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ABSTRACT

Valuations constitute a class of functionals on convex bodies which in-

clude the Euler-characteristic, the surface area, the Lebesgue-measure,

and many more classical functionals. Curvature measures may be re-

garded as “localised” versions of valuations which yield local information

about the geometry of a body’s boundary.

A complete classification of continuous translation-invariant SO(n)-

invariant valuations and curvature measures with values in R was obtained

by Hadwiger and Schneider, respectively. More recently, characterisation

results have been achieved for curvature measures with values in Symp
Rn

and Sym2ΛqRn for p, q ≥ 1 with varying assumptions as for their invari-

ance properties.

In the present work, we classify all smooth translation-invariant SO(n)-

equivariant curvature measures with values in any SO(n)-representation in

terms of certain differential forms on the sphere bundle SRn and describe

their behaviour under the globalisation map. The latter result also yields

a similar classification of all continuous SO(n)-equivariant valuations with

values in any SO(n)-representation. Furthermore, a decomposition of the

space of smooth translation-invariant R-valued curvature measures as an

SO(n)-representation is obtained. As a corollary, we construct an explicit

basis of continuous translation-invariant R-valued valuations.
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1. Introduction

1.1. Background. LetK(Rn) be the set of convex bodies, i.e., compact convex

subsets, in Rn and A be an Abelian semigroup. A map φ : K(Rn) → A is called

a valuation if it satisfies the equation

(1.1) φ(K ∪ L) + φ(K ∩ L) = φ(K) + φ(L)

whenever K ∪ L ∈ K(Rn). We study the case where A is a finite-dimensional

Euclidean vector space R
m. A valuation φ is then said to be continuous if it

is continuous with respect to the topology induced by the Hausdorff-metric on

K(Rn). Valuations can be studied on broader classes of subsets in Rn or on

certain subsets of manifolds [6, 7, 11, 18, 29]. Other important target spaces

include the case A = K(Rn) (Minkowski valuations) [46] and the space of signed

measures on the sphere (area measures) [59, 60].

The first valuations to become objects of systematic study were continuous

R-valued valuations invariant under the action of the Euclidean group

SO(n) := SO(n)�R
n.

Hadwiger [33] showed them to form an (n+1)-dimensional vector space ValSO(n)

spanned by the intrinsic volumes μ0, . . . , μn, where μ0 is the Euler-charac-

teristic and μn is the Lebesgue-measure.

Almost 50 years later, Alesker initiated the program of describing contin-

uous valuations invariant—but also equi- and contravariant—under different

Lie-groups G. It resulted in a number of Hadwiger-type results [1, 4, 8, 15, 19,

21, 23, 47, 48, 54, 57, 58, 59, 60].

Dropping G-invariance, the space Val of continuous translation-invariant val-

uations was shown by McMullen in [50] to admit a decomposition by homo-

geneity degree and parity:

Val =
⊕

0≤k≤n

Val+k ⊕Val−k

where

Val±k := {φ ∈ Val | φ(−K) = ±φ(K), φ(tK) = tkφ(K),K ∈ K(Rn), t > 0}
are infinite-dimensional (Fréchet-)spaces unless k ∈ {0, n}, in which case Valk

is one-dimensional and spanned by the Euler-characteristic and the Lebesgue-

measure, respectively.
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A more advanced structure result is the decomposition of Valk in SO(n)-

irreducible representations by Alesker, Bernig, and Schuster [12]. They showed

that Valk is multiplicity-free and contains the irreducible SO(n)-representa-

tions Γ[λ] with highest weights λ such that:

• λj = 0 for j > min(k, n− k);

• |λj | �= 1 for 1 ≤ j ≤ 	n/2
;
• |λ2| ≤ 2.

The parity of the valuation corresponds to the parity of λ1, while the case

λ2 = 0 corresponds to the so-called spherical valuations. We refer the reader to

Sections 1.2 and 2 for a detailed description of how Γ[λ] is constructed.

Given any SO(n)-representation Γ with the dual Γ∗, the Γ∗-typical compo-

nent in Valk can be identified with the space

(1.2) Val
SO(n)
k,Γ := {φ ∈ Valk ⊗Γ : φ(K) = gφ(g−1K),K ∈ K(Rn), g ∈ SO(n)}.

The explicit bases for Val
SO(n)
k,Γ have remained elusive for several years. In fact,

the structure of Val
SO(n)
k,Γ is only known for Γ = Symp

Rn, as several bases

and global kinematic formulae were gradually elaborated by different authors,

including Alesker, Bernig, Hug, McMullen, and Schuster [2, 22, 38, 34, 40, 39,

51].

The present paper closes this gap by establishing in rather explicit terms a

basis of Val
SO(n)
k,Γ for any SO(n)-representation Γ. To achieve this, we extend

our study to curvature measures, an extremely useful concept through which

the study of continuous translation-invariant valuations can be linked to the

more familiar concepts of differential forms on the sphere bundle SRn. Let us

briefly outline this connection.

Curvature measures were introduced by Federer in an attempt to connect

several integral-geometric results that had been previously disparate [26]. He

observed that intrinsic volumes μk(K), k = 0, . . . , n − 1 for a convex body K

can be computed by integrating the symmetric functions of the principal cur-

vatures over its boundary ∂K if it is sufficiently smooth. Replacing ∂K un-

der the integral by ∂K ∩ U for any Borel-set U , one naturally obtains a “lo-

calised” version of μk called the k-th Lipschitz–Killing curvature measure

Φk : K(Rn)× B(Rn) → R, where B(Rn) is the Borel-σ-Algebra on Rn. Obvi-

ously, μk can be recovered from Φk by the relation μk(K) = Φk(K,R
n) for any
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K ∈ K(Rn). It is by no means trivial to extend this description of Lipschitz–

Killing curvature measures to non-smooth convex bodies.

The name “curvature measures” is more than justified for Φk. On the one

hand, for K sufficiently smooth and U any Borel-set, Φk(K,U) yields local

information about the curvature of ∂K. On the other hand, Φk(K, ·) is a non-

negative Borel-measure for a fixed convex body K that is weakly-continuous,

i.e., ∫
Rn

f(x)dΦk(Ki, x) →
∫
Rn

f(x)dΦk(K,x)

for any continuous function f : Rn → R and any sequence of convex bodies Ki

converging to a convex body K [53, pp. 288ff.]. The “localisation” procedure

also preserves the SO(n)-invariance of Φk, i.e.,

Φk(gK, gU) = Φk(K,U) for all g ∈ SO(n), K ∈ K(Rn), U ∈ B(Rn).

In fact, Φ0, . . . ,Φn form the basis of SO(n)-invariant weakly continuous curva-

ture measures CurvSO(n) on convex bodies in Rn [52].

Later, Zähle [61] discovered that Φk and μk for all k < n can be represented

as

(1.3) Φk(K,U) =

∫
nc(K)∩π−1(U)

ωk and μk(K) =

∫
nc(K)

ωk,

where nc(K) is a Lipschitz-submanifold of the sphere bundle SRn called the

normal cycle of K, π : SRn → Rn is the natural projection and ωk is a certain

SO(n)-invariant differential form on SRn of bi-degree (k, n− k− 1). Replacing

ωk with any translation-invariant form ω ∈ Ωn−1(SRn), the functional

Φω(K,U) :=

∫
nc(K)∩π−1(U)

ω

induces a continuous translation-invariant valuation K �→ Φω(K,R
n) and a

weakly continuous translation-invariant Borel-measure (K,U) �→ Φω(K,U).

The former are called smooth valuations and the vector space spanned by

them is denoted by Valsm. The latter are referred to as smooth translation-

invariant curvature measures. We will denote the vector space formed by

them by Curvsm. The valuation

φω(·) := glob(Φω)(·) := Φω(·,Rn)
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is called the globalisation of Φω and the globalisationmap glob:Curvsm→Valsm

is onto. However, contrary to the case of μk and Φk, the kernel of glob is not

trivial, i.e., the “localisation” procedure is not canonical.

There is another natural definition of Valsm given in representation-theoretic

terms and it is possible—but by no means trivial—to show that the two are

equivalent [6]. With this equivalence at hand, one can show that Valsm pos-

sesses rich algebraic structures, such as product, convolution and a Fourier-type

transform [9, 13, 20] which are connected to kinematic formulas [27] and allow

to write out such formulas explicitly [15, 16, 21, 24]. Furthermore, Alesker’s

famous Irreducibility Theorem [3] implies that Valsm lies densely in Val and,

in particular, that all valuations from the finite-dimensional space Val
SO(n)
k,Γ are

smooth (Proposition 4.5).

It is this fact and the careful examination of the kernel of the globalisation

map (Theorem 1.5) that allow us to describe the basis of Val
SO(n)
k,Γ in terms of

the basis of the space Curv
sm,SO(n)
k,Γ of smooth SO(n)-equivariant translation-

invariant curvature measures with values in Γ (Proposition 1.6). Establish-

ing the latter is the main result of this work (Theorem 1.4) and requires,

among other mathematical tools, the harmonic decomposition of Curvsm (The-

orem 1.1).

Our work (Remark 4.1) has revealed that—surprisingly and in contrast to

SO(n)-equivariant translation-invariant valuations—there are SO(n)-equivari-

ant curvature measures that are not O(n)-equivariant. This has entailed new

efforts to classify them for Γ = Symp
Rn on convex polytopes and to study their

extensions to convex bodies [36, 37]. Furthermore, we show in Proposition 1.3

that the differential forms constructed in our work are intimately related to those

used to classify the so-called local Minkowski-tensors with certain properties [35]

and later to establish several integral-geometric formulae for them [41].

Finally, we complete the search for smooth SO(n)-equivariant translation-in-

variant curvature measures with values in Γ = Sym2ΛqRn which was started

by Bernig in [14] and discover more symmetries for them (Proposition 1.2 and

Proposition 4.4).

The bases of Val
SO(n)
k,Γ also induce a Schauder-basis of Val (Proposition 1.6).

This might prove useful for a range of applications. For example, a famous result

by Klain [42] states that Val+k can be seen as a subspace of the space of functions

on the Grassmannian of k-planes in V . This allows to relate the basic operators
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on Valsm—such as the Lefschetz operator, i.e., multiplication by the first in-

trinsic volume, and the derivation operator, i.e., convolution with the (n− 1)-st

intrinsic volume—to some known integral transforms on Grassmannians, such

as the Radon transform and the cosine transform. This approach has lead to

some deep results [10, 4, 5, 22, 23, 24, 25, 44, 45] in the even case.

These results cannot be easily extended to the odd case, as there is no em-

bedding for odd valuations which would be comparable to Klain’s map. Bernig

and Hug studied in [22] spherical valuations and proved kinematic formulas for

tensor valuations using tools from harmonic analysis. Although spherical valua-

tions may be of odd parity, they do not form a dense subspace in Val. Our hope

is that the basis of Val we discovered—being compatible with the harmonic

decomposition of Val and thus allowing for very precise control of the parity of

its elements—might serve the same function for the odd case as Klain’s map

did for even valuations.

The plan of the paper is as follows. In Subsection 1.2, we formulate the

main results of this work. In Section 2, we recall all necessary basics of the

finite-dimensional representation theory of SL(n) and SO(n), including Young-

symmetrisers, trace-free spaces as well as restricted and induced representations.

We refer to [30, 31, 32] for more detailed expositions of this topic. In Section

3 we discuss some facts from the valuation theory which we need to prove the

main results. The prominent references here are [17, 28, 42, 53] along with the

papers mentioned above. The new results are proven in Section 4.

1.2. Main Results. The space Curvsmk naturally admits the structure of an

SO(n)-module by (gΦ)(K,U) := Φ(g−1K, g−1U) for allK ∈ K(Rn), U ∈ B(Rn).

By the Theorem of Peter–Weyl, Curvsmk may be written as a direct sum of irre-

ducible finite-dimensional SO(n)-modules. All such SO(n)-representations may

be uniquely characterised up to isomorphism by tuples λ = (λ1 ≥ · · · ≥ λ�n/2�)
such that λ�n/2� ≥ 0 if n is odd and λn/2−1 ≥ |λn/2| ≥ 0 if n is even.

Theorem 1.1: Let n ≥ 2, 0 ≤ k ≤ n − 1. Then Curvsmk consists precisely of

SO(n)-representations Γ[λ] with tuples λ such that:

• λj = 0 for j > min(k + 1, n− k);

• |λj | = 1 for at most one 1 ≤ j ≤ 	n/2
;
• |λ2| ≤ 2.
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Let m be the highest j such that λj �= 0. The multiplicity of Γ[λ] in Curvsm

is 2 except if m = min(k + 1, n − k) or |λm| < 2 (in which case it is 1) and if

n = 2k + 1,m = k, |λm| ≥ 2 in which case it is 3.

We now turn to constructing the basis of Curv
sm,SO(n)
k,Γ . Let ei, i = 1, . . . , n

be the standard orthonormal basis of Rn, dxi, dyi be the canonical frame on the

cotangent bundle T ∗Rn and write

e⊗i1,...,iqy := ei1 ⊗ · · · ⊗ eiq ⊗ y.

Define for 0 ≤ k ≤ n − 1, p ≥ 0 and 0 ≤ q ≤ min(k, n − k − 1) the following

families of differential forms pointwise for (x, y) ∈ SRn:

(1.4)

Φ̃n
⊗k,p,q = Cn

∑
π,i

sgnπ yπn dx
i1...iqπq+1...πk

∧ dyπk+1...πn−1 ⊗ e⊗i1...iq ⊗ e⊗π1...πq ⊗ yp,

Ξ̃n
⊗k,p,q = Cn

∑
π,i

sgnπ yπn dx
i1...iqπq+1...πk

∧ dyπk+1...πn−1 ⊗ e⊗i1...iqy ⊗ e⊗π1...πq ⊗ yp,

Ψ̃n
⊗k,p,q+1 = Cn

∑
π,i

sgnπ yπn dx
i1...iqπq+1...πk

∧ dyπk+1...πn−1 ⊗ e⊗i1...iqy ⊗ e⊗π1...πqy ⊗ yp,

where Cn = (−1)n−1 and we sum over all n-permutations π ∈ Sn and

indexes i1, . . . iq = 1, . . . , n. The above forms assume values in (Rn)⊗2q+p,

(Rn)⊗2q+p+1, and (Rn)⊗2q+p+2, respectively. Additionally, define for k ≥ 1,

n = 2k + 1, and p ≥ 0 a family of (Rn)⊗2k+p-valued forms:

Θ̃n
⊗k,p =

∑
i,j

dxi1...ik ∧ dyj1...jk ⊗ e⊗i1...ik ⊗ e⊗j1...jk ⊗ yp,

where the sum is over the indexes i1, . . . , ik, j1, . . . , jk = 1, . . . , n. We will often

omit the superscript n and use T as a generic letter that may stand for Φ,Ξ,Ψ,

or Θ.

Special cases of such forms have been used before in different contexts.

Write T⊗k,p,q for the curvature measure induced by T̃⊗k,p,q.

Proposition 1.2: Let Ψk,d be the Sym2ΛdRn-valued curvature measures de-

fined in [14]. Then

Ψk,d =
1

sn−k−1(k − d)! d! (n− k − 1)!
Φ⊗k,0,d.
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Proposition 1.3: Let P ⊂ Rn be an arbitrary convex polytope and denote

by Fk(P ) the set of all its k-dimensional faces.

Let W ⊂ Rn be a k-dimensional vector subspace and write QW for the

restriction to W of the metric tensor Q preserved by O(n). Taking v1, . . . , vk

to be an orthonormal basis of W so that QW =
∑k

i=1 vi ⊗ vi and writing

vi1...iq := vi1 ∧ · · · ∧ viq ,

define

Q∧q
W :=

k∑
i1,...,iq=1

vi1...iq ⊗ vi1...iq ⊂ ∧q
Rn ⊗∧q

Rn ⊂ (Rn)⊗2q

the q-fold wedge product of QW with itself. Then

Φ⊗k,p,q(P,U)=(−1)n−1 (k−q)!(n−k−1)!

q!

∑
F∈Fk

vol(F ∩U)Q∧q
L(F )⊗

∫
ν(P,F )

yp dy,

where L(F ) is the linear vector space parallel to the affine hull of F

and ν(P, F ) ⊂ Sn−k−1 the set of all outer unit normal vectors to F ∈ Fk(P ).

In particular, using the notations from Lemma 4.1 in [35] and identify-

ing (Rn)∗ � Rn,

Φ⊗k,p,1(K,U) = Cn,k,p TK(1(U×Sn−1)ϕ̃
0,p
k ),

where

Cn,k,p := (−1)n−1(k − 1)!(n− k − 1)! p! sn−k+p−1

with sn := volSn = 2π
n+1
2

Γ(n+1
2 )

.

To obtain differential forms with values in an arbitrary irreducible SO(n)-

representation Γλ from Theorem 1.1, we need to define two maps.

First, recall that, for any such λ with weight d := |λ| :=
∑n

i=1 λi, there

exists an SL(n)- (hence, also SO(n)-)equivariant projection called the Young-

symmetriser μλ : (Rn)⊗d → Γλ, where Γλ is the irreducible SL(n)-representa-

tion given by λ. It is best visualised by using the Young-diagram associated

to λ, i.e., a left-aligned collection of boxes with λi boxes in the i-th row. The

image of e⊗j1...jd ∈ (Rn)⊗d under μλ is then represented by the Young-diagram

for λ with its boxes filled with indexes j1, . . . , jd from top to bottom from left

to right. The thus filled diagram is called a Young-tableau.
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Second, given the canonical projection πtr : (R
n)⊗d → (Rn)[d] from the d-fold

tensor product of Rn to its trace-free subspace, Γ̄[λ] := πtr(Γλ) is an SO(n)-

representation. If n = 2m is even and λm �= 0, then Γ̄[λ] decomposes into

the direct sum of two irreducible SO(n)-representation Γ[λ] and Γ[λ̄], where

λ̄ = (λ1, . . . , λm−1,−λm). Otherwise Γ̄[λ] = Γ[λ] is an irreducible SO(n)-

representation.

Now, apply πtr◦μλ on the tensor part of the above forms such that the images

of μλ are given by the following Young-tableaux:

(1.5)

Φ̃[k,p,q] ∼

i1 π1 1 . . . p
...

...
...

...

iq πq

, Ξ̃[k,p,q] ∼

i1 π1 1 . . . p
...

...

iq πq

y

,

Ψ̃[k,p,q+1] ∼

i1 π1 1 . . . p
...

...

iq πq

y y

with the integers j in the grey boxes representing the j-th copy y in yp = y⊗p,

and symmetrise the tensor part of Θ̃[k,p] as that in Φ̃[k,p,k] except that πi are

replaced by ji. We thus obtain the Γ̄[λ]-valued differential forms

(1.6) T̃[k,p,q] := πtr ◦ μλ(T̃⊗k,p,q).

It is well-known that Γ̄[λ] may be embedded into

∧λ′
Rn :=

∧λ′
1Rn ⊗ · · · ⊗∧λ′

λ1Rn,

where λ′ = (λ′1, . . . , λ
′
λ1
) is conjugate to λ, i.e., where λ′j is the number of boxes

in the j-th column of the Young-diagram of λ. If λ′i = n/2, the operator

∗i :
∧λ′

Rn → ∧λ′
Rn

given by applying the Hodge-∗-operator on ∧λ′
iRn restricts to an SO(n)-equi-

variant map on Γ̄[λ] which is not a multiple of the identity.
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Theorem 1.4: Let λ be from Theorem 1.1, m be the largest j with λj �= 0,

p := λ1−2, and k′ := min(k, n−k−1). Write T[k,p,q] for the curvature measure

induced by T̃[k,p,q].

• If m = 0, Curv
sm,SO(n)
k,Γ[λ]

has the basis Φ[k,0,0] .

• If 1 ≤ m < n/2, its basis is

⎧⎪⎪⎨
⎪⎪⎩
Ξ[k,p,m−1] if λm = 1;

Ψ[k,p,m] if λm ≥ 2 and m = k′ + 1;

Φ[k,p,m],Ψ[k,p,m] (and Θ[k,p] ) if λm ≥ 2 (and n=2m+1);

• If m = n/2, its basis is

⎧⎨
⎩Ξ[k,p,m−1] ± (

√−1)m ∗1 Ξ[k,p,m−1] if λm = ∓1;

Ψ[k,p,m] ± (
√−1)m ∗1 Ψ[k,p,m] if λm = ∓c, c ≥ 2.

In particular, if m = n/2 is odd, Γ[λ]-valued curvature measures cannot be

realised as real-valued curvature measures.

Although the forms appearing in the above Theorem may seem intimidating

at the first glance, they occur naturally when one writes down the isomorphisms

in the chain of identities in (4.1) and applies them to the elements of the last

space in the chain. The chain itself is the core of the proof of Theorem 1.1

and the elements of the last space are rather straight-forward to construct. The

occurrence of (
√−1)m in the case m = n/2 is due to the spectral decomposition

of the operator ∗1 on certain O(n)-representations.

Next, we analyse the behaviour of smooth curvature measures under the

globalisation map.

Theorem 1.5: The kernel of glob : Curvsmk → Valsmk is spanned by:

Ξ[k,p,q],Θ[k,p] for all p, q,(1.7)

Ψ[k,p,k+1] for all p if 0 ≤ k ≤ n− 1

2
,(1.8)

q(n−k+1)Ψ[k,p,q]+(k−q+1)(qp+1)Φ[k,p,q] for all p and 1 ≤ q ≤ k′.(1.9)

This yields in combination with Proposition 4.5 the following result.



Vol. 250, 2022 VALUATIONS AND CURVATURE MEASURES 473

Proposition 1.6: Let λ be from the harmonic decomposition of Valk such

that all λj ≥ 0. Writing τ[k,p,q] := globT[k,p,q], the space Val
SO(n)

k,Γ̄[λ]
is spanned

by φ[k,0,0] if m = 0, ψ[k,p,m] if λm ≥ 2 and m < n/2, and ψ[k,p,m], ∗1ψ[k,p,m]

otherwise.

In particular, the coefficients of φ[k,0,0], ψ[k,p,q], 1 ≤ q ≤ min{k, n− k}, p ≥ 0,

and those of ∗1ψ[k,p,k] if n = 2k, form a Schauder-basis of Valk.

2. Representation Theory

Let V=C
n with n≥3 and assume that all representations are finite-dimensional

throughout this section, unless otherwise stated.

Given a Young-diagram λ, define two subgroups of the permutation group Sd:

P = {π ∈ Sd : π preserves each row of λ},
Q = {π ∈ Sd : π preserves each column of λ}.

Defining the group algebra CG to be a vector space spanned by vectors eg

for each g ∈ G, such that eg · eh = egh, we set

(2.1) aλ=
∑
π∈P

eπ∈CSd, bλ=
∑
π∈Q

sgnπ · eπ∈CSd, and cλ=aλ · bλ∈CSd.

It turns out that cλ ·cλ = nλcλ for some positive integer nλ and SλV := V ⊗d ·cλ
is an irreducible Sd-representation. Furthermore, the right action of Sd on V ⊗d

given by permuting factors

(v1 ⊗ · · · ⊗ vd) · σ = vσ(1) ⊗ · · · ⊗ vσ(d)

commutes with the standard left action of SL(n,C). Hence, SλV is also an

irreducible SL(n,C)-module. The map

μλ(v) := v · cλ
is the Young-symmetriser mentioned in the introduction.

Proposition 2.1: Any irreducible complex SL(n,C)-module is isomorphic to

the SL(n,C)-module SλV for some λ = (λ1 ≥ · · · ≥ λn ≥ 0). The isomorphy

class of SL(n,C)-representations which contains SλV is denoted by Γλ.



474 M. SAIENKO Isr. J. Math.

See [31, Chapter 6.1, Proposition 15.15] for more details.

The SL(n,C)-modules Γλ are also uniquely determined up to isomorphism

by certain Bianchi-type identities [30, §8], [49, §I.5, (5.12)]. Define a (Young)

tableau T on λ as a numbering of the boxes by the integers 1, . . . , |λ| =: d and

let T (i, j) be the number in the i-th box of the j-th column. A semi-standard

tableau is a Young-tableau such that the entries are non-decreasing in each

row and strictly increasing in each column.

Theorem 2.2 (Bianchi-type identities): Let e1, . . . , en be an orthonormal base

of V and write

eT :=

λ1∏
j=1

eT (1,j) ⊗ · · · ⊗ eT (λ′
j ,j)

∈ V ⊗|λ|

for any Young-tableau T of λ. Then for any semi-standard tableau T , one has

μλ

(
eT −

∑
S

eS

)
= 0,

where the sum is over all S obtained from T by exchanging the top k elements

of one column with any k elements of the preceding column, maintaining the

vertical orders of each set exchanged. There is one such relation for each num-

bering T , each choice of adjacent columns, and each k at most equal to the

length of the shorter column.

The elements μλ(eT ) for semi-standard Young-tableaux T generate SλV as a

vector space.

SλV may be used to construct irreducible SO(n,C)- and O(n,C)-modules.

As there exists a symmetric bilinear form Q on V preserved by O(n,C), the

contraction maps for p < q

(2.2)
trp,q : V

⊗d → V ⊗d−2

v1 ⊗ · · · ⊗ vd �→ Q(vp, vq) v1 ⊗ · · · ⊗ v̂p ⊗ · · · ⊗ v̂q ⊗ · · · ⊗ vd

are O(n)-equivariant. The intersection of all kernels of such contractions is

closed under the action of Sd, hence, the intersection V [d] of these kernels is an

Sd-submodule of V ⊗d. Set

S[λ]V := V [d] ∩ SλV.
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Theorem 2.3: The O(n,C)-module S[λ]V is trivial if λ�n/2�+1 > 0 or λ′1+λ
′
2 >

n and irreducible otherwise. Furthermore:

• If n = 2k + 1 and λ = (λ1 ≥ λ2 ≥ · · ·λk ≥ 0) or n = 2k and λ =

(λ1 ≥ λ2 ≥ · · ·λk−1 ≥ λk = 0), then S[λ]V is an irreducible SO(n,C)-

representation.

• If n = 2k and λ = (λ1 ≥ λ2 ≥ · · ·λk > 0), then S[λ]V is a direct sum of

two irreducible SO(n,C)-modules that are dual to each other.

We write Γ̄[λ] for the isomorphy class of irreducible O(n,C)-representations

containing S[λ]V and Γ[λ] for the isomorphy class of irreducible SO(n,C)-rep-

resentations corresponding to the tuple λ. One may show that

Γ∗
[λ1,...,λk]

= Γ[λ1,...,λk−1,−λk]

and the theorem may be re-stated as

Γ̄[λ] =

⎧⎨
⎩Γ[λ] ⊕ Γ∗

[λ] if n = 2k is even and λk �= 0,

Γ[λ] otherwise.

Definition 2.4: Let V be a representation of a Lie-group G. The character χ
V

of V is a complex-valued function on G defined by χV (g) = tr(g|V ).
The most notable facts about characters is their ability to uniquely determine

G-modules up to isomorphism for any compact or linear reductive Lie-group G

as well as their explicit forms for a large number of representations. For example,

the character of the irreducible SL(n,C)-module
∧k

V is given by the elementary

symmetric polynomial Ek of the eigenvalues x1, . . . , xn of g ∈ SL(n,C):

χ∧kV
(g) = Ek(x1, . . . , xn) =

n∑
i1<···<ik=1

xi1 · · ·xik .

More generally, one has the following result.

Proposition 2.5 (Giambelli-formula for SL(n,C)): Let λ be a tuple

(λ1 ≥ · · · ≥ λn ≥ 0) and μ = (μ1, . . . , μ�) = λ′ its conjugate partition. Then

χ
Γλ

= det(Eμi+j−i) = det

⎛
⎜⎜⎜⎜⎝

Eμ1 Eμ1+1 · · · Eμ1+�−1

Eμ2−1 Eμ2 · · · Eμ2+�−2

...
...

. . .
...

Eμ�−l+1 Eμ�−l · · · Eμ�

⎞
⎟⎟⎟⎟⎠ .
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A similar formula may be found for characters of SO(n,C)-representations

except that the character of
∧k

V as an SO(n)-representation is given by

Ek = Ek(x1, . . . , xm, x
−1
1 , . . . , x−1

m ) for n = 2m

and

Ek = Ek(x1, . . . , xm, x
−1
1 , . . . , x−1

m , 1) for n = 2m+ 1.

Then Em+k = Em−k, resp. Em+k = Em+1−k, due to the isomorphisms∧m+k
V � ∧m−k

V,

resp.
∧m+kV � ∧m−k+1V for even resp. odd n.

Proposition 2.6 (Giambelli-formula for SO(n,C)): Let λ be a tuple of integers

(λ1 ≥ · · · ≥ λn ≥ 0) and μ = (μ1, . . . , μ�) = λ′ its conjugate partition. Then

the character χ
Γ̄[λ]

is given by the determinant of the × -matrix with i-th row

(Eμi−i+1 Eμi−i+2 + Eμi−i Eμi−i+3 + Eμi−i−1 · · · Eμi−i+� + Eμi−i−�+2).

Given a representation V of a Lie-group G, any closed Lie-subgroup H ⊂ G

inherits from G the action on V so that V may also be regarded as an H-module

which we denote by ResGH V . Such restrictions may often be written in closed

terms.

Theorem 2.7 (SO(n,C)-branching): Let λ be a tuple of integers satisfying

conditions from Theorem 2.3. Then

Res
SO(n,C)
SO(n−1,C) Γ

SO(n,C)
[λ] =

⊕
μ

Γ
SO(n−1,C)
[μ] ,

where μ runs over all partitions μ = (μ1, . . . , μk), k = 	(n− 1)/2
, such that⎧⎨
⎩λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μk−1 ≥ λ�n/2� ≥ |μk| for odd n,

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μk ≥ |λ�n/2�| for even n.

There is also a canonical way to “extend” a representation W of H to a

representation of G. Consider the space C∞(G,W ) of all smooth functions

from G to W . The G-invariant subspace

(2.3) IndGH W := {f ∈ C∞(G,W ) | f(gh) = h−1f(g), ∀h ∈ H, ∀g ∈ G}.
is called the induced representation of G from H .
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Note that IndG
H W is, in general, not finite-dimensional. Nevertheless, the

formulae for Res(IndW ) and Ind(ResW ) are known and can be found in [56].

Although both constructions are generally not equal to W , the well-known

Frobenius’ Theorem shows that Ind and Res are, in some sense, adjoint to each

other.

Theorem 2.8 (Frobenius’ Reciprocity Theorem): Let G be a compact Lie-

group and H ⊂ G a closed Lie-subgroup. Given a representation U of G and a

representation W of H , there is a canonical vector space isomorphism

HomG(U, IndW ) � HomH(ResU,W ).

We can now prove the following result which is a refinement of Corollary 3.4

in [12].

Lemma 2.9: Let i, j ∈ N such that 0 ≤ i, j ≤ n and set

i′ := max(min(i, n− i),min(j, n− j)), j′ := min(min(i, n− i),min(j, n− j)).

Then the following SL(n,C)-representations are isomorphic

(2.4)
∧i,j

V � (Γ(2[j′],1[i′−j′]))⊕
∧i′+1,j′−1

V � ⊕j′

k=0 Γ̄(2[j′−k],1[2k+i′−j′]).

The above isomorphisms may be interpreted as isomorphisms of SO(n,C)-

representations by the following identity of SO(n)-representations

Res Γ(2[k],1[l]) =

k⊕
m=0

Γ[2[m],1[l]]

for any integers k, l.

Proof. Since
∧iV � ∧n−iV and

∧iV ⊗ ∧jV � ∧jV ⊗ ∧iV , we may as-

sume without loss of generality that i = i′ ≤ n/2 and j = j′ ≤ n/2. If

λ = (λ1, . . . , λm) is a non-negative tuple, as specified in the middle term of the

above identity, then the conjugate μ := λ′ = (i, j). By Proposition 2.5

χ
Γλ

= det

(
Ei Ei+1

Ej−1 Ej

)
= EiEj − Ei+1Ej−1,

which shows the left isomorphism in (2.4). Applying it recursively until j′ = 0

yields the right isomorphism. Apply Proposition 2.6 on Γ̄[λ] for λ = (2[m], 1[l])
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with conjugate μ = (l +m,m):

χ
Γ̄[λ]

= det

(
Em+l Em+l+1 + Em+l−1

Em−1 Em + Em−2

)
.

The last identity is now obtained by summing over all m:

k∑
m=0

χ
Γ̄[2[m],1[l]]

=
k∑

m=0

(Em+l(Em + Em−2)− El−1(Em+l+1 + Em+l−1))

= Ek+lEk − Ek+l+1Ek−1 = χ
Γ̄(2[k], 1[l])

.

Remark 2.10: The complexification of so(n,R) is so(n,C) and that of sl(n,R)

is sl(n,C) which are both complex simple Lie-algebras. By [43, Chapter 5.1],

[31, Chapter 26.1], if G is a real Lie-group with a simple real Lie-algebra g0 such

that its complexification g := g0⊗C is a simple complex Lie-algebra, then there

is one-to-one correspondence between the complex representations of G and its

complexified counterpart with the Lie-algebra g. Thus, one obtains a one-to-

one correspondence between the complex representations of SO(n) := SO(n,R)

resp. SL(n) := SL(n,R) and those of SO(n,C) resp. SL(n,C).

Remark 2.11: The SO(n)-module Γ[λ] on a complex vector space is called of

real type (or just real) if it may be realised as a complexification Γ[λ,R] ⊗ C

of an irreducible SO(n)-module with the same tuple λ on real vector space. By

[31, Proposition 26.27], the SO(n)-module Γ[λ] is not of real type if and only if

n = 2k for odd k and λk �= 0. In contrast, irreducible O(n)-modules Γ̄[λ1,...,|λk|]
are always of real type.

3. Valuation Theory and Contact Geometry

From now on, we assume that V = Rn with the basis e1, . . . , en and write

SL(n) = SL(n,R) and SO(n) = SO(n,R).

The normal cycle of a convex body K ∈ K(V ) is an (n − 1)-dimensional

Lipschitz manifold:

nc(K) := {(x, y) ∈ SV | 〈x − x′, y〉 ≥ 0, ∀x′ ∈ K}.
Definition 3.1: A translation-invariant functional φ : K(V ) → Γ is called a

smooth valuation if, for all K ∈ K(Rn),

φ(K) = integ(β, ω)(K) :=

∫
K

β +

∫
nc(K)

ω,
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where β ∈ Ωn(Rn)R
n ⊗ Γ is a translation-invariant Γ-valued form on Rn

and ω ∈ Ωn−1(SRn)R
n ⊗ Γ is a translation-invariant form on SRn. Likewise,

a translation-invariant functional Φ : K(V ) × B(V ) → Γ is called a smooth

curvature measure if, for all K ∈ K(Rn) and all U ∈ B(Rn),

Φ(K,U) = Integ(β, ω)(K,U) :=

∫
K∩U

β +

∫
nc(K)∩π−1(U)

ω,

where π : SRn → Rn is the projection on the first factor. The operators integ

and Integ which assign to a given pair of translation-invariant forms a corre-

sponding smooth valuation, resp. curvature measure, are called the integration

operators.

Both integration operators have non-trivial kernels best described in contact-

geometric terms. Let (W,ω) be a symplectic vector space of real dimension 2n.

Recall that the operator

L :
∧∗

(W ∗) →∧∗+2
(W ∗)

τ �→ τ ∧ ω
is called the Lefschetz operator. Fixing a Euclidean scalar product 〈·, ·〉
on W , the operator Λ of degree (−2) uniquely determined by

〈Λτ, β〉 = 〈τ, Lβ〉, ∀β, τ ∈ ∧∗
(V ∗)

is called the dual Lefschetz operator.

Definition 3.2: A k-linear form α ∈ ∧k
(W ∗) is called primitive if Λα = 0. The

subspace of all primitive elements in
∧k

(W ∗) is denoted by∧k
p(W

∗) ⊂ ∧k
(W ∗).

The operator Λ and, hence, the notion of primitivity may be extended to sym-

plectic manifolds in a pointwise manner.

To define a contact manifold, recall that a contact element on a mani-

fold M is a point p ∈ M , called the contact point, together with a tangent

hyperplane at p, Qp ⊂ TpM , i.e., a co-dimension 1 subspace of TpM . A hyper-

plane Qp ⊂ TpM is completely determined by a linear form αp ∈ T ∗
pM \ {0}

that is unique up to some non-zero scalar. Indeed, if (p,Qp) is a contact el-

ement, then Qp = kerαp. On the other hand, kerαp = kerα′
p if and only

if αp = λα′
p. Now, let Q be a smooth field of contact hyperplanes onM defined



480 M. SAIENKO Isr. J. Math.

by Q(p) := Qp. Then Q = kerα for an open subset U ⊂M and some 1-form α

called a locally defining 1-form for Q. This form is again unique up to a smooth

nowhere vanishing function f ∈ C∞(U).

A contact structure onM is a smooth field of tangent hyperplanesQ ⊂ TM

such that, for any locally defining 1-form α, dα|Q is non-degenerate, i.e., sym-

plectic. The pair (M,Q) is called a contact manifold and α is called a local

contact form. The restriction dαp|Qp
is symplectic on Qp, which implies im-

mediately that dimQp = 2n is even and dαn
p

∣∣
Qp

�= 0 is a volume form on Qp.

Since TpM = kerαp⊕kerdαp, one has dimTpM = 2n+1 is odd. In fact, Q is a

contact structure if and only if α∧ dαn �= 0 for every locally defining 1-form α.

In particular, α is a global contact form if and only if α∧ dαn is a volume form

on M

If there is a globally defined form α, one can obtain a unique vector field T

called the Reeb vector field on M such that the contraction ιT (dα) = 0

and ιT (α) = 1. Indeed, ιT (dα) = 0 implies that T ∈ ker dα, which is one-

dimensional, and ιTα = 1 just normalises T .

We may now refine the description of differential forms on SRn which turns

out to be a contact manifold with the contact form α defined pointwise

at p = (x, y) ∈ SRn as follows:

α|(x,y) (w) := 〈y, dπ(w)〉 =
n∑

i=1

yi dx
i(w),

where π : SRn → Rn is the projection. The Reeb vector field T is given by

T |(x,y) =
n∑

i=1

yi
∂

∂xi
.

Definition 3.3: A form ω ∈ Ω∗(SRn) is called horizontal if ιTω = 0. A form ω

that can be written as τ ∧ α is called vertical. The algebras of horizontal or

vertical forms on SRn are denoted by Ω∗
h(SR

n) and Ω∗
v(SR

n), respectively.

A smooth translation-invariant form ω on SRn is said to be of bi-degree (i, j)

if ω can be written as
∑

a τa ⊗ φa with τa ∈ Ωi(Rn)R
n

and φa ∈ Ωj(Sn−1).

Clearly, ω ∈ Ωi+j(SRn)R
n

and

Ωk(SRn)R
n

=
⊕

i+j=k

(Ωi(Rn)R
n ⊗ Ωj(Sn−1)).
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To simplify the notation, we write Ωi,j for the space Ωi,j(SRn)R
n

of translation-

invariant differential forms of bi-degree (i, j) on SRn and Ωi,j
p for the space of

primitive translation-invariant forms. As α ∈ Ω1,0
v and L is of bi-degree (1, 1)

in this notation, we have

(3.1) Ωi,j
p = Ωi,j

h /LΩi−1,j−1
h ,

whenever i + j ≤ n. Furthermore, the Hodge-∗-operator on SRn induces two

finer operators on Ω∗: ∗1 : Ωi,j → Ωn−i,j and ∗2 : Ωi,j → Ωi,n−j−1 given

by applying the Hodge-∗-operator on the Ωi(Rn)R
n

- resp. Ωj(Sn−1)-part of a

differential form. Since, for any vertical translation-invariant form ω, both ∗ω
and ∗1ω are translation-invariant and horizontal, and vice versa, both operators

yield isomorphisms ∗1 : Ωi,j
h → Ωn−1−i,j

h and ∗2 : Ωi,j
h → Ωi,n−j−1

h .

To reduce a vertical form τ ∧ α to a horizontal form, we use a contraction

with the Reeb vector field ιT . Indeed,

ιT (τ ∧ α) = (ιT τ) ∧ α+ τ ∧ (ιTα) = τ

for any horizontal form τ . Hence, we may write for ω ∈ Ωi,j (recall that∧i,j
Rn =

∧i
Rn ⊗∧j

Rn)

ω|(x,y) ∈ (
∧i,j

T ∗
y S

n−1)⊕ (
∧i−1,j

T ∗
y S

n−1 ⊗ Rα|(x,y)).

In particular, if ω ∈ Ωi,j
h , then ω|(x,y) ∈ ∧i,jT ∗

y S
n−1. We will write in the

following ω|y instead of ω|(x,y), whenever ω ∈ Ωi,j
h and (x, y) ∈ SRn. Observing

that the stabiliser of SO(n) at any fixed point y ∈ Sn−1 is SO(n−1) and writing

Wy := TyS
n−1, one has the following result.

Lemma 3.4 ([12]): For all i, j ∈ N, one has

Ωi,j
h � Ind

SO(n)
SO(n−1)(

∧i,j
W ∗

y ).

Corollary 3.5: If i + j ≤ n − 1 and max(i, j) ≥ (n − 1)/2, then there is an

isomorphism of SO(n)-representations

(3.2) Ωi,j
p ⊕ Ind

SO(n)
SO(n−1)(

∧i−1,j−1
W ∗

y ) = Ind
SO(n)
SO(n−1)(

∧i,j
W ∗

y ),

hence, Ωi,j
p = Ind

SO(n)
SO(n−1)

∧i,j
p W ∗

y , where
∧i,j

p W ∗
y :=

⊕j
l=0 Γ̄[2[l],1[n−1−(i+j)]].
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Proof. Let, without loss of generality, j ≥ (n − 1)/2. Then i ≤ (n − 1)/2 and

Lemma 2.9 yields∧i,j
W ∗

y = ∗2(
∧i,n−j−1

W ∗
y )

� ∗2(
∧i,n−j−1

p W ∗
y )⊕ ∗2(

∧min{i,n−j−1}−1,max{i,n−j−1}+1W ∗
y ).

As W ∗
y ⊕W ∗

y is a symplectic space with the symplectic form dα and

∗2(
∧min{i,n−j−1}−1,max{i,n−j−1}+1

W ∗
y ) ⊂

∧i+j−2
(W ∗

y ⊕W ∗
y ),

the Lefschetz decomposition implies that∧i,j
W ∗

y = ∗2(
∧i,n−j−1

p W ∗
y )⊕ dα ∧ ∗2(

∧min{i,n−j−1}−1,max{i,n−j−1}+1
W ∗

y ).

The claim follows now immediately from (3.1) and the above Lemma. Note that

the condition max(i, j) ≥ (n− 1)/2 is essential for the claim’s validity.

Theorem 3.6: The SO(n)-representations Curvsmk and Ωk,n−1−k
p are isomor-

phic and one has

Curvsm =

n⊕
k=0

Curvsmk .

Proof. We know from [18] that ker integ is generated by vertical and exact forms

and it is obvious that ker Integ ⊂ ker integ. Vertical forms are precisely those

which vanish pointwise on normal cycles, hence, they lie in ker Integ. Let ω = dτ

be an exact horizontal (n− 1)-form. Then, for K ∈ K(Rn) and U ∈ B(Rn)

(3.3)

∫
nc(K)∩π−1(U)

dτ =

∫
∂(nc(K)∩π−1(U))

τ.

Since ∂(nc(K) ∩ π−1(U)) ⊂ nc(K), the integral vanishes for any K and U if

and only if τ vanishes on nc(K) pointwise, i.e., if ω = d(α∧φ) = dα∧φ−α∧dφ.
The second term is 0 due to horizontality of ω, hence, ω is a multiple of dα and

the first claim follows. The decomposition of Curvsm follows immediately from

the bi-grading on Ω∗
p.

4. Proofs of the Main Results

4.1. Decomposition and Basis. A tuple λ is said to be of type [q; p; r] if its

conjugate is (q + r, q, 1, . . . , 1︸ ︷︷ ︸
p times

) and q + r or q are ignored if they are 0. The

SL(n)- and SO(n)-representations associated to such tuples are also called of

type [q; p; r]. In particular, the representation of type [0; 0; 0] is trivial and that
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of types [0; 0; 1] or [0; 1; 0] is the standard representation. Theorem 1.1 claims

that only SO(n)-representations Γ[λ] of type [q; p; r] and their duals occur in

Curvsmk . These SO(n)-representations will be denoted by Γq,p
r .

Proof of Theorem 1.1. We write n′:=n−1 for brevity and assume, without loss of

generality, k≤n′/2. To distinguish between SO(n)- and SO(n′)-representations,
we denote the former by Γ[λ] and the latter by Υ[λ]. The operators Res

SO(n)
SO(n′),

and Ind
SO(n)
SO(n′) will be shortened to Res and Ind, respectively.

Let Γ[λ] be an arbitrary irreducible SO(n)-representation. By Schur’s Lemma,

the total multiplicity of Γ[λ] in Curvsmk is the dimension of

HomSO(n)(Curv
sm
k ,Γ∗

[λ]).

As HomG(V,W ) � (V ∗ ⊗W )G, one has

(4.1)

(Curvsmk ⊗Γ[λ])
SO(n) Thm. 3.6

= (Ωk,n′−k
p ⊗ Γ[λ])

SO(n)

Cor. 3.5
= (IndΛk,n′−k

p W ∗
y ⊗ Γ[λ])

SO(n)

Thm. 2.8
=

k⊕
q=0

HomSO(n′)(Ῡ
q,0
0 ,ResΓ[λ])

=
k⊕

q=0

⊕
μ

HomSO(n′)(Ῡ
q,0
0 ,Υ[μ]),

where the sum over μ is as per Theorem 2.7. Note that we have dropped the

duality in the third equality, since Res Γ[λ] � Res(Γ[λ])
∗ � (Res Γ[λ])

∗ and,

hence, the multiplicity of Γ[λ] and (Γ[λ])
∗ in Curvsmk is the same. By Schur’s

Lemma, HomSO(n′)(Ῡ
q,0
0 ,Υ[μ]) is not trivial if and only if μ = [q; 0; 0]. Hence,

the multiplicity of Γ[λ] in Curvsmk is equal to the number of modules of type

[q; 0; 0] in ResΓ[λ]. We now study the classes of Γ[λ] on a case-by-case basis:

• Γq,p
1 contains exactly one SO(n′)-module Υq,0

0 if and only if 0 ≤ q ≤ k.

• Γq,p
0 contains modules Ῡq,0

0 , Ῡq−1,0
0 if 1≤q≤k, Ῡk,0

0 if q=k+1, and Ῡ0,0
0

if q = p = 0. Note that Ῡq,0
0 is a sum of two irreducible modules if and

only if q = k = n′/2, i.e., when n = 2k + 1, otherwise it is irreducible.

• The same applies for the above modules’ duals. The only non-self-dual

modules with non-zero multiplicities in Curvk are (Γk,p
0 )∗ and (Γk−1,p

1 )∗

if n = 2k.

Irreducible SO(n)-modules not mentioned in the above list do not contain

SO(n−1)-modules of type [q; 0; 0], hence, their multiplicity in Curvsmk is zero.
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Proof of Theorem 1.4. Let us fix Γ[λ] = Γq,p
r an arbitrary SO(n)-module from

the previous Theorem and assume k ≤ n′/2. Taking over the notation and

slightly re-formulating the assertions from the previous proof

HomSO(n′)(
∧q,q

p Rn′
,Res Γ[λ]) = HomSO(n′)(Ῡ

q,0
0 ⊕ Ῡq−1,0

0 ,ResΓ[λ]),

where

1 ≤ dimHomSO(n′)(Ῡ
q,0
0 ,Res Γ[λ]) ≤ 2

and

dimHomSO(n′)(Ῡ
q−1,0
0 ,Res Γ[λ]) ≤ 1.

Let us construct the basis of the space on the left-hand side.

Define

V ′
i,j :=

∧i,j
Rn′

, Vλ :=
∧q+r

Rn ⊗∧q
Rn ⊗ Symp

Rn.

Interpreting SO(n′) as the stabiliser of SO(n) which fixes en ∈ Rn, the following

SO(n′)-equivariant map:

ιq′,λ : V ′
q′,q′ → Vλ

v ⊗ w �→ v ∧ (en)
q+r−q′ ⊗ w ∧ (en)

q−q′ ⊗ (en)
p

is injective if q − q′ + r ≤ 1 and trivial otherwise.

Now, the map μ[q,λ] := μλ ◦ πtr ◦ ιq,λ : V ′
q,q → Res Γ[λ] is SO(n′)-equivariant

and its restriction to the SO(n′)-module Ῡq,0
0 ⊂ Vq,q is not trivial.

Let v := e1...q ⊗ e1...q ∈ Vq,q. Then v fulfills all Bianchi-identities for the SL(n′)-
module of type [q; 0; 0], as exchanging ei from the first column with ej from the

second column yields either v (i = j) or 0 (i �= j). Hence, πtr(v) ∈ Ῡq,0
0 and it

is straight-forward to verify that πtr(v) �= 0.

On the other hand, iq,λ(v) =: w0 is not a multiple of Q :=
∑n

i=1 e
2
i , since

neither e2n nor v are multiples of Q, v is not a multiple of Q′ := Q − e2n, and

q ≤ (n− 1)/2. Taking πtr to be the projection on the traceless subspace with

respect to Q, one thus obtains πtr(w0) �= 0. By Proposition 4.4, μλ(w0) is a

sum of w0 and several of its permutations obtained by exchanging ei, i < n

from either the first or second column with en from the symmetric part epn. As

the traceless part of a vector is obtained by subtracting from it certain multi-

ples of Q, projecting all such permutations to trace-free spaces yields linearly

independent forms. All in all, we obtain that μ[q,λ](v) �= 0. Hence, if Ῡq,0
0 is

irreducible, then μ[q,λ] spans HomSO(n′)(Ῡ
q,0
0 ,ResΓ[λ]).
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As Ῡq−1,0
0 is always irreducible, the—possibly trivial—space

HomSO(n′)(Ῡ
q−1,0
0 ,ResΓ[λ])

is spanned by μ[q−1,λ]. In fact, taking v′ := e1...q−1 ⊗ e1...q−1 and assuming

that ιq−1,λ is not trivial, μλ(ιq−1,λ(v
′)) is a multiple of ιq−1,λ(v

′) and from the

same argument as for μ[q,λ] follows that it contains a non-trivial traceless part.

Obviously, μ[q,λ] and μ[q−1,λ] are linearly independent.

If q = n′/2, then
Ῡq,0

0 = Υq,0
0 ⊕ (Υq,0

0 )∗

and dimHomSO(n′)(Ῡ
q,0
0 ,Res Γ[λ]) = 2. Now, the map ∗2 : V ′

q,q → V ′
q,q ,

(v ⊗ w) �→ (v ⊗ ∗w),
where ∗ is the Hodge-operator, restricts to a non-trivial SO(n′)-equivariant map

on Ῡq,0
0 which is not a multiple of the identity (see [31, p. 290]). Hence, μ[q,λ]

and μ∗
[q,λ]:=μ[q,λ]◦∗2 are linearly independent and span HomSO(n′)(Ῡ

q,0
0 ,Res Γ[λ]).

Having the basis μ[q,λ], μ[q,λ]—and μ∗
[q,λ] in the case that q = n′/2—of

HomSO(n′)(
∧q,q

p Rn′
,Res Γ[λ]), let us construct an isomorphism to

(
∧k,n′−k

p W ∗
y ⊗ Res Γ[λ])

SO(n′),

where y = en.

Let V,W be G-modules for a Lie-group G and v1, . . . vN be the basis of V .

Any G-equivariant map μ ∈ HomG(V,W ) may be identified with the element

N∑
i=1

v∗i ⊗ μ(vi) ∈ (V ∗ ⊗W )G.

As V ′
q,q has a canonical basis

eI ⊗ eJ := ei1...eq ⊗ ej1...jq ,

where I = (1 ≤ i1 ≤ · · · eq ≤ n′), we may identify (V ′
q,q)

∗ with V ′
q,q via the map

e∗I �→ eI and write any SO(n′)-equivariant map μ : V ′
q,q →W as a multiple of

μ̄ :=
∑

eI ⊗ eJ ⊗ μ(eI ⊗ eJ) ∈ (V ′
q,q ⊗W )SO(n′),

where the sum is over all q-tuples I, J .

Observe that the map ∗2 : V ′
i,j → V ′

i,n′−j is an SO(n′)-equivariant isomor-

phism and so is ν : V ′
i,j → ∧i,j

W ∗
y which sends eI ⊗ eJ �→ dxI ⊗ dyJ for

any i-tuple I and j-tuple J . Now, Rn′ ⊕ R
n′

is a symplectic space with the
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symplectic form Q′ ∈ V ′
1,1 and the map Lm : V ′

i,j → V ′
i+m,j+m given by the

m-fold application of the Lefschetz operator L : V ′
i,j → V ′

i+1,j+1,

v ⊗ w �→ (v ⊗ w) ∧Q′ :=
n′∑
i=1

v ∧ ei ⊗ w ∧ ei,

is injective for i+ j ≤ n′ − 2m. Hence, ν ◦ ∗2 ◦ Lk−q is SO(n′)-equivariant and
injective and so is the map

ρ̃q,k,λ : HomSO(n′)(V
′
q,q,Res Γ[λ]) → (

∧k,n′−k
W ∗

y ⊗ ResΓ[λ])
SO(n′)

μ �→
∑

(ν ◦ ∗2 ◦ Lk−q)(eI ⊗ eJ)⊗ μ(eI ⊗ eJ).

As ∗2 ◦ Lk−q maps primitive forms to primitive forms, the restriction of ρq,k,λ

to
∧q,q

p Rn′
yields the desired SO(n′)-equivariant isomorphism.

Note that ∑
Lk−q(eI ⊗ eJ) =

∑
ei1...ik ⊗ ej1...jqiq+1...ik ,

where the sum is over i1 . . . ik, j1 . . . jq. We may assume that all indexes in

the sum are distinct, otherwise Lk−q(eI ⊗ eJ) = 0. Hence, there is a per-

mutation π ∈ Sn′ for each J such that (j1 . . . jqiq+1 . . . ik) = (π1 . . . πk). As

∗eπ1...πk
= sgnπ eπk+1...πn , one sees that ρ̃q,k,λ(μ) is a multiple of

ρq,k,λ(μ) :=
∑

sgnπ dxi1...iqπq+1...πkdyπk+1...πn ⊗ μ(ei1...iq ⊗ eπ1...πq ),

where the sum is over π ∈ Sn′ and i1 . . . iq = 1, . . . , n′.
All in all, the basis of (

∧k,n′−k
p W ∗

y ⊗ResΓ[λ])
SO(n′) consists of those elements

from ρq,k,λ(μ[q,λ]), ρq−1,k,λ(μ[q−1,λ]), and ρq,k,λ(μ
∗
[q,λ]) which are not trivial. In

particular, as dxn|(0,en) = α, dyn|(0,en) = 0 and yi(0, en) = δin, one has:

(1) If λ = [q, p, 0],

ρq,k,λ(μ[q,λ]) = Φ̃[k,p,q]|(0,en), ρq−1,k,λ(μ[q−1,λ]) = Ψ̃[k,p,q]|(0,en)
and, if q = k = n′/2, ρq,k,λ(μ∗

[q,λ]) is a multiple of Θ̃[k,p]|(0,en).
(2) If λ = [q, p, 1],

ρq,k,λ(μ[q,λ]) = Ξ̃[k,p,q]|(0,en).
The conditions for these forms’ non-triviality may now be elaborated from the

conditions for the non-triviality of ιq,λ and Theorem 1.1. Since all T̃[k,p,q] are

SO(n)-invariant (see Remark 4.1), the claim now follows for all self-dual irre-

ducible SO(n)-modules Γ[λ] = Γ̄[λ].
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If Γ[λ] is not self-dual, then n = 2k and λk �= 0. Let λk > 0. By Remark 2.11,

the O(n)-module Γ̄[λ] is real. Since ∗1 is not a multiple of the identity on Γ̄[λ],

the basis of (Ωk,n′−k
p ⊗ Γ̄[λ])

SO(n) is constituted by Ξ̃[k,p,k], ∗1Ξ̃[k,p,k] if |λk| = 1

and by Ψ̃[k,p,k], ∗1Ψ̃[k,p,k] otherwise.

In contrast, Γ[λ] and its dual are not always real and only complex-valued cur-

vature measures may assume values in them. Extending Γ̄[λ] to Γ̄[λ],C :=Γ̄[λ] ⊗ C

by complex-linearity, one sees that ∗1 has two eigenvalues ±im and the eigen-

spaces E±im := {v ∓ im ∗1 v | v ∈ Γ̄[λ,C]} correspond precisely to the complex

SO(n)-modules Γ∗
[λ] and Γ[λ]. This yields the claim for m = n/2.

Remark 4.1: The forms T̃[k,p,q], T ∈ {Φ,Ψ,Ξ}, are SO(n)-equivariant,

whereas Θ[k,p] is O(n)-equivariant, as

g
∑
π

sgnπ yπndx
πq+1...πkdyπk+1...πn−1 ⊗ eπ1...πq

= det g
∑
π

sgnπ yπndx
πq+1...πkdyπk+1...πn−1 ⊗ eπ1...πq

and

g

n∑
i=1

dxi ⊗ ei =

n∑
i=1

dxi ⊗ ei for all g ∈ O(n).

The maps μπ and πtr being O(n)-invariant do not destroy the invariances of the

symmetrised differential forms. As nc(gK) = det(g) g nc(K), one has

Θ[k,p](gK, gU) = det g

∫
g(nc(K)∩π−1(U))

Θ̃[k,p]

= det g

∫
nc(K)∩π−1(U)

g∗Θ̃[k,p] = det gΘ[k,p](K,U).

In particular, Θ[1,p] is a Symp
R3-valued smooth translation-invariant SO(n)-

equivariant curvature measure which is not O(n)-equivariant.

On the contrary, g∗T̃[k,p,q] = (det g) T̃[k,p,q] for T ∈ {Φ,Ψ,Ξ} and we obtain

by the same computation as above T[k,p,q](gK, gU) = T[k,p,q](K,U).

Proof of Proposition 1.3. The proof requires several facts from the geometric

measure theory that were also used in Section 4 of [35].

Let us evaluate Φ̃⊗k,p,q at the point (x, y) := (0, en) under the assumption

that the approximate tangential space T(0,en) nc(K) for a body K has the basis

aj :=
( ∂

∂xj
,
∂

∂yj

)
� (κjbj, λjbj), j = 1, . . . , n− 1,
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where κj, λj ∈ [0,∞) and bj is the orthonormal basis of W := e⊥n ⊂ Rn with

dual b∗j . Then dxj = κj b
∗
j and dyj = λj b

∗
j . By the skew-symmetry of the

wedge-product, we see that ij ∈ {π1, . . . , πq} for all j = 1, . . . , q, which yields

at (0, en)

Φ̃⊗k,p,q = (−1)n−1q!
∑

sgnπ κπ1...πk
λπk+1...πn−1b

∗
π1...πn−1

⊗ (b⊗π1...πq )
⊗2 ⊗ yp,

where the sum is over π ∈ Sn−1 and we employ the shorthand notation

κij := κj · κj . Now,∑
π

sgnπ e⊗π1...πq = (q!)−1
∑
π

sgnπ eπ1...πq

and b∗π1...πn−1
= sgnπ volW is just a multiple of the volume-form on W . Hence,

(4.2)
Φ̃⊗k,p,q|(0,en)

= (−1)n−1(q!)−1
∑

κπ1...πk
λπk+1...πn−1 volW ⊗(bπ1...πq )

⊗2 ⊗ yp.

We choose κj and λj so that bj form an orthonormal basis of T(0,en). In

particular, if bj are the directions of the (generalised) principal curvatures kj ,

then κj = (1+k2j )
−1/2 and λj = kj(1+k

2
j )

−1/2 with the convention that κj = 0

and λj = 1 if kj = ∞.

If K = P is a polytope and 0 ∈ F ∈ Fs, then there are exactly s different

principal curvatures kj with value 0 and exactly (n−s−1) of those with value∞.

Hence, if k �= s, then Φ̃(⊗k,p,q)|(0,en) = 0. Let us now assume without loss of

generality that k1 = · · · = kk = 0 and kk+1 = · · · = kn−1 = ∞. Then b1, . . . , bs

form the basis of L(F ) and volW = volL(F ) ⊗ volS(F⊥), where S(F
⊥) is the unit

sphere in the orthogonal complement of L(F ) in Rn:

Φ̃⊗k,p,q|(0,en) = (−1)n−1(q!)−1
∑

volL(F )⊗ volS(F⊥) ⊗(bπ1...πq )
⊗2 ⊗ yp,

where the sum is over such π ∈ Sn−1 that πj ∈ {1, . . . , k} for j = 1, . . . , k and

πj ∈ {k+1, . . . , n−k−1} for j = k+1, . . . , n−k−1. Since the term under the

sum is independent of πq+1, . . . πn−1 and
∑

π∈Sk
bπ1...πq =

∑k
i1,...,iq=1 bi1...iq , we

see that (bπ1...πq )
⊗2 = Q∧q

L(F ) and obtain

Φ̃⊗k,p,q|(0,en) = (−1)n−1 (k − q)!(n− k − 1)!

q!
volL(F )⊗ volS(F⊥) ⊗Q∧q

L(F ) ⊗ yp.

The first identity for Φ⊗k,p,q now follows from the definition of the Integ operator

and the properties of the normal cycle for polytopes. The second one is directly

implied by the first equation in the proof of [35, Lemma 4.1].



Vol. 250, 2022 VALUATIONS AND CURVATURE MEASURES 489

4.2. Symmetries. Let us start with the following easy-to-verify identity:

(4.3)
∑

i∈{i1,...,ik}

∑
π∈Sn

sgnπ eπi ⊗ eπi1 ...πik
= k

∑
π∈Sn

sgnπ eπi1
⊗ eπi1 ...πik

.

For a d-partition r = (r1, . . . , rd) of n, we write

eπ,r := eπs1 ...πt1
⊗ eπs2 ...πt2

⊗ · · · ⊗ eπsd
...πtd

∈ ∧r1
Rn ⊗ · · · ⊗∧rd

Rn,

where tj =
∑j

i=1 ri and sj = tj−1 + 1 (in particular, s1 = 1 and td = n). We

will refer to eπsj
...πtj

as the j-th column or the j-th wedge-vector in eπ,r.

Next, define eπ,r,i,k, where 1 ≤ i ≤ n and k ⊂ {1, . . . , d}, to be the vec-

tor obtained from eπ,r by replacing the wedge-vector eπsp ...πtp
with eπiπsp ...πtp

if p ∈ k. Last, define the operation σpq for p ∈ k, q /∈ k on eπ,r,i,k given by

exchanging eπi and eπsq
in eπiπsp ...πtp

and eπsq ...πtq
.

Lemma 4.2: Set p ∈ k, write k′ := {1, . . . , d} \ k, and assume that k,k′ are
non-empty. Then

(4.4) (rp + 1)
∑
i,π

sgnπ eπ,r,i,k =
∑
q∈k′

rq
∑
i,π

sgnπ σpq(eπ,r,i,k),

where the sum is over π ∈ Sn and i = 1, . . . , n.

Proof. Wemay re-order the wedge-vectors in eπr,i,k and assume k=(1, . . . , d−u),
k′ = (d− u+ 1, . . . , d) for 1 < u < d, and p = 1. The proof will now be carried

out inductively over |k′| = u. For the sake of brevity, we omit the subscript k

in eπ,r,i,k in the proof.

Let |k′| = 1 and, hence, k′ = (d). As eii = 0, we have

∑
i,π

sgnπ eπ,r,i =

td∑
i=sd

∑
π

sgnπ eπ,r,i
(4.3)
= rq

∑
π

sgnπ eπ,r,sd =: I.

All wedge-vectors of eπ,r,sd begin with the vector eπsd
, hence

σ1d(eπ,r,sd) = eπ,r,sd

and

I = rq
∑
π

sgnπ σ1d(eπ,r,sd)
(4.3)
=

rq
r1 + 1

∑
i∈s1,...,t1,sd

∑
π

sgnπ σ1d(eπ,r,i)

We now add 0 = sgnπ σ1d(eπ,r,i) for s2 ≤ i ≤ td, i �= sd and conclude the proof

for |k′| = 1.
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Assuming the claim’s validity for all |k′| = u− 1, the proof for |k′| = u works

as follows. We start by splitting the sum:

∑
i,π

sgnπ eπ,r,i =
∑
π

sgnπ

( td−1∑
i=s1

eπ,r,i +

td∑
i=sd

eπ,r,i

)
=: A+B.

Now, eπ,r,i = eπ,r′,i ⊗ eπsd
...πtd

, where r′ = r \ {rd} = (r1, . . . , rd−1). As

|{1, . . . d− 1} \ k| = t− 1,

we may apply the Lemma on eπ,r′,i in A, observe that

σ1q(eπ,r′,i)⊗ eπsd
...πtd

= σ1q(eπ,r,i) for q ≤ d− 1,

and add 0 =
∑td

i=sd
σ1q(eπ,r,i)−

∑td
i=sd

σ1q(eπ,r,i) to obtain

A =
∑

q∈k′\{d}

rq
r1 + 1

(∑
i,π

sgnπ σ1q(eπ,r,i)−
∑
π

sgnπ

n∑
i=sd

σ1q(eπ,r,i)

)
.

The second summand may be re-written for any q ∈ k′ \ {d}:
∑
π

sgnπ

td∑
i=sd

σ1q(eπ,r,i)
(4.3)
= rd

∑
π

sgnπ σ1q(eπ,r,sd)

(4.3)
= −rd

rq

∑
π

sgnπ

tq∑
i=sq

σ1q(eπ,r,i),

since ∑
π

sgnπeπsq
⊗ (eπsd

)⊗d−u = −
∑
π

sgnπeπsd
⊗ (eπsq

)⊗d−u.

As in the case |k′| = 1,

B =
rd

r1 + 1

∑
π

sgnπ

( td−u∑
i=1

σ1d(eπ,r,i) +

td∑
i=sd+1

σ1d(eπ,r,i)

)
,

which concludes the proof for all p, n, r,k.

To prove Theorem 1.5, we need a finer control over the symmetrisation of

forms. We write T̃ π
⊗k,p,q := T̃⊗k,p,q · π for the forms obtained by permuting its

tensor part by some permutation π ∈ S|λ| of the Young-diagram λ = [q; p; r] as

in (1.5). More generally, we write T̃ d
⊗k,p,q := T̃⊗k,p,q · d for any symmetrisation

by an element d of the group algebra CS|λ|. For the sake of brevity, we will

write π instead of eπ for the basis elements of CS|λ|.
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There are several distinguished permutations. We write (ia jb) ∈ S|λ| for

the transposition which exchanges the a-th box in the i-th column with the

b-th box in the j-th column and σ� :=
∏�

j=1(1j 2j) for the permutation which

exchanges the first  ≤ q boxes in the first column with the same number of

boxes in the second column. More generally, define σr :=
∏

j∈r(1j 2j) for any

subset r ∈ {1, . . . , q} and dλ := id+σq ∈ CS|λ|.
As all eligible Young-diagrams [q; p; r] have at most one box in any column

starting with the third, we write j instead of j1 for any j ≥ 3. Let R′
λ be

the group of permutations generated by transpositions (i j), i, j ≥ 3, and

hλ :=
∑

π∈R′
λ
π and define the following symmetrised forms:

(4.5) T̃ π
k,p,q := T̃ π·bλ

⊗k,p,q, T̃ π
(k,p,q) := T̃ π·hλ·bλ

⊗k,p,q , T̃ π
{k,p,q} := T̃ π·aλ·bλ

⊗k,p,q ,

where aλ, bλ are as in eq. (2.1). They assume values in∧λ′
Rn =

∧q+r,q
Rn ⊗ (Rn)⊗p,

∧q+r,q
Rn ⊗ Symp

Rn, and Γλ,

respectively. Note that T̃k,p,q satisfy the following lower-rank relations:

(4.6) Φ̃k,1,0 = Ξ̃k,0,0 and Ψ̃k,p,1 = Ξ̃k,p+1,0 = Φ̃k,p+2,0.

We use the same notation for the symmetrisations of the curvature

measures T π
⊗k,p,q.

Example 4.3: As yp · hλ = p! yp, one has T̃(k,p,q) = p! T̃k,p,q for T̃ ∈ {Φ̃, Ξ̃, Ψ̃}.
Similarly:

Φ̃
(11 3)
(k,p,q) = Cp−1

∑
π,i

sgnπ yπndx
i1...iqπq+1...πk

∧ dyπk+1...πn−1 ⊗ eyi2...iq ⊗ eπ1...πq ⊗ ei1y
p−1,

Φ̃
(11 3)·σq

(k,p,q) = Cp−1

∑
π,i

sgnπ yπndx
i1...iqπq+1...πk

∧ dyπk+1...πn−1 ⊗ eπ1...πq ⊗ eyi2...iq ⊗ ei1y
p−1,

Φ̃
(11 3)(21 4)
(k,p,q) = Cp−2

∑
π,i

sgnπ yπndx
i1...iqπq+1...πk

∧ dyπk+1...πn−1⊗eyi2...iq ⊗eyπ2...πq⊗ei1eπ1y
p−2,

where the sums are as in (1.4) and Cp = (−1)n−1p!.
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Proposition 4.4: For any T̃ ∈ {Φ̃, Ξ̃, Ψ̃} and r ⊂ {1, . . . , q}, one has

(4.7) T̃ σr

k,p,q ≡
(
q′

′

)−1

T̃k,p,q mod {dα},

where q′ = q − 1 if T̃ = Ψ̃ and q otherwise, and ′ ≤ q′ is the number of

transpositions in σr which exchange eia with eπa . Furthermore, one has

(4.8)

Ψ{k,p,q}=2qΨ(k,p,q),

Ξ{k,p,q}=(q+1)Ξ(k,p,q)+qp
(
Ξ
(21 3)
(k,p,q)−

q−1

2
Ξ
(11 21 3)
(k,p,q)

)
,

Φ{k,p,q}=(q+1)Φ(k,p,q)+qp(Φ
(21 11 3)·dλ

(k,p,q) +Φ
(21 3)·dλ

(k,p,q) +(p−1)Φ
(11 3)(21 4)
(k,p,q) ).

Proof. As T̃
(1a 2a)
k,p,q = T̃

(1b 2b)
k,p,q for all a, b ≤ q, we may assume r = (1, . . . , )

and σr = σ�. By the SO(n)-covariance of the forms, it suffices to show the

claim at the point (0, en). As the above permutations exchange the boxes con-

tained in the first two columns and Ψ̃
(1q 2q)
⊗k,p,q = Ψ̃⊗k,p,q, it suffices to prove (4.7)

for Z := Φ̃⊗k,0,q|(0,e1) with ′ =  and q′ = q. We do this by induction over .

The case  = 0 is trivial. Now assume that the claim is valid for − 1. Set

Y1 =
∑

sgnπ dxi�πq+1...πk ⊗ dyπk+1...πn−1 ⊗ eπ1...π�−1i� ⊗ eπ�...πq

and let Y2 be the element obtained by exchanging ei� and eπ�
. Then, by

Lemma 4.2, Y1 ≡ (q − l + 1)Y2 mod dα. Furthermore, Zσ�−1·bλ and Zσ�·bλ

are the images of Y1 and Y2 under the injective map which wedges q −  copies

of Q′ :=
∑
dxi ⊗ ei with the first and the third columns and − 1 copies of Q′

with the first and the fourth column. We conclude that

Zσ�·bλ ≡ l

q − l + 1
Zσ�−1·bλ ≡

(
q



)−1

Zbλ mod dα.

Let us analyse the structure of cλ for λ = [q; p; r]. It is clear that

aλ =

q∏
j=1

aj ,

where aj is the sum over the elements from S|λ| which preserve the j-th row.

Setting dj = id+(1j 2j), we see that aj = dj if j ≥ 2. On the contrary, the

subgroup of S|λ| which preserves the first row is isomorphic to Sp+2, as there

are p+2 boxes in the first row. Writing Sp+2 � R′′ ·R′
λ, where R

′′ is the set of

representatives of all (p+ 1)(p+ 2) right cosets in Sp+2/Sp and setting

R′′ := {id, (21 b)} × {id, (11 21), (11 b)},
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where 3 ≤ b ≤ p+ 2 in both subsets,

(4.9) a1 =
(
id+

∑
(21 b)

)
·
(
d1 +

∑
(11 b)

)
· hλ,

where the sums are over b = 3, . . . , p+ 2 and

a′1 :=
∑
h∈R′

h.

As (21 b)(11 b) = (11 b)(11 21), the first two terms can be re-written as[
id+

∑
((11 b) + (21 b))

]
· d1 +

∑
b=b′

(11 b)(21 b
′),

where b, b′ run from 3 to p+ 2. As hλ symmetrises all columns beginning with

the third, we have for all i, j ∈ {1, 2}, i �= j and 3 ≤ b ≤ p+ 2,

T̃
(j1 b)·hλ

⊗k,q,p = T̃
(j1 3)·hλ

⊗k,q,p , T̃
(i1 b)(j1b

′)·hλ

⊗k,q,p = T̃
(i1 b′)(j1 b)·hλ

⊗k,q,p , T̃
(i1 j1 b)·hλ

⊗k,q,p = T̃
(i1 j1 3)·hλ

⊗k,q,p

and

a1 = (id+p(11 3) + p(21 3) +
p(p− 1)

2
(11 3)(21 4)) · d1 · hλ.

As hλ and dj commute, we obtain

(4.10) cλ = aλ · bλ =
(
id+p(11 3)+p(21 3)+

p(p− 1)

2
(11 3)(21 4)

)
·d′λ ·hλ · bλ,

where d′λ :=
∏q

j=1 dj =
∑

|r|≤q σr. Applied on Φ⊗k,p,q, this yields

Φ{k,p,q} = Φcλ
⊗k,p,q = Φ

d′
λ

(k,p,q) + pΦ
(11 3)·d′

λ

(k,p,q) + pΦ
(21 3)·d′

λ

(k,p,q) +
p(p− 1)

2
Φ

(11 3)(21 4)·d′
λ

(k,p,q) .

All we need to do is to compute Φ
π·d′

λ

⊗k,p,q for four different permutations π. By

eq. (4.7)

Φ
d′
λ

(k,p,q) =

q∑
�=0

∑
|r|=�

Φσr

(k,p,q) =

q∑
�=0

∑
|r|=�

(
q



)−1

Φ(k,p,q)

=

q∑
�=0

(
q



)(
q



)−1

Φ(k,p,q) = (q + 1)Φ(k,p,q).

Similarly, one obtains Φ
(11 3)(21 4)·d′

λ

(k,p,q) = 2qΦ
(11 3)(21 4)
(k,p,q) . To compute the remaining

two summands, we re-write d′λ as follows. Set

d(a) :=

q∏
j=1,j =a

dj
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for a ≤ q and r⊥ := {1, . . . , q} \ r. Observing that σr⊥ = σq ◦ σr = σr ◦ σq, we
have

d′λ = (1 + σq) +

q−1∑
�=1

∑
|r|=�

σr

= dλ +

q−1∑
�=1

∑
|r|=�,a/∈r

σr + σr⊥

=

q−1∑
l=0

∑
|r|=�,a/∈r

σr · dλ = d(a) · dλ.

Then one sees that

Φ
(11 3)·d(1)
(k,p,q) =

q + 1

2
Φ

(11 3)
(k,p,q) and Φ

(21 3)·d(1)
(k,p,q) = qΦ

(21 3)
(k,p,q) −

q − 1

2
Φ

(11 3)·σq

(k,p,q) .

As dλ = id+σq on Φ
(11 3)·d(1)
(k,p,q) + Φ

(21 3)·d(1)
(k,p,q) and Φ

(11 3)
k,p,q = qΦ

(21 11 3)
k,p,q , we obtain

the claim for Φ̃{k,p,q}.
The computation is simpler for Ξ,Ψ. As there may be at most one y in each

column, one has

Ξ̃
(113)(214)
(k,p,q) = Ξ̃

(113)
(k,p,q) = Ψ̃

(113)
(k,p,q) = Ψ̃

(213)
(k,p,q) = Ψ̃

(113)(214)
(k,p,q) = 0.

The remaining terms are computed as above.

4.3. Globalisation.

Proof of Theorem 1.5. To prove (1.9), consider the SO(n)-equivariant section

hk,n =
1

n− k − 1

n∑
j=1

∂

∂yj
⊗ y ⊗ ej ∈ Γ(TRn ⊗ (Rn)⊗2)

and set Ẽk,p,q+1 := −ιhk,n
Φ̃(k,p,q), where

∂
∂yj is contracted with the differential

form and y ⊗ ej is wedged with the first two columns of its tensor-part. Then:

Ẽk,p,q+1 = (−1)k+1Cp

∑
sgnπ yπn dx

i1...iqπq+1...πk

∧ dyπk+2...πn−1 ⊗ ei1...iqy ⊗ eπ1...πqπk+1
⊗yp,
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where the sum is over i1, . . . , iq = 1, . . . , n and π ∈ Sn and Cp is as in Exam-

ple 4.3. Then

dẼk,p,q+1

=−Cp

[∑
sgnπdxi1...iqπq+1...πk∧dyπnπk+2...πn−1⊗ei1...iqy ⊗ eπ1...πqπk+1

⊗yp

+
n∑

j=1

sgnπyπndx
i1...iqπq+1...πk∧dyjπk+2...πn−1⊗ei1...iqy⊗eπ1...πqπk+1

⊗yp−1ej

+
n∑

j=1

sgnπyπndx
i1...iqπq+1...πk∧dyjπk+2...πn−1⊗ei1...iqj⊗eπ1...πqπk+1

⊗yp
]
.

After having computed the exterior derivative, we may restrict the forms to

(x, y) = (0, en). Lemma 4.2 and Example 4.3 yield

dẼk,p,q+1 ≡ (q + 1)Ψ̃(k,p,q+1) +
p(k − q)

n− k − 1
Φ̃

(11 3)
(k,p,q+1) +

k − q

n− k − 1
Φ̃(k,p,q+1)

or, after multiplying by (n− k − 1) and replacing q with q − 1,

(n−k−1) dẼk,p,q ≡ q(n−k+1)Ψ̃(k,p,q)+(k−q+1) Φ̃(k,p,q)+p(k−q+1) Φ̃
(11 3)
(k,p−1,q),

where the equality again holds modulo multiples of α, dα and the forms whose

tensor-parts are multiples of Q.

Let us now apply integ⊗πtr ◦ μλ on both sides of the above equation,

where λ = [q; p; 0]. Recall that integ eliminates all exact forms and multiples

of α, dα. Thus, one has

0 ≡ q(n− k + 1)ψ(k,p,q) + (k − q + 1)φ(k,p,q) + p(k − q + 1)φ
(11 3)
(k,p−1,q),

where the equality now holds only up to the forms whose tensor-parts are mul-

tiples of Q.

Applying μλ on the tensor-part, we have similarly to Example 4.3,

Φ̃(k,p,q) · cλ = Φ̃⊗k,p,q · hλ · bλ · aλ · bλ
= p!(q!)2 Φ̃⊗k,p,q · aλ · bλ = p! q!2 Φ̃{k,p,q}.

One shows similarly to the proof of equation (4.9) that bλ := b1,q · b2,q with bi,j ,

i = 1, 2, defined recursively by bi,j = bi,j−1 · b′i,j,a, where

b′i,j,a := id−
j∑

r=1,r =a

(ri qi)
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for any a ∈ {1, . . . , j}, and bi,1 = id. Using this identity, one obtains

Ψ̃(k,p,q) · cλ = p!(q − 1)!2 Ψ̃⊗k,p,q · b′1,q,q · b′2,q,q · cλ = p! q!2 Ψ̃{k,p,q},

Φ̃
(11 3)
(k,p,q) · cλ = p!q!(q − 1)! Φ̃

(11 3)
⊗k,p,q · b′1,q,1 · cλ = p! q!2 Φ̃

(11 3)
{k,p,q}.

By Proposition 2.2, one sees that

q Φ̃
(11 3)
{k,p,q} = Φ̃{k,p,q}.

Applying πtr which eliminates all forms whose tensors are multiples of Q, we

obtain by eq. (1.6) the identity in (1.9).

The cases(1.7) and(1.8) follow immediately from the Alesker–Bernig–Schuster

decomposition of Valk and 1.1, as the corresponding curvature measures Ξ[k,p,q]

and Ψ[k,p,k+1] assume values in SO(n)-modules which occur in Curvsmk but

are missing in Valk. To prove globΘ[p] = 0 observe that globΦ[k,p,k] is a

non-trivial O(n)-equivariant valuation with values in the same module Γk,p
0

as globΘ[p]. As dimVal
SO(n)

k,Γk,p
0

= 1, all Γk,p
0 -valued valuations of degree k are

O(n)-invariant in contrast to globΘ[p] which is SO(n)- but not O(n)-equivariant

by Remark 4.1.

Proposition 4.5: Continuous Γ-valued SO(n)-equivariant translation-invari-

ant valuations are smooth for any finite-dimensional SO(n)-module Γ.

Proof. Let φ be a Γ-valued valuation satisfying the conditions in the claim.

Since Valsm lies dense in Val, we may find a sequence φi of smooth Γ-valued

translation-invariant valuations which converges componentwise to φ. Define

the map A for any translation-invariant Γ-valued valuation τ :

(Aτ)(K) :=

∫
SO(n)

g−1τ(gK) dg.

If τ is smooth, then so is Aτ(K). Furthermore, for any h ∈ SO(n), one has

Aτ(hK) =

∫
SO(n)

g−1τ(ghK) dg
g̃:=gh
=

∫
SO(n)

(g̃h−1)−1φ(g̃K) dg̃ = h(Aτ(K)),

i.e., Aτ is also SO(n)-equivariant. Applying A to both the sequence φi and φ,

one obtains a sequence Aφi of smooth SO(n)-equivariant translation-invariant

valuations converging to Aφ = φ. We have seen in the previous Sections that the

space of smooth Γ-valued SO(n)-equivariant translation-invariant valuations is

finite-dimensional and, thus, closed. Hence, φ = limiAφi is also smooth and

the result follows.
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Proof of Proposition 1.6. We know that glob : Curv
sm,SO(n)
k,Γ[λ]

→ Val
k,SO(n)
Γ[λ]

is

surjective. Let us work out its kernel. The elements ξn[k,p,q] and θ
n
[p] belong to

the kernel by (1.7) and the elements ψn
[k,p,q] either lie in the kernel by (1.8)

or globψn
[k,p,q] = Cn,k,p,q globφ

n
[k,p′,q′] for some constant Cn,k,p,q and some p′

and q′ by (4.6) or (1.9). The only exception is ψn
[k,p,k+1] for

n−1
2 < k ≤ n − 1,

as none of the relations apply to them.

The coefficients of all linearly independent Γ[λ]-valued valuations τ[k,p,q] span

the isotypical component Γ[λ] in the space Valfk of the so-called SO(n)-finite

vectors in Valk. We refer to [55, Section 3.2] for the details on G-finite vectors

in infinite-dimensional representations. As, by Alesker’s Irreducibility Theorem,

Valf lies dense in Valsm, we obtain the claim.
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