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ABSTRACT

We define an obstruction for a knot to be Z[Z]-homology ribbon, and use

this to provide restrictions on the integers that can occur as the triple

linking numbers of derivative links of knots that are either homotopy rib-

bon or doubly slice. Our main application finds new non-doubly slice

knots. In particular, this gives new information on the doubly solvable

filtration of Taehee Kim: doubly algebraically slice ribbon knots need not

be doubly (1)-solvable, and doubly algebraically slice knots need not be

(0.5, 1)-solvable. We introduce a notion of homotopy (1)-solvable and find

a knot that is (0.5)-solvable but not homotopy (1)-solvable. We also dis-

cuss potential connections to unsolved conjectures in knot concordance,

such as generalised versions of Kauffman’s conjecture. Moreover, it is

possible that our obstruction could fail to vanish on a slice knot.
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1. Introduction

Consider a collection of curves on a Seifert surface for an algebraically slice

knot K in S3 representing a basis for a metaboliser of the Seifert form, namely

a half-rank summand of the first homology of the surface on which the form

vanishes. Such a set of curves on a Seifert surface, considered as a link in S3 in

its own right, is called a derivative of K. Derivatives are highly non-unique.

Note that if a knot has a slice derivative link, then the knot is itself slice, since

the slicing discs can be used to surger the Seifert surface in the 4-ball to a disc.

One is led to consider the converse. In other words, we would like to understand,

when a knot K does not have a slice derivative link, the situations in which we

can deduce that K is not slice.

In the literature there are several higher order signature obstructions, which

use non-vanishing signatures of derivative links to deduce that the original knot

is not slice, for example [Coo82, Gil83, GL92, Gil93, COT04, CHL10, GL13,

Bur14]. It is an interesting question to determine the extent to which other

concordance invariants of links can be applied in this manner.

Towards this end, in this article we study Milnor’s triple linking numbers

of derivative links. For an oriented link L, the triple linking numbers μL(ijk)

were one of the first known link invariants that need not vanish on links with

unknotted components and vanishing linking numbers. For links with vanishing

linking numbers, they are integers. We provide restrictions on the integers that

can arise as the triple linking numbers μL(ijk) of derivative links if the base

knot K is a homotopy ribbon or a doubly slice knot.

In this paper, knots and links will always come with a choice of orientation.

Recall that a knot K is slice if it is the boundary of some locally flat embedded

disc in the four ballD4, homotopy ribbon if there exists a slicing disc for which

the fundamental group of the knot exterior surjects onto the fundamental group

of the slice disc exterior, and K is doubly slice if it occurs as an equatorial

cross sectionK = S∩S3 of an unknotted locally flat 2-sphere S ⊂ S4 embedded

in the 4-sphere, and so slices in two different ways.

1.1. Doubly slice knots. Theorem A below constructs new families of alge-

braically doubly slice but not doubly slice knots. They are detected by virtue of

nonzero Milnor triple linking numbers of derivatives links. The new properties
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of our knots can be expressed in terms of Taehee Kim’s doubly-solvable filtration

[Kim06], of the monoid of knots, by submonoids {Fn,m}, where N0 := N ∪ {0}
and n,m ∈ 1

2N0. This filtration generalises the solvable filtration of [COT03]

(see Section 2.4 for the definition of the solvable filtration). Roughly speaking,

for those familiar with the solvable filtration, a knot K is (n,m)-solvable if

the zero-framed surgery MK bounds an n-solution Wn and an m-solution Wm

such that the union Wn ∪MK Wm has fundamental group Z. Sometimes we say

doubly (n)-solvable instead of (n, n)-solvable.

The pertinent facts are the following.

(i) Doubly slice knots are (n,m)-solvable for all n,m ∈ 1
2N0 [Kim06, Propo-

sition 2.5].

(ii) Algebraically slice is equivalent to (0.5)-solvable [COT03, Theorem 1.1],

which is itself equivalent to doubly (0.5)-solvable, since any algebraically

slice knot admits a (0.5)-solution with fundamental group Z [Kim06,

Corollary 2.9].

(iii) A knot is algebraically doubly slice if a Seifert form admits two dual

metabolisers. Every doubly (1)-solvable knot is algebraically doubly

slice (Proposition 6.7). Of course every doubly algebraically slice knot

is algebraically slice.

(iv) Every homotopy ribbon knot is (n, 0.5)-solvable for all n ∈ 1
2N0

(Lemma 6.8).

Here is our first main result.

Theorem A:

(a) There exists a ribbon knot that is algebraically doubly slice, but not

doubly (1)-solvable.

(b) There exists a knot that is algebraically doubly slice, but not (0.5, 1)-

solvable.

In particular, neither knot is doubly slice.

This has the consequence that algebraically doubly slice does not correspond

precisely to any step in the doubly solvable filtration. To prove Theorem A, we

construct knots with derivatives having non-vanishing triple linking numbers,

and we show that these triple linking numbers cannot occur for a doubly slice

knot, nor indeed for a doubly (1)-solvable knot.
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1.2. A homology ribbon obstruction. To state our obstruction theorem

we introduce the following notion.

Definition 1.1: A knot K is said to be a Z[Z]-homology ribbon if there is a

slice disc D ⊂ D4 for K such that the induced map

H1(S
3 � νK;Z[Z]) → H1(D

4 � νD;Z[Z])

is surjective.

A derivative link of a given knot depends on a choice of Seifert surface, a

choice of metaboliser, and a choice of curves representing that metaboliser.

In order to obtain an obstruction that is independent of choices, we take the

fundamental class [MK ] ∈ H3(MK ;Z) of the zero-framed surgery manifoldMK ,

and map it to the group homology H3(BΓ(K,P );Z), where Γ(K,P ) is a group

that depends on the knot K and a lagrangian P for the rational Blanchfield

form of K. The map MK → BΓ(K,P ) arises from a representation

αP : π1(MK) → Γ(K,P )

that also depends on P . The image of [MK ] in H3(BΓ(K,P );Z) is our ob-

struction ψ(K,P ). Note that ψ(K,P ) does not depend on the choice of Seifert

surface for K.

Theorem 1.2: Suppose that a knot K is Z[Z]-homology ribbon. Then there

is a lagrangian P for the rational Blanchfield form such that

ψ(K,P ) = 0 ∈ H3(BΓ(K,P );Z).

One then observes that if K is homotopy ribbon, it is Z[Z]-homology ribbon.

On the other hand, if K is doubly slice, then it is Z[Z]-homology ribbon in

two ways. Thus our obstruction for a knot to be Z[Z]-homology ribbon can be

applied to obstruct a knot from being doubly slice and homotopy ribbon. As

far as we know, doubly slice knots need not be homotopy ribbon, and there are

homotopy ribbon knots that are not doubly slice, so Definition 1.1 is necessary

to unify the treatment.

Theorem 1.3: Suppose that a knot K lies in F0.5,1 (for example, if K is

homotopy ribbon). Then there is a lagrangian P for the rational Blanchfield

form such that ψ(K,P ) = 0.
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Theorem 1.4: Suppose that a knot K lies in F1,1 (for example, if K is doubly

slice). Then there are lagrangians P1 and P2 for the rational Blanchfield form

such that

P1 ⊕ P2 = H1(MK ;Q[Z])

and

ψ(K,P1) = ψ(K,P2) = 0.

For the proofs of Theorems 1.3 and 1.4, see the paragraph preceding Theo-

rem 3.10. Versions of these obstructions have been known to the experts for

some time; we learnt about them from Tim Cochran, Shelly Harvey, Kent Orr

and Peter Teichner. We had to deal precisely with differences between rational

and integral Alexander modules, and the relationship between Blanchfield and

Seifert forms, in order to make the obstruction practical. Another new ingre-

dient now is the work of the first author [Par16], which gives a procedure to

obtain infinitely many different integers as the triple linking numbers μ(123) of

derivative links representing a fixed set of homology classes on a Seifert surface.

In addition, the invariant ψ(K,P ) is closely related to the (1)-solvable ob-

struction in [COT03, Corollary 4.9]. We will discuss this more below in Re-

mark 3.7.

1.3. Determining the possible triple linking numbers of derivatives.

Let K be a knot with a genus three Seifert surface Σ, and let H ⊂ H1(Σ;Z)

be a metaboliser for the Seifert form of Σ. We write dK/dH for the set of all

derivative links on Σ whose homology classes span H . We consider a derivative

link as an ordered and oriented link. Since H is a rank three free abelian group,

its third exterior power
3∧
H ∼= Z.

Let o(L) be the generator [L1] ∧ [L2] ∧ [L3] ∈
∧3H . We investigate the set

SK,H := {μ̄L(123)− μ̄L′(123) | L,L′ ∈ dK/dH, o(L) = o(L′)}.
Note that this set is for a fixed Seifert surface; a priori it could vary for different

Seifert surfaces. For certain knots and certain Seifert surfaces we are able, in

combination with the results of [Par16], to determine this set precisely. Here is

our second main result.
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Theorem B: Let K be a knot that admits a genus three Seifert surface Σ that

has a basis for the first homology H1(Σ;Z), with respect to which the Seifert

form is given by (
A X

XT − Id 0

)
,

where X = diag(p1, p2, p3) is a diagonal matrix. Write

n := det(X)− det(X − Id).

Suppose that the nonzero entries pi are such that gcd(pi, n) = gcd(pi−1, n) = 1,

and pi · (pi− 1) 
= 0 for i ∈ {1, 2, 3}. Let H be the metaboliser generated by the

last three basis elements of H1(Σ;Z). Then SK,H = nZ.

The inclusion nZ ⊆ SK,H was shown by the first author in [Par16]. In par-

ticular [Par16, Corollary 4.5] produced Alexander polynomial one knots having

genus 3 Seifert surfaces Σ, with the property that for every k ∈ Z there is a

derivative on Σ with Milnor triple linking number k. To show the opposite

inclusion we employ the obstruction ψ. Theorem B demonstrates that we have

a complete understanding of the set SK,H in some special cases. In general, the

set SK,H is not well understood. Besides being a natural next step, after hav-

ing complete understanding of the ordinary linking number between curves on

Seifert surfaces, SK,H is an important set to study, since it is closely related to

the question whether having ψ(K,P ) = 0 implies the existence of a derivative

with vanishing Milnor’s triple linking number (see Corollary 5.3).

As well as understanding the possible Milnor’s invariants of derivatives on a

fixed Seifert surface, we also exhibit knots for which we can control the Mil-

nor’s invariants of all possible derivatives on all possible Seifert surfaces. Recall

that a (0)-solvable link has all linking numbers and all triple linking numbers

vanishing [Ott14]. We say that a knot is homotopy ribbon (1)-solvable if

there is a (1)-solutionW with π1(MK) → π1(W ) surjective. By definition every

homotopy ribbon knot is homotopy ribbon (1)-solvable. Here is the third main

result of this article.

Theorem C: There exists an algebraically slice knot K that is not homotopy

ribbon (1)-solvable and moreover does not have any (0)-solvable derivative. In

fact, for any derivative J on any Seifert surface for K, there is a subset {i, j, k}
of the indexing set for the components of J such that μJ (ijk) 
= 0.
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A knot satisfying Theorem C is constructed by string link infections involving

Borromean rings. Examples of smoothly slice knots that have non-slice deriva-

tives on their unique genus minimising Seifert surface, constructed in [CD15a],

suffer from the defect that there exists an unlinked derivative after stabilising.

The triple linking numbers in the derivatives of our knots cannot be destroyed

by stabilisation. The big question, of course, is whether any of the knots that

we construct for the proof of Theorem C are slice. More generally, the following

question remains open.

Question 1.5: Does every (smoothly) slice knot have a Seifert surface with a

(smoothly) slice derivative?

It is a standard construction (see for example [CD15a, Corollary 7.4]) that

every ribbon knot has a Seifert surface with an unlinked derivative. If the knots

of Theorem C are not slice, it seems likely that they will also not be (1)-solvable,

and so would show the nontriviality of the quotient F0.5/F1 of the solvable filtra-

tion. Note that it was recently shown in [DMOP19] that genus one algebraically

slice knots are (1)-solvable. For links, Otto [Ott14] showed that Fm
n.5/Fm

n+1 is

nontrivial for m-component links, with n ≥ 0 and m ≥ 3 · 2n+1.

Remark 1.6: We take this opportunity to mention the paper [JKP14], which

purported to show that there are slice boundary links whose derivative links all

have non-vanishing triple linking numbers. Unfortunately, as pointed out by

the first author to the second, there is a mistake in the argument given that the

links constructed in [JKP14] are slice. In particular, the 2-complex Y ×I cannot
be embedded in the link complement as claimed on [JKP14, pp. 438–439].
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2. Background and notation

2.1. Notation. An m-component link L = L1 ∪ · · · ∪ Lm is the image of an

embedding of a disjoint union of m circles into the 3-sphere. All links in this

paper are ordered and oriented. A knot is a 1-component link. We say that

an m-component link L is slice if the components of L bound m locally flat

disjointly embedded 2-discs D1 ∪ · · · ∪ Dm in D4 with ∂Di = Li. A knot K

is called doubly slice if it arises as a cross section S ∩ S3 of a locally flat

unknotted 2-sphere S ⊂ S4.

If in addition the slice discs D1 ∪ · · · ∪Dm are smoothly embedded, then we

say that the link L is smoothly slice. Similarly, if the 2-sphere S is smoothly

embedded then we say that the knot K is smoothly doubly slice.

If a smoothly slice knot K bounds a smoothly embedded 2-disc D in D4 for

which there are no local maxima of the radial function restricted to D, we callD

a ribbon disc and we call K a ribbon knot. Furthermore, following [CG83],

we say that a knot K is homotopy ribbon if there is a slice disc D for which

the inclusion induces an epimorphism

π1(S
3 � νK) � π1(D

4 � νD).

Every ribbon knot is homotopy ribbon.

Every knot K in S3 admits a Seifert surface Σ. Let g be the genus of Σ.

From Σ, we can define a Seifert form

βΣ : H1(Σ)×H1(Σ) → Z.

Levine [Lev69, Lemma 2] showed that if K is a slice knot, then βΣ is metabolic

for any choice of Seifert surface Σ for K, that is there exists a direct summand

H ∼= Zg, of H1(Σ) ∼= Z2g, such that

βΣ(H ×H) = 0.

We call such H ⊂ H1(Σ) a metaboliser of βΣ and say that a knot K is

algebraically slice if it has a metaboliser. If K is algebraically slice and H

is a metaboliser of βΣ, then a link J = J1 ∪ · · · ∪ Jg embedded in the Seifert

surface Σ, whose homology classes generate H , is called a derivative of K

associated to H . By definition, a derivative link has vanishing linking numbers.

Denote the set of all derivatives associated to H by dK/dH . Note that if a

knot K has a (smoothly) slice derivative, then K is (smoothly) slice.
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For a link L, let XL := S3 � νL denote the exterior of an open tubular

neighbourhood of L in S3. Also, for a slice disc D, let D4 � νD denote the

exterior of an open tubular neighbourhood of D in D4. Finally let ML be the

result of zero-framed surgery on S3 along L.

Denote the set of non-negative integers by N0 and denote the set of non-

negative half integers by 1
2N0. We use the notation Z[Z] and Q[Z] interchange-

ably with Z[t, t−1] and Q[t, t−1] respectively.

2.2. The rational Alexander module and the Blanchfield form.

Write G := π1(MK), let A(K) be the Alexander module of a knot K and

let AQ(K) be the rational Alexander module of K. Since the longitudes of K

lie in G(2),

A(K) = H1(MK ;Z[t, t−1]) ∼= G(1)/G(2)

and

AQ(K) = H1(MK ;Q[t, t−1]) ∼= Q[t, t−1]⊗Z[t,t−1] G
(1)/G(2).

Here G(k) denotes the kth derived subgroup, where

G(0) = G and G(k+1) = [G(k), G(k)].

Choose a meridian g for the knotK. Then the abelian group G(1)/G(2) becomes

a Z[t, t−1]-module via t ·hG(2) := ghg−1G(2). As a rational vector space, AQ(K)

has rank d := degΔK(t).

The rational Blanchfield linking form

B�Q : AQ(K)×AQ(K) → Q(t)/Q[t, t−1]

is a non-singular, hermitian and sesquilinear form [Bla57, Lev77]. In addition,

a submodule P ⊂ AQ(K) is called a lagrangian if P = P⊥, where

P⊥ := {x ∈ AQ(K) | B�Q(x, p) = 0 for every p ∈ P}.
Since B�Q is non-singular, any lagrangian P has rank d/2 as a rational vector

space (d is even since the Alexander polynomial of K has a symmetric repre-

sentative, that is ΔK(t)
.
= ΔK(t−1)).

Suppose that K is a slice knot and D is a slice disc, then

ker(AQ(K) → AQ(D4 � νD))

is a lagrangian (e.g., [COT03, Theorem 4.4]), where by definition

AQ(D4 � νD) := H1(D
4 � νD;Q[t, t−1])
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is the rational Alexander module of D4 � νD. More generally this holds

with D4 � νD replaced by an (n)-solution W , for n ≥ 1 (we will recall the

definition of an (n)-solution in Section 2.4). We call P the lagrangian asso-

ciated to the slice disc D if

P = ker(AQ(K) → AQ(D4 � νD)).

Remark 2.1: Following Cochran–Harvey–Leidy [CHL10], we use the term la-

grangian for a self-annihilating submodule of the rational Alexander module

with respect to the rational Blanchfield form, and the term metaboliser for the

corresponding object with respect to a Seifert form.

2.3. Derivatives of knots. Let K be an algebraically slice knot, let H be

a metaboliser of the Seifert form of K with respect to a Seifert surface Σ, and

let J = J1 ∪ · · · ∪ Jg be a derivative of K associated with H , where g is the

genus of Σ. We will use the terminology of [CHL10, Definition 5.4].

Definition 2.2: Suppose that Σ is a genus g Seifert surface for K and that

P ⊂ AQ(K) is a lagrangian. We say that the metaboliser H represents P if

the image of H under the map

H1(Σ;Z)
1⊗Id
↪−−−→ Q⊗Z H1(Σ;Z)

i∗−� AQ(K)

spans P as a Q-vector space. Note that in order to define i∗ we need to fix

a lift of Σ to the infinite cyclic cover. However, it is easy to check that a

metaboliser H represents P with respect to one choice of lift if and only if it

represents P with respect to all choices.

Next we recall a lemma from [CHL10, Lemma 5.5].

Lemma 2.3 (Cochran–Harvey–Leidy): Fix a Seifert surface Σ for a knot K.

Every lagrangian P ⊆ AQ(K) is represented by some metaboliser in H1(Σ;Z).

Let bi = [Ji] inH1(Σ), for 1 ≤ i ≤ g. Then {b1, . . . , bg} is a basis for a metabo-

liserH . We can extend {b1, . . . , bg} to a symplectic basis {a1, . . . , ag, b1, . . . , bg},
where ai is an intersection dual of bi, for 1 ≤ i ≤ g. From this we obtain a

disc-band form of Σ, as depicted in Figure 1. We need one more proposition

from [CHL10, Proposition 5.6].
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α1 β1 αg βg

a1 b1 ag bg

Figure 1. A disc-band form for Σ, a generating set

{a1, b1, . . . , ag, bg} for H1(Σ;Z) and a dual generating set

{α1, β1, . . . , αg, βg} for H1(S
3 � Σ;Z).

Proposition 2.4 (Cochran–Harvey–Leidy): Suppose P⊂AQ(K)is a lagrangian.

Then for any Seifert surface Σ, any metaboliserH representing P , and any sym-

plectic basis {a1, . . . , ag, b1, . . . , bg} of H1(Σ;Z) with {b1, . . . , bg} a basis for H ,

we have:

(1) The curves {b1, . . . , bg} span P in the rational vector space AQ(K).

(2) The curves

{φ(β1), . . . , φ(βg)}
span AQ(K)/P , where {α1, . . . , αg, β1, . . . , βg} is the basis of

H1(S
3 � Σ;Z) dual to {a1, . . . , ag, b1, . . . , bg} under the linking num-

ber in S3, and

φ : H1(S
3 � Σ;Z) ↪→ Q⊗H1(S

3 � Σ;Z)
i∗−� AQ(K).

Given a derivative link J , we will use Proposition 2.4 to construct a

map fJ : π1(MJ ) → A(K)/P̃ , where

P̃ := ker(A(K) → AQ(K) → AQ(K)/P ).

We associate the meridian of the band on which Ji lies (βi of Figure 1)

with a meridian μi of Ji. In order to determine a homotopy class of maps

fJ :MJ→B(A(K)/P̃ ), it suffices to define the image of each meridian μi∈π1(MJ)

in A(K)/P̃ , since any map π1(MJ) → A(K)/P̃ factors through the abelianisa-

tion H1(MJ ;Z). Send μi to the image of βi under the map

H1(S
3 � νΣ;Z) → A(K) → A(K)/P̃

to determine fJ : π1(MJ) → A(K)/P̃ , and thence (up to homotopy) a

map fJ : MJ → B(A(K)/P̃ ).
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2.4. The solvable filtration and the doubly solvable filtration. We

briefly recall the definitions and some basic facts about the solvable filtrations,

for the convenience of the reader.

Definition 2.5 (n-solvable filtration [COT03]): We say that a knot K is

(n)-solvable for n ∈ N0 if the zero-framed surgery manifold MK is the bound-

ary of a compact oriented 4-manifold W with the inclusion induced map

H1(MK ;Z) → H1(W ;Z)

an isomorphism, and such that H2(W ;Z) has a basis consisting, for some k,

of 2k embedded, connected, compact, oriented surfaces L1, . . . , Lk, D1, . . . , Dk

with trivial normal bundles satisfying:

(i) π1(Li) ⊂ π1(W )(n) and π1(Dj) ⊂ π1(W )(n) for all i, j = 1, . . . , k;

(ii) the geometric intersection numbers are Li · Lj = 0 = Di · Dj and

Li ·Dj = δij for all i, j = 1, . . . , k.

Such a 4-manifold W is called an (n)-solution. If in addition

π1(Li) ⊂ π1(W )(n+1)

for all i, then W is an (n.5)-solution and K is (n.5)-solvable. The subgroup

of C of (k)-solvable knots is denoted Fk, for any k ∈ 1
2N0.

Note that a slice knot is (n)-solvable for all n, and the above definition nat-

urally extends to links. The first two graded quotients of the solvable filtration

are well understood. To wit, a knot is (0)-solvable if and only if it has vanish-

ing Arf invariant, while a knot is (0.5)-solvable if and only if it is algebraically

slice [COT03]. Moreover, the iterated graded quotients of the solvable filtration

are all highly non-trivial. In fact, it was shown in [CHL09, CHL11] that Fn/Fn.5

contains subgroups Z∞ ⊕ Z∞
2 for any n ∈ N0. On the other hand, there is not

much known about the other quotients, Fn.5/Fn+1. The knots studied in this

paper are related to the question of whether F0.5/F1 is nontrivial. Indeed, we

show that the analogous difference is nontrivial in the doubly solvable filtration.

We recall the definition of this filtration, due to Taehee Kim [Kim06], next.

Definition 2.6 (Doubly solvable filtration): We say that a knot K is (n,m)-

solvable, for n,m ∈ 1
2N0, if the zero-framed surgery manifold MK is the

boundary of an (n)-solution Wn and an (m)-solution Wm such that the fun-

damental group of the union Wn∪MK Wm of Wn and Wm along their boundary

is isomorphic to Z. The set of all (n,m)-solvable knots is denoted by Fn,m. We

say that an (n, n)-solvable knot is doubly (n)-solvable.
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A doubly slice knot is (n,m) solvable for all n,m ∈ 1
2N0 [Kim06]. We will

frequently use the following fact [COT03, Theorem 4.4].

Lemma 2.7: Let K be a knot with a (1)-solution W . Let

P := ker(H1(MK ;Q[Z]) → H1(W ;Q[Z])).

Then P is a lagrangian for the rational Blanchfield form of K.

We call P the lagrangian associated to W .

3. A Z[Z] homology ribbon obstruction

In this section we define a homology ribbon obstruction and will introduce

some of its properties. This obstruction will give rise to a homotopy ribbon

obstruction, and a doubly slice obstruction. Our obstruction also works in the

context of the solvable filtration, so we will work in this generality.

Definition 3.1: We say that a knot K is homology ribbon (1)-solvable if

there is a (1)-solution W with ∂W = MK such that the inclusion induced

map H1(MK ;Z[Z]) → H1(W ;Z[Z]) is surjective. Such a 4-manifoldW is called

a homology ribbon (1)-solution.

Lemma 3.2: Suppose that K is homotopy ribbon (1)-solvable (for example,

if K is homotopy ribbon). Then K is homology ribbon (1)-solvable.

Proof. The map on fundamental groups being surjective implies that the map

on Z[Z]-homology is surjective, since H1(W ;Z[Z]) ∼= π1(W )(1)/π1(W )(2).

The following lemma is from [Kim06, Proposition 2.10].

Lemma 3.3: Suppose that K ∈ F1,1 (for example, every doubly slice knot lies

in F1,1). Then there exist two homology ribbon (1)-solutions W1 and W2 such

that the inclusion induced maps give rise to an isomorphism

H1(MK ;Z[Z])
(i1,i2)

∼= H1(W1;Z[Z])⊕H1(W2;Z[Z])

and such that both of the summands become lagrangians for the rational Blanch-

field form after tensoring with Q. In particular, every doubly (1)-solvable knot

is homology ribbon (1)-solvable.
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The next lemma follows from the proof of [Kim06, Proposition 2.10]. Since

it was not explicitly stated in this language in [Kim06], we give a quick proof.

Lemma 3.4: Suppose thatK ∈ F0.5,1. ThenK is homology ribbon (1)-solvable.

Proof. Suppose thatK ∈ F0.5,1, and let (W0.5,W1) be the given (0.5, 1)-solution

pair. We may and will assume that π1(W0.5) ∼= Z and so H1(W0.5;Z[Z]) = 0.

The Mayer–Vietoris sequence for gluing these together contains

H1(MK ;Z[Z]) → H1(W0.5;Z[Z])⊕H1(W1;Z[Z]) → H1(W0.5 ∪MK W1;Z[Z]).

Since π1(W0.5 ∪MK W1) ∼= Z, it follows that

H1(W0.5 ∪W1;Z[Z]) = 0

and so H1(MK ;Z[Z]) → H1(W1;Z[Z]) is surjective. Thus K is homology ribbon

(1)-solvable.

We have learnt that obstructions to homology ribbon can be used to obstruct

knots from being homotopy ribbon and doubly slice.

3.1. Definition of the homology ribbon obstruction. Recall that the

Alexander module A(K) is a Z[t, t−1]-module and

AQ(K) ∼= Q[t, t−1]⊗Z[t,t−1] A(K).

Let P ⊂ AQ(K) be a lagrangian for the rational Blanchfield form and let

P̃ = ker(A(K) ↪→ AQ(K) → AQ(K)/P ).

As above let G := π1(MK). We have a map

φP : G→ G/G(2) �−→ Z�A(K) → Z �A(K)/P̃ ,

where n ∈ Z acts on A(K) by the action of tn. Here the identification

ϑ : G/G(2) �−→ Z �A(K)

depends on a choice of oriented meridian for K, which determines a split-

ting θ : Z → G/G(2) of the abelianisation homomorphism. We have to make

such a choice in order to define the invariant that we will introduce below, so

we should investigate the dependence of the outcome on this choice.

Write Inn(Γ) for the inner automorphisms of a group Γ, and for a sub-

group H ≤ Γ write InnH(Γ) ≤ Inn(Γ) for the subgroup containing conjugations

by elements of H .
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Lemma 3.5: Let θ1, θ2 : Z → G/G(2) be two choices of splitting as above, and

denote the resulting identifications by ϑ1, ϑ2 : G/G
(2) �−→ Z �A(K).

(i) There is an inner automorphism γ : Z � A(K) → Z � A(K) in

InnA(K)(Z �A(K)) such that the

γ ◦ ϑ1 = ϑ2.

(ii) Every inner automorphism γ ∈ InnA(K)(Z�A(K)) acts by the identity

on A(K). In particular it preserves

P̃ ≤ A(K) ≤ G/G(2).

Proof. We claim that we can always arrange that θ1(1) = θ2(1) up to an inner

automorphism. To see this it suffices to change ϑ1(θ2(1)) to (1, 0) ∈ Z �A(K)

by applying an inner automorphism of Z � A(K). Let h ∈ A(K) be such

that ϑ1(θ2(1)) = (1, h). By [Lev77, Proposition 1.2], multiplication by 1− t acts

as an automorphism of A(K). We can therefore find h′ ∈ H such

that (1− t) · h′ = h. Then we have

(0, h′)−1(1, h)(0, h′) = (0,−h′)(1, h)(0, h′) = (1,−h′ + h)(0, h′)

= (1,−h′ + h+ t · h′) = (1, h− (1− t) · h′)
= (1, h− h) = (1, 0).

Let γ be inner automorphism obtained by conjugating with (0, h′) ∈ A(K).

Then γ ◦ ϑ1 = ϑ2 as required for the first part of the lemma. Since (0, h′) lies

in A(K), it commutes with g ∈ A(K) ⊂ Z �A(K) for all such g. The second

part of the lemma follows.

Since P̃ is preserved, an inner automorphism as in Lemma 3.5 descends to

an action on Z �A(K)/P̃ , and acts by the identity on the subgroup

A(K)/P̃ ≤ Z �A(K)/P̃ .

For a choice of splitting θ, we obtain a map φP : G → Z � A(K)/P̃ . This

map determines a unique homotopy class of maps φP : MK → B(Z�A(K)/P̃ ).

Definition 3.6: Let P ⊂ AQ(K) be a lagrangian and

P̃ = ker(A(K) → AQ(K) → AQ(K)/P ).

Then we define ψ(K,P ) to be

(φP )∗([MK ]) ∈ H3(B(Z �A(K)/P̃ );Z)/ InnA(K)/ ˜P (Z �A(K)/P̃ ).
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Remark 3.7: Since the inner automorphisms act on third homology by an au-

tomorphism, they preserve the property of being zero and of being nonzero.

Moreover, we will always consider elements of H3(B(Z � A(K)/P̃ );Z) arising

from the inclusion induced map

H3(B(A(K)/P̃ );Z) → H3(B(Z �A(K)/P̃ );Z),

and on such elements the inner automorphisms act by the identity by Lemma3.5.

For these two reasons we will not consider the action in the sequel, but note

that in general an invariant ψ(K,P ) that depends only on the knot K and a

choice of lagrangian P lives in the quotient of the third homology by the given

automorphism action

H3(B(Z �A(K)/P̃ );Z)/ InnA(K)/ ˜P (Z �A(K)/P̃ ).

In the case that P = 0, the invariant ψ(K,P ) coincides with the invariant β1

defined in [Coc04, Section 10]. The obstruction β1 was used to show that

there exist distinct knots with isometric Blanchfield forms (see [Coc04, Theorem

10.3]). We remark that β1 is not known to be a concordance invariant and it is

expected that it is not.

Our obstruction is also closely related to the obstruction from [COT03, Corol-

lary 4.9]. However, the universal coefficient system building on the group ring

of Z�Q(t)/Z[t, t−1] is often too large, meaning that this obstruction can vanish

in cases that our homology ribbon obstruction is nontrivial. Our obstruction is

closer in spirit to the suggestion that was made in [COT03, Remark 4.7.2].

Next we show that ψ(K,P ) gives an obstruction for a knot to be homology

ribbon (1)-solvable.

Theorem 3.8: Suppose that K is a homology ribbon (1)-solvable knot via

a homology ribbon (1)-solution W , and let P ⊂ AQ(K) be the lagrangian

associated to W . Then ψ(K,P ) = 0.

Proof. We have ∂W =MK and the following commutative diagram:

A(K)
j

iK

A(W )/T

iW

AQ(K)
jQ AQ(W )
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where the vertical maps are injective and the horizontal maps are surjective.

Here

A(W ) := H1(W ;Z[Z])

and

AQ(W ) := H1(W ;Q[Z]) ∼= Q[Z]⊗Z[Z] H1(W ;Z[Z])

are the Alexander module of W and the rational Alexander module of W re-

spectively, T is the Z-torsion submodule of A(W ), the maps labelled i are the

natural inclusions into the corresponding modules tensored up with Q, and j

and jQ are the maps induced by the inclusion MK → W . Since W is a ho-

mology ribbon (1)-solution, j and jQ are surjections. Since P is the lagrangian

associated to W , we have that P = ker(jQ), and so AQ(W ) = AQ(K)/P .

Note that a splitting θ : Z → π1(MK)/π1(MK)(2), together with the fact that

the inclusion induced map Z ∼= H1(MK ;Z) → H1(W ;Z) ∼= Z is an isomorphism,

determines a splitting

Z
θ−→ π1(MK)/π1(MK)(2) → π1(W )/π1(W )(2).

Use this to obtain the identification π1(W )/π1(W )(2)
�−→ Z � A(W ), that we

use below.

It follows from the commutative diagram above that ker(j) ⊆ P̃ . Conversely,

if x ∈ P̃ , then jQ ◦ iK(x) = 0, and hence x lies in ker(j). Hence

A(K)/P̃ ∼= A(W )/T.

Use the inverse of this isomorphism to obtain the following commutative dia-

gram, extending φP : G→ Z�A(K)/P̃ .

π1(W ) Z �A(W )/T
∼=

G = π1(MK) G/G(2) ∼= Z �A(K)

(Id,j)

Z �A(K)/P̃ .

This determines a homotopy class of maps W → B(Z � A(K)/P̃ ), and the

image of the relative fundamental class [W,MK ] is a 4-chain that exhibits the

vanishing

ψ(K,P ) = (φP )∗([MK ]) = 0 ∈ H3(B(Z �A(K)/P̃ );Z).
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Remark 3.9: Note that it was crucial that the (1)-solution W be a homol-

ogy ribbon (1)-solution, since in the above proof we made use of the fact

that j : A(K) → A(W )/T is a surjective map. We do not know whether the in-

variant ψ(K,P ) has to vanish if P is the lagrangian associated to a slice disc but

not to any homotopy ribbon disc, or even a (1)-solution that is not homology

ribbon.

Part of our contribution in defining this invariant carefully is to go back-

wards and forwards between the rational and integral Alexander modules. The

lagrangians should be indexed rationally, since they are easier to control that

way, but the invariant should be integral, otherwise it would be rarely non-

vanishing, as we will see in the proof of Theorem 5.2.

Combine Theorem 3.8 with Lemma 3.2, Lemma 3.3 and then with Lemma 3.4,

to obtain the following obstruction theorems, which imply Theorems 1.3 and 1.4

from the introduction.

Theorem 3.10: Suppose that a knot K lies in F0.5,1 (for example if K is

homotopy ribbon). Then there is a lagrangian P for the rational Blanchfield

form such that ψ(K,P ) = 0.

Theorem 3.11: Suppose that a knot K lies in F1,1 (for example if K is doubly

slice). Then there are lagrangians P1 and P2 for the rational Blanchfield form

such that

P1 ⊕ P2 = H1(MK ;Q[Z]) and ψ(K,P1) = ψ(K,P2) = 0.

3.2. Computation of the invariant ψ(K,P ). Next we develop

techniques to compute ψ(K,P ) in examples. Proposition 2.4 and the map

fJ : MJ → B(A(K)/P̃ ) that was defined at the end of Section 2.3, combined

with the canonical injection i : A(K)/P̃ → Z�A(K)/P̃ , appear in the following

proposition.

Proposition 3.12: Suppose that Σ is a genus g Seifert surface for K and

that P ⊂ AQ(K) is a lagrangian with respect to B�Q. If H is a metaboliser

representing P and J is a derivative of K associated with H , then

ψ(K,P ) = i∗((fJ)∗([MJ ])) ∈ H3(B(Z �A(K)/P̃ );Z),

where i : B(A(K)/P̃ ) → B(Z �A(K)/P̃ ).
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Proof. A cobordism E between MK and MJ was constructed in [CHL10]. Here

is a description of the construction of E, for the convenience of the reader.

Let C denote the 4-manifold obtained from MK × I by adding 2 handles

along J = J1∪· · ·∪Jg in MK ×{1}, with zero-framing with respect to S3. This

is a cobordism from MK to a 3-manifold ∂+C. Since the components of J are

pairwise disjoint and form half of a symplectic basis for H1(Σ;Z), the Seifert

surface Σ can be surgered to a disc inside ∂+C. Take the union of this disc with

the surgery disc in MK bounded by a zero-framed longitude of K, to obtain an

embedded 2-sphere S in ∂+C. Then define E to be the 4-manifold obtained

from C by attaching a 3-handle along S. Here are some important properties

of E, which we will call the fundamental cobordism.

Lemma 3.13 ([CHL10, Proposition 8.1]): The fundamental cobordism E con-

structed above has the following properties.

(i) The map i∗ : π1(MK) → π1(E) is surjective, with the kernel the normal

closure of the set of loops represented by the components of J .

(ii) The meridian of the band on which Ji ↪→ Σ ↪→ MK = ∂−E lies is

isotopic in E to a meridian of Ji in MJ = ∂+E.

Now we continue with the proof of Proposition 3.12. Since {[J1], . . . , [Jg]}
in AQ(K) spans P by Proposition 2.4(1), the normal closure in π1(MK) of

the set of loops represented by the components of J is contained in the kernel

of φP . Then, by Lemma 3.13(i), we can extend φP uniquely over π1(E); denote

the extension of φP by φE : π1(E) → Z � A(K)/P̃ . Then φE induces a map

φJ : π1(MJ) → Z �A(K)/P̃ . We need to show that φJ agrees with

i ◦ fJ : π1(MJ) −→ A(K)/P̃ −→ Z�A(K)/P̃ ,

where i is the canonical injection and fJ is the map on fundamental groups

determined by the map fJ : MJ → B(A(K)/P̃ ) defined at the end of Sec-

tion 2.3. As usual, in this proof we abuse notation and identify a map of

groups π1(X) → G with the corresponding map of spaces X → BG. By

Lemma 3.13(ii), for i∈{1, . . . , g} the homomorphism φJ :π1(MJ)→Z�A(K)/P̃

sends a meridian of Ji to the image of βi ∈ H1(S
3 � νΣ;Z) under the map

H1(S
3 � νΣ) → A(K) → A(K)/P̃ (see end of the Section 2.3 for the definition

of the βi). Furthermore, since the images of i ◦ fJ and φJ in Z �A(K)/P̃ are

abelian subgroups, they are determined by the images of the meridians of J .

By the definition of fJ , this map sends a meridian of Ji to the image of βi,
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for i ∈ {1, . . . , g}, hence φJ agrees with i ◦ fJ . Hence we conclude that the

3-chains (φP )∗([MK ]) and i∗ ◦ (fJ )∗([MJ ]) in C3(B(Z � A(K)/P̃ );Z) are ho-

mologous as witnessed by the image of the fundamental class of E. That is,

φE : E → B(Z �A(K)/P̃ ) is such that

∂((φE)∗([E])) = i∗ ◦ (fJ)∗([MJ ])− (φP )∗([MK ]),

since φP and φJ = i ◦ fJ are the restrictions of φE .

There is an exact sequence of groups

0 → A(K)/P̃ → Z�A(K)/P̃ → Z → 0,

that induces a fibration B(A(K)/P̃ ) → B(Z �A(K)/P̃ ) → S1. Hence we can

consider the Wang exact sequence [Wan49, Mil68]:

· · · → H3(A(K)/P̃ )
t∗−Id−−−−→H3(A(K)/P̃ )

i∗−→ H3(Z �A(K)/P̃ ) → H2(A(K)/P̃ ) → · · ·
where i∗ is induced from the inclusion and t∗ is induced from the action of the

generator t of Z on B(A(K)/P̃ ). Combined with Proposition 3.12 the above

exact sequence gives us a practical way to compute the invariant ψ(K,P ), as

we will see in Section 4. We end this section with the following immediate

consequence of the Wang exact sequence.

Proposition 3.14: Let t∗ be the map onH3(A(K)/P̃ ) induced from the action

of the generator t of Z on B(A(K)/P̃ ). Then ψ(K,P ) = 0 if

(fJ)∗([MJ ]) ∈ im(t∗ − Id).

Proof. By Proposition 3.12, ψ(K,P ) is the image of [MJ ] ∈ H3(MJ ;Z) under

i∗ ◦ (fJ )∗ : H3(MJ ;Z) → H3(Z �A(K)/P̃ ).

Consider the following diagram, where the bottom row is exact.

H3(MJ)

(fJ )∗

H3(A(K)/P̃ )
t∗−Id

H3(A(K)/P̃ )
i∗

H3(Z �A(K)/P̃ ).

We conclude that ψ(K,P ) = 0 if (fJ)∗([MJ ]) ∈ im(t∗ − Id).
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4. The relationship between ψ(K,P ) and triple linking numbers

As above, let K be a knot with a genus g Seifert surface Σ, let

P ⊂ H1(MK ;Q[t, t−1]) = AQ(K)

be a lagrangian of the rational Blanchfield form, and let J be a derivative of K

that determines a basis for a metaboliser of the Seifert form representing P .

Recall that by definition

B = 〈β1, . . . , βg〉
is the image of the map fJ : π1(MJ) → A(K)/P̃ defined at the end of Sec-

tion 2.3.

In this section we will relate ψ(K,P ) to Milnor’s triple linking number of

the link J . First we prove that B is a finitely generated torsion-free abelian

subgroup of A(K)/P̃ .

Proposition 4.1: Let g be the genus of the Seifert surface Σ. Then A(K)/P̃

is a Z-torsion free abelian group and B = 〈β1, . . . , βg〉 is a free abelian subgroup

of A(K)/P̃ . Moreover, if degΔK(t) = 2g, then B has rank g.

Proof. First, we show that A(K)/P̃ is a Z-torsion free abelian group. By defini-

tion of P̃, A(K)/P̃ injects intoAQ(K)/P , which is Z-torsion free, henceA(K)/P̃

is Z-torsion free. Then the finitely generated abelian subgroup B is also torsion

free, hence free.

Furthermore, AQ(K) has rank 2g as Q-vector space, and the lagrangian P

has rank g as Q-vector space. Then by Proposition 2.4(2), the rank of B is at

least g. Since B is generated by g elements, we conclude that B has rank g.

Recall that, for a 3-component link L = L1∪L2∪L3 with zero pairwise linking

numbers, Milnor’s triple linking number μ̄L(123) ∈ Z is defined [Mil54, Mil57].

Also, recall that μ̄L(123) can be calculated as signed count of triple intersection

points of Seifert surfaces [Coc85, Section 5].

Consider a map fL : ML → S1 × S1 × S1 such that the induced map on first

homology followed by the canonical isomorphism H1((S
1)3;Z) ∼= Z3 sends the

first meridian to (1, 0, 0), the second meridian to (0, 1, 0) and the third meridian

to (0, 0, 1). For i ∈ {1, 2, 3}, let fi : ML → S1 be the map obtained from fL by

projecting onto ith factor. We claim that for i ∈ {1, 2, 3}, we can alter fi by a

homotopy so that fi
−1(1) is a capped off Seifert surface for the ith component

of L. To see this, we argue as follows. Given a capped-off Seifert surface Fi
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for Li, the Pontryagin–Thom construction gives rise to a map f̃i : ML → S1

with

f̃−1
i ({1}) = Fi.

Homotopy classes of maps to S1 correspond to elements of H1(ML;Z). Since

the cohomology classes of fi and f̃i are equal, they are homotopic maps. So

indeed fi is homotopic to a map such that 1 ∈ S1 is a regular point and the

inverse image of 1 is a capped-off Seifert surface for Li.

After the alterations, f1 × f2 × f3 : ML → (S1)3 is still homotopic to f and

further the signed count of (f1 × f2 × f3)
−1({1} × {1} × {1}) coincides with

the signed count of the number of triple intersection points of Seifert surfaces.

Finally, since the signed count of (f1× f2× f3)
−1({1}×{1}×{1}) is also equal

to the degree of f1 × f2 × f3, we can conclude that

f∗([ML]) = μ̄L(123) ∈ H3(S
1 × S1 × S1) = Z.

Using this observation we will be able to relate ψ(K,P ) with Milnor’s triple

linking number of J .

We restrict our attention to the case that degΔK(t) = 2g where g is the

genus of the Seifert surface. From fJ : π1(MJ) → A(K)/P̃ , we obtain

f̄J : π1(MJ) → B = Zg and j : B = Zg → A(K)/P̃

where j is an inclusion and fJ = j◦f̄J . Then f̄J induces a map f̄J : MJ →∏g
S1

which sends the i-th meridian to the class ei = (0, . . . , 1, . . . , 0) of the first

homology, for i ∈ {1, . . . , g} as above. Let {ei × ej × ek | 1 ≤ i < j < k ≤ g} be

a basis for H3(
∏g S1), where × is the homology product. We have shown the

following proposition.

Proposition 4.2: Suppose that degΔK(t) = 2g, where g is the genus of a

Seifert surface Σ for K, and let J = J1 ∪ · · · ∪ Jg be a derivative of K on Σ.

Then

f̄J∗([MJ ]) ∈ H3(B) ∼= H3(Z
g) ∼= H3

( g∏
S1

)
has coordinates {μ̄J(ijk)} with respect to the basis

{ei × ej × ek | 1 ≤ i < j < k ≤ g}.
Combining Proposition 3.12 and Proposition 4.2 gives rise to the following

theorem.
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Theorem 4.3: Suppose that degΔK(t) = 2g, where g is the genus of a Seifert

surface Σ for K and suppose J = J1 ∪ · · · ∪ Jg is a derivative on Σ associated

with a metaboliser H . Then the invariant ψ(K,P ) is the image of∑
i<j<k

μ̄J(ijk)[ei × ej × ek],

under the dashed map in the diagram below, where P is the lagrangian repre-

sented by H .

H3(B)
j∗

H3(A(K)/P̃ )
t∗−Id

H3(A(K)/P̃ )
i∗

H3(Z �A(K)/P̃ ).

More generally, we have a sufficient condition for ψ(K,P ) to vanish. In

Section 5, we will present an equivalent condition for ψ(K,P ) to vanish for

some special cases.

Theorem 4.4: Suppose that K has a derivative J associated with a metabo-

lizer H such that all triple linking numbers of J vanish. Then ψ(K,P ) vanishes,

where P is the lagrangian represented by H .

Proof. Let f̄J : π1(MJ ) → B be the map defined above, where B is a free abelian

group by Proposition 4.1. Let abJ : π1(MJ ) → H1(MJ ) be the abelianization

map and let prJ : H1(MJ ) → B be the projection map, so that

prJ ◦ abJ = f̄J .

As above abJ induces a map abJ : MJ →∏g
S1, where g is the rank ofH1(MJ).

Let {ei × ej × ek | 1 ≤ i < j < k ≤ g} be a basis for H3(
∏g

S1). Then

(abJ )∗([MJ ]) ∈ H3(H1(MJ )) has coordinates {μ̄J(ijk)} with respect to the

basis {ei × ej × ek | 1 ≤ i < j < k ≤ g}. Since we are assuming that J has all

triple linking numbers vanishing,

(abJ)∗([MJ ]) ∈ H3(H1(MJ))

vanishes. This concludes the proof, since

ψ(K,P ) = i∗ ◦ j∗ ◦ (f̄J )∗([MJ ]) = i∗ ◦ j∗ ◦ (prJ )∗ ◦ (abJ)∗([MJ ]).
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5. Determining the possible Milnor’s invariants of derivatives

In this section we consider an algebraically slice knot K with a genus three

Seifert surface Σ. For the rest of this section, fix the following notation.

Let H ⊂ H1(Σ;Z) be a metaboliser of the Seifert form of K with respect to Σ,

let J = J1 ∪ J2 ∪ J3 be a derivative of K associated with H and let δ1 ∪ δ2 ∪ δ3
be intersection duals of J = J1 ∪ J2 ∪ J3 on Σ. Let X := (lk(δi, J

+
j ))3×3 be the

linking matrix of the δi and the Jj . Here J
+
j is a positive push-off of Jj . With

respect to the basis {δ1, δ2, δ3, J1, J2, J3} of H1(Σ;Z), the Seifert form is of the

type

M :=

(
A X

XT − Id 0

)
.

Recall that we denoted the set of the derivatives on Σ associated with H

by dK/dH . As in the introduction, define

SK,H := {μ̄L(123)− μ̄L′(123) | L,L′ ∈ dK/dH, o(L) = o(L′)}
where o(L) := [L1] ∧ [L2] ∧ [L3] ∈

∧3H . The following result was proven by

the first author in [Par16].

Theorem 5.1: SK,H ⊇ (det(X)− det(X − Id))Z.

The proof of Theorem 5.1 used a geometric argument to show how to change

one derivative to another, changing the triple linking number by

det(X) − det(X − Id). In this section we apply Theorem 4.3 to obtain inclu-

sions in the opposite direction, namely limitations on the possible changes of

μ-invariants. We will show that the inclusion in Theorem 5.1 is an equality in

some special cases. We do not know whether it is an equality in general.

Let n, d be integers and write g(n,d,i) = gcd(n, di) for a positive integer i.

Note that g(n,d,i) stabilises to some integer as i gets large; we will denote this

integer by g(n,d).

Theorem 5.2: In the notation introduced at the start of Section 5, suppose

that

X := (lk(δi, J
+
j ))3×3

is a diagonal matrix diag(p1, p2, p3) such that pi·(pi−1) 
= 0 for each i ∈ {1, 2, 3}.
Let n := det(X)− det(X − Id). Then SK,H ⊆ n

mZ, where

m = lcm(g(n,p1), g(n,p2), g(n,p3), g(n,p1−1), g(n,p2−1), g(n,p3−1)).
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Note that it is automatic from the definitions of n and m that m divides n.

Proof. Let P ⊂ AQ(K) be a lagrangian represented by H . Write Λ = Z[t, t−1].

We have A(K) ∼= Λ6/〈M − tMT 〉 and that P̃ is the submodule of A(K) gener-

ated by the basis of Λ3 ⊕ 〈0〉 by Proposition 2.4 (2). Hence, using

M − tMT :=

(
A− tAT X − tX − t Id

XT − tXT − Id 0

)
,

we compute:

(1)

A(K)/P̃ ∼= Λ3/〈XT − tXT − Id〉
∼= Λ3/〈(1− t)XT − Id〉
∼= Λ/〈(p1 − 1)− p1t〉 ⊕ Λ/〈(p2 − 1)− p2t〉 ⊕ Λ/〈(p3 − 1)− p3t〉.

Also, note that degΔK(t) = 2g = 6.

Fix a generator ofix of
∧3H . Let J and J ′ be two derivatives of K associated

with H such that o(J) = o(J ′) = ofix. By Theorem 4.3, it follows that

ψ(K,P ) = i∗ ◦ j∗(μ̄J (123) · e1 × e2 × e3) = i∗ ◦ j∗(μ̄J′ (123) · e1 × e2 × e3),

where e1×e2×e3 is a generator for H3(B) ∼= H3(Z
3) ∼= Z corresponding to ofix.

Hence

j∗((μ̄J (123)− μ̄J′(123)) · e1 × e2 × e3) ∈ ker(i∗) = im(t∗ − Id).

Moreover, note that since A(K)/P̃ is a Z-torsion free from Proposition 4.1,

we have an isomorphism of Λ-modules ∧3(A(K)/P̃ ) ∼= H3(A(K)/P̃ ) [Bro94,

Chapter 5]. By (1) we see that

H3(A(K)/P̃ ) ∼= Λ/〈(p1 − 1)− p1t〉 ⊗ Λ/〈(p2 − 1)− p2t〉 ⊗ Λ/〈(p3 − 1)− p3t〉.
In particular, H3(A(K)/P̃ ) is a Z-torsion free module and

j∗(e1 × e2 × e3) = 1⊗ 1⊗ 1 ∈ H3(A(K)/P̃ )

is nonzero element, hence j∗ is an injective map. Therefore, it will be enough

to show that im(t∗ − Id) ∩ im(j∗) ⊆ 〈 n
m · j∗(e1 × e2 × e3)〉 to get our desired

result. Consider the map

� : H3(A(K)/P̃ ) → H3(A(K)/P̃ )⊗Q ∼= Q.

Here the isomorphism to Q follows since

Λ/〈(pi − 1)− pit〉 ⊗Q ∼= Q
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for i ∈ {1, 2, 3}. Then note that the image of � ◦ j∗ is contained in Z ⊂ Q.

Let f1(t) ⊗ f2(t) ⊗ f3(t) be any element in H3(A(K)/P̃ ), and suppose that

(t∗ − Id)(f1(t)⊗ f2(t)⊗ f3(t)) ∈ im(j∗). We calculate:

(2)

� ◦ (t∗ − Id)(f1(t)⊗ f2(t)⊗ f3(t))

=�(tf1(t)⊗ tf2(t)⊗ tf3(t)− f1(t)⊗ f2(t)⊗ f3(t))

=
(p1 − 1)(p2 − 1)(p3 − 1)− p1p2p3

p1p2p3

×
(
f1

(p1 − 1

p1

)
⊗ f2

(p2 − 1

p2

)
⊗ f3

(p3 − 1

p3

))

=n
−f1(p1−1

p1
)⊗ f2(

p2−1
p2

)⊗ f3(
p3−1
p3

)

p1p2p3
.

Note from (2) that the factors of the denominator of

� ◦ (t∗ − Id)(f1(t)⊗ f2(t)⊗ f3(t))

come from the list p1, p2, p3, p1 − 1, p2 − 1, p3 − 1. Hence if

� ◦ (t∗ − Id)(f1(t)⊗ f2(t)⊗ f3(t)) ∈ Z,

then � ◦ (t∗ − Id)(f1(t) ⊗ f2(t) ⊗ f3(t)) is divisible by n
m . For any element

N · (1⊗ 1⊗ 1) ∈ im(t∗ − Id) ∩ im(j∗), where N ∈ Z, we see that n
m divides N ,

which concludes the proof of Theorem 5.2.

Now we can prove Theorem B, in which we determine the set SK,H precisely

for certain knots and certain genus 3 Seifert surfaces.

Theorem B: In the notation introduced at the start of Section 5, suppose that

X := (lk(δi, J
+
j ))3×3

is a diagonal matrix diag(p1, p2, p3). Write n := det(X)−det(X− Id). Suppose

that gcd(pi, n) = gcd(pi − 1, n) = 1 and pi · (pi − 1) 
= 0 for all i = 1, 2, 3. Then

SK,H = nZ.

Proof. We have SK,H ⊇ nZ from Theorem 5.1. In order to see SK,H ⊆ nZ ob-

serve that g(n,pi) = g(n,pi−1)=1, for i∈{1, 2, 3} from Theorem 5.2. Hencem = 1

in Theorem 5.2 and this implies the desired result.
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There certainly exist integers p1, p2, p3 that satisfy the assumptions of Theo-

rem B (for detailed calculations see Proposition 6.14 (1)). For instance, p1 = 3,

p2 = 5, and p3 = 17 satisfy the assumptions. We present the following corol-

lary, which relates the homology ribbon obstruction with Milnor’s triple linking

number.

Corollary 5.3: Suppose that

X := (lk(δi, J
+
j ))3×3

is a diagonal matrix diag(p1, p2, p3) such that pi · (pi − 1) 
= 0 for i ∈ {1, 2, 3}.
Let n = det(X)− det(X − Id). Let

m := lcm(g(n,p1), g(n,p2), g(n,p3), g(n,p1−1), g(n,p2−1), g(n,p3−1))

and let P ⊂ AQ(K) be a lagrangian represented byH . The following statements

are equivalent:

(1) For any derivative J = J1 ∪ J2 ∪ J3 associated with H , μ̄J (123) ≡ 0

mod n
m .

(2) There exists a derivative J = J1 ∪ J2 ∪ J3 associated with H such that

μ̄J(123) ≡ 0 mod n
m .

(3) ψ(K,P ) ≡ 0.

Proof. That (1) implies (2) is straightforward, since every metaboliser can be

represented by a derivative link. To see (3) implies (1), we argue as follows.

Assume that ψ(K,P ) ≡ 0. Then for any derivative J = J1 ∪ J2 ∪ J3 associated

with H ,

j∗(μ̄J (123) · e1 × e2 × e3) ∈ im(t∗ − Id) ∩ im(j∗).

In addition, from the proof of Theorem 5.2 we saw that

im(t∗ − Id) ∩ im(j∗) ⊆
〈 n
m

· j∗(e1 × e2 × e3)
〉
,

hence we conclude that n
m divides μ̄J(123). This completes the proof that (3)

implies (1).

In order to prove that (2) implies (3), we only need to show that

im(t∗ − Id) ∩ im(j∗) =
〈 n
m

· j∗(e1 × e2 × e3)
〉
,
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since ψ(K,P ) = i∗ ◦ j∗(μ̄J (123) · e1× e2× e3) by Theorem 4.3. For i ∈ {1, 2, 3},
there is a canonical identification

Λ/〈(pi − 1)− pit〉 ∼= Z

[pi − 1

pi
,

pi
pi − 1

] ∼= Z

[ 1
pi
,

1

pi − 1

]
.

Moreover, for i ∈ {1, 2, 3}, we have that

gcd(g(n,pi), g(n,pi−1)) = 1.

Hence there exists an element fi(t) ∈ Λ/〈(pi − 1) − pit〉 that corresponds to
1

g(n,pi)
·g(n,pi−1)

∈ Z[ 1
pi
, 1
pi−1 ]. Let

s =
g(n,p1)g(n,p2)g(n,p3)g(n,p1−1)g(n,p2−1)g(n,p3−1)

m
∈ Z

and consider

s · p1f1(t)⊗ p2f2(t)⊗ p3f3(t) ∈ H3(A(K)/P̃ ).

We calculate:

(t∗− Id)(s · p1f1(t)⊗ p2f2(t)⊗ p3f3(t))

=s(p1 − 1)f1(t)⊗ (p2−1)f2(t)⊗ (p3 − 1)f3(t)− sp1f1(t)⊗ p2f2(t)⊗ p3f3(t)

=s((p1 − 1)(p2 − 1)(p3 − 1)− p1p2p3) · (f1(t)⊗ f2(t)⊗ f3(t))

=− ns · (f1(t)⊗ f2(t)⊗ f3(t))

=− n

m
g(n,p1)g(n,p2)g(n,p3)g(n,p1−1)g(n,p2−1)g(n,p3−1) · (f1(t)⊗ f2(t)⊗ f3(t))

=− n

m
· (g(n,p1)g(n,p1−1)f1(t)⊗ g(n,p2)g(n,p2−1)f2(t)⊗ g(n,p3)g(n,p3−1)f3(t))

=− n

m
· j∗(e1 × e2 × e3).

Therefore im(t∗ − Id) ∩ im(j∗) ⊇ 〈 n
m · j∗(e1 × e2 × e3)〉, which concludes the

proof that (2) implies (3).

6. Algebraically slice knots with non-vanishing Z[Z] homology ribbon

obstruction

In this section, we construct algebraically slice knots with non-vanishing Z[Z]

homology ribbon obstruction. Later, we will relate these examples to the

doubly-solvable filtration and to a generalised version of the Kauffman con-

jecture. The following proposition is an observation from [Lev69, Section 9].

We give a quick proof for the convenience of the reader.
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Proposition 6.1: Let H ⊂ H1(F ) be a metaboliser of the Seifert form and

let M be a Seifert matrix (i.e., a square matrix over Z such that M −MT is

invertible), that is itself invertible over Q. If HQ = H ⊗Q, then

M−1MT (HQ) = HQ.

Proof. Since HQ is a metaboliser we have HQ ⊆ H⊥
Q . Considering M as a

homomorphism H1(F ;Q) → H1(F ;Q)∗, we have a short exact sequence

0 → H⊥
Q → H1(F ;Q)

(iH)∗◦M−−−−−−→ H∗
Q → 0.

To see that this is exact, first note that H⊥
Q ⊆ H1(F ;Q) is by definition

the kernel of (iH)∗M . Then M : H1(F ;Q) → H1(F ;Q)∗ is an isomorphism,

and i∗H : H1(F ;Q)∗ → H∗
Q is surjective because HomQ(−,Q) is right exact,

so (iH)∗ ◦M is surjective.

It follows from the short exact sequence and the fact that dimHQ is half

that of H1(F ;Q) that the dimension of H⊥
Q is also half that of H1(F ;Q).

Since HQ ⊆ H⊥
Q , it follows that HQ = H⊥

Q .

Now let x ∈ HQ and let M−1MTx = y, then MTx = My. Then for any

element z ∈ HQ,

zTMy = zTMTx = 0,

hence y ∈ H⊥
Q . Then

M−1MT (HQ) ⊆ H⊥
Q = HQ.

Since M is non-singular,

dimHQ = dimM−1MT (HQ),

and so HQ =M−1MT (HQ) as required.

We will apply Proposition 6.1 to a knot to compute all possible metabolisers

when a Seifert form of the knot satisfies certain conditions.

Proposition 6.2: Let M be a 6 × 6 Seifert matrix that is invertible over Q.

Moreover, assume that M−1MT has six distinct eigenvalues λ1, . . . , λ6

where λi 
= 1 for i ∈ {1, . . . , 6} and let v1, . . . , v6 be eigenvectors associated

to λ1, . . . , λ6. Then the possible metabolisers of the Seifert form M are pre-

cisely the subspaces span(vi, vj , vk)∩Z6, where vi, vj , vk represent curves on the

Seifert surface with pairwise intersection zero, that is

vTi Mvj = vTj Mvi, vTi Mvk = vTkMvi, and vTj Mvk = vTkMvj .
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Proof. For simplicity, assume that v1, v2 and v3 have pairwise intersection zero.

We claim that span(v1, v2, v3) ∩ Z6 is a metaboliser. Since M−1MT vi = λi · vi
we have

MT vi = λi ·Mvi

and

vTj M
T vi = λi · vTj Mvi = λi · vTi MT vj = λi · vTj MT vi

for all i, j ∈ {1, 2, 3}. Therefore span(v1, v2, v3)∩Z6 is a metaboliser as claimed.

For the other direction, let H be a metaboliser and let

HQ = H ⊗Q.

Let x = a1v1 + · · ·+ a6v6 be an element of HQ. Then by Proposition 6.1,

(M−1MT )jx = λj1a1v1 + · · ·+ λj6a6v6 ∈ HQ

for all j. In particular the column space of the 6× 6 matrix

E =
(
λj−1
i ai

)
,

with respect to the basis {v1, . . . , v6}, is contained in HQ. Observe that the

rank of E, which is the rank of the row space of E, is equal to the number of

nonzero ai. Since the dimension of HQ is 3, we conclude that the number of

nonzero ai is at most 3. Hence H = span(vi, vj , vk) ∩ Z6, where vi, vj , vk have

pairwise intersection zero.

We have the following corollary for a rather specific case.

Corollary 6.3: In the notation introduced at the start of Section 5, suppose

that

X := (lk(δi, J
+
j ))3×3

is a diagonal matrix diag(p1, p2, p3) such that pi · (pi − 1) 
= 0 for i ∈ {1, 2, 3}
and such that

p1
p1 − 1

,
p1 − 1

p1
,

p2
p2 − 1

,
p2 − 1

p2
,

p3
p3 − 1

, and
p3 − 1

p3

are distinct rational numbers. In addition, assume that

A := (lk(δi, δ
+
j ))3×3

is the 3× 3 zero matrix. Then K has eight possible metabolisers.
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Proof. Let M be the Seifert matrix with respect to the basis

{α1 = [δ1], α2 = [J1], α3 = [δ2], α4 = [J2], α5 = [δ3], α6 = [J3]}.

Then

M−1MT = diag
( p1
p1 − 1

,
p1 − 1

p1
,

p2
p2 − 1

,
p2 − 1

p2
,

p3
p3 − 1

,
p3 − 1

p3

)
is a 6× 6 diagonal matrix with six distinct eigenvalues

λ1 =
p1

p1 − 1
, λ2 =

p1 − 1

p1
, λ3 =

p2
p2 − 1

,

λ4 =
p2 − 1

p2
, λ5 =

p3
p3 − 1

, and λ6 =
p3 − 1

p3

all of which are not equal to 1 and αi is an eigenvector associated with λi

for i ∈ {1, . . . , 6}. Furthermore, since δ1 ∪ δ2 ∪ δ3 are the intersection duals

of J1∪J2∪J3, we apply Proposition 6.2 to conclude that the following comprise

all the possible metabolisers:

H = span{αi, αj , αk} where i ∈ {1, 2}, j ∈ {3, 4}, k ∈ {5, 6}.

Next we will present examples of knots K where ψ(K,P ) 
= 0 for all possible

lagrangians P ⊂ AQ(K). These examples will be used to prove Theorems A

and C.

Example 6.4: We continue to use the notation from the start of Section 5. In

particular, with respect to the basis {δ1, δ2, δ3, J1, J2, J3}, the Seifert form looks

like (
A X

XT − Id 0

)
.

Suppose that

X := (lk(δi, J
+
j ))3×3 = diag(p1, p2, p3),

and assume that A = (lk(δi, δ
+
j ))3×3 is the 3 × 3 zero matrix. Start with the

knot drawn in Figure 2. We have a disc-band form for the Seifert surface Σ, also

depicted in Figure 2. Perform double Borromean rings insertion moves to tie

Borromean rings into the bands of the Seifert surface by string link infections

(for a precise definition of string link infection see [Par16, Section 2.4], for
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instance) to arrange that μ̄L(123) = 1 for each of the 8 choices of L = L1∪L2∪L3

with Li ∈ {Ji, δi} for each i = 1, 2, 3. Let⎛⎜⎜⎜⎝
n1

n2

n3

n4

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
p1 · p2 · p3 − (p1 − 1) · (p2 − 1) · (p3 − 1)

p1 · p2 · (p3 − 1)− (p1 − 1) · (p2 − 1) · p3
p1 · (p2 − 1) · p3 − (p1 − 1) · p2 · (p3 − 1)

(p1 − 1) · p2 · p3 − p1 · (p2 − 1) · (p3 − 1)

⎞⎟⎟⎟⎠
and let

mj = lcm(g(nj , p1), g(nj , p2), g(nj , p3), g(nj , p1 − 1), g(nj, p2 − 1), g(nj , p3 − 1))

for j ∈ {1, 2, 3, 4}.

p1 p2 p3

δ1 δ2 δ3J1 J2 J3

Figure 2. Disc-band form for Σ, where a solid box represents

pi full twists between two bands with no twist on each of the

bands. Since all triples in the figure have Milnor’s triple linking

number zero, to get the desired example, perform the double

of a Borromean rings insertion move eight times, on the ith,

jth and kth bands for all choices of i ∈ {1, 2}, j ∈ {3, 4} and

k ∈ {5, 6}.

Note that there are infinitely many triples of integers {p1, p2, p3} such

that | nj

mj
| > 1 for j ∈ {1, 2, 3, 4} and pi · (pi − 1) 
= 0 for i ∈ {1, 2, 3} (see

the proof of Proposition 6.14(1)). Suppose that {p1, p2, p3} is a such triple.

Then by Corollary 6.3, there are eight possible metabolisers:

H = span{[L1], [L2], [L3]} where Li ∈ {Ji, δi} for i ∈ {1, 2, 3}.
Let P ⊂ AQ(K) be some lagrangian of K and note that by Lemma 2.3, P

can be represented by some metaboliser. Since | nj

mj
| > 1 for j ∈ {1, 2, 3, 4}

and μ̄L(123) = 1 for any link L with Li ∈ {Ji, δi} and i ∈ {1, 2, 3}, it follows

from Corollary 5.3 that ψ(K,P ) 
= 0.
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Example 6.5: Let K be the knot shown in Figure 3. Then we have

X = (lk(δi, J
+
j ))3×3 = diag(p1, p2, p3), A = (lk(δi, δ

+
j ))3×3 = diag(1,−1, 1).

For i ∈ {1, 2, 3}, the curve εi from Figure 3 has self linking number zero (i.e.,

lk(εi, ε
+
i ) = 0). Suppose again that {p1, p2, p3} is a triple of integers such

that | nj

mj
| > 1 for j ∈ {1, 2, 3, 4} and pi · (pi − 1) 
= 0 for i ∈ {1, 2, 3}. Here,

nj and mj are defined in the same way as in Example 6.4. Then by similar

analysis to that in Corollary 6.3, and again using Proposition 6.2, it is possible

to deduce that there are 8 possible metabolisers of the form

H = span{[L1], [L2], [L3]} where Li ∈ {Ji, εi} for i = 1, 2, 3.

By the same argument as in Example 6.4, ψ(K,P ) 
= 0 for all possible la-

grangians P ⊂ AQ(K).

Borromean rings

1 −1 1p1 p2 p3

2p1 − 1 2p2 − 1 2p3 − 1ε1 ε2 ε3

Figure 3. A knot K, with a disc-band form for a Seifert surface

Σ, where a solid box represents pi full twists between two bands

with no twist on each band, and a dotted box represents ±1

full twists between two strands. For i ∈ {1, 2, 3}, εi is a simple

closed curve that goes around (2i−1)-th band 2pi−1 times, and

around the 2i-th band−1 times. In the box labelled Borromean

rings, the bands are tied in a string link whose closure is the

Borromean rings, without introducing extra twisting.
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6.1. The doubly solvable filtration. In this subsection we give the proof

of Theorem A. First, we recall the results that are previously known. The

next theorem was shown in [Kim06, Theorem 1.1 and Theorem 7.1] (see [CK19,

Theorem 6.10] for a more general statement).

Theorem 6.6: Fix an integer n ≥ 1.

(1) There exists a ribbon knot K that is algebraically doubly slice, doubly

(n)-solvable, but not doubly (n.5)-solvable.

(2) There exists an algebraically doubly slice knot K that is doubly (n)-

solvable, but not (n, n.5)-solvable.

Taehee Kim also showed that the first few terms of the doubly solvable filtra-

tion are well understood [Kim06, Proposition 2.8 and Proposition 2.10] (see

also [CK19, Section 7] for a geometric reinterpretation of the double solvable

filtration, and [Ors17] for a highly algebraic approach).

Proposition 6.7:

(1) For n = 0 or 0.5, a knot K is doubly (n)-solvable if and only if it is

(n)-solvable. Hence, a knot is doubly (0)-solvable if and only if it has

vanishing Arf invariant, and doubly (0.5)-solvable if and only if it is

algebraically slice.

(2) If a knot K is doubly (1)-solvable, then K is algebraically doubly slice.

Theorem A shows that (a weaker form of) the converse of Proposition 6.7(2)

does not hold. Theorem A is analogous to Theorem 6.6 for the base case of the

“other half” of the filtration. We recall the statement of Theorem A for the

convenience of the reader.

Theorem A:

(a) There exists a ribbon knot that is algebraically doubly slice, but not

doubly (1)-solvable.

(b) There exists a knot that is algebraically doubly slice, but not (0.5, 1)-

solvable.

In particular, neither knot is doubly slice.

Proof. For part (a), let K be the knot from Example 6.4, for some choice

of p1, p2 and p3, except that we do not tie Borromean rings into the 1st and 3rd

and 5th bands (that is when Li = δi for i ∈ {1, 2, 3}). The derivative δ1∪δ2∪δ3
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of K is an unlink, which implies that K is a ribbon knot. The Seifert form with

respect to the given basis is (
0 X

XT − Id 0

)
,

so K is algebraically doubly slice, and Proposition 6.7 (1) implies that K is

doubly (0.5)-solvable. We observed in Example 6.4 that K has eight possible

metabolisers, and exactly one of the metabolisers, namely span{[δ1], [δ2], [δ3]},
represents a lagrangian P0 with respect to which ψ(K,P0) = 0, using Corol-

lary 5.3. If K were doubly (1)-solvable, then by Theorem 3.11, there would

exist two lagrangians P1 and P2 for the rational Blanchfield form, such that

P1 ⊕ P2 = H1(MK ;Q[Z]) and ψ(K,P1) = ψ(K,P2) = 0.

This contradicts the statement above that there is exactly one lagrangian P

with ψ(K,P ) = 0. This concludes the proof of part (a).

For the second part, letK be the knot from Example 6.4. For the same reason

as above, K is algebraically doubly slice and doubly (0.5)-solvable. If K were

(0.5, 1)-solvable, then by Theorem 3.10, there would exist a lagrangian P for

the rational Blanchfield form such that ψ(K,P ) = 0. This is not possible, since

we checked in Example 6.4 that ψ(K,P ) 
= 0 for all possible lagrangians P .

This concludes the proof of part (b) and therefore of the theorem.

We end this section with the following observations.

Lemma 6.8: A ribbon knot K is (0.5, n)-solvable for all n ∈ 1
2N0.

Proof. Since K is (0.5)-solvable there exists a (0.5)-solution W0.5 with

π1(W0.5) = Z [COT03, Remark 1.3]. LetWR be the ribbon disc complement for

K. Then by the Seifert–van Kampen theorem, it is straightforward to conclude

that

π1(W0.5 ∪MK WR) = Z.

Therefore K is (0.5, n)-solvable for all n ∈ 1
2N0.

Corollary 6.9: There exists a knot K that is algebraically doubly slice and

(0.5, n)-solvable for all n ∈ 1
2N0, but is not doubly (1)-solvable.

Proof. Let K be a ribbon knot from Theorem A(a). Then by Lemma 6.8, K is

(0.5, n)-solvable for all n ∈ 1
2N0. We proved that K is not doubly (1)-solvable

in Theorem A.
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6.2. Algebraically slice knots with potentially interesting prop-

erties. In this subsection, we investigate some properties of knots that are

algebraically slice and have non-vanishing Z[Z]-homology ribbon obstruction.

First we define what it means for a knot to be homotopy ribbon (n)-solvable,

and then we recall a generalised version of the Kauffman conjecture. We show

that there exists an algebraically slice knot K that is not homotopy ribbon (1)-

solvable and does not have any (0)-solvable derivative. At the end of the section,

we present some interesting properties of a set, denoted S, of algebraically slice

knots that do not have vanishing Z[Z]-homology ribbon obstruction (see Defi-

nition 6.10).

Motivated by the definition of a homotopy ribbon knot, we can define the

following analogous definition for the solvable filtration. It is not known whether

every (n)-solvable knot is homotopy ribbon (n)-solvable or not.

Definition 6.10 (Homotopy ribbon (n)-solvable): We say that a knot K is ho-

motopy ribbon (n)-solvable for n ∈ 1
2N0 if the zero-framed surgery mani-

fold MK is the boundary of an (n)-solution W such that the inclusion induced

map π1(MK) → π1(W ) is surjective.

We note that a knot K ′ concordant to K need not be homotopy ribbon (n)-

solvable even if K is, just as (so far as we know) the ordinary homotopy ribbon

property need not be preserved under concordance. Of course, there are no

known counterexamples to this: if the slice-homotopy ribbon conjecture holds,

then the homotopy ribbon property would be preserved under concordance.

We recall an open problem. Note that if a knot has a slice derivative then the

knot itself is a slice knot. It is natural to ask if the converse is true as follows

(see also [CD15a, Conjecture 7.2]).

Conjecture 6.11 (Generalised version of the Kauffman Conjecture): If K is

a topologically (resp. smoothly) slice knot, then there exists a topologically

(resp. smoothly) slice derivative of K.

As mentioned in the introduction, every ribbon knot has a Seifert surface

with an unlinked derivative. Hence if the slice-ribbon conjecture holds, then the

smooth version of Conjecture 6.11 also holds. In [CD15a], Cochran and Davis

found a smoothly slice knot R, where R has a unique minimal genus one Seifert

surface F , but there does not exist any slice derivative on F . However, the

smoothly slice knot R in [CD15a] can be shown to be ribbon by finding a ribbon
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derivative after stabilising the Seifert surface F . It is also known that if a knot

has an (n)-solvable derivative then the knot itself is (n + 1)-solvable [COT03,

Theorem 8.9]. We ask whether the converse is true (cf. [CD15b, Conjecture 1.4]).

Conjecture 6.12 ((n)-solvable Kauffman Conjecture): For all n ∈ 1
2N0, if K is

(n+ 1)-solvable, then there exists an (n)-solvable derivative of K.

We do not have a counterexample for Conjecture 6.12. But we show that

the knot from Example 6.4 has the following interesting property: whether or

not this knot is (1)-solvable, it is not possible to show that it is (1)-solvable by

finding a (0)-solvable derivative.

Theorem C: The algebraically slice knotK from Example 6.4 is not homotopy

ribbon (1)-solvable and does not have any (0)-solvable derivative.

Proof of Theorem C. Let K be the knot from Example 6.4. Note that ev-

ery homotopy ribbon (1)-solvable knot is homology ribbon (1)-solvable (see

Lemma 3.2). Hence by Theorem 3.8, K is not a homotopy ribbon (1)-solvable

knot. Now, suppose that K has a (0)-solvable derivative J with m components.

Then MJ bounds over Zm and so μ̄J(ijk) = 0 for any subset {i, j, k} of the

indexing set for the components of J ; cf. [Ott14, Mar15]. However, ψ(K,P ) 
= 0

for all lagrangians, which by Theorem 4.4 implies that μ̄J (ijk) 
= 0 for some

triple (ijk).

We end this section by presenting some interesting properties of the follow-

ing set.

Definition 6.13: Let S be the set of all algebraically slice knots K such that the

invariant ψ(K,P ) 
= 0 for all possible lagrangians P ⊂ AQ(K).

Recall that there is a bipolar filtration of C, defined by Cochran, Harvey and

Horn in [CHH13], that generalises the notion of positivity from [CG88]. We

refer to [CHH13] for the definition and detailed discussion.

In the upcoming proposition, τ denotes the concordance invariant of Ozsváth–

Szabó [OS03b], d1 denotes the concordance invariant of Peters [Pet10]

where d1(K) = d(S3
1 (K)) is the correction term defined by Ozsváth–Szabó

[OS03a], S3
1(K) denotes the one-framed surgery on S3 along K, ν+ denotes the

concordance invariant of Hom–Wu [HW16], and finally Υ denotes the concor-

dance invariant of Ozsváth–Stipsicz–Szabó [OSS17]. Note that all the above

invariants obstruct a knot from being smoothly slice, and indeed from being

0-bipolar.
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Proposition 6.14: Let S be the set of knots from Definition 6.13.

(1) There are infinitely many concordance classes of knots in S.
(2) For anyK ∈ S, K does not have a (0)-solvable derivative. In particular,

no derivative of K is topologically slice.

(3) For any K ∈ S, K is not homotopy ribbon (1)-solvable. In particular,

K is not homotopy ribbon.

(4) There exists K ∈ S such that K /∈ F1.5.

(5) There exists a knot K ∈ S such that K ∈ B0 where B0 is the set of

0-bipolar knots. In particular,

τ(K) = d1(K) = ε(K) = ν+(K) = Υ(K) = 0.

(6) If there exists a knot K ∈ S that is smoothly slice, then K gives a

counterexample for ribbon-slice conjecture.

(7) If there exists a knot K ∈ S that is topologically slice, then K gives a

counterexample for homotopy ribbon-slice conjecture.

Proof. To prove (1), consider knots with the same Seifert form as in Exam-

ple 6.4. First, we show that there exist infinitely many triples of integers

{p1, p2, p3} such that corresponding | nj

mj
|>1 for j∈{1, 2, 3, 4} and pi · (pi−1) 
=0

for i ∈ {1, 2, 3}. This can be achieved by letting p1 = 2n + 1, p2 = 22n + 1,

p3 = 24n + 1, since⎛⎜⎜⎜⎝
n1

m1
n2

m2
n3

m3
n4

m4

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
(2n + 1)(22n + 1)(24n + 1)− 27n

23n + 22n + 2n − 1

24n − 22n + 2n + 1

−25n + 24n + 22n + 1

⎞⎟⎟⎟⎠ .

Choose two triples {p1, p2, p3} and {p′1, p′2, p′3} with the above property

where p1, p2, p3, p
′
1, p

′
2, p

′
3 are all distinct. Let K and K ′ be knots from Exam-

ple 6.4 where {p1, p2, p3} corresponds to K and {p′1, p′2, p′3} corresponds to K ′.
If they are concordant then by [CHL10, Corollary 5.9] K#−K ′ should have a

derivative with bounded von Neumann ρ-invariant of its zero surgery. For every

metaboliser, perform infection on K ′ to make the von Neumann ρ-invariant of

zero surgery on the derivatives of K#−K ′ larger than the upper bound given

by [CHL10, Corollary 10.2]. This guarantees that K and K ′ are not concor-

dant, and we can repeat this process to get infinitely many different concordance

classes of knots in S.
Items (2) and (3) follow from the proof of Theorem C.
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For (4), it is known that if K ∈ F1.5, then there is an upper bound for the von

Neumann ρ-invariant of zero surgery on a derivative of K that represents a par-

ticular metaboliser of K [CHL10, Corollary 10.2]. The effect of infection on the

von Neumann ρ-invariant is well understood [COT04, Proposition 3.2], [CHL09,

Lemma 2.3]. For instance, if we take a knot from Example 6.4 and infect each

of the bands enough (for example, by tying in a connected sum of many trefoils)

so that the von Neumann ρ-invariant of zero surgery on the derivatives of K

for each metaboliser becomes larger than the upper bound given by [CHL10,

Corollary 10.2], then we can guarantee that K is not (1.5)-solvable. Hence (4)

holds.

For (5), we will use Example 6.5. Note that the knot from Example 6.5 can

be turned into a slice knot by changing a positive crossing to a negative crossing

(undo the positive crossing on the third band). Also this knot can be turned

into a slice knot by changing a negative crossing to a positive crossing (undo

the negative crossing on the first band), whence K ∈ B0 [CL86, Lemma 3.4],

[CHH13, Proposition 3.1] and the result follows from [CHH13, NW14, HW16,

OSS17].

Items (6) and (7) follow immediately from Theorem 3.10.
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