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ABSTRACT

We prove that up to automorphisms of the target the affine line A1 ad-

mits a unique embedding into the regular part of an affine simplicial toric

variety of dimension at least 4 which is smooth in codimension 2. This is

an analog of the well-known result on the existence of a linearization of

any polynomial embedding A1 ↪→ An for n ≥ 4.

1. Introduction

Let ϕ : C → C′ be an isomorphism of two smooth polynomial curves contained

in the regular part Yreg of an affine algebraic variety Y over an algebraically

closed field k of characteristic zero. It may happen that ϕ extends to an auto-

morphism of Y and our first aim is to describe some affine algebraic varieties

for which this extension takes place.

This problem was studied in several papers [AMo], [Su], [Cr],[Je], [St], [FS],

[Ka20] and [AZ]. It turns out that the answer is positive for some classes of flex-

ible varieties of dimension n ≥ 4 where Y is flexible if the subgroup SAut(Y ) of

the automorphism group Aut(Y ) of Y generated by all one-parameter unipotent

subgroups acts transitively on Yreg. Say, this is so if Y = A
n with n ≥ 4 [Cr],

[Je]. For n = 3 the answer is unknown but for n = 2 the famous Abhyankar–

Moh–Suzuki theorem [AMo], [Su] states that an isomorphism of two smooth
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plane polynomial curves always extends to an automorphism of the plane A2.

Perhaps, A2 is the only example of a two-dimensional flexible variety with this

property. If Y is an affine simplicial toric variety A2/G where G is a finite sub-

group of SL2(k) acting naturally on A2, then Arzhantsev and Zaidenberg [AZ]

showed that the answer is negative. They actually classified up to automor-

phisms of Y all smooth polynomial curves in Yreg (there is only a finite number

of isomorphism classes of such curves).

In this paper we study the case when Y is an affine simplicial toric variety

of dimension n ≥ 4 (i.e., Y = An/G where G is a finite subgroup of SLn(k)

acting naturally on A
n). We show that the answer to this extension problem is

positive under the assumption of smoothness in codimension 2.

Furthermore, recall that given a subvariety Z of Y with defining ideal I

in the algebra k[Y ] of regular functions on Y , its kth infinitesimal neighbor-

hood is the scheme with the defining ideal Ik. In particular, if W is another

subvariety of Y with defining ideal J , then an isomorphism Z → W of kth in-

finitesimal neighborhoods of Z andW is determined by an isomorphism of alge-

bras k[Y ]
Ik → k[Y ]

Jk . There are natural obstacles for extending such isomorphisms

to automorphisms of Y . Say, let Z =W be a strict complete intersection given

in Y by u1 = · · ·=um=0. Then an automorphism ψ : k[Y ]
Ik → k[Y ]

Ik over k[Y ]
I is

given by polynomials f1, . . . , fm in u1, . . . , um over k[Y ]
I of degree at most k−1.

If Y does not admit nonconstant invertible functions and ψ is extendable to

an automorphism of Y , then one can see that the Jacobian det[ ∂fi∂uj
]mi,j=1 must

be equal to a nonzero constant modulo Ik−1 in which case we say that ψ has

a nonzero constant Jacobian. There is also a notion of a nonzero constant

Jacobian of an isomorphism Z → W in the case when both Z and W are

smooth polynomial curves in a normal toric variety Y contained in Yreg (see

Definition 7.4). The question when such isomorphisms with nonzero constant

Jacobians are extendable to automorphisms of Y was considered in [KaUd] and

[Ud]. In combinations with the results of [KaUd] and [Ud] we get our first main

result (Corollary 7.5).

Theorem 1.1: Let Y be an affine simplicial toric variety smooth in codimen-

sion 2 such that dimY ≥ 4. Let ϕ : C1 → C2 be an isomorphism of kth

infinitesimal neighborhoods of two smooth polynomial curves contained in Yreg

such that the Jacobian of ϕ is a nonzero constant. Then ϕ extends to an

automorphism of Y .
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The second subject of this paper is related to the theorem of Holme [Hol,

Theorem 7.4] (later rediscovered in [Ka91] and [Sr]). It states that if Z is an

affine algebraic variety with

ED(Z) := max(2 dimZ + 1, dimTZ) ≤ n,

then Z admits a closed embedding into A
n (the version of this theorem with

a smooth Z appeared originally in [Swan, Theorem 2.1]). Recently, Feller and

van Santen [FS21] proved that if X is an affine algebraic variety isomorphic to a

simple linear algebraic group and Z is smooth, then Z admits a closed embed-

ding into X , provided that dimX > ED(Z) = 2 dimZ + 1. Since affine spaces,

simple linear algebraic groups and normal affine toric varieties are examples of

flexible varieties it is natural to look for analogues of Holme’s theorem in the

flexible case. In this paper we prove the following.

Theorem 1.2 (Theorem 3.7): Let Z be an affine algebraic variety and X be

a smooth quasi-affine flexible variety of dimension at least ED(Z). Then Z

admits an injective immersion into X .

In the case when X is a normal affine toric variety we also find conditions

which guarantee that Z admits a closed embedding into X (Theorem 5.3). The

formulation of the latter theorem is subtler when X is simplicial and it is a

consequence of the following more general fact.

Theorem 1.3 (Corollary 3.3): Let ψ : An → Y be a finite morphism where Y

is normal. Suppose that Z is an affine algebraic variety such that ED(Z) ≤ n

and dimZ < codimY Ysing. Then Z admits a closed embedding in Y with the

image contained in Yreg.

The paper is organized as follows. In Section 2 we survey the technique

developed in [Ka20] which was later clarified in [KaUd]. In particular, one

can find there formal definitions of locally nilpotent vector fields and flexible

varieties. Section 2 contains also a modified version of Theorem 4.2 from [Ka20]

which is a crucial tool in this paper. Using this result we prove Theorems 1.2

and 1.3 in Section 3. In Section 4 we introduce notations for toric varieties

which are used freely throughout the rest of the paper and prove some simple

facts about normal affine toric varieties. Section 4 contains an analogue of

Holme’s theorem for normal affine toric varieties. In Section 5 we study locally

nilpotent vector fields on normal affine toric varieties with no torus factors. The
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properties of locally nilpotent vector fields are crucial for us since compositions

of elements of the flows of such vector fields produce automorphisms that extend

isomorphisms of smooth polynomial curves. In Section 6 we prove Theorem 1.1.

Acknowlegement. The author is grateful to the referee for very useful com-

ments and corrections.

2. Flexible varieties: preliminaries

In this section we present some technical tools developed in [Ka20] with later

clarifications in [KaUd] which we use in this paper. We shall also give a modified

version of [Ka20, Theorem 4.2].

Definition 2.1: (1) Given an irreducible algebraic variety A and a map

ϕ : A → Aut(X) (where Aut(X) is the group of algebraic automorphisms of X)

we say that (A, ϕ) is an algebraic family of automorphisms ofX if the induced

map

A×X → X,

(α, x) �→ ϕ(α).x

is a morphism (see [Ra]).

(2) If we want to emphasize additionally that ϕ(A) is contained in a sub-

group G of Aut(X), then we say that A is an algebraic G-family of automor-

phisms of X .

(3) In the case when A is a connected algebraic group and the induced map

A×X → X is not only a morphism but also an action of A on X , we call this

family a connected algebraic subgroup of Aut(X).

(4) Following [AFKKZ, Definition 1.1] we call a subgroup G of Aut(X) al-

gebraically generated if it is generated as an abstract group by a family G of

connected algebraic subgroups of Aut(X).

We have the following important fact [AFKKZ, Theorem 1.15] (which is the

analogue of the Kleiman transversality theorem [Kl] for algebraically generated

groups).

Theorem 2.2 (Transversality Theorem): Let a subgroup G ⊆ Aut(X) be al-

gebraically generated by a system G of connected algebraic subgroups closed

under conjugation in G. Suppose that G acts with an open orbit O ⊆ X .
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Then there exist subgroups H1, . . . , Hm ∈ G such that for any locally closed

reduced subschemes Y and Z in O one can find a Zariski dense open subset

U = U(Y, Z) ⊆ H1 × · · · × Hm such that every element (h1, . . . , hm) ∈ U

satisfies the following:

(a) The translate (h1 · · ·hm).Zreg meets Yreg transversally.

(b) dim(Y ∩ (h1 · · ·hm).Z) ≤ dim Y + dimZ − dimX .1 In particular

Y ∩ (h1 · · ·hm).Z = ∅
if dimY + dimZ < dimX .

Definition 2.3: (1) A nonzero derivation δ on the ring A of regular functions on

an affine algebraic variety X is called locally nilpotent if for every 0 
= a ∈ A

there exists a natural n for which δn(a) = 0. This derivation can be viewed

as a vector field on X which we also call locally nilpotent. The set of all

locally nilpotent vector fields on X will be denoted by LND(X). The flow of

δ ∈ LND(X) is an algebraic Ga-action on X , i.e., the action of the group (k,+)

which can be viewed as a one-parameter unipotent group U in the group Aut(X)

of all algebraic automorphisms of X . In fact, every Ga-action is a flow of a

locally nilpotent vector field (e.g., see [Fr, Proposition 1.28]).

(2) If X is a quasi-affine variety, then an algebraic vector field δ on X is

called locally nilpotent if δ extends to a locally nilpotent vector field δ̃ on

some affine algebraic variety Y containing X such that δ̃ vanishes on Y \ X
where codimY (Y \ X) ≥ 2. Note that under this assumption δ generates a

Ga-action on X and we use again the notation LND(X) for the set of all locally

nilpotent vector fields on X .

Definition 2.4: (1) For every locally nilpotent vector field δ and each function

f ∈ Ker δ from its kernel, the field fδ is called a replica of δ. Recall that such

replica is automatically locally nilpotent.

(2) Let N be a set of locally nilpotent vector fields on X and GN ⊂ Aut(X)

denote the group generated by all flows of elements of N . We say that GN is

generated by N .

(3) A collection of locally nilpotent vector fields N is called saturated if N
is closed under conjugation by elements in GN and for every δ ∈ N each replica

of δ is also contained in N .

1 We put the dimension of empty sets equal to −∞.
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Definition 2.5: Let X be a normal quasi-affine algebraic variety of dimension at

least 2, N be a saturated set of locally nilpotent vector fields on X and G = GN
be the group generated by N . Then X is called G-flexible if for any point x in

the smooth part Xreg of X the vector space TxX is generated by the values of

locally nilpotent vector fields fromN at x (which is equivalent to the fact that G

acts transitively on Xreg [FKZ, Theorem 2.12]). In the case of G = SAut(X)

we call X flexible without referring to SAut(X) (recall that SAut(X) is the

subgroup of AutX generated by all one-parameter unipotent subgroups).

The following is a modified version of [Ka20, Theorem 4.2].

Theorem 2.6: Let X be a smooth algebraic variety, Q be a normal algebraic

variety, � : X → Q be a dominant morphism and G ⊂ Aut(X) be an al-

gebraically generated group acting 2-transitively on X . Suppose that Q0 is a

smooth open dense subset of Q, X0 = �−1(Q0) and Z is a locally closed reduced

subvariety of X .

(i) Suppose that

(1) dimX0 ×Q0 X0 = 2dimX − dimQ

and dimQ ≥ dimZ + m where m ≥ 1. Then there exists an algebraic G-

family A of automorphisms of X such that for a general element α ∈ A one can

find a constructible subset R of α(Z)∩X0 of dimension dimR ≤ dimZ−m for

which �(R) and �(α(Z) \R) are disjoint and the restriction

�|(α(Z)∩X0)\R : (α(Z) ∩X0) \R → Q0

of � is injective. In particular, if dimQ ≥ 2 dimZ + 1 and Z ′
α = � ◦ α(Z), then

for a general element α ∈ A the morphism

�|α(Z)∩X0
: α(Z) ∩X0 → Z ′

α ∩Q0

is a bijection, while in the case of a pure-dimensional Z and dimQ ≥ dimZ+1

this morphism is birational.

(ii) Let G be generated by a saturated set N of locally nilpotent vector fields

on X (in particular, X is G-flexible) and

Y =
⋃

x∈X0

Ker{�∗ : TxX0 → T�(x)Q0}

Let

(2) dim Y = dimTX − dimQ.
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Suppose that dimTZ ≤ dimQ. Then there exists an algebraic family A of

G-automorphisms of X such that for a general element α ∈ A and every

z ∈ α(Z) ∩X0, the induced map �∗ : Tzα(Z) → T�(z)Q of the tangent spaces is

injective.

Proof. For every variety X denote by SX the variety SX = (X × X ) \ ΔX
where ΔX is the diagonal in X ×X . Then every automorphism in Aut(X) can

be lifted to an automorphism of SX . In particular, we have a G-action on SX

and by the assumption this action is transitive on SX . Consider the subvariety

Y = (X0 ×Q0 X0) \ΔX ⊂ SX .

By Formula (1), dimY = 2dimX − dimQ (i.e., the codimension of Y in SX

is dimQ). By Theorem 2.2 (b) we can choose algebraic subgroups H1, . . . , Hm

of G such that for a general element (h1, . . . , hm) ∈ H1 × · · · ×Hm one has

dimW ≤ dimY + dimSZ − dimSX = dimSZ − dimQ

≤ 2 dimZ − dimQ

where W = Y ∩α(SZ ) for α = h1 · · ·hm. Hence, in case (i) the dimension of W

is at most dimZ −m. Let R be the image of W under one of the two natural

projections X×QX → X . In particular, R is a constructible set by Chevalley’s

theorem [Ha, Chap. II, Exercise 3.19], R ⊂ α(Z)∩X0 and dimR ≤ dimZ −m.

Note that for z ∈ α(Z) ∩X0 one has

�−1(�(z)) ∩ α(Z) = z iff z /∈ R.

Hence, the restriction of � to (α(Z) ∩ X0) \ R is injective. Therefore, letting

A = H1 × · · · ×Hm, we get (i).

In (ii) for every variety X and a subvariety Y of the tangent bundle TX
let Y∗ = Y \ S where S is the zero section of the natural morphism TX → X .

Every automorphism α ∈ Aut(X) generates an automorphism of TX . In

particular, G acts on (TX)∗ and by [AFKKZ, Theorem 4.11 and Remark

4.16] this action is transitive. By Formula (2), dimY ∗ = dimTX − dimQ.

By Theorem 2.2 we can choose one-parameter unipotent algebraic subgroups

H̃1, . . . , H̃m̃ of G such that for a general element (h̃1, . . . , h̃m̃) ∈ H̃1 × · · · × H̃m̃

and Z ′′ = (h̃1 · · · h̃m̃)(Z) one has

dimY ∗ ∩ (TZ ′′)∗ ≤ dimY ∗ + dim(TZ)∗ − dimTX∗ ≤ 0.
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Note that if Y ∗∩(TZ ′′)∗ contains a point, then dimY ∗∩TZ ′′ must be at least 1

(since this point is a vector in TZ ′′ and then Y ∗ ∩ (T (Z ′′)∗ contains all nonzero

vectors proportional to that one). That is, Y ∗∩ (T (Z ′′)∗ = ∅. This implies that

for every z ∈ Z ′′ ∩X0 the restriction of �∗ to TzZ
′′ is injective. Consequently,

the restriction of �∗ to TzZ
′′ is injective, i.e., we have (ii).

Let us describe some G-families A satisfying the conclusions of Theorem 2.6.

Definition 2.7: Let X be a smooth algebraic variety and G be a subgroup of X .

Consider (X×X) \Δ (where Δ is the diagonal), the complement (TX)∗ to the

zero section in the tangent bundle of X and the frame bundle Fr(X) of TX (i.e.,

the fiber of Fr(X) over x ∈ X consists of all bases of TxX). Projectivization

of TX replaces Fr(X) with a bundle PFr(X) whose fiber over x consists of all

ordered n-tuples of points in the projectivization Pn of TxX (where n = dimX)

that are not contained in the same hyperplane of Pn. Then we have natural

G-actions on all these objects. Let Y be either X , or (X ×P X) \Δ, or (TX)∗,
or PFr(X). Suppose that the G-action is transitive on Y . Then we say that an

algebraic G-family A of automorphisms of X is a regular G-family for Y if

(i) A = Hm × · · · ×H1 where each Hi belongs to G;
(ii) for a suitable open dense subset U ⊆ Hm × · · · ×H1, the map

(3)
Ψ : Hm × · · · ×H1 × Y −→ Y × Y,

(hm, . . . , h1, y) �→ ((hm · · ·h1).y, y)

is smooth on U × Y .

An algebraic G-family A that is regular for all four varieties X , (X×PX)\Δ,

(TX)∗ and PFr(X) will be called a perfect G-family for Y .

Proposition 2.8: Let X be a smooth algebraic variety and G ⊂ Aut(X) be a

group algebraically generated by a family G of algebraic connected subgroups

of Aut(X). Suppose that G acts transitively on X .

(1) Then there exists a regular G-family for X (which is of the form

A = H1 × · · · ×Hm where each Hi is an element of G).
(2) Every regular G-family for X satisfies the conclusions of Theorem 2.2.

(3) If A is a regular (resp. perfect) G-family for X and H is an element of G,
then H×A and A×H are also regular (resp. perfect) G-families for X .

(4) In particular, if X is G-flexible, then there exists a perfect G-family.
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(5) Let X be G-flexible. Every G-family regular for X (resp. for (TX)∗)
satisfies the conclusion of Theorem 2.6 (i) (resp. (ii)). In particular,

every perfect G-family satisfies the conclusion of Theorem 2.6 (i)–(ii).

Proof. Statement (1) is proven in [AFKKZ, Proposition 1.15]. Statements (2)

and (3) are proven in [Ka20, Proposition 1.10]. The fourth statement follows

from the fact that in the flexible case for every m > 0 the group G acts m-

transitively on X and also transitively on (TX)∗ and PFr(X) [AFKKZ, The-

orem 4.11 and Remark 4.16]. Modulo the definitions of regular and perfect

families and (2), statement (5) follows from the proof of Theorem 2.6.

Proposition 2.9: Let X be a smooth algebraic variety, Q be a normal alge-

braic variety and � : X → Q be a dominant morphism. Let Q0 be a smooth

dense open subset of Q and X0 = �−1(Q0). Suppose that for every q ∈ Q0 the

fiber �−1(q) is smooth and of dimension dimX − dimQ. Then Formulas (1)

and (2) hold. In particular, if X is G-flexible and Z satisfies the assumption of

Theorem 2.6(i)–(ii), then for every perfect G-family A of automorphisms of X

and a general α ∈ A the morphism �|α(Z)∩X0
: α(Z) ∩X0 → Q0 is an injective

immersion.

Proof. The validity of Formula (1) is straightforward. Consider any irreducible

subvariety P of Q0 and an irreducible component W of �−1(P ) whose image

is dense in P . Since every fiber of � is smooth so is the generic fiber of �|W
(e.g., see [KR, Lemma 2.1]). Hence, replacing P by its open dense subset we

can suppose that W is smooth. Furthermore, by [Ha, Chapter III, Corollary

10.7] we can suppose that �|W :W → P is smooth. Therefore,

dimKer �∗|TxX ≤ dimX − dimP

for every x ∈ W . This implies that the dimension of

YW =
⋃

x∈W

Ker{�∗ : TxX → T�(x)Q}

is at most dimX − dimP + dimW . Since �|X0 is equidimensional, one has

dimW − dimP = dimX − dimQ and dimYW ≤ dimTX − dimQ.

Of course, we can suppose that the latter inequality is true for every irreducible

component W in �−1(P ) which yields the desired conclusion.
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3. Embedding theorems for flexible varieties

Notation 3.1: Let Z be an affine algebraic variety and TZ be its Zariski tangent

bundle. Then we let

ED(Z) = max(2 dimZ + 1, dimTZ).

By [Hol, Theorem 7.4] for every affine algebraic variety Z there exists a closed

embedding of Z into A
ED(Z).

Theorem 3.2: Let ψ : W → Y be a finite morphism where W is a smooth

flexible variety and Y is normal. Let Z be a quasi-affine algebraic variety which

admits a closed embedding in W . Suppose also that dimZ < codimY Ysing.

Then Z admits a closed embedding in Y with the image contained in Yreg.

Proof. One can treat Z as a closed subvariety ofW . By Theorem 2.2 there exists

an algebraic family A of automorphisms ofW such that for a general α ∈ A the

variety α(Z) does not meet ψ−1(Ysing). By Proposition 2.8(2)–(4), enlarging A,

we can suppose that it is a perfect family. Proposition 2.9 implies now that

ψ|α(Z) : α(Z) → Yreg ⊂ Y is an injective immersion. Since ψ is finite ψ|α(Z) is

also proper. Hence, we are done.

Corollary 3.3: Let ψ : Ar → Y be a finite morphism where Y is nor-

mal. Suppose that Z is an affine algebraic variety such that ED(Z) ≤ r and

dimZ < codimY Ysing. Then Z admits a closed embedding in Y with the image

contained in Yreg.

Remark 3.4: For every m > 0 there are examples of affine algebraic varieties of

dimension m that cannot be embedded in A2m [BMS]. In particular, Holme’s

theorem is sharp and we cannot improve the assumption ED(Z) ≤ r in Corollary

3.3. However, the author does not know if the assumption dimZ < codimY Ysing

is optimal for every Y as in Corollary 3.3 (especially, in the light of Theorem

3.7 below).

Proposition 3.5: Let X be a G-flexible variety and H = Hm × · · · × H1 be

a perfect G-family of automorphisms of X (where H1, . . . , Hm are unipotent

subgroups of G). Suppose that an open dense supset U ⊂ H is such that the

morphism Ψ : H × Y → Y × Y as in Formula (3) is smooth on U × Y for

every Y equal to one of the varieties X , (X ×P X) \ Δ, (TX)∗ and PFr(X).

Then m,H1, . . . , Hm and U can be chosen so that the codimension of H \ U
in H is arbitrarily large.
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Proof. Since one can increase m by Proposition 2.8(3) the desired conclusion

follows from [AFKKZ, page 778, footnote].

Proposition 3.6: Let H be a smooth flexible variety, X be a normal algebraic

variety and ϕ : H → X be a dominant morphism such that ϕ is smooth on an

open dense subset U ⊂ H and ϕ(U) ⊂ Xreg. Suppose that Z is a closed

subvariety of H and codimH(H \ U) > dimZ. Then for a general element α in

a perfect family A of automorphisms of H the morphism

ϕ|α(Z) : α(Z) → X

is an injective immersion with the image in Xreg.

Proof. By Theorem 2.2 for a general element α in an algebraic family A of

automorphisms of H the variety α(Z) does not meet H \ U . By Proposition

2.8(3)–(4) we can suppose that A is perfect. Theorem 2.6(i)–(ii) and Proposi-

tion 2.8(5) imply now that for a general α ∈ A the morphism ϕ|α(Z) : α(Z) → X

is an injective immersion which concludes the proof.

Theorem 3.7: Let Z be an affine algebraic variety and X be a smooth quasi-

affine flexible variety of dimension at least ED(Z). Then Z admits an injective

immersion into X .

Proof. Let U , H , Hi and Ψ : H ×X → X ×X be as in Proposition 3.5, i.e.,

H  A
t

since each Hi is a unipotent group. Restricting Ψ to H × x0 where x0 is any

point in X we get a morphism ϕ : At  H → X which is smooth on U . By

Holme’s theorem we can treat Z as a closed subvariety of At. By Proposition 3.5

we can suppose that

codimHH \ U > dimZ.

Since A
t is a smooth flexible variety we get the desired conclusion by Proposi-

tion 3.6.

Remark 3.8: The author does not know if instead of “injective immersion” one

can use “closed embedding” in Theorem 3.7. Establishing properness is the

bottleneck of the method known to the author. However, in the case of affine

toric varieties we managed to cope with this difficulty (see Theorem 5.3 below).
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4. Affine toric varieties: preliminaries

We suppose that readers are familiar with toric varieties and all information

about toric varieties which is used below can be found in the book of Cox,

Little and Schrenck [CLS]). We fix the following notations for the rest of the

paper.

- N  Zn—the standard lattice in Rn;

- M = HomZ(N,Z)—the lattice dual to N ;

- 〈m,u〉—pairing ofm ∈M orMR =M⊗ZR with u ∈ N orNR = N⊗ZR;

- σ—a rational convex polyhedral cone in NR;

- σ∨—the dual cone of σ in MR;

- γ⊥—the set {m ∈MR|〈m, γ〉 = 0} where γ is any face of σ;

- Xσ—the toric variety of σ, i.e., Xσ is the spectrum of the group algebra

of the semigroup σ∨ ∩M ;

- T = Hom(M,Gm)—the torus acting on Xσ;

- {�1, . . . , �r}—the set of extremal rays of σ (by abusing notations we

also denote by �i the ray generator, i.e., the primitive lattice vector on

the corresponding ray);

- σ(k)—the set of k-dimensional faces of σ (e.g., �i ∈ σ(1));

- Oi—the T-orbit in Xσ corresponding to �i by the orbit-cone correspon-

dence [CLS, Theorem 3.2.6];

- Di—the irreducible T-invariant Weil divisor in Xσ containing Oi as

an open subset (i.e., Di is the spectrum of the semigroup algebra

of τi = �⊥i ∩ σ∨ ∩M);

- Hi–the Gm-subgroup of T corresponding to �i, i.e., Hi is a unique

Gm-subgroup of T that acts trivially on Di and for t ∈ Hi one has

t.χm = t〈m,�i〉χm.

We would like to remind that since

σ∨ ∩M and τi = �⊥i ∩ σ∨ ∩M
are saturated affine semigroups, the varietiesXσ andDi are always normal (e.g.,

see [CLS, Theorem 1.3.5]). Furthermore, we consider only the case when Xσ has

no torus factors (or, equivalently, every invertible function on Xσ is constant).

Let XΣ be the toric variety of a fan Σ and r be the cardinality of one-

dimensional cones in Σ (in particular, if Σ = σ then r is the number of the ray

generators �i of σ). If torus factors are absent, then by [CLS, Theorem 5.1.10]
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there exists a subgroup G of Gr
m which is a quasitorus (i.e., the direct product

of a finite subgroup and a subtorus of Gr
m) and a closed subvariety Z(Σ) of Ar

such that Z(Σ) is invariant under the natural action of G on Ar and XΣ is

isomorphic to (Ar \Z(Σ))//G (while Gr
m/G is isomorphic to the torus T acting

on XΣ). We are dealing with the situation when Σ = σ and in this case Z(σ) is

empty by construction (see the definition of Z(σ) on [CLS, page 206]). Thus,

we have the quotient morphism

(4) π : Ar → A
r//G  Xσ

which is Gr
m-equivariant. In connection with this formula we fix the following

notations.

- x1, . . . , xr—a fixed coordinate system on Ar;

- T̃ = Gr
m—the standard torus (with respect to the coordinate system)

acting on Ar;

- D̃i—the hyperplane in A
r given by xi = 0;

- H̃i—the Gm-subgroup of T̃ acting trivially on D̃i, i.e., this action is the

flow of the semisimple vector field xi
∂

∂xi
;

- U—the subset of Xσ consisting of all points u ∈ Xσ for which π−1(u)

is a G-orbit (in particular, this orbit is closed in Ar);

- U0—the subset of Xσ consisting of all points u ∈ U for which the

orbit π−1(u) has a trivial stabilizer.

Let us list some properties of the morphism π : Ar → Xσ and the objects

introduced before.

Lemma 4.1: (i) The morphism π is an almost geometric quotient, i.e., U is

an open dense subset of Xσ and, consequently, general orbits of G in Ar are

closed and isomorphic to G.2 Furthermore, for every u in U the fiber π−1(u)

is isomorphic as a homogeneous G-space to G/F where F is a finite subgroup

of G.

(ii) The group G ∩ H̃i is trivial.

(iii) Let θ ∈ σ(k) be regular, i.e., the set {�i1 , . . . , �ik} of the generators of

the extremal rays of θ can be extended to a basis of N . Then G meets the

group F̃ generated by H̃i1 , . . . , H̃ik at identity only.

2 Note that this implies that U0 is also open dense subset of Xσ by [PV, Theorem 6.3].
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(iv) The homomorphism π∗ : k[Xσ] → k[x1, . . . , xr] induced by π is deter-

mined by the formula

(5) π∗(χm) =

r∏
l=1

x
〈m,�l〉
l .

(v) The image of H̃i in T = T̃
G coincides with Hi and π(D̃i) = Di.

Proof. For the first statement of (i) see [CLS, Theorem 5.1.10]. This implies that

dimG = dimAr − dimXσ = r − n.

For every u ∈ U one has dimπ−1(u) = r−n since it cannot be less by Chevalley’s

theorem [Ha, Chapter II, Exercise 3.22] and it cannot be larger since π−1(u) is

a G-orbit. Being a homogeneous space π−1(u) is of the form G/F where F ⊂ G

is the stabilizer of the orbit π−1(u) and the condition on the dimension implies

that F is finite. This concludes (i).

By [CLS, Lemma 5.1.1] we have

(6) G =

{
t̄ = (t1, . . . , tr) ∈ G

r
m|

r∏
i=1

t
〈�i,m〉
i = 1 for all m ∈M

}
.

Suppose that G ∩ H̃i contains a finite subgroup of d-roots of unity. Assume

that d > 1 and let ε be a primitive d-root of unity. Then Formula (6) implies

that ε〈m,�i〉 = 1 for every m ∈M , i.e., 〈m, �i〉 is divisible by d. Hence, �i

d ∈ N

contrary to the fact that �i is a primitive vector in the lattice N . This yields (ii).

In (iii) let G ∩ F̃ contain a subgroup isomorphic to the group of d-roots

of unity. Then a similar argument implies that for a collection {l1, . . . , ls} of

integers with greatest common divisor 1 the sum
∑k

s=1 ls�is is divisible by d.

However, if d > 1, then this is contrary to the fact that the set {�i1 , . . . , �ik} is

extendable to a basis of N . Thus, we have (iii).

For (iv) see [CLS, page 209]. Statement (v) follows from the explicit con-

struction of π in [CLS, Proposition 5.1.9] which implies, in particular, (iv).

Vice versa, (v) can be also illustrated by Formula (5). Indeed, this formula im-

plies that for every χm, m∈τi=�⊥∩σ∨∩M the function π∗(χm) is independent

of xi, i.e., it is fixed under the H̃i-action. In particular, χm is fixed under the

action of the imageH ′
i of H̃i in T= T̃

G (which is isomorphic to H̃i by (ii)). Hence,

the H ′
i-action on Di is trivial. Since Hi is a unique Gm-subgroup of T with this

property we see that H ′
i=Hi. In particular, the divisor π−1(Di) must be fixed

under the H̃i-action which implies that π−1(Di)=D̃i and we are done.
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Consider an affine algebraic group H acting on an affine variety Z, an affine

variety Y with a trivial H-action and an H-equivariant morphism � : Z → Y .

Recall that under these assumptions Z together with the morphism � : Z → Y

is called an H-torsor (or a principal H-bundle) if for every y ∈ Y there exists

an étale morphism ϕy :Wy → Y such that y ∈ Imϕy and Wy ×Y Z becomes a

trivial principal H-bundle under the natural H-action. If each ϕy is injective,

then Z is called a locally trivial principal H-bundle.

Proposition 4.2: (1) The morphism π|π−1(U0) : π
−1(U0) → U0 is a principal

G-bundle (in particular, π is smooth over U0). Furthermore, if G is irreducible,

then this principal G-bundle is locally trivial.

(2) Let E be the subset of Ar consisting of all x̄ = (x1, . . . , xr) ∈ Ar such

that at most one coordinate xi is equal to zero. Then

π(E) ⊂ U0.

(3) U0 is the regular part of Xσ.

Proof. If u ∈ U0 and w ∈ π−1(u0), then by the Luna étale slice theorem [Lu] (see

also [PV, Theorem 6.4]) there exists a smooth subvariety V of Xσ transversal

to π−1(u) at w such that π|V : V → U0 is étale. This implies that U0 is

contained in the regular part of Xσ and that π is smooth over U0. Furthermore,

the natural G-action makes V ×U0 A
r a trivial G-bundle. Hence, π−1(U0) → U0

is a principal G-bundle. Recall also that if G is connected, then G is a special

group in the sense of Serre (see [Gro58, Def. 2 and page 16]) and for any special

group K every K-principal bundle is locally trivial [Gro58, Theorem 3]. Thus,

we have (1).

For (2) and (3) we need to recall that by orbit-cone correspondence [CLS,

Theorem 3.2.6] every θ ∈ σ(k) corresponds to a T-orbit O(θ) ⊂ Xσ of dimen-

sion n−k where O(θ) is the orbit of a so-called distinguished point. The descrip-

tion of this point [CLS, page 116] implies that O(θ) consists of all points u ∈ Xσ

such that χm(u) 
= 0 if and only if m ∈ θ⊥ ∩M . In particular, the ring k[R]

of regular functions on the closure R of O(θ) in Xσ can be viewed as the semi-

group algebra of θ⊥ ∩M . Let �i1 , . . . , �ik be the extremal rays generating θ

(i.e., θ⊥ = �⊥i1 ∩· · ·∩�⊥ik ) and F be the subgroup of T generated by Hi1 , . . . , Hik .

Note that the natural inclusion k[R] ↪→ k[Xσ] makes k[R] the subring of F -

invariants and R is given in Xσ by the ideal generated by

{χm|m ∈ (σ⊥ \ θ⊥) ∩M}.
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Hence, R is the fixed point set of the F -action since for every v ∈ Xσ \R one

can find m ∈ (σ⊥ \ θ⊥)∩M with χm(v) 
= 0. The difference between the points

ofO(θ) andR\O(θ) is that for w∈R\O(θ) there exists j∈{1, . . . , r}\{i1, . . . , ik}
such that w is also fixed under the Hj-action (because w is contained in a T-

orbit of a smaller dimension corresponding to a cone in σ containing θ and

some �j), whereas for any point in O(θ) such j does not exist.

Let

x̄ ∈ T̃ = E \
r⋃

i=1

D̃i.

Since π is T̃ -equivariant G.x̄ is a general orbit, i.e., π(x̄) ∈ U0 by Lemma 4.1(i).

Since E ∩ D̃i1 is a T̃ -orbit dense in D̃i1 and π(D̃i1) = Di1 by Lemma 4.1 (v)

we see that π(E ∩ D̃i1) = Oi1 . For every x̄ ∈ E ∩ D̃i1 its T̃ -orbit Q is naturally

isomorphic to G by Lemma 4.1 (ii) and π(x) = u ∈ Oi1 . Note that if Q is

not closed, then its closure contains a point with some coordinates xj = 0

where j 
= i1. However, this implies that u is a fixed point under both Hi1 -

action and Hj-action contrary to the argument before. Hence, Q is closed.

Furthermore, Q is a unique closed G-orbit in π−1(u) by [CLS, Theorem 5.0.7].

If there exists another orbit Q′ in π−1(u), then the closure of Q′ contains Q
(e.g., see [PV, Theorem 4.7 and Corollary]). However, this is impossible since

dimQ′ ≤ dimQ = dimG. Hence, π−1(u) = Q and u ∈ U0 which is (2).

Consider u in the smooth part of Xσ. Then u is contained in some O(θ) as

before where θ must be regular by [CLS, Theorem 1.3.12 and Example 1.2.20].

Let Õ(θ) ⊂ Ar be the T̃ -orbit consisting of all points x̄ whose zero coordinates

are exactly xi1 , . . . , xik . Let θ
′ be a cone in σ properly contained in θ, i.e., O(θ)

is contained in the closure of O(θ′). Let us, say, that θ′ is generated by extremal

rays �i2 , . . . , �ik . Then we can suppose by induction that such θ′ is regular and
that π(Õ(θ′)) = O(θ′) ⊂ U0. In particular, π−1(u) belongs to the closure

of Õ(θ′) and π−1(u) ∩ Õ(θ′) = ∅. This implies that every x̄ ∈ π−1(u) cannot

have a nonzero coordinate xi1 . Hence, x̄ must be contained in Õ(θ) (indeed, if

x̄ has a zero coordinate xj with j /∈ {i1, . . . , ik}, then u is fixed under the Hj-

action contrary to the argument before). This implies that the T̃ -orbit Q of x̄

is closed since otherwise its closure contains a point with an undesirable zero

coordinate. By Lemma 4.1(iii), Q is naturally isomorphic to G and arguing as

before we see that π−1(u) = Q. Hence, u ∈ U0 which yields (3) and concludes

the proof.
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Corollary 4.3: Let Y be an open subset ofXσ such that codimXσ (Xσ\Y )≥2.

Then π−1(Xσ \ Y ) has codimension at least 2 in Ar.

Proof. Note that π−1(Y ) ⊂ π−1(U ∩ Y )∪ (Ar \E). The definition of U implies

that π−1(U \Y ) has codimension at least 2 in Ar and the same is true for Ar\E.

Hence, we have the desired conclusion.

Corollary 4.4: Let C be a closed curve in Xσ contained in U0. Suppose that

either

(1) C is isomorphic to the affine line A1, or

(2) G is connected and C is a smooth rational curve.

Then there exists a closed curve C̃ ⊂ A
r such that π|C̃ : C̃ → C is an

isomorphism.

Proof. By Proposition 4.2, π−1(C) is a locally trivial principal G-bundle. State-

ment (1) now follows from [FS, Theorem A.1] which states that for each affine

algebraic group F every principal F -bundle over the affine line admits a section.

In (2) by Proposition 4.2(1) we can find an open cover {Vi} of C for

which π−1(Vi) is naturally isomorphic to Vi × G. In particular, one has sec-

tions si : Vi → π−1(Vi) and sj |Vi∩Vj = gijsi where gij : Vi ∩ Vj → G is

a morphism. Since G  G
r−n
m we see that gij can be presented as a col-

lection of r − n sections of O∗
C over Vi ∩ Vj . Hence, H1(C,G) is the direct

sum of r − n samples of H1(C,O∗
C). Since C is a smooth rational curve we

have H1(C,O∗
C) = PicC = 0 and, hence,

H1(C,G) = 0.

Thus, we can suppose that every pair of sections si and sj agree on Vi ∩ Vj .

Consequently, we have a global section of π|π−1(C) : π
−1(C) → C which yields

the desired conclusion.

5. Embedding theorems for affine toric varieties

Notation 5.1: In this section Xσ is an affine toric variety without torus factors.

In particular, Xσ  A
r//G where G ⊂ T̃ = G

r
m is a quasitorus acting naturally

on Ar. We also denote by π : Ar → Xσ the quotient morphism as in Formula (4)

with U (resp. U0) being the dense open subset of Xσ consisting of all points

u ∈ Xσ for which π−1(u) is a G-orbit (resp. a G-orbit with a trivial stabilizer).

That is, U0 is the regular part of Xσ by Proposition 4.2.
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Lemma 5.2: Let 0̄ be the origin in Ar, o = π(0̄) and A = k[Ar]G. Then one can

choose a collection of monomials as generators of A and the set V of common

zeros of this collection is contained in π−1(o). In particular, V ⊂ π−1(Xσ \ U)

unless Xσ = U .3

Proof. Since the natural T̃ -action respects monomials the same is true for theG-

action. Thus, any G-invariant polynomial is the sum of G-invariant monomials

which yields the first claim. Since V ⊂ Ar is closed and G-invariant Z = π(V )

is closed in Xσ and for every z ∈ Z the only closed orbit in π−1(z) is contained

also in V . Assume that Z contains two distinct points z1 and z2 and Li is the

closed orbit of π−1(zi). Note that the restriction of every polynomial from A

to V is constant. Hence, elements of A do not separate L1 and L2 contrary

to the fact that the regular functions on Xσ separate z1 and z2. Thus, Z

is at most a singleton. Since 0̄ ∈ V and o ∈ Z we see that V ⊂ π−1(o).

Let dimπ−1(z) > r − n for some z ∈ Xσ \ o. Since π is T̃ -equivarinat the same

is true for all points in the T-orbit P of z in Xσ. The closure of P contains a T-

orbit Q of a smaller dimension and for every w ∈ Q one has dimπ−1(w) > r−n
by Chevalley’s theorem. Reducing the dimension of such T-orbits further we

see that

dimπ−1(o) > r − n,

i.e., o /∈ U . This concludes the proof.

Theorem 5.3: Let Xσ be a normal affine toric variety without torus factors

and l = codimArπ−1(Xσ\U0). Suppose that Z is an affine algebraic variety such

that ED(Z) ≤ dimXσ and dimZ < l. Then there exists a closed embedding

ι : Z ↪→ Xσ such that ι(Z) is contained in the regular part U0 of Xσ. Further-

more, l ≥ 2 and, in particular, for every affine curve C with ED(C) ≤ dimXσ

there exists a closed embedding of C in Xσ with the image in U0.

Proof. By Proposition 4.2(1) the morphism π|π−1(U0) : π
−1(U0) → U0 is smooth

and l ≥ 2 by Corollary 4.3. By Holme’s theorem Z can be treated as a closed

subvariety of Ar. Proposition 3.6 implies now that for a general element α in a

perfect family A of automorphisms of Ar the morphism π|α(Z) : α(Z) → U0 is

an injective immersion.

3 Recall that if Xσ = U , then σ is simplicial by [CLS, Theorem 5.1.10].
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Furthermore, consider the natural embedding Ar ↪→ Pr, D = Pr \Ar  Pr−1

and H = GLr(k). Then we have the natural H-action on Pr such that D is

invariant under it. By Proposition 2.8(3) we can replace A by the family H×A.

That is, for a general h in H and a general α in A the morphism

π|h◦α(Z) : h ◦ α(Z) → U0

is still an injective immersion.

By Lemma 5.2 we can find generators g1, . . . , gs of k[Xσ] such that the poly-

nomials fi = gi ◦ π are monomials and the codimension (in Ar) of the variety

given by f1 = · · · = fs = 0 is at least l. Note also that f1, . . . , fs can be

viewed as coordinate functions of π : Ar → Xσ ⊂ As and they can be extended

to rational functions on Pr. Since each fi is homogeneous with respect to the

standard degree function the intersection R of the indeterminacy sets of these

extensions is given by the common zeros of f1, . . . , fs in D. In particular, R has

codimension at least l in D. Let P be the intersection of D with the closure

of h ◦ α(Z) in Pr, i.e., dimP ≤ dimZ − 1 < l − 1. Since the restriction of the

H-action to D is transitive P does not meet R for general h ∈ H and α ∈ A
by Theorem 2.2. Hence, π|h◦α(Z) : h ◦ α(Z) → Xσ is a proper morphism by

[Ka20, Corollary 5.4]. Consequently, it is a closed embedding which concludes

the proof.

In particular, we have the following fact which is also a trivial consequence

of Corollary 3.3.

Corollary 5.4: Let Xσ be an affine simplicial toric variety. Let Z be an

affine algebraic variety such that ED(Z) ≤ dimXσ and dimZ is less than the

codimension of the singularities of Xσ in Xσ. Then there is a closed embedding

of Z into Xσ with the image in U0.

6. Locally nilpotent vector fields on affine toric varieties

We use a combinatorial description of locally nilpotent vector fields on Xσ

given by Liendo in his paper [Li] in which he rediscovered Demazure roots [De,

Section 3.1] (see also [AKuZ19, Definition 4.2]). Recall that a Demazure root

associated with some �i is any element e ofM such that 〈e, �i〉 = −1 and 〈e, �j〉
is nonnegative for every j 
= i. The vector field on Xσ defined by

(7) ∂�i,e(χ
m) = 〈m, �i〉χm+e
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is locally nilpotent and up to a constant factor every homogeneous locally nilpo-

tent vector field is of this form. For a Demazure root e ∈M associated with �i

one has ẽ := π∗(χe) = (ẽ1, . . . , ẽr) where by Formula (5) the i-th coordinate ẽi

is equal to −1. Let ẽ′ = (ẽ′1, . . . , ẽ
′
r) where the i-th coordinate ẽ′i is equal to

zero, whereas ẽ′l = ẽl for l 
= i. Formulas (5) and (7) imply now the following

fact which was first discovered in [AKuZ19]).

Lemma 6.1: The polynomial π∗(∂�i,e(χ
m)) coincides with ∂̃�i,e(π

∗(χm)) where

the locally nilpotent vector field ∂̃�i,e on Ar is given by x̄ẽ
′ ∂
∂xi

with

x̄ẽ
′
=

r∏
l=1

x
ẽ′l
l ,

i.e., the flow of ∂̃�i,e is given by

(8) x̄ = (x1, . . . , xr) �→ (x1, . . . , xi−1, xi + tx̄ẽ
′
, xi+1, . . . , xr)

where t is the time parameter.

The algebra k[Di] of regular functions on Di can be viewed as the semigroup

algebra of τi = �⊥i ∩ σ∨ ∩M . Note that k[Di] is the kernel of ∂�i,e viewed as a

derivation on k[Xσ]. The natural embedding k[Di] ↪→ k[Xσ] yields a dominant

T-equivariant morphism κi : Xσ → Di that is the categorical quotient of the

Ga-action associated with ∂�i,e. Note that it is also the categorical quotient of

the natural Hi-action on Xσ since k[Di] is the subring of Hi-invariants of k[Xσ].

Furthermore, as we mentioned before in the proof of Proposition 4.2, Di is the

fixed point set of the Hi-action on Xσ.

Notation 6.2: Similarly, consider a cone θ ∈ σ(2) containing two extremal

rays �i and �j and the subgroup Hij of T generated by Hi and Hj . The dual

cone of θ meets M along τi∩τj . The semigroup algebra of τi∩τj can be viewed

as the algebra of regular functions on

Dij = Di ∩Dj .

As before, one can see that Dij = Xσ //Hij and Dij is the fixed point set of

the Hij -action on Xσ. Since k[Dij ] has no zero divisors and its transcendence

degree is n− 2, one can see that Dij is an irreducible T-invariant Weil divisor

in Di. In particular, Dij contains a dense T-orbit O(θ) (which is associated

with θ via the orbit-cone correspondence).
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Lemma 6.3: Let Notation 6.2 hold and θ be regular. Then κi is smooth

over O(θ) and κ−1
i (u) is isomorphic to A1 for every u ∈ O(θ).

Proof. Since θ is regular O(θ) is contained in the regular part U0 of Xσ by

[CLS, Theorem 1.3.12 and Example 1.2.20]. Let u ∈ O(θ). Then TuXσ is

equipped with the induced linear Hij-action. By the Luna slice étale theorem

for smooth points (e.g., see [PV, Theorem 6.4]) there exists an Hij -equivariant

étale morphism ϕ : Y → TuXσ from a dense open Hij-invariant subset Y

of Xσ containing u. Hence, since the map TuXσ → TuXσ //Hi is smooth so

is κi|Y : Y → Y //Hi. For every point w ∈ κ−1
i (u) the closure of its Hi-orbit

contains the fixed point u (e.g., [PV, Theorem 4.7 and Corollary]), i.e., this orbit

is contained in Y . Hence, κ−1
i (u) ⊂ Y (and, consequently, κ−1

i (u) is isomorphic

via ϕ to an affine line through the origin in TuXσ). This yields the desired

conclusion.

Lemma 6.4: Suppose that for some �i every θ ∈ σ(2) containing �i is regular.

Then there exists an open subset Vi of Di∩U0 such that codimDi Di\Vi ≥ 2 and

for every v ∈ Vi one can find a locally nilpotent vector field δ of the form g∂�i,e

where g ∈ k(Di) ⊂ k(Xσ) which does not vanish on κ−1
i (v).

Proof. Let �j1 , . . . , �jk be the collection of all extremal rays distinct from �i

such that for every s = 1, . . . , k there exists θ ∈ σ(2) containing �js and �i.

Formula (7) implies that ∂�i,e does not vanish over

Oi = Di \
k⋃

s=1

Djs .

Thus, we have to consider the case when v is a general point of some Djs .

Choose a rational function fs on Di with poles on Di∩Djs only such that these

poles are simple at general points of Di ∩ Djs . Let ls be the zero multiplicity

of ∂�i,e at general points of Djs . Then the vector field

δ = f ls
s ∂�i,e

is regular, locally nilpotent, tangent to the fibers of κi and it does not vanish

at general points of Djs . By Lemma 6.3, κ−1
i (v) is isomorphic to the affine line

and since v ∈ Di ∩Djs one has κ−1
i (v) ⊂ Djs . Thus, δ|κ−1

i (v) does not vanish

since it is tangent to the line κ−1
i (v) and nonzero at a general point of κ−1

i (v).

This yields the desired conclusion.
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Proposition 6.5: Let every θ ∈ σ(2) containing �i be regular and let Vi ⊂ Di

be as in Lemma 6.4. Let Z be a closed subvariety of Di ⊂ Xσ which is contained

in Vi. Let s : Z → Ar be a section of π : Ar → Xσ over Z for which Z̃ = s(Z)

is closed in Ar. Then one can find a locally nilpotent vector field δ equivalent

to ∂�i,e and such that δ does not vanish on κ−1
i (Z).4

Proof. Lemma 6.4 implies that for every u ∈ Z one can find a locally nilpotent

vector field δz of the form gzδ�i,e, gz ∈ k(Di) ⊂ k(Xσ) which does not vanish

on κ−1
i (u). Recall that gz as an element of k(Xσ) is invariant under the Hi-

action. Hence, by Lemma 6.1, δz = π∗(δ̃z) where δ̃z is of the form f̃z
∂

∂xi
with f̃z

being a polynomial independent of xi since xi is not invariant under the H̃i-

action. By assumption δ̃z and, therefore also f̃z, does not vanish at π−1(u)∩ Z̃.
Hence, by the Nullstellensatz one can find polynomials h̃z such that only a

finite number of them are nonzero and
∑

z h̃z f̃z|Z̃ = 1. By the assumption

every regular function on Z̃ is a lift of a regular function on Z which extends

to an element

k[Di] = Ker ∂�i,e ⊂ k[Xσ].

In particular, one can suppose that f̃z=π
∗fz and h̃z=π∗hz where fz, hz∈k[Di].

Hence, δ=
∑

zhzδz (resp. δ̃=
∑

z h̃z δ̃z) is a locally nilpotent non-vanishing vector

field on κ−1
i (Z) (resp. π−1(κ−1

i (Z))) which yields the desired conclusion.

Corollary 6.6: Let the assumptions of Proposition 6.5 hold and Z (and,

therefore, Z̃) be isomorphic to the affine line A1 equipped with a coordinate t.

Let δ̃ be the locally nilpotent vector field on A
r as in the proof of Propo-

sition 6.5 (i.e., π∗(δ̃) = δ). Then for every polynomial h(t) there exists a

function g ∈ k[Di] ⊂ k[Xσ] such for the flow β̃i
h of the locally nilpotent vector

field π∗(g)δ̃ at time 15 one has xi ◦ β̃i
h(t) = h(t), t ∈ Z̃.

Proof. Since δ is equivalent to ∂�i,e and does not vanish on Z one can suppose

(by Lemma 6.1) that the restriction of δ̃ to Z̃ coincides with ∂
∂xi

. Let

ǧ(t) = h(t)− xi(t).

Note that ǧ(t) (as a function on Z) admits an extension to a function

g ∈ k[Di] = Ker δ. This extension yields the desired function.

4 Two locally nilpotent derivations are equivalent if they have the same kernels.
5 That is, β̃i

h : Ar → Ar is defined by (β̃i
h)∗(λ) = exp(π∗(g)δ̃)(λ) ∀λ ∈ A[r].
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7. Affine simplicial toric varieties

Recall that an affine toric variety Xσ is simplicial if every face of σ is a simplex,

i.e., n = r andG is a finite group. This implies, in particular, that for every j 
= l

the extremal rays �l and �j are contained in some θ ∈ σ(2) and Dlj = Dl ∩Dj

is always a Weil divisor in Dl.

Lemma 7.1: Let Xσ be a simplicial toric variety of dimension at least 4 which

is smooth in codimension 2 and C be a smooth polynomial curve in the regular

part of Xσ. Let Vi be as in Lemma 6.4,

V =
r⋂

i=1

κ−1
i (Vi), Wl = κ−1

l (Vl) \
⋂
j �=l

κ−1
j (Vj) and W ′

l = κl(Wl).

For every θ ∈ σ(2) containing extremal rays �l and �j let ψθ : Xσ → Dlj be the

morphism induced by the homomorphism of the semigroup algebras associated

with the natural embedding τl∩τj ↪→ σ. Then replacing C with its image under

an automorphism of Xσ one can suppose that

(i) C is contained in V ;

(ii) Cl = κl(C) meets W ′
l at a finite set for every l = 1, . . . , r;

(iii) κl|C : C → Dl is a closed embedding for every l = 1, . . . , r;

(iv) ψθ : C→ψθ(C) is a birational morphism for every θ∈σ(2) containing �l
and �j .

Proof. Since Dlj is a divisor in Dl and Dl \ Vl has codimesion at least 2 in Dl

we see that Vl contains an open subset of Dlj and κ−1
l (Vl) contains an open

part of Dj . Hence, Xσ \ κ−1
l (Vl) does not contain Weil divisors in Xσ, i.e., it is

of codimension at least 2. Consequently,

codimXσXσ \ V ≥ 2.

Recall that Xσ is flexible by [AKuZ] and, therefore, U0 and V are flexible by

[FKZ, Theorem 2.6]. By Theorem 2.2 for a general α in any perfect family A
of automorphisms of U0 (which are extendable to automorphisms of Xσ by the

Hartogs’ theorem) α(C) is contained in V and α(C) meets every κ−1
l (W ′

l ) at a

finite set which yields (i) and (ii). Lemma 6.3 implies that every κl is smooth

over κl(V ). Thus, by Theorem 2.6 and Proposition 2.8(5) for a general α∈A
each morphism κl : α(C) → Dl is a closed embedding and each morphism

ψθ : α(C) → ψθ(α(C)) is birational which yields (iii)–(iv) and the desired con-

clusion.
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Lemma 7.2: Let the assumptions of Lemma 7.1 hold and C satisfy condi-

tions (i)–(iv). Suppose that i, δ, h and g are as in Corollary 6.6 and βi
h is flow

of the locally nilpotent vector field gδ a time 1. Suppose further that h(t) = ct+d

where c and d are general constants. Then the curve βi
h(C) also satisfies condi-

tions (i)–(iv).

Proof. Let Ṽ = π−1(V ). By Corollary 4.4 there exists a curve C̃ ⊂ Ṽ such

that π|C̃ : C̃ → C is an isomorphism. Note that π ◦ β̃i
h = βi

h ◦ π where β̃i
h is as

in Corollary 6.6. Hence, besides conditions (i) and (ii) for βi
h(C) it suffices to

prove that

(iii′) for κ̃l = κl ◦ π the morphism

κ̃l|β̃i
h(C̃) : β̃

i
h(C̃) → Dl

is a closed embedding for every l = 1, . . . , r;

(iv′) for ψ̃θ = ψθ ◦ π the morphism

ψ̃θ|β̃i
h(C̃) : β̃

i
h(C̃) → ψ̃θ(β̃

i
h(C̃))

is birational for every θ ∈ σ(2) containing �l and �j .

Let us start with (iv′). One can choose coordinate functions of ψ̃θ in the

form π∗(χm) where m ∈ τl ∩ τj . By Formula (5), π∗(χm) is of the form xkm

i ym

where ym is a monomial independent of xi. Condition (iv) implies that there

exist m′,m′′ ∈ τl ∩ τj such that for t ∈ A
1  C̃ the functions x

km′
i (t)ym′(t)

and x
km′′
i (t)ym′′ (t) are not proportional and, in particular, ym′ (t)

ym′′ (t) is a nonzero

rational function. Hence, for general c and d the functions (ct + d)km′ ym′(t)

and (ct + d)km′′ (t)ym′′(t) are not proportional and Corollary 6.6 implies that

the morphism ψ̃θ|β̃i
h(C̃) : β̃

i
h(C̃) → ψ̃θ(β̃

i
h(C̃)) is birational which is (iv′).

Let Slj be a finite subset of C̃ for which ψ̃θ|β̃i
h(C̃\Slj)

: β̃i
h(C̃ \ Slj) → Dlj is

an embedding. Then condition (iii) implies that for every t0 ∈ Slj there exists

m ∈ τl such that d
dtx

km

i ym|t=t0 is nonzero. This implies that either ym(t0) 
= 0

or d
dtym|t=t0 
= 0. Consequently, d

dt (ct + d)kmym|t=t0 is nonzero for general c

and d. Hence, we can suppose that κ̃l|β̃i
h(C̃) : β̃i

h(C̃) → Dl is an immer-

sion. Furthermore, for every t0 
= t1 ∈ Slj there exists m ∈ τl such that

xkm

i (t0)ym(t0) 
= xkm

i (t1)ym(t1). Again for general c and d this implies that

(ct0 + d)kmym(t0) 
= (ct1 + d)kmym(t1).

Hence, κ̃l|β̃i
h(C̃) : β̃

i
h(C̃) → Dl is a closed embedding which is (iii′).
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By (ii), for every l the curve Cl meets W ′
l at a finite set Q′

l or, equivalently,

for a general point z ∈ C one has κl(z) /∈ W ′
l . The same remains true for a

general point βi
h(z) of the curve βi

h(C). Indeed, it suffices to show that it is

true for some point of βi
h(C). Let t ∈ C̃  A1 be the preimage of z in C̃.

Note that βi
h(C) meets C at the points where xi(t) = ct+ d. Since c and d are

general the solutions of the latter equation yield general points of C and, hence,

condition (ii) for the curve βi
h(C).

Recall that βi
h is the flow at time 1 of a locally nilpotent vector field gδ as in

Corollary 6.6 which is equivalent to a vector field ∂�i,e and, therefore, tangent to

the fibers of κi. In particular, βi
h(C) is contained in κ−1

i (Ci)

where Ci = κi(C). By construction κ−1
i (Ci \ Q′

i) ⊂ V . By Lemma 6.3 every

fiber L of κl|κ−1
l (Q′

i)
: κ−1(Q′

i) → Q′
i is isomorphic to the affine line and such L

meets V since C does at some point z0 ∈ C (where this z0 is unique since

κl : C → Dl is a closed embedding). Let t be a coordinate on C̃  C  A1.

Recall that by construction in Corollary 6.6, g ⊂ k[Di] is an extension of the

function ct+ d− xi(t). Hence, gδ = δ1 + dδ where the locally nilpotent vector

field δ1 commutes with δ. In particular, the flow of gδ at time 1 is the compo-

sition of the flows of δ1 at time 1 and δ at time d. Since by Proposition 6.5,

δ does not vanish on L and d is general, we see that βi
h(z0) is a general point

of L and, therefore, it belongs to V . This yields condition (i) for βi
h(C) and the

desired conclusion.

Theorem 7.3: Let Xσ be an affine simplicial toric variety of dimension at

least 4 such thatXσ is smooth in codimension 2. Suppose that T0 is an algebraic

torus and Y = T0 × Xσ. Let ϕ : C → C ′ be an isomorphism of two smooth

polynomial curves contained in the regular part of Y . Then ϕ extends to an

automorphism of Y .

Proof. Let ν : Y → T0 be the natural projection. Since C and C′ are polynomial

curves their images z = ν(C) and z′ = ν(C ′) are singletons. Consider an

automorphism α0 of T0 sending z
′ to z and its natural lift to an automorphism α

of Y . Replacing C′ by α(C ′) and ϕ by ϕ ◦ α−1 we can suppose that z = z′.
Hence, C,C ′⊂ν−1(z)Xσ and it suffices to consider the case of Y =Xσ only.

Suppose that π : Ar → Xσ is as in Formula (4). By Corollary 4.4 one can

find a curve C̃ (resp. C̃ ′) in A
r such that π|C̃ : C̃ → C (resp. π|C̃′ : C̃ ′ → C′)

is an isomorphism. Let t′ be a coordinate on C′  C̃′ and t = ϕ∗(t′) be
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the coordinate on C  C̃. Applying consequently automorphisms βi
h as in

Lemma 7.2 with i running over {1, . . . , r} one can suppose that C̃ is a curve

such that xi(t) = cit+ di for every i where (c1, d1, . . . , cr, dr) is a general point

in A2r. Similarly, one can suppose that C̃ ′ is a curve such that xi(t
′) = c′it

′+ d′i
for every i where (c′1, d

′
1, . . . , c

′
r, d

′
r) is a general point in A2r. Choosing these

two general points equal we get the desired conclusion.

We need to recall the following [KaUd, Definition 8.2].

Definition 7.4: Let C1 and C2 be smooth curves in a smooth quasi-affine vari-

ety Y with defining ideals I1 and I2 in k[Y ]. We suppose also that C1 and C2

are closed in an affine variety containing Y . Let Y possess a volume form ω

(i.e., ω is a nonvanishing section of the canonical bundle on Y ) and let each

conormal bundle
Ij
I2
j
of Cj in Y be trivial. By [KaUd, Lemma 6.3] there is a

neighborhood Wj of Cj in Y in which Cj is a strict complete intersection given

by u1,j = · · · = un−1,j = 0 where u1,j, . . . , un−1,j ∈ Ij and n = dimY . That is,

for Aj =
k[Y ]
Ij

we have the graded algebra

k[Y ]

Ikj
 Aj ⊕

k−1⊕
l=1

I lj

I l+1
j

which can be viewed as the algebra of polynomials in u1,j , . . . , un−1,j over Aj of

degree at most k−1. Consider an isomorphism ϕ : k[Y ]

Ik
1

→ k[Y ]

Ik
2

of these algebras

for a natural k. Up to the induced isomorphism A1  A2 this isomorphism ϕ is

determined by its values ϕ(ui,1), i = 1, . . . , n− 1. These values can be viewed

as polynomials in u1,2, . . . , un−1,2 over A2, i.e., one has the matrix

[∂ϕ(ul,1)
∂us,2

]n−1

l,s=1
.

Since the normal bundle NY Cj is trivial, the existence of ω implies the exis-

tence of a volume form on Cj . Fix volume forms ωj on Cj such that ϕ̃∗ω1 = ω2

where the isomorphism ϕ̃ : C2 → C1 is induced by ϕ. Choose a section

prj : TY |Cj → TCj of the canonical inclusion TCj ↪→ TY |Cj and consider the

section ω̃j = ωj ◦ prj of the dual bundle (TY |Cj )
∨ of TY |Cj . Then one can re-

quire that ω|Cj coincides with ω̃j ∧du1,j∧· · ·∧dun−1,j. Under this requirement

the determinant of [
∂ϕ(ul,1)
∂us,2

]n−1
l,s=1 is well-defined modulo Ik−1

2 (i.e., it is indepen-

dent of the choice of coordinates u1,j, . . . , un−1,j). Hence, we say that ϕ has

Jacobian a∈k\{0} if the determinant of [
∂ϕ(ul,1)
∂us,2

]n−1
l,s=1 is equal to a modulo Ik−1

2 .
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Note that Definition 7.4 is applicable in the case when C1 and C2 are smooth

polynomial curves in a simplicial toric variety Xσ contained in its regular part.

Indeed, U0 as the regular part of Xσ is flexible [AKuZ]. Recall that Ar admits a

volume form invariant under the natural SLr(k)-action. Hence, we can push this

volume form down to a volume form ω on U0 since π|π−1(U0) : π
−1(U0) → U0

is an unramified covering by Proposition 4.2. Furthermore, since the normal

bundles of smooth polynomial curves are always trivial, we are under the as-

sumptions of Definition 7.4.

Corollary 7.5: Let ϕ : C → C′ be an isomorphism of kth infinitesimal neigh-

borhoods of two smooth polynomial curve C and C′ contained in the regular

part U0 of an affine simplicial toric variety Xσ of dimension at least 4 which

is smooth in codimension 2. Suppose that the Jacobian of ϕ is a nonzero con-

stant a. Then ϕ extends to an automorphism Φ of Xσ.

Proof. Recall that by [KaUd, Lemma 6.2] every automorphism α of U0 has a

constant Jacobian where the Jacobian is computed as α∗(ω)
ω and, if α is a com-

position of elements of flows of locally nilpotent vector fields, then its Jacobian

is 1. Let ψ : C′ → C be an isomorphism. By Theorem 7.3, ψ extends to an

automorphism Ψ of Xσ which in turn induces an automorphism C′ → C also

denoted by ψ. By construction Ψ is a composition of elements of flows of locally

nilpotent vector fields. Hence, its Jacobian is 1. Taking a composition of ϕ with

the action of an appropriate element of T and replacing C′ with its image under

this action we can suppose that the Jacobian of ϕ is also 1 modulo (I ′)k−1 in

the sense of Definition 7.4 where I ′ (resp. I) is the defining ideal of C ′ (resp. C)
in k[Xσ]. Then the automorphism λ := ψ ◦ ϕ : C → C has Jacobian 1 mod-

ulo Ik−1. By [KaUd, Theorem 6.6] λ extends to an automorphism Λ of Xσ. It

remains to note that Ψ−1◦Λ is the desired extension of ϕ and we are done.

Remark 7.6: LetN be the smallest saturated set of locally nilpotent vector fields

onXσ that contains all vector fields of the form ∂�i,e as in Formula (7). Consider

the subgroup G ⊂ SAut(Xσ) generated by N . Assume that in Theorem 7.3

Y = Xσ. Then it follows from the proof that an automorphism extending ϕ

can be chosen in G. Furthermore, one can check that V as in Lemma 7.1 is

G-flexible (recall that we can suppose that such V contains C and C′). Hence,
if the Jacobian of ϕ from Corollary 7.5 is 1, then [KaUd, Theorem 6.6] implies

that Φ can be also chosen in G.
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mathématique, Paris, 1958, exposê n. 5.

[Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52,

Springer, New York–Heidelberg, 1977.

[Hol] A. Holme, Embedding-obstruction for singular algebraic varieties in PN , Acta

Mathematica 135 (1975), 155–185.

[Je] Z. Jelonek, The extension of regular and rational embeddings, Mathematische An-

nalen 277 (1987), 113–120.

[Ka91] S. Kaliman, Extensions of isomorphisms between affine algebraic subvarieties of

kn to automorphisms of kn, Proceedings of the American Mathematical Society

113 (1991), 325–334.

https://arxiv.org/abs/2007.16164


Vol. 250, 2022 LINES IN AFFINE TORIC VARIETIES 113

[Ka20] S. Kaliman, Extensions of isomorphisms of subvarieties in flexible varieties, Trans-

formation Groups 25 (2020), 517–575.

[KaUd] S. Kaliman and D. Udumyan, On automorphisms of flexible varieties, Advances in

Mathematics 396 (2022), Article no. 108112.

[Kl] S. L. Kleiman, The transversality of a general translate, Compositio Mathematica

28 (1974), 287–297.

[KR] H. Kraft and P. Russell, Families of group actions, generic isotriviality, and lin-

earization, Transformation Groups 19 (2014), 779–792.

[Li] A. Liendo, Affine T-varieties of complexity one and locally nilpotent derivations,

Transformation Groups 15 (2010), 389–ss425.

[Lu] D. Luna, Slices étales in Sur les groupes algébriques, Bulletin de la Société
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