pα =
∑
α∈Γ

(a(α) + b(α))Pα,

and define multiplication by letting

(7.3) a(α)Pαb
(β)Pβ = a(α)b

(β)
αβ−1Pβ

for all a(α), b(β) ∈ A and α, β ∈ Γ (where b
(β)
αβ−1 is the homogeneous component

of b(β) of degree αβ−1), and extending linearly. With these operations A#Γ

becomes a ring, called the smash product of A by Γ. See [31, §7.1] for an

alternative description of these rings.

Proposition 7.2: Let S be a Γ-graded semigroup and A a unital ring. Also

view A[S] as a Γ-graded ring via the grading induced by that on S. Then the

following hold:

(1) S is a strongly Γ-graded semigroup if and only if A[S] is a strongly

Γ-graded ring.

(2) There is a natural ring isomorphism

A[S#Γ] ∼= A[S]#Γ.



300 R. HAZRAT AND Z. MESYAN Isr. J. Math.

Proof. (1) Suppose that S is strongly Γ-graded. Let α, β ∈ Γ, and let
∑

s∈S a
(s)s

be an element of A[S]αβ . Then for each s with a(s) �= 0, we have s = p(s)q(s),

for some p(s) ∈ Sα and q(s) ∈ Sβ . Hence∑
s∈S

a(s)s =
∑
s∈S

(a(s)p(s))(1q(s)) ∈ A[S]αA[S]β ,

which implies that A[S] is strongly Γ-graded.

Conversely, suppose that A[S] is strongly Γ-graded. Let α, β ∈ Γ, and let

t ∈ Sαβ . Then

1t =

(∑
r∈S

a(r)r

)(∑
s∈S

b(s)s

)
=
∑
r,s∈S

a(r)b(s)rs,

for some
∑

r∈S a
(r)r ∈ A[S]α and

∑
s∈S b

(s)s ∈ A[S]β . Necessarily a(r)b(s) = 1

for some r, s ∈ S, and the remaining coefficients are 0, from which it follows

that t = rs ∈ SαSβ . Thus S is strongly Γ-graded.

(2) Define

φ : A[S#Γ] −→ A[S]#Γ∑
sPα∈S#Γ\{0}

a(sPα)(sPα) 
−→
∑
α∈Γ

( ∑
s∈S\{0}

a(sPα)s

)
Pα.

Clearly, φ is a bijection that respects addition. Thus, to conclude that φ is a ring

isomorphism, it suffices to check that φ respects multiplication on summands.

Now, let a(sPα)(sPα), b
(tPβ)(tPβ) ∈ A[S#Γ]. Then using (3.1), (7.1), and (7.3),

we have

φ(a(sPα)(sPα)b
(tPβ)(tPβ)) =

⎧⎨
⎩φ(a

(sPα)b(tPβ)stPβ) if st �= 0 and t ∈ Sαβ−1

0 otherwise

=

⎧⎨
⎩(a(sPα)b(tPβ)st)Pβ if st �= 0 and t ∈ Sαβ−1

0 otherwise

= (a(sPα)s)(b(tPβ)t)αβ−1Pβ

= (a(sPα)s)Pα(b
(tPβ)t)Pβ

= φ(a(sPα)(sPα))φ(b
(tPβ )(tPβ)),

as desired.
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While influence has typically flowed from ring theory to semigroup theory,

the Rees, or Munn, matrix ring [2] is an example of a ring construction that was

directly influenced by semigroup theory. Here we give a graded version of this

idea, which produces a rich class of graded rings, and does not seem to have

appeared in the literature before. We will also relate these rings to the graded

Rees matrix semigroups discussed in §3.2.
Let A be a Γ-graded unital ring, and let I and J be non-empty (index)

sets. For all i ∈ I and j ∈ J , fix αi, βj ∈ Γ, and set α = (αi)i∈I ∈ ΓI

and β = (βj)j∈J ∈ ΓJ . Let B := MI,J(A) denote the abelian group of all I × J

matrices over A, with only finitely many nonzero entries. For each δ ∈ Γ let

(7.4) Bδ := {(aij) ∈ B | i ∈ I, j ∈ J, aij ∈ Aαiδβ
−1
j

}.

Then B =
⊕

δ∈ΓBδ. Next, let p = (aij) be a J × I matrix (possibly with

infinitely many nonzero entries), such that aji ∈ Aβjα
−1
i

for all i ∈ I, j ∈ J , and

define multiplication by

(7.5) a.b := apb

for all a, b ∈ B. It is easy to see that with this operation B becomes a ring,

which we denote by M
p
I,J (A)[α][β]. It is also easy to check that if a ∈ Bδ

and b ∈ Bγ for some δ, γ ∈ Γ, then apb ∈ Bδγ . So M
p
I,J (A)[α][β] is a Γ-graded

ring, which we call a graded Rees matrix ring.

Note that if I = J = {1, . . . , n}, α = β = (α1, . . . , αn), and p is the identity

matrix, thenM
p
I,J(A)[α][β] is simply the graded matrix ringMn(A)(α1, . . . , αn),

which has received considerable attention in the literature; see [19, 31].

Proposition 7.3: Let A be a unital ring, and let S be a Γ-graded semigroup.

Then for all nonempty sets I and J , tuples α=(αi)i∈I ∈ΓI and β=(βj)j∈J ∈ΓJ ,

and J × I matrices p = (sij) with sji ∈ Sβjα
−1
i

for all i ∈ I, j ∈ J , there is a

natural graded ring isomorphism

A[EpI,J (S)[α][β]]
∼= M

p
I,J(A[S])[α][β],

viewing the former as a Γ-graded ring via the grading induced by that

on E
p
I,J(S)[α][β].



302 R. HAZRAT AND Z. MESYAN Isr. J. Math.

Proof. Define

φ : A[EpI,J(S)[α][β]] −→ M
p
I,J(A[S])[α][β]∑

eij(s)∈E
p
I,J (S)[α][β]

a(eij(s))eij(s) 
−→
(∑
s∈S

a(eij(s))s

)
.

Clearly, φ is a bijection that respects addition. Using (3.11) and (7.5), it is

routine to check that φ respects multiplication, and hence it is a ring homo-

morphism. Finally, it follows from (3.9), (7.1), and (7.4) that φ respects the

grading.

8. Graph inverse semigroups

In this section we explore gradings on a rich class of inverse semigroups, known

as graph inverse semigroups, first introduced in [5], along with gradings on

various related objects. (See [29] for more on the history of graph inverse

semigroups, and [24] for an alternative perspective on them.) Among other

results, we classify the strongly graded graph inverse semigroups, and the graded

graph inverse semigroups that produce strongly graded Leavitt path algebras

(see (1.2)), which are defined below.

8.1. Definitions and basics. Recall that a directed graph E=(E0, E1, r, s)

consists of two sets, E0 and E1 (containing vertices and edges, respectively),

together with functions s, r : E1 → E0, called source and range, respectively.

A path x in E is a finite sequence of (not necessarily distinct) edges x = e1 · · · en
such that r(ei) = s(ei+1) for i = 1, . . . , n− 1. In this case, s(x) := s(e1) is the

source of x, r(x) := r(en) is the range of x, and |x| := n is the length of x.

If x = e1 · · · en is a path in E such that s(x) = r(x) and s(ei) �= s(ej) for

every i �= j, then x is called a cycle. For a vertex v ∈ E0, we say that v is

a sink if s−1(v) = ∅, that v is a source if r−1(v) = ∅, and that v is regular

if 0 < |s−1(v)| < ℵ0. We view the elements of E0 as paths of length 0 (extend-

ing s and r to E0 via s(v) = v and r(v) = v for all v ∈ E0), and denote by

Path(E) the set of all paths in E. An infinite sequence e1e2 · · · of edges in E1

is called an infinite path if r(ei) = s(ei+1) for all i ≥ 1. Given a finite or

infinite path p in E and x ∈ Path(E), we say that x is an initial subpath of p

if p = xq for some path q. Finally, E is said to be row-finite if |s−1(v)| < ℵ0 for

every v ∈ E0. From now on we will refer to directed graphs as simply “graphs”.
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Definition 8.1: Given a graph E = (E0, E1, r, s), the graph inverse semi-

group S(E) of E is the semigroup (with zero) generated by the sets E0 and E1,

together with {e−1 | e ∈ E1}, satisfying the following relations for all v, w ∈ E0

and e, f ∈ E1 (where δ is the Kronecker delta):

(V) vw = δv,wv;

(E1) s(e)e = er(e) = e;

(E2) r(e)e−1 = e−1s(e) = e−1;

(CK1) e−1f = δe,fr(e).

We define v−1=v for each v∈E0, and for any path y=e1· · · en (e1, . . . , en∈E1)

we let y−1 = e−1
n · · · e−1

1 . With this notation, it is easy to see that every

nonzero element of S(E) can be written as xy−1 for some x, y ∈ Path(E),

such that r(x) = r(y). It is well-known that representations in this form of

nonzero elements of S(E) are unique. (This follows, for example, from the

model for S(E) constructed in [33, §3].) It is also easy to verify that S(E) is

indeed an inverse semigroup, with (xy−1)−1 = yx−1 for all x, y ∈ Path(E).

As semigroups defined by generators and relations, graph inverse semigroups

lend themselves naturally to being graded (see Example 2.3). Let E be a

graph, Γ a group, and ω : E1 → Γ a “weight” map. Now extend ω to a func-

tion ω :Path(E)→Γ by letting ω(e1 · · · en)=ω(e1) · · ·ω(en) for all e1, . . . , en∈E1,

and letting ω(v) = ε for all v ∈ V . Then it is easy to see that S(E) is Γ-graded,

via

(8.1)
S(E) \ {0} −→ Γ

xy−1 
−→ ω(x)ω(y)−1.

Now letting Γ = Z and taking w(e) = 1 for each e ∈ E1, we obtain a Z-grading

φ : S(E) \ {0} → Z on S(E), where φ(xy−1) = |x| − |y| for all x, y ∈ Path(E).

We refer to this as the natural Z-grading of S(E).

We conclude this subsection with a couple of easy observations that relate

properties of a graph E to the natural partial order on S(E), which will be

useful later on.

Lemma 8.2: Let E be a graph. Then the following are equivalent:

(1) E has no sinks;

(2) there are no minimal, with respect to ≤, idempotents in S(E) \ {0}.
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Proof. (1)⇒(2) Suppose that E has no sinks, and that u ∈ E(S(E))\{0}. Then
it is easy to see that u = xx−1 for some x ∈ Path(E) [29, Lemma 15(1)]. By

hypothesis, there is some e ∈ E1 satisfying s(e) = r(x). Then u > xee−1x−1,

and so u is not a minimal idempotent.

(2)⇒(1) Suppose that (2) holds, and that v ∈ E0. By hypothesis, there

must exist u ∈ E(S(E)) \ {0} such that u < v. Writing u = xx−1 for some

x ∈ Path(E), necessarily |x| ≥ 1, and s(x) = v. Thus v is not a sink.

Lemma 8.3: Let E be a graph. Then the following are equivalent:

(1) E is row-finite;

(2) for every maximal, with respect to ≤, idempotent u in S(E), there are

only finitely many maximal idempotents in {v ∈ E(S(E)) | v < u}.

Proof. First, suppose that u ∈ E0, and v ∈ E(S(E)) \ {0} is such that v < u.

Then, by the defining relations of S(E), we have v /∈ E0. Moreover, by [29,

Lemma 15(4)], the maximal (nonzero) idempotents in E(S(E))\E0 are precisely

the elements of the form ee−1, for some e ∈ E1. It follows that if v is maximal

in {v ∈ E(S(E)) | v < u}, then it must be the case that v = ee−1 for some

e ∈ E1, where necessarily s(e) = u.

(1)⇒(2) Suppose that E is row-finite, and that u∈E(S(E)) is maximal. We

may assume that u �= 0, since otherwise S(E) = {0}, and (2) holds vacuously.

Then, by [29, Lemma 15(3)], u ∈ E0. By the above, either

{v ∈ E(S(E)) | v < u} = {0},

or the maximal idempotents in {v ∈ E(S(E)) | v < u} are of the form ee−1

(e ∈ E1), where s(e) = u. Since E is row-finite, there can be only finitely many

such elements.

(2)⇒(1) Suppose that u ∈ E0. Then, by [29, Lemma 15(3)], u is a maximal

idempotent in S(E). Supposing that (2) holds, there are only finitely many

maximal idempotents in {v ∈ E(S(E)) | v < u}. By the first paragraph,

these maximal idempotents are precisely the elements of S(E) of the form ee−1

(e ∈ E1), where s(e) = u (unless {v ∈ E(S(E)) | v < u} = {0}). It follows

that u can emit only finitely many edges, and so E is row-finite.

8.2. Strongly graded graph inverse semigroups. In this subsection we

give a reasonably complete description of the graph inverse semigroups that are

strongly graded, paying particular attention to the natural Z-grading.
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Lemma 8.4: Let S(E) be a strongly Γ-graded graph inverse semigroup. Then

for all α ∈ Γ and all x ∈ Path(E), there exists y ∈ Path(E) such that

xy−1 ∈ S(E)α and r(y) = r(x). Moreover, if α �= ε, then y �= x.

Proof. Let α ∈ Γ and x ∈ Path(E). Then xx−1 ∈ S(E)ε, since xx
−1 is an

idempotent. Since S(E) is strongly graded, we can find p, q, s, t ∈ Path(E) such

that pq−1 ∈ S(E)α, st
−1 ∈ S(E)α−1 , and pq−1st−1 = xx−1. In particular,

pq−1st−1 �= 0, and hence (by (E1), (E2), and (CK1)), there exists r ∈ Path(E)

such that either q = sr or s = qr.

If q = sr, then, since r(s) = r(t), we have

xx−1 = pq−1st−1 = pr−1s−1st−1 = pr−1t−1 = p(tr)−1.

By the aforementioned uniqueness of the representations of the nonzero elements

of S(E), we conclude that p = x. Hence xq−1 = pq−1 ∈ S(E)α, and pq
−1 �= 0

implies that r(q) = r(x), as desired.

Similarly, if s = qr, then

xx−1 = pq−1st−1 = pq−1qrt−1 = prt−1,

which implies that x = t. Hence sx−1 = st−1 ∈ S(E)α−1 , and r(s) = r(x).

Therefore xs−1 ∈ S(E)α, again giving the desired conclusion.

The final claim follows from the fact that if α �= ε, then xx−1 /∈ S(E)α,

since S(E)α contains no nonzero idempotents.

Corollary 8.5: Let E be a graph having a source vertex v ∈ E0. Then any

strong grading on S(E) is trivial.

Proof. Suppose that S(E) is strongly Γ-graded. Suppose further that the grad-

ing is not trivial, and let α ∈ Γ \ {ε}. Taking x = v, by Lemma 8.4, there exists

y ∈ Path(E) such that r(y) = v and y �= v (and y−1 ∈ S(E)α), contrary to the

hypothesis that v is a source. Hence it must be the case that Γ = {ε}, i.e., the
grading must be trivial.

Corollary 8.6: Let E be a graph. Then S(E) is strongly graded in the

natural Z-grading if and only if E is empty.

Proof. Suppose that E is the empty graph. Then S(E) = {0}, and S(E)n = {0}
for all n ∈ Z. Thus S(E)nS(E)m = S(E)n+m for all n,m ∈ Z.

For the converse, suppose that S(E) is strongly graded in the natural Z-

grading, and that E is nonempty. Then we can find x ∈ E0, and so, by
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Lemma 8.4, there exists y ∈ Path(E) such that y−1 ∈ S(E)1, r(y) = x, and

y �= x. Since r(y) = x and y �= x, necessarily |y| ≥ 1. But then y−1 ∈ S(E)1

contradicts the definition of the natural Z-grading. Thus if S(E) is strongly

graded in the natural Z-grading, then E must be empty.

Lemma 8.7: Let E be a nonempty graph with no source vertices, and n a

positive integer. Then S(E) is strongly Z/nZ-graded, via

φ : S(E) \ {0} −→ Z/nZ

xy−1 
−→ (|x| − |y|) + nZ.

Proof. The map φ is a grading, since it is the composite of the natural grading

S(E) \ {0} → Z with the quotient group homomorphism Z → Z/nZ. To show

that φ is a strong grading, let 0 ≤ a, b < n be integers, and let xy−1 ∈ S(E)a+b,

for some x, y ∈ Path(E) with r(x) = r(y) (where c := c + nZ for all c ∈ Z).

Since E has no sources, we can find z ∈ Path(E) such that r(z) = r(x)

and |z| = |y|+ b. Then

φ(xz−1) = |x| − |y| − b = a+ b− b = a,

and

φ(zy−1) = |y|+ b− |y| = b.

Hence xy−1=(xz−1)(zy−1)∈S(E)aS(E)b, and so φ is a strong Z/nZ-grading.

Theorem 8.8: A graph inverse semigroup S(E) has a nontrivial strong grading

if and only if the graph E is nonempty and has no source vertices.

Proof. This follows immediately from Corollary 8.5 and Lemma 8.7, upon not-

ing that if E is empty, then S(E) = {0}.

We note that the grading constructed in Lemma 8.7 is essentially the only

strong grading applicable to the entire class of graph inverse semigroups. More

specifically, if E is the graph with one vertex and one edge, then this grading

is effectively the only strong grading for S(E). To see this and make it more

precise, we recall that in this case S(E) \ {0} is the bicyclic monoid, having the

following presentation as a semigroup:

〈x, x−1 | x−1x = 1〉,

where we identify x with the edge of E and 1 with the vertex of E. It follows that

any grading φ : S(E)\{0} → Γ is a semigroup homomorphism, and is completely
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determined by φ(x). Thus φ(S(E)\{0}) is necessarily a cyclic group, and hence

isomorphic to either Z or Z/nZ, for some integer n. Now, if φ(S(E) \ {0}) ∼= Z,

then φ(x) is necessarily mapped to either −1 or 1 under this isomorphism.

Composing with the isomorphism Z → Z that sends −1 
→ 1, if necessary, we

can then identify φ with the natural Z-grading of S(E). Hence, by Corollary 8.6,

φ is not a strong grading in this case. Thus, if φ : S(E) \ {0} → Γ is a strong

grading, then φ(S(E) \ {0}) ∼= Z/nZ for some integer n. Replacing Z/nZ with

an isomorphic copy, if necessary, in this situation φ can be identified with the

grading in Lemma 8.7.

We conclude this subsection with a description of the locally strongly Z-

graded graph inverse semigroups (see Definition 2.14).

Proposition 8.9: Let E be a graph. Then the following are equivalent:

(1) S(E) is locally strongly graded in the natural Z-grading;

(2) for all v ∈ E0 and all n ∈ Z there exist x, y ∈ Path(E) such that

s(x) = v, r(x) = r(y), and |x| − |y| = n.

Proof. (1)⇒(2) Suppose that (1) holds, and that v ∈ E0 and n ∈ Z. By

Proposition 2.15, there exists x ∈ S(E)n \ {0} such that xx−1 ≤ v. Writing

x = yz−1 for some y, z ∈ Path(E) with r(y) = r(z), we have |y| − |z| = n, and

necessarily s(y) = v.

(2)⇒(1) Supposing that (2) holds, by Proposition 2.15, to prove (1) it suffices

to take arbitrary n ∈ Z and u ∈ E(S(E)) \ {0}, and show that v ≤ u for

some v ∈ E(S(E))n \ {0}.
It is easy to see that u = xx−1 for some x ∈ Path(E) [29, Lemma 15(1)]. By

(2), there exist y, z ∈ Path(E) such that s(y) = r(x), r(y) = r(z),

and |y| − |z| = n− |x|. Letting q = xyz−1, we see that q ∈ S(E)n. Hence

v := qq−1 ∈ E(S(E))n \ {0},

and clearly uv = v. Thus v ≤ u, as desired.

8.3. Path algebras. Given a field K and a graph E, the contracted semi-

group ring (see §7) K[S(E)] is called the Cohn path K-algebra CK(E) of E.

Furthermore, the ring

LK(E) := K[S(E)]/

〈
v −

∑
e∈s−1(v)

ee−1
∣∣ v ∈ E0 is regular

〉

is called the Leavitt path K-algebra of E. (See [1].)
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Gradings on Leavitt path algebras have been studied in several papers. More

specifically, the natural Z-grading on S(E) induces one on CK(E) (see §7),
which in turn induces a grading on LK(E). We refer to these as the natural

Z-grading on CK(E), respectively LK(E). It is shown in [19, 8] that LK(E)

is strongly graded with respect to the natural Z-grading if and only if E has no

sinks, is row-finite, and satisfies the following condition.

(Y) For every natural number n and every infinite path p in E, there exists

an initial subpath x of p and a path y ∈ Path(E) such that r(y) = r(x)

and |y| − |x| = n.

Our next goal is to translate condition (Y) into one on S(E), which will allow

us to relate the semigroup more closely with the corresponding Leavitt path

algebra. This requires introducing a new type of grading.

Definition 8.10: Let S be a Γ-graded inverse semigroup. We say that S is

saturated strongly Γ-graded if for every α ∈ Γ and every infinite strictly

descending chain of idempotents u0 > u1 > · · · in S, where u0 is maximal with

respect to ≤, there exist n ≥ 0 and v ∈ E(S)α (= {ss−1 | s ∈ Sα}) such that

u0 ≥ v ≥ un.

Note that, by Proposition 2.12, for every strongly Γ-graded inverse semi-

group S we have E(S) = E(S)α for all α ∈ Γ, which implies that S is saturated

strongly Γ-graded. As shown in Example 8.12, this condition is, however, inde-

pendent of “locally strongly graded”.

Lemma 8.11: Let E be a graph. Then the following are equivalent:

(1) E satisfies condition (Y);

(2) S(E) is saturated strongly graded in the natural Z-grading.

Proof. (1)⇒(2) Suppose that (1) holds, let n ∈ Z, and let u0 > u1 > · · ·
be a chain of idempotents in S(E), where u0 is maximal with respect to ≤.

It is easy to show that u0 ∈ E0 [29, Lemma 15(3)], that u1 = x1x
−1
1 for

some x1 ∈ Path(E) with s(x1) = u0 [29, Lemma 15(1,2)], that u2 = x1x2x
−1
2 x−1

1

for some x2 ∈ Path(E) [29, Lemma 15(2)], and so on. Writing

ui = x1 · · ·xix−1
i · · ·x−1

1

for each i ≥ 1, we conclude that x1x2 · · · is an an infinite path in E.
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Now suppose that n ≤ 0. Then, by (1), there exists an initial subpath y

of x1x2 · · · and a path z ∈ Path(E) such that r(z) = r(y) and |z| − |y| = |n|.
We can write y = x1 · · ·xkt for some k ≥ 0 and initial subpath t of xk+1.

Then yz−1∈S(E)n, and so

v :=yy−1=yz−1zy−1∈E(S(E))n .

Moreover, u0≥v, since s(y) = u0, and clearly

v = x1 · · ·xktt−1x−1
k · · ·x−1

1 ≥ uk+1,

as desired.

Next suppose that n > 0. Since x1x2 · · · is an infinite path, we can find an

initial subpath y ∈ Path(E) such that |y| = n. Then, certainly,

v := yy−1 ∈ E(S(E))n, u0 ≥ v, and v ≥ uk for some k ≥ 0,

again giving the desired conclusion.

(2)⇒(1) Suppose that (2) holds, let n be a natural number, and let p=e1e2 · · ·
be an infinite path in E, for some e1, e2, . . . ∈ E1. Then

s(e1) > e1e
−1
1 > e1e2e

−1
2 e−1

1 > · · ·

is a chain of idempotents in S(E), where s(e1) is maximal with respect to ≤,

by [29, Lemma 15(3)]. Hence, by (2), there exist m ≥ 1 and v ∈ E(S(E))−n
such that

s(e1) ≥ v ≥ e1 · · · eme−1
m · · · e−1

1 .

Then v = yz−1zy−1 for some y, z ∈ Path(E) such that r(z) = r(y) and

|z| − |y| = n. Finally, since s(e1) ≥ yy−1 ≥ e1 · · · eme−1
m · · · e−1

1 , it must be the

case that y is an initial subpath of e1 · · · em, and hence of p, by [29, Lemma

15(2)]. Thus E satisfies condition (Y).

Example 8.12: Consider the following graphs:

E1 : •

E2 : • • • · · ·

• • • · · ·
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It is easy to see that E1 satisfies condition (Y) but not condition (2) in Propo-

sition 8.9, whereas E2 satisfies the latter but not the former. Thus, by Propo-

sition 8.9 and Lemma 8.11, S(E1) is saturated strongly graded, but not locally

strongly graded, whereas S(E2) is locally strongly graded, but not saturated

strongly graded, in the natural Z-grading. The two conditions on gradings are

therefore independent.

We are now ready for the main result of this section, which classifies the graph

inverse semigroups S(E) for which the corresponding Leavitt path algebras are

strongly graded.

Theorem 8.13: Let E be a nonempty graph. Then the following are equiva-

lent:

(1) E has no sinks, is row-finite, and satisfies condition (Y);

(2) LK(E) is strongly graded in the natural Z-grading, for any field K;

(3) there are no minimal idempotents in S(E) \ {0}, for every maximal

idempotent u in S(E) there are only finitely many maximal idempotents

in {v ∈ E(S(E)) | v < u}, and S(E) is saturated strongly graded in the

natural Z-grading;

(4) for every maximal idempotent u in S(E) there are only finitely many

maximal idempotents in {v ∈ E(S) | v < u}, and S(E) is locally

strongly graded and saturated strongly graded in the natural Z-grading.

Proof. (1) ⇔ (2) This follows from [8, Theorem 4.2].

(1) ⇔ (3) This follows from Lemmas 8.2, 8.3, and 8.11.

(4)⇒(1) If (4) holds, then E must satisfy condition (2) in Proposition 8.9,

which can easily be seen to imply that E cannot have sinks. The desired con-

clusion now follows from Lemmas 8.3 and 8.11.

(1)⇒(4) By Lemmas 8.3 and 8.11, it suffices to show that if E has no sinks

and satisfies condition (Y), then it also satisfies condition (2) in Proposition 8.9.

Thus assume that E has no sinks and satisfies condition (Y), and let v ∈ E0

and n ∈ Z. Since E has no sinks, there is an infinite path p in E having source v.

If n ≤ 0, then condition (Y) implies that there exists an initial subpath x of p

and a path y ∈ Path(E) such that r(y) = r(x) and |x| − |y| = n. If n > 0,

then letting x ∈ Path(E) be an initial subpath of p such that |x| = n, and

letting y = r(x), we have s(x) = v and |x| − |y| = n. In either case, (2) in

Proposition 8.9 is satisfied.
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Restricting to row-finite graphs, we obtain a much cleaner statement, involv-

ing only conditions on the grading of S(E).

Corollary 8.14: Let E be a nonempty row-finite graph. Then the following

are equivalent:

(1) E has no sinks and satisfies condition (Y);

(2) LK(E) is strongly graded in the natural Z-grading, for any field K;

(3) S(E) is locally strongly graded and saturated strongly graded in the

natural Z-grading.

Proof. This follows from Theorem 8.13 and Lemma 8.3.

The next corollary gives an analogue of Theorem 8.13 for Cohn path algebras.

Corollary 8.15: Let K be a field and E a nonempty graph. Then nei-

ther S(E) nor CK(E) is strongly graded in the natural Z-grading. However,

if E has no source vertices, then S(E) and CK(E) are strongly Z/nZ-graded,

for any positive integer n.

Proof. This follows from Corollary 8.6, Lemma 8.7, and Proposition 7.2(1).

Let G be a Γ-graded Hausdorff ample groupoid (see §6.3), and let K be a

field. Then the enveloping algebra of G h, defined by

K〈G h〉 := K[G h]/〈X+Y −X∪Y | X∩Y = ∅, and X∪Y ∈ G h
α for some α ∈ Γ〉,

is a Γ-graded K-algebra, via the grading inherited from K[G h] (see (7.1)). One

can show that for any graph E, there is a naturally Z-graded boundary path

groupoid GE such that

K〈G h
E〉 ∼=gr LK(E) ∼=gr AK(GE),

where AK(GE) is the Steinberg algebra of GE , and ∼=gr denotes graded iso-

morphism. We will not discuss K〈G h〉, GE, or AK(GE) in further detail here,

and instead refer the reader to [35] for a comprehensive treatment of these ob-

jects. (See also [39, §6.3] for enveloping algebras of Boolean inverse semigroups,

which we briefly visit in §9.2.) We note, however, that Theorem 8.13 has the

following consequence.
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Corollary 8.16: Let E be a nonempty graph. Then the following are equiv-

alent:

(1) E has no sinks, is row-finite, and satisfies condition (Y);

(2) LK(E) is strongly graded in the natural Z-grading, for any field K;

(3) GE is strongly graded in the natural Z-grading;

(4) for every maximal idempotent u in S(E) there are only finitely many

maximal idempotents in {v ∈ E(S(E)) | v < u}, and S(E) is locally

strongly graded and saturated strongly graded in the natural Z-grading.

Proof. (1) ⇔ (2) ⇔ (4) This follows from Theorem 8.13.

(2) ⇔ (3) This follows from [8, Theorem 3.11].

If the graph happens to be finite, then the previous corollary has the following

very pleasant form.

Corollary 8.17: Let E be a finite nonempty graph. Then the following are

equivalent:

(1) E has no sinks;

(2) LK(E) is strongly graded in the natural Z-grading, for any field K;

(3) GE is strongly graded in the natural Z-grading;

(4) S(E) is locally strongly graded in the natural Z-grading.

Proof. This follows from Corollary 8.16, upon noting that E being finite implies

that E satisfies condition (Y), and S(E) is saturated strongly graded in the

natural Z-grading.

8.4. Covering graphs. In this subsection we show that the smash product of

a graph inverse semigroup with any group is graded isomorphic to the inverse

semigroup of its covering graph, which we recall next (see [18, §2] and [25,

Definition 2.1]).

Let E be a graph, Γ a group, and ω : E1 → Γ a “weight” function. The

covering graph E of E with respect to ω is defined by

E
0
= {vα | v ∈ E0 and α ∈ Γ} and E

1
= {eα | e ∈ E1 and α ∈ Γ},

with s(eα) = s(e)α and r(eα) = r(e)ω(e)−1α for all e ∈ E1 and α ∈ Γ. The

covering graph E inherits the weight function from E, as follows:

(8.2)
E

1 −→ Γ

eα 
−→ ω(e).



Vol. 253, 2023 GRADED SEMIGROUPS 313

Example 8.18: Let E be a graph and define ω : E1 → Z by ω(e) = 1 for all

e ∈ E1. Then E (sometimes denoted E ×1 Z) is given by

E
0
= {vn | v ∈ E0 and n ∈ Z} and E

1
= {en | e ∈ E1 and n ∈ Z},

where s(en) = s(e)n and r(en) = r(e)n−1 for all e ∈ E1 and n ∈ Z.

To construct more concrete examples, consider the following graphs.

E1 : ue

f

v

g

E2 : ue f

Then the corresponding covering graphs (with ω as before) are as follows.

E1 : · · · u−1 u0
e0

f0
u1

e1

f1
u2 · · ·e2

f2

· · · v−1 v0
g0

v1
g1

v2 · · ·
g2

Level -1 Level 0 Level 1 Level 2

E2 : · · · u−1 u0

f0

e0

u1

f1

e1

u2 · · ·
f2

e2

Notice that for any graph E, the covering graph E is acyclic (i.e., has no

cycles) and stationary (i.e., informally, the pattern of vertices and edges on

“level” n repeats on “level” n+ 1).

Theorem 8.19: Let E be a graph with a weight function ω : E1 → Γ, and let

E be its covering graph with respect to ω. Then assigning

(8.3)

vα 
−→ vPα

eα 
−→ ePω(e)−1α

e−1
α 
−→ e−1Pα

induces a graded isomorphism φ : S(E) → S(E)#Γ.

Proof. To show that the assignments in (8.3) induce a homomorphism, it suffices

to prove that the function φ induced by those assignments preserves the defining

relations of S(E); see Definition 8.1.



314 R. HAZRAT AND Z. MESYAN Isr. J. Math.

To check that φ preserves the relations (V), let v, w ∈ E0 and α, β ∈ Γ. Then,

noting that as idempotents, v, w ∈ S(E)ε, and using Definition 3.1, we have

φ(vαwβ) = φ(δvα,wβ
vα)

=

⎧⎨
⎩vPα if α = β and v = w

0 otherwise

= vPαwPβ = φ(vα)φ(wβ).

For (E1), let e ∈ E1 and α ∈ Γ. Then, since s(eα) = s(e)α, we have

φ(s(eα)eα) = φ(eα) = ePω(e)−1α = s(e)PαePω(e)−1α = φ(s(eα))φ(eα),

and, using the fact that r(eα) = r(e)ω(e)−1α, we have

φ(eαr(eα)) = φ(eα) = ePω(e)−1α = ePω(e)−1αr(e)Pω(e)−1α = φ(eα)φ(r(eα)).

That φ preserves the relations (E2) can be verified analogously. Finally,

for (CK1), let e, f ∈ E1 and α, β ∈ Γ. Then

φ(e−1
α fβ) = φ(δeα,fβr(eα)) = φ(δeα ,fβr(e)w(e)−1α)

=

⎧⎨
⎩r(e)Pω(e)−1α if α = β and e = f

0 otherwise

= e−1PαfPω(f)−1β = φ(e−1
α )φ(fβ).

Thus φ is a semigroup homomorphism.

Next, let v ∈ V , e ∈ E1, and α ∈ Γ. Then, using (8.1) and (8.2), we have

vα ∈ S(E)ε, eα ∈ S(E)ω(e), and e
−1
α ∈ S(E)ω(e)−1 . On the other hand, by (3.2),

φ(vα) = vPα ∈ (S(E)#Γ)ε, φ(eα) = ePω(e)−1α ∈ (S(E)#Γ)ω(e),

and φ(e−1
α ) = e−1Pα ∈ (S(E)#Γ)ω(e)−1 .

Thus φ preserves the degrees of the generators of S(E). Since it is a homomor-

phism, it follows that φ is a graded map.

Since every element of S(E)#Γ is a product of elements of the forms vPα, ePα,

and e−1Pα, for some v ∈ V , e ∈ E1, and α ∈ Γ, and since φ is a homomorphism,

it follows immediately from (8.3) that it is surjective. So it remains to show

that φ is injective.

Let

(e1)α1 · · · (en)αn(fm)−1
βm

· · · (f1)−1
β1

∈ S(E) \ {0},
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where the (ei)αi , (fi)βi ∈ E
0 ∪ E

1
, and suppose that φ maps this element to

zero. Then

0 = e1Pω(e1)−1α1
· · · enPω(en)−1αn

f−1
m Pβm · · · f−1

1 Pβ1 ,

which implies that at least one of the following must be the case: r(ei) �= s(ei+1)

for some i, r(fi) �= s(fi+1) for some i, r(en) �= r(fm), ω(ei) �= αiα
−1
i+1 for

some i, ω(fi) �= βiβ
−1
i+1 for some i, ω(en)

−1αn �= ω(fm)−1βm. But each of

these conditions implies that (e1)α1 · · · (en)αn(fm)−1
βm

· · · (f1)−1
β1

= 0, producing

a contradiction. So φ maps nonzero elements to nonzero elements.

Next, let s, t ∈ S(E) \ {0}, and suppose that φ(s) = φ(t). Writing

s = (e1)α1 · · · (en)αn(fm)−1
βm

· · · (f1)−1
β1

and

t = (g1)δ1 · · · (gp)δp(hr)−1
γr · · · (h1)−1

γ1 ,

and using the fact that φ(s) �= 0 �= φ(t), we have

e1 · · · enf−1
m · · · f−1

1 Pβ1 = φ(s) = φ(t) = g1 · · · gph−1
r · · ·h−1

1 Pγ1 ,

along with appropriate compatibility conditions on the weights (as in the pre-

vious paragraph). It follows that s = t, completing the proof.

It is proved in [4] that

LK(E)#Z ∼= LK(E),

using skew products for groupoids and Steinberg algebras. The following is an

analogous result for Cohn algebras, which we can prove directly, employing the

smash product for semigroups.

Corollary 8.20: For any graph E and field K, we have

CK(E)#Z ∼= CK(E).

Proof. Since C(E) = K[S(E)], by Proposition 7.2(2) and Theorem 8.19, we

have

CK(E)#Z = K[S(E)]#Z ∼= K[S(E)#Z] ∼= K[S(E)] = CK(E).
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9. Further directions

We conclude with some ideas for further research on graded semigroups, that

we have not explored in detail.

9.1. Graded Green’s relations. Green’s relations are a fundamental tool for

studying semigroups, and so it is natural to consider graded versions thereof in

the context of graded semigroups. So given a Γ-graded semigroup S and s, t∈S,
write sL gr t if sL t and s, t ∈ Sα, for some α ∈ Γ. The other graded Green’s

relations Rgr, H gr, Dgr, and J gr can be defined similarly. These relations

partition S into finer equivalence classes than the usual Green’s relations, and

so have the potential to shed additional light on the structure of S. For ex-

ample, letting Ls denote the L -class of s ∈ S, we have Ls = ∪α∈Γ(Ls)α,

where (Ls)α = Sα ∩ Ls. Recall that Green’s lemma [20, Lemma 2.2.1] provides

a bijection ρ : Ls → Lt, whenever sR t. It is easy to obtain a graded version

of this result. Specifically, for all s, t ∈ S and α ∈ Γ, if sR t, then there is a

bijection ρ : Ls → Lt such that ρ((Ls)α) = (Ls)αγ , where

γ = deg(t) deg(s)−1.

It may be interesting to investigate graded Green’s relations more closely in the

future.

9.2. Graded Boolean inverse semigroups. Let us mention another class

of inverse semigroups that seem well-suited to the graded setting. An inverse

semigroup S is called Boolean if E(S) is a generalised Boolean lattice and

every orthogonal pair u, v ∈ E(S) (i.e., u−1v = 0 = vu−1, denoted u ⊥ v) has

a supremum, denoted u⊕ v. (See [39, §3.1] for more details.) Given a Boolean

inverse semigroup S, the type semigroup of S is the commutative monoid

Typ(S) generated by {typ(u) | u ∈ E(S)}, subject to the following relations,

for all u, v ∈ E(S):

(1) typ(0) = 0;

(2) typ(u) = typ(v) whenever uD v;

(3) typ(u⊕ v) = typ(u) + typ(v) whenever u ⊥ v.

(See [39, §4.1] for more details.) Now, if S is a Γ-graded Boolean inverse semi-

group, then it is easy to see that Sε is also a Boolean inverse semigroup. So it is

natural to seek descriptions of the relations among these semigroups, and those

among Typ(S) and Typ(Sε). Additionally, given a Γ-graded Boolean inverse



Vol. 253, 2023 GRADED SEMIGROUPS 317

semigroup S and a field (or, more generally, unital ring) K, one can define the

enveloping algebra

K〈S〉 := K[S]/〈u+ v − u⊕ v | u ⊥ v〉

of S (see [39, §6.3]), and investigate the relationships among the K-algebras

K〈S〉 and K〈Sε〉.
Type semigroups are of particular interest to us because of their connection

to combinatorial algebras. More specifically, letting S = G h
E be the inverse

semigroup associated to the boundary path groupoid GE (see §6 and §8.3),
Typ(S) is related to the non-stable K-theory of the corresponding graph C∗-

algebra and Leavitt path algebra. It is believed that Typ(S) could be used to

find a complete invariant for the algebras in question (see [11]).

Acknowledgement. We are grateful to the referee for a very thoughtful re-

view, and suggestions that have led to improvements in the exposition.
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[31] C. Năstăsescu and F. van Oystaeyen, Methods of Graded Rings, Lecture Notes in Math-

ematics, Vol. 1836, Springer, Berlin, 2004.



Vol. 253, 2023 GRADED SEMIGROUPS 319

[32] A. L. T. Paterson, Groupoids, Inverse Semigroups, and Their Operator Algebras,

Progress in Mathematics, Vol. 170, Birkhaüser, Boston, MA, 1999.
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