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ABSTRACT

The problem of characterizing which automatic sets of integers are stable

is here solved. Given a positive integer d and a subset A ⊆ Z whose set

of representations base d is recognized by a finite automaton, a necessary

condition is found for x + y ∈ A to be a stable formula in Th(Z,+, A).

Combined with a theorem of Moosa and Scanlon this gives a combinatorial

characterization of the d-automatic A ⊆ Z such that (Z,+, A) is stable.

This characterization is in terms of what were called F -sets in [16] and

elementary p-nested sets in [10]. Automata-theoretic methods are also

used to produce some NIP expansions of (Z,+), in particular the expansion

by the monoid (dN,×).

1. Introduction

In [17] Palaćın and Sklinos give examples of stable expansions of Th(Z,+), and

pose the following general question:

Question 1.1: For which A ⊆ Z is Th(Z,+, A) stable?

The project of finding sufficient topological or algebraic conditions on A for

stability has been taken up in other recent work; see for example [7] and [13].

The theme also appeared some fifteen years earlier: the results of Moosa and

Scanlon in [16] imply that (Z,+, A) is stable whenever A is what they call an

F -set. This includes for example the case A = dN, whose stability was rediscov-

ered in [17].
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In this paper, we consider Question 1.1 when A ⊆ Z is a d-automatic set for

some d ≥ 2. Automatic sets are reviewed in Section 2, but let us recall here

informally that this means there is a finite machine that takes strings of digits

from {−d + 1, . . . , d − 1} as input and accepts exactly those strings that are

representations base d of an element of A.

Instead of asking when the first-order theory of (Z,+, A) is stable, we will

focus on a local, and hence combinatorial, notion of stability which we now

briefly recall. Following [12], an N-ladder for a binary relation R ⊆ X × X

on a set X is some a0, . . . , aN−1, b0, . . . , bN−1 ∈ X such that (ai, bj) ∈ R if and

only if i ≤ j. The relation R is N-stable if there is no N -ladder for R, and

is stable if it is N -stable for some N . If (G,+) is a group and A ⊆ G we say

that A is stable in G if x+ y ∈ A is a stable binary relation on G.1

Our results will be in terms of the F -sets of [16]; we recall these now in the

context of Zm where F = Fd : Z
m → Z

m is multiplication by d. For a ∈ Z
m

and r a positive integer we let

C(a; r) := {a+ dra+ · · ·+ dnra : n < ω} = a
((dr)Z+ − 1

dr − 1

)
.

A basic groupless Fd-set in Z
m is a set of the form

α+ C(a1; r1) + · · ·+ C(an; rn)

= {α+ b1 + · · ·+ bn : b1 ∈ C(a1; r1), . . . , bn ∈ C(an; rn)}
for some α, a1, . . . , an ∈ Z

m and r1, . . . , rn > 0. A basic Fd-set in Z
m is a

set of the form A + H where A is a basic groupless Fd-set and H ≤ Z
m. A

(groupless) Fd-set in Z
m is a finite union of basic (groupless) Fd-sets in Z

m.

The Fd-structure on Z, denoted (Z,Fd), has domain Z and an atomic relation

for every Fd-set in every Z
m. (In fact up to interdefinability (Z,Fd) is just

(Z,+, dN) expanded by a predicate for every subgroup of every Z
m.)

F -sets are of Diophantine significance in positive characteristic, appearing in

both the isotrivial Mordell–Lang theorem of [16] and the Skolem–Mahler–Lech

theorem of [10]; see [4, Section 3] for an account of the connection with the

latter. It is shown in [16, Theorem A] that (Z,Fd) is stable; so the Fd-sets are

1 It is worth noting that this terminology conflicts somewhat with the terminology used by

Conant in [7], in which he calls A ⊆ N “stable” if Th(Z,+, A) is stable. His is a stronger

notion than ours, which is equivalent to saying that ϕ(x; y) given by x+y ∈ A is a stable

formula in Th(G,+, A).
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all stable in (Z,+). Our main result, which appears as Theorem 5.1 below, is a

converse to this for d-automatic subsets of Z.

Theorem A: Suppose A is d-automatic and stable in (Z,+). Then A is a finite

Boolean combination of

• cosets of subgroups of (Z,+), and

• basic groupless Fd-sets in Z.

Combined with the work of [16], we get

Corollary: Suppose A ⊆ Z is d-automatic. Then the following are equivalent:

(1) Th(Z,+, A) is stable.

(2) A is stable in (Z,+).

(3) A is a finite Boolean combination of cosets of subgroups of (Z,+) and

basic groupless Fd-sets in Z.

(4) A is definable in (Z,+, dN).

This appears as Corollary 5.2 below.

Automatic sets separate naturally into sparse and non-sparse sets, with

“sparse” meaning that the number of accepted strings grows polynomially with

length—see Definition 2.9 for a precise formulation. The first case of the main

theorem that we consider is when A is d-sparse. In fact, here we can work more

generally in Cartesian powers of (Z,+). It is shown in [4] that groupless Fd-sets

are d-sparse, and we stated previously that all Fd-sets, and in particular grou-

pless Fd-sets, are stable in (Z,+). Our result in the sparse case, Theorem 3.1

below, is a partial converse to this:

Theorem B: If A ⊆ Z
m is d-sparse and stable in (Zm,+) then it is a finite

Boolean combination of basic groupless Fd-sets in Z
m.

We then turn our attention to d-automatic sets that are not d-sparse. We

show that for A ⊆ Z d-automatic but not d-sparse, if A is stable in (Z,+)

then A is generic (i.e., finitely many translates cover Z). This is Theorem 4.2.

In particular, every d-automatic subset of N that is stable in (Z,+) must be

d-sparse. Actually, this consequence of our Theorem 4.2 can also be deduced

by combining [7, Theorem 8.8] and [3, Theorem 1.1], but the general statement

requires significantly more work.

Theorem B and Theorem 4.2, together with some stable group theory, yield

Theorem A.
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In a somewhat different direction, we conclude the paper by using automata-

theoretic methods to produce two NIP expansions of (Z,+): namely

(Z,+, <, dN) and (Z,+, dN,×�dN),

in Theorems 6.1 and 6.9, respectively. The former was recently obtained by

Lambotte and Point in [13] using different methods, but the latter is a new

example.

Acknowledgements. I am very grateful to Gabriel Conant, who, upon view-

ing an earlier draft of this paper, pointed out to me that the cases dealt with

in Theorems 3.1 and 4.2 were sufficient to prove the general case. I am also

grateful to Jason Bell, in conversations with whom the main theorem was first

articulated as a conjecture. Many thanks to the reviewers for their thorough

reading and thoughtful feedback; I am in particular in their debt for simplifying

the fourth equivalent statement of Corollary 5.2. Finally, I am deeply grate-

ful to my advisor, Rahim Moosa, for excellent guidance, thorough editing, and

many helpful discussions.

2. Preliminaries on automatic sets

We briefly recall regular languages and finite automata; see [21] for a more

detailed presentation.

Definition 2.1: For a finite set Λ viewed as an alphabet we denote by Λ∗ the set

of words over Λ, namely finite strings of letters from Λ. The class of regular

languages over Λ is the smallest subset of P(Λ∗) that contains all finite sets

and is such that if A,B are regular then so are A∪B, AB = {στ : σ ∈ A, τ ∈ B},
and

A∗ = {σ1 · · ·σn : n < ω, σ1, . . . , σn ∈ A}.
A deterministic finite automaton (DFA) over a finite alphabet Λ is a

tuple A = (Q, q0, F, δ) where Q is a finite set of states, q0 ∈ Q is the start state,

F ⊆ Q is the set of finish states, and δ : Q × Λ → Q is the transition function:

if A is in state q ∈ Q and reads the letter � ∈ Λ then it moves into state δ(q, �).

We identify δ with its natural extension Q× Λ∗ → Q inductively by

δ(q, �1 · · · �n+1) = δ(δ(q, �1 · · · �n), �n+1).
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The set recognized by A is

{σ ∈ Λ∗ : δ(q0, σ) ∈ F}.
A fundamental fact (see [21, Lemma 2.2, Section 3.2, and Section 3.3]) is that

the regular languages are precisely the sets recognized by DFAs.

It turns out some behaviour of automata can be captured in Presburger arith-

metic:

Proposition 2.2: Suppose Λ is an alphabet; suppose L ⊆ Λ∗ is regular and

σ1, . . . , σn ∈ Λ∗. Then

{(t1, . . . , tn) ∈ N
n : σt1

1 · · ·σtn
n ∈ L}

is definable in (N,+).

Proof. Fix an automaton (Q, q0, F, δ) for L. We apply induction on n to show

that δ(q1, σ
t1
1 · · ·σtn

n ) = q2 is definable in (N,+) for all q1, q2 ∈ Q. The case n = 0

is vacuous. For the induction step, note that δ(q1, σ
t
1) is eventually periodic in

t, since there are finitely many states; so there are μ,N such that for t ≥ N we

have that δ(q1, σ
t
1) = δ(q1, σ

t+μ
1 ). But then δ(q1, σ

t1
1 · · ·σtn

n ) = q2 is defined by∨
t<N

((t1 = t) ∧ δ(δ(q1, σt
1), σ

t2
2 · · ·σtn

n ) = q2)

∨
∨
t<μ

((t1 ∈ N + t+ μN) ∧ δ(δ(q1, σN+t
1 ), σt2

2 · · ·σtn
n ) = q2)

which is definable in (N,+) by the induction hypothesis.

But then {(t1, . . . , tn) ∈ N
n : σt1

1 · · ·σtn
n ∈ L} is the union over q ∈ F of

{(t1, . . . , tn) ∈ N
n : δ(q0, σ

t1
1 · · ·σtn

n ) = q},
which is definable in (N,+).

We are primarily interested in the case where the strings in question are

representations of integers. Fix an integer d ≥ 2. Evaluating a string base d

gives a natural map [·] : Z∗ → Z via

[k0k1 · · · kn−1] =

n−1∑
i=0

kid
i.

Note that unlike usual base d representations the most significant digit occurs

last, not first.
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Definition 2.3: We let Σ = {0, . . . , d − 1} and Σ± = {−d + 1, . . . , d − 1}. We

say A ⊆ Z is d-automatic if {σ ∈ Σ∗± : [σ] ∈ A} is a regular language over Σ±.

There is a natural extension of this notion to Z
m for m ≥ 1. We first extend

our map [·] to (Zm)∗ → Z
m: we set⎡⎢⎢⎣

⎛⎜⎜⎝
k10
...

km0

⎞⎟⎟⎠ · · ·

⎛⎜⎜⎝
k1(n−1)

...

km(n−1)

⎞⎟⎟⎠
⎤⎥⎥⎦ =

⎛⎜⎜⎝
[k10 · · · k1(n−1)]

...

[km0 · · · km(n−1)]

⎞⎟⎟⎠ .

Definition 2.4: We say A ⊆ Z
m is d-automatic if {σ ∈ (Σm± )∗ : [σ] ∈ A} is a

regular language over Σm
± .

A note on exponential notation: we use Λm to denote the alphabet Λ×· · ·×Λ.

This contrasts its usual meaning in formal languages, namely the set of words

over Λ of length m; we use Λ(m) to denote this. We will use σn to denote the

n-fold concatenation of σ with itself; it should be clear from context whether

an instance of exponential notation refers to iterated string concatenation or

iterated multiplication.

Of course different strings can represent the same integer. It is useful to fix

a canonical representation.

Definition 2.5: The canonical representation of 0 is the empty word ε. The

canonical representation of a positive integer a is its usual representation

base d in Σ∗ (though with the order reversed). The canonical representation

of a negative integer a is (−k0) · · · (−kn−1) where k0 · · · kn−1 is the canonical

representation of −a. Finally, the canonical representation of a tuple
( a1...

am

)
⎛⎜⎜⎝
k10
...

km0

⎞⎟⎟⎠ · · ·

⎛⎜⎜⎝
k1(n−1)

...

km(n−1)

⎞⎟⎟⎠ ,

where n is the maximum of the lengths of the canonical representations of

the ai, and ki0 · · · ki(n−1) is the canonical representation of ai for each i, possibly

padded with trailing zeroes to make them of length n.

Note that the canonical representation of an integer base d is a word over Σ±,
and if the integer happens to be non-negative then it is a word over Σ.
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Example 2.6: The canonical representation base 10 of
(−23
432

)
is(

−3

2

)(
−2

3

)(
0

4

)
.

Remark 2.7: Automaticity is robust under changes in the allowed representa-

tions. Indeed, from [14, Proposition 7.1.4] (together with some basic tools of

automata theory—see, e.g., [21, Theorems 2.16 and 4.2]) one can show that the

following are both equivalent to A being d-automatic:

(1) The set of canonical representations of elements of A is regular. Note

that this is essentially the definition given in [1, Section 5.3]. In particu-

lar, our definition generalizes the classical notion of d-automatic subsets

of N (see, e.g., [2, Chapter 5]).

(2) For some (equivalently all) finite Λ ⊆ Z
m containing Σm

± ,

{σ ∈ Λ∗ : [σ] ∈ A}

is regular over Λ.

We are particularly interested in sparsity among d-automatic sets. If Λ is an

alphabet we say L ⊆ Λ∗ is sparse if it is regular and the map

k 
→ |{σ ∈ L : |σ| ≤ k}|

grows polynomially in k. Several equivalent formulations of sparsity are known;

we will in particular make use of the following characterization:

Fact 2.8 ([4, Proposition 7.1]): If L ⊆ Λ∗ then L is sparse if and only if it is a

finite union of sets of the form

u0w
∗
1u1w

∗
2 · · ·un−1w

∗
nun = {u0wr1

1 u1w
r2
2 · · ·un−1w

rn
n un : r1, . . . , rn ≥ 0}

for some u0, . . . , un, w1, . . . , wn ∈ Λ∗.

Definition 2.9: We sayA ⊆ Z
m is d-sparse if the set of canonical representations

base d of elements of A is a sparse language over Σm± .

Note by Remark 2.7 that d-sparse sets are d-automatic. In fact, d-sparsity is

equivalent to the existence of some finite Λ ⊇ Σm
± and some sparse L ⊆ Λ∗ such

that A = [L], but we will not need this.
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3. Characterizing stable sparse sets

In this section we give a complete characterization of the d-sparse subsets of Zm

that are stable in (Zm,+). Observe that not every d-sparse set is stable: as-

suming d > 2 the set A = [0∗10∗2] is d-sparse by Fact 2.8, but it is not hard to

verify that di + 2dj+1 ∈ A if and only if i ≤ j.

The main result of this section:

Theorem 3.1: Suppose A ⊆ Z
m is d-sparse. If A is stable in (Zm,+) then A

is a finite Boolean combination of basic groupless Fd-sets in Z
m.

Combined with the results of [16] this theorem yields a complete answer to

Question 1.1 for d-sparse subsets of Zm. See Corollary 3.7 below.

Before proving the theorem let us make some observations that may give the

reader a better feel for the automata-theoretic nature of the sets C(a; r).

Remark 3.2:

(1) dN = {1} ∪ (1 + C(d− 1; 1)).

(2) If a = [σ] where σ ∈ (Zm)∗ is of length r then C(a; r) = {[σn] : n > 0}.
(3) Every groupless Fd-set is d-sparse.

(4) Let C denote the collection of subsets of Z of the form b + C(a; r) for

some a, b ∈ Z and r > 0. Let E be the collection of subsets of Z of

the form [uv∗w] for u, v, w ∈ Σ∗ or u, v, w ∈ (−Σ)∗. Then up to finite

symmetric differences, C and E agree.

Proof. Parts (1) and (2) are easily verified by hand. Part (3) is observed for

basic groupless Fd-sets in the proof of [4, Theorem 7.4]; the full statement then

follows by observing that d-sparse sets are closed under union. We prove (4).

(⊇) We will see in the proof of Lemma 3.4 below that we can write [uv∗w]
as a translate of [τ∗] for some τ ∈ Z

∗. But then by part (2) this has

finite symmetric difference with C([τ ]; |τ |).
(⊆) Suppose first that we are given C(a; r); by negating if necessary we

may assume a ≥ 0. Note that given any b ∈ Z and any length s > 0

there is σ ∈ Z
∗ of length s such that [σ] = b; one can, for example,

take σ = b0s−1. Pick a representation σ ∈ Z
∗ of a of length r; then by

part (2) we are interested in the canonical representations of [σ∗ \ {ε}].
For 0 < i < ω write [σi] = bid

ir + ci where 0 ≤ ci < dir; so bi is the

“carry” when adding up a+ dra+ · · ·+ d(i−1)ra and cutting off after ir
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digits. Then

[σi+1] = dr[σi] + [σ] = bid
(i+1)r + drci + [σ] ≥ bid

(i+1)r

so bi+1 ≥ bi. But [σi] = adir−1
dr−1 ≤ adir; so each bi ≤ a. So the bi are

eventually constant, say bN = bN+1 = · · ·. Let p = bN + [σ] mod dr.

Then

[σN+k+1] = [σN+k] + d(N+k)r [σ] = bN+kd
(N+k)r + cN+k + d(N+k)r[σ]

= d(N+k)r(bN + [σ]) + cN+k

so

cN+k+1 = [σN+k+1] mod d(N+k+1)r = d(N+k)rp+ cN+k

(since cN+k < d(N+k)r , and thus d(N+k)rp + cN+k < d(N+k+1)r). So

inductively we get cN+k = cN + dNrp+ d(N+1)rp+ · · ·+ dN+k−1p. So

[σN+k] = bNd
(N+k)r + cN + dNrp+ · · ·+ dN+k−1p.

So if u ∈ Σ(Nr), v ∈ Σ(r), w ∈ Σ∗ represent cN , p, bN , respectively, then

[σN+k] = [uvkw]. So C(a; r) = [σ∗ \{ε}] has finite symmetric difference

with [uv∗w], as desired.
It remains to show that a translate of a single C(a; r) takes the

desired form; by above it suffices to show that a translate of [uv∗w], say
by γ ∈ Z, has finite symmetric difference from some [xy∗z]. (Again we

may assume [uv∗w] ⊆ N.) If u, v ∈ (d− 1)∗ then

γ + [uv∗w] = (γ − 1) + [0|u|(0|v|)∗τ ]

where [τ ] = [w] + 1; so we may assume uv /∈ (d − 1)∗. So for some N

we get that

0 ≤ γ + [uvN ] < d|uv
N |;

so if σ ∈ Σ(|uvN |) has [σ] = γ + [uvN ] then γ + [uvN+kw] = [σvkw].

So γ + [uv∗w] has finite symmetric difference from [σv∗w].

We begin working towards a proof of Theorem 3.1. Our approach requires

that we first understand the stable formulas in (N, 0, S, δN, <) where S is the

successor function and δ is a fixed positive integer. The following proposition,

which is of independent interest, is likely known, but as we could find no refer-

ence we include a proof here for completeness.
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Proposition 3.3: Fix Th(N, 0, S, δN, <) as the ambient theory. Let

Lδ = {0, S, Pδ} and Lδ,< = Lδ ∪ {<}.

Suppose ϕ(x1, . . . , xn) ∈ Lδ,< is quantifier-free and stable with respect to any

partition of the variables. Then ϕ is equivalent to a quantifier-free Lδ-formula.2

Proof. We apply induction on n; the case n = 0 is vacuous.

With an eye towards constraining the atomic subformulas of ϕ, we rewrite ϕ

as follows:

• Replace any occurrence of Sexi < K by a disjunction of equalities in

the natural way, and of Sexi < Sfxj for e ≥ f by Se−fxi < xj . Using

this and the fact that t1 ≤ t2 ⇐⇒ ¬(t1 > t2), we may assume all

atomic inequalities take the form Sexi < xj .

• Replace any occurrence of Sexi = K by xi = K−e and of Sexi = Sfxj

for e ≥ f by Se−fxi = xj .

So we may assume the atomic subformulas of ϕ take the following forms:

• xi ≡ K (mod δ),

• xi = K,

• Sexi < xj ,

• Sexi = xj .

Let M be greater than both the largest K appearing in ϕ and the largest e

with Se appearing in ϕ. Note that the truth value of ϕ(a) is determined by the

truth value of the above formulas on a. Furthermore since we may assume in

said formulas that K < M and e < M , we get that there are finitely many such

formulas; call the set of such formulas Δ. Given f : Δ → {0, 1}, let

ψf =
∧
θ∈Δ

θf(θ).

(Here θ0 denotes ¬θ and θ1 denotes θ.) So ϕ is equivalent to
∨

f∈X ψf for

some X ⊆ {0, 1}Δ. We may assume that ψf is consistent for each f ∈ X .

Fix f ∈ X . We will produce an Lδ-formula χf such that

|= ψf → χf and |= χf → ϕ

2 In fact both Th(N, 0, S, δN, <) and Th(N, 0, S, δN) admit quantifier elimination; however

we do not make use of this in either the proof or the application of this proposition.



Vol. 249, 2022 AUTOMATA AND TAME EXPANSIONS OF (Z,+) 661

Case 1: Suppose ψf contains a conjunct of the form Sexj1 = xj2 or K = xj2 .

Define a term t to be Sexj1 in the former case and K in the latter

case, and consider ϕ′(x′) = ϕ′(x1, . . . , xj2−1, xj2+1, . . . , xn) obtained by

substituting xj2 = t into ϕ. This is stable under any partition of the

variables because ϕ is, and because t involves at most one of the xi.

It also contains one fewer variable, so by the induction hypothesis is

equivalent to a quantifier-free Lδ-formula θ(x′). We can then take χf

to be θ(x′) ∧ (xj2 = t).

Case 2: Suppose ψf contains no such conjuncts. Let ψ0(x) be the conjunction of

the negations of such; so ψ0 asserts that no xi < M and no |xi−xj | < M .

Examining Δ we see that since ψf is consistent it must take the form

ψ0(x) ∧
( n∧

i=1

xi ≡ Ki (mod δ)

)
︸ ︷︷ ︸

χf

∧(xσ(1) < · · · < xσ(n))

for some Ki < δ and some σ ∈ Sn. (Note that formulas of the

form Sexi < xj for e < M are implied by xi < xj and ψ0(x), so

we may safely omit them.) I claim that this choice of χf works. It is

clear that |= ψf → χf ; it remains to show that |= χf → ϕ. Consider

P := {τ ∈ Sn : |= (χf ∧ (xτ(1) < · · · < xτ(n))) → ϕ}.
Since |= ψf → ϕ we get that σ ∈ P ; to show |= χf → ϕ, it suffices

to show that P = Sn (since if a realizes χf then there is τ ∈ Sn such

that aτ(1) < · · · < aτ(n)). Since transpositions of the form (j − 1 j)

generate all of Sn, we need only check that if τ ∈ P then so is (j−1 j)τ

for all 1 < j ≤ n.

Suppose then that τ ∈ P and 1 < j ≤ n; suppose for contradiction

we had |= ¬ϕ(a) for some realization a of

χf ∧ (x((j−1 j)τ)(1) < · · · < x((j−1 j)τ)(n)).

Note that this last formula takes the form ψf ′ for some f ′ : Δ → {0, 1}.
Then since |= ¬ϕ(a) we get that f ′ /∈ X ; so |= ¬ϕ(a) for all realizations a
of ψf ′ .

I claim this implies that ϕ(xτ(1), . . . , xτ(j−1);xτ(j), . . . , xτ(n)) has the

order property. Indeed, fix N<ω; we construct anN -ladder. For clarity

we assume τ=id; the argument generalizes with little effort. Pick a1≥M
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such that a1 ≡ K1 (mod δ), and inductively pick ai+1 ≥ ai +M

for 1 < i + 1 < j − 1 such that ai+1 ≡ Ki+1 (mod δ). Now pick

aj−1,0 ≥ aj−2 + M with aj−1,0 ≡ Kj−1 (mod δ), and inductively

choose aj−1,k and aj,k for k < N to satisfy:

• aj,k ≥ aj−1,k +M,

• aj,k ≡ Kj (mod δ),

• aj−1,k+1 ≥ aj,k +M,

• aj−1,k+1 ≡ Kj−1 (mod δ).

Now pick aj+1 ≥ aj,N−1 + M with aj+1 ≡ Kj+1 (mod δ), and pro-

ceed inductively to pick ai+1 ≥ ai + M with ai+1 ≡ Ki+1 (mod δ)

for j + 1 ≤ i < n. Pictorially:

a1 · · · aj−2 aj−1,0 aj,0 aj+1 · · · an

aj−1,1 aj,1

...
...

aj−1,N−1 aj,N−1

where an arrow in the diagram indicates that the target is at least

the source plus M .

For convenience we let

bk = (a1, . . . , aj−2, aj−1,k) and c� = (aj,�, aj+1, . . . , an).

Note now that for any k, � < N we have |= χf (bk, c�). Furthermore

if k ≤ � then (bk, c�) satisfies x1 < · · · < xn; so |= ψf (bk, c�) and

thus |= ϕ(bk, c�). Finally if k > � then (bk, c�) satisfies

x(j−1 j)(1) < · · · < x(j−1 j)(n);

so |= ψf ′(bk, c�), and thus |= ¬ϕ(bk, c�).
Thus |= ϕ(bk, c�) if and only if k ≤ �, and we have constructed

an N -ladder for ϕ. So ϕ has the order property and is thus unstable

with respect to this partition of the variables, a contradiction. So no

such a exists, and P is closed under applying transpositions of adjacent

elements. So P is all of Sn, and thus |= χf → ϕ, as desired.

Then ϕ is equivalent to the Lδ-formula
∨

f∈X χf .
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We now describe a simplification of d-sparsity that we will use to connect

stable sparse sets to Fd-sets.

Lemma 3.4: Any d-sparse subset of Zm can be written as a finite union of

translates of sets of the form

{[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en}
where σi ∈ (Zm)∗ all have the same length.

To see how this relates to Fd-sets, recall from Remark 3.2 that

[σ∗] = C(σ; |σ|) ∪ {0};
so a set of the above form is (ignoring for the moment the case where some ei=0)

a subset of the groupless Fd-set

C(σ1; |σ1|) + · · ·+ C(σn; |σn|)
that is cut out by some kind of order relation.

Proof. By Fact 2.8 we can write A as a finite union of sets of the form

[u0v
∗
1u1 · · · v∗nun] for ui, vi ∈ (Σm

± )∗.

Note first that we may assume all vi across the union have the same length N .

Indeed, let N be the least common multiple of the lengths of all the vi across

the union. We can then rewrite any v∗i as⋃
j<�i

vji (v
�i
i )∗

where �i =
N
|vi| (so |v�ii | = N). Using this to replace each v∗i , we can write

[u0v
∗
1u1 · · · v∗nun] =

⋃
j1<�1

· · ·
⋃

jn<�n

[u0v
j1
1 (v�11 )∗u1 · · · vjnn (v�nn )∗un]

and

|v�11 | = · · · = |v�nn | = N,

as desired.

It then suffices to show that given

A = [u0v
∗
1u1 · · · v∗nun]

with each |vi| = N we can write A as a finite union of translates of sets of the

form {[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en} with each |σi| = N .
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Claim 3.5: We can write such [u0v
∗
1u1 · · · v∗nun] as a finite union of sets of the

form [aτ∗1 · · · τ∗n ] where a ∈ (Zm)∗ and each τi ∈ (Zm)∗ has length N .

Proof of Claim 3.5. We apply induction on n; the base case n=0 is trivial. For

the induction step, use the induction hypothesis to write [u1v
∗
2u2 · · · v∗nun] as a fi-

nite union of sets of the form [bτ∗2 · · ·τ∗n] with each |τi|=N . Then [u0v
∗
1u1· · · v∗nun]

is a finite union of sets of the form [u0v
∗
1bτ

∗
2 · · · τ∗n ] with |v1|= |τ1|= · · ·= |τn|=N ;

it suffices to show we can write such [u0v
∗
1bτ

∗
2 · · · τ∗n ] in the desired form.

Let x = [v1] + d|v1|[b]− [b]; then for k ≥ 1 the following is a telescoping sum:

y︷ ︸︸ ︷
[u0] + d|u0|[b] + d|u0|x+d|u0|+|v1|x+ · · ·+ d|u0|+(k−1)|v1|x

= [u0] + d|u0|[v1] + d|u0|+|v1|[v1] + · · ·+ d|u0|+(k−1)|v1|[v1] + d|u0|+k|v1|[b].

(The above equation is taken from a draft of [4]; it was removed from the final

paper.) Then if we let

a = y · 0|u0|+|v1|−1,

τ1 = x · 0|v1|−1

(i.e., strings in (Zm)∗ whose first entries are y and x and whose later entries are

the zero tuple), then

[u0v
k
1 b] =

⎧⎨⎩[aτk−1
1 ] if k ≥ 1,

[u0b] else.

Hence if k ≥ 1 and w ∈ (Zm)∗ then

[u0v
k
1 bw] = [u0v

k
1 b] + d|u0v

k
1 b|[w] = [aτk−1

1 ] + d|aτ
k−1
1 |+|b|[w]

= [aτk−1
1 ] + d|aτ

k−1
1 |[T|b|w]

= [aτk−1
1 (T|b|w)]

where Tiσ is the word obtained by replacing each letter � ∈ Z
m appearing in σ

with di�. Hence

[u0v
∗
1bτ

∗
2 · · · τ∗n ] = [u0bτ

∗
2 · · · τ∗n ] ∪ {[u0vk1 bw] : k ≥ 1, w ∈ τ∗2 · · · τ∗n}

= [u0bτ
∗
2 · · · τ∗n ] ∪ {[aτk−1

1 (T|b|w)] : k ≥ 1, w ∈ τ∗2 · · · τ∗n}
= [u0bτ

∗
2 · · · τ∗n ] ∪ [aτ∗1 (T|b|τ2)

∗ · · · (T|b|τn)∗].
And |τ1| = |v1| = |T|b|τi| = N for all i, as desired.
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Note that given a set of the form [aτ∗1 · · · τ∗n ] with each |τi| = N we can

rewrite it as [a]+[(T|a|τ1)∗ · · · (T|a|τn)∗]. It then suffices to show that a set of the

form [τ∗1 · · · τ∗n ] where each τi ∈ (Zm)∗ has length N can be written in the form

{[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en}
with each σi ∈ (Zm)∗ of length N . For 1 ≤ i ≤ n let σi ∈ (Zm)∗ be any string

of length N such that [σi] = [τi]−
∑n

j=i+1[σj ]. (Recall that given any a ∈ Z
m

there is σ ∈ (Zm)∗ of length N with [σ] = a; one can for example let the first

character of σ be a and the rest be zeroes.) Then if e1 ≤ · · · ≤ en then

[σe1
1 ] + · · ·+ [σen

n ] =[σe1
1 ]

+ [σe1
2 ] + dNe1 [σe2−e1

2 ]

...

+ [σe1
n ] + dNe1 [σe2−e1

n ] + · · ·+ dNen−1 [σen−en−1
n ]

=[τe11 ] + dNe1 [τe2−e1
2 ] + · · ·+ dNen−1 [τen−en−1

n ]

=[τe11 τe2−e1
2 · · · τen−en−1

n ]

So [τ∗1 · · · τ∗n ] = {[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en}, as desired.
The promised connection between stable sparse sets and Fd-sets:

Lemma 3.6: Suppose A ⊆ Z
m is d-sparse and stable in (Zm,+). Then A is

definable in (Z,Fd).

Proof. By Lemma 3.4 we can write A as a finite union
⋃M

�=1B� where

each B� ⊆ Z
m takes the form

α+ {[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en}
with α ∈ Z

m and each σi ∈ (Zm)∗ has the same length N . We will show

that given such a B� there is B′
� ⊆ Z

m that is definable in (Z,Fd) such

that B� ⊆ B′
� ⊆ A; it will then follow that A =

⋃M
�=1B

′
� is definable in (Z,Fd).

So fix some such B� = α+ {[σe1
1 ] + · · ·+ [σen

n ] : e1 ≤ · · · ≤ en}; let
B′

� = A ∩ (α + [σ∗
1 ] + · · ·+ [σ∗

n]).

It is clear that B� ⊆ B′
� ⊆ A; it remains to show that B′

� is definable in (Z,Fd).

To prove this, we will study

X := {(e1, . . . , en) ∈ N
n : [σe1

1 ] + · · ·+ [σen
n ] ∈ A− α};

we will look to apply Proposition 3.3.
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Since A is stable in (Zm,+) and addition is commutative and associative, we

get that x0 + x1 + · · · + xn ∈ A is stable under any partition of the variables;

thus so too is x1+ · · ·+xn ∈ A−α. It follows that X is a stable relation on N
n

under any partition of the variables: large ladders for some partition of X would

induce large ladders for the corresponding partition of x1 + · · ·+ xn ∈ A− α.

To show that Proposition 3.3 applies, it remains to show that X is definable

by an Lδ,<-formula for some δ. Suppose f ∈ Sn; we will produce an Lδ-formula

for X under the assumption that ef(1) ≤ · · · ≤ ef(n). Let τi ∈ (Zm)∗ be of

length N such that

[τi] =
n∑

j=i

[σf(j)].

(One can for example take the first character of τi to be
∑n

j=i[σf(j)] and the rest

to be zeroes.) Then as in the proof of Lemma 3.4 we get for ef(1) ≤ · · · ≤ ef(n)
that

(e1, . . . , en) ∈ X ⇐⇒ [τ
ef(1)

1 τ
ef(2)−ef(1)

2 · · · τef(n)−ef(n−1)
n ] ∈ A− α.

Let Λ ⊇ Σm± be any alphabet such that τ1, . . . , τn ∈ Λ∗; this is possible since

each string τi ∈ (Zm)∗ has only finitely many entries. So by Remark 2.7 we get

that {μ ∈ Λ∗ : [μ] ∈ A − α} is regular. So by the proof of Proposition 2.2 we

get that [τ t11 τ
t2
2 · · · τ tnn ] ∈ A − α can be expressed by a Boolean combination of

formulas of the form:

• ti = K for some K ∈ N, and

• ti ≡ K (mod δ) for some K ∈ N and δ ≥ 1.

So for ef(1) ≤ · · · ≤ ef(n) we get that (e1, . . . , en) ∈ X is characterized by some

Boolean combination of formulas of the following forms:

• ef(1) = K for some K ∈ N.

• ef(1) ≡ K (mod δ) for some K ∈ N and δ ≥ 1.

• ef(i+1) − ef(i) = K for some K ∈ N; note that this is equivalent

to ef(i+1) = SKef(i).

• ef(i+1) − ef(i) ≡ K (mod δ) for some K ∈ N and δ ≥ 1; note that this

is equivalent to∨
j<δ

(ef(i) ≡ j (mod δ) ∧ ef(i+1) ≡ K + j (mod δ)).

Moreover note that if δ | δ′ then δN is definable in (N, 0, S, δ′N). So under the

assumption that ef(1) ≤ · · · ≤ ef(n) we get that (e1, . . . , en) ∈ X is definable by
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a quantifier-free Lδ-formula for some δ. So

(e1, . . . , en) ∈ X ⇐⇒
∨

f∈Sn

(ef(1) ≤ · · · ≤ ef(n) ∧ (e1, . . . , en) ∈ X)

is definable by a quantifier-free Lδ,<-formula for some δ. Moreover we saw

previously that X is a stable relation on N under any partition of the variables.

So by Proposition 3.3 we get that X can be defined by a quantifier-free Lδ-

formula.

Let � ∈ Z
m be the tuple all of whose entries are 1. I claim that the

map Φ: [(�N )∗] → N given by

[�Ne] 
→ e

defines an interpretation of (N, 0, S, δN) in (Z,Fd). Indeed, Φ is well-defined,

since e 
→ [�Ne] is injective; Φ is surjective; and the domain of Φ is

[(�N )∗] = C([�N ];N) ∪ {0},
which is definable in (Z,Fd). Furthermore the sets in (N, 0, S, δN) defined

by x=y, y=Sx, and Pδ(x) all have preimages definable in (Z,Fd): for e1, e2 ∈ N

we get that

(N, 0, S, δN) |= e1 = e2 ⇐⇒ (Z,Fd) |= [�Ne1 ] = [�Ne2 ]

(N, 0, S, δN) |= e2 = Se1

⇐⇒ (Z,Fd) |=
(
[�Ne1 ]

[�Ne2 ]

)
∈
(
C

((
[�N ]

dN [�N ]

)
;N

)
∪ {0}

)
+

(
0

[�N ]

)

(N, 0, S, δN) |= Pδ(e1) ⇐⇒ (Z,Fd) |= [�Ne1 ] ∈ C([�Nδ];Nδ) ∪ {0}
Moreover the map [�Ne] 
→ [σe

i ] is definable in (Z,Fd) for each i: its graph is

simply

C

((
[�N ]

[σi]

)
;N

)
∪ {0}.

(Recall that |σi| = N .) Then since X is definable in (N, 0, S, δN) (and recalling

that addition is definable in (Z,Fd)) we get that

B′
� = A ∩ (α+ [σ∗

1 ] + · · ·+ [σ∗
n]) = α+ {[σe1

1 ] + · · ·+ [σen
n ] : (e1, . . . , en) ∈ X}

is definable in (Z,Fd), as desired.

Our theorem now follows:
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Proof of Theorem 3.1. By the previous lemma A is definable in (Z,Fd). But

by [16, Theorem A] (Z,Fd) admits quantifier elimination. So A is definable by

a Boolean combination of Fd-sets, say in disjunctive normal form; we show the

Fd-sets can be taken to be groupless. Take one disjunct⋂
i<k

Bi \
⋃
j<�

Cj

where the Bi, Cj are Fd-sets. By Lemma 3.4, A is contained in a groupless Fd-

set Â. So if k > 0 we may replace every Bi and Cj in our disjunct with Bi ∩ Â
and Cj∩Â, respectively, and the result of the disjunction will still be A. If k = 0

we instead replace our disjunct with Â \⋃j<�(Cj ∩ Â), and again the result of

the disjunction is still A. But Bi ∩ Â, Cj ∩ Â are intersections of Fd-sets, and

hence themselves Fd-sets by [16, Proposition 3.9]. Furthermore Â is d-sparse

by Remark 3.2; so Bi ∩ Â, Cj ∩ Â cannot contain a translate of a subgroup,

and hence are groupless Fd-sets. Applying the above replacement to every

disjunct, we get that A is a Boolean combination of groupless Fd-sets, and

hence a Boolean combination of basic groupless Fd-sets.

Combined with [16], we obtain the following characterization of the stability

among d-sparse sets:

Corollary 3.7: Suppose A ⊆ Z
m is d-sparse. The following are equivalent:

(1) Th(Z,+, A) is stable.

(2) A is stable in (Zm,+).

(3) A is a finite Boolean combination of basic groupless Fd-sets in Z
m.

(4) A is definable in (Z,Fd).

Proof. (1) =⇒ (2) is clear, (2) =⇒ (3) is Theorem 3.1, (3) =⇒ (4) is clear, and

(4) =⇒ (1) is by the fact (Theorem A of [16]) that Th(Z,Fd) is stable.

Note that not all Boolean combinations of basic groupless Fd-sets are d-sparse:

consider for example Z \ C(1; 1). We can however extend Corollary 3.7 to give

a complete description of the stable d-sparse sets.

Corollary 3.8: Suppose A ⊆ Z
m. Then the following are equivalent:

(1) A is d-sparse and Th(Z,+, A) is stable.

(2) A is a finite union of sets of the form (B1 ∩ · · · ∩ Bk) \ (C1 ∪ · · · ∪ C�)

where k > 0, � ≥ 0, and each Bi, Cj is a basic groupless Fd-set.
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Proof. By Corollary 3.7, it suffices to show the following: given a finite Boolean

combination A of basic groupless Fd-sets, say with disjunctive normal form

n⋃
i=1

( ki⋂
j=1

Bij ∩
�i⋂

j=1

Cc
ij

)
with Bij , Cij basic groupless Fd-sets, we have that A is d-sparse if and only if

each ki �= 0.

If some ki = 0 then

A ⊇
( �i⋃

j=1

Cij

)c

and by Remark 3.2 the latter is the complement of a d-sparse set; hence A is

not d-sparse. Suppose conversely that each ki �= 0. Then A is d-automatic, as

a Boolean combination of d-automatic sets: this can be shown using the fact

that regular languages are closed under Boolean combinations (see, e.g., [21,

Theorem 4.1]). Moreover

A ⊆
n⋃

i=1

Bi1

and the latter is d-sparse by Remark 3.2. So A is d-sparse.

In fact these sets coincide with the generalized groupless Fd-sets of [16]:

these are finite unions of sets of the form B\C where B,C are groupless Fd-sets.

This can be seen using [16, Remark 3.11].

4. Beyond sparsity: the non-generic case

In the previous section we characterized the d-sparse sets that are stable

in (Zm,+). So the question of which automatic sets are stable in (Zm,+)

reduces to the non-sparse case. We begin to study this problem in this section,

restricting our attention to subsets of Z.

As an example of a non-sparse automatic set that is stable in (Z,+), con-

sider a coset of a subgroup, say A = r + sZ where s > 0. Then A is stable

in (Z,+) since it is definable in (Z,+). It is not d-sparse: the number of a ∈ A

with d−k < a < dk grows exponentially with k, so the set of canonical repre-

sentations of A is not sparse. It is d-automatic: see [2, Theorem 5.4.2] (though

recall as mentioned in Remark 2.7 that they use a different convention for rep-

resenting integers, so the automaton will be slightly different).
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One can also take Boolean combinations of cosets and the stable sparse sets

of the previous section to get further examples, as long as the result is not

d-sparse. But all examples produced in this way will be “generic”:

Definition 4.1: We say A ⊆ Z is generic if some finite union of additive trans-

lates of A covers Z.

We show that in the non-sparse setting all stable automatic sets are generic.

Theorem 4.2: Suppose A ⊆ Z is d-automatic and not d-sparse. If A is stable

in (Z,+) then A is generic.

It will be easier to work first in N, and in particular to use Σ = {0, . . . , d−1}
for our representations rather than Σ± = {−d+1, . . . , d−1}; the main advantage

to doing so is that whenever σ, τ ∈ Σ∗ have the same length we have

σ = τ ⇐⇒ [σ] = [τ ].

(Note that the same does not hold in Σ±: for example, [(d − 1)0] = [(−1)1].)

Recall from Remark 2.7 that A ⊆ N is a d-automatic subset of Z if and only

if it is a d-automatic subset of N in the classical sense; i.e., {σ ∈ Σ∗ : [σ] ∈ A}
is regular. Note also that if A ⊆ N then the canonical representations of the

elements of A all lie in Σ∗, and up to trailing zeroes these are the only repre-

sentations over Σ of elements of A. So A ⊆ N is d-sparse as a subset of Z if and

only if

{σ ∈ Σ∗ : [σ] ∈ A, σ has no trailing zeroes}
is sparse. On the other hand stability and genericity when relativized to N give

something new:

Definition 4.3: We say A ⊆ N is stable in N if x + y ∈ A is a stable relation

on N. We say A is generic in N if some finite union of (possibly negative)

translates of A covers N.

We will first focus on proving:

Proposition 4.4: Suppose A ⊆ N is d-automatic and not d-sparse. If A is

stable in N then A is generic in N.

We begin by recalling the pumping lemma for regular languages; see for ex-

ample [21, Lemma 4.1]. This will prove useful both in characterizing genericity

(Lemma 4.6) and in constructing the ladders in Lemma 4.7.
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Fact 4.5 (Pumping lemma): If R ⊆ Σ∗ is regular then there is a pumping

length p > 0 such that if μ ∈ R has length ≥ p then we can write μ = uvw for

some u, v, w ∈ Σ∗ such that

• v �= ε,

• |uv| ≤ p,

• uv∗w ⊆ R.

Informally, there is an infix v of μ that can be “pumped” without leaving R.

We now give a characterization of the generic d-automatic sets.

Lemma 4.6: Suppose A ⊆ N is d-automatic; let L ⊆ Σ∗ be the set of represen-

tations of elements of A. Then the following are equivalent:

(1) A is generic in N.

(2) For any r, s ∈ N, every τ ∈ Σ∗ occurs as a suffix of a word in L of length

r + sk for some k ≥ 0.

In other words, A is not generic in N if and only if there are r, s ∈ N such

that L ∩ Σ(r+sN) has a forbidden suffix.

Proof. Note first that A is not generic in N if and only if there are arbitrarily

large gaps in A (i.e., runs of naturals not in A).

(1) =⇒ (2): Suppose we are given τ, r, s such that τ is a forbidden suffix for

L ∩ Σ(r+sN). Then if r + sk > |τ | then A is disjoint from

[Σ(r+sk−|τ |)τ ] = {b ∈ N : dr+sk−|τ |[τ ] ≤ b < dr+sk−|τ |([τ ] + 1)]}.
So A has a gap of size dr+sk−|τ |. So as k → ∞ we get arbitrarily large gaps

in A; so A is not generic in N.

(2) =⇒ (1): Suppose A is not generic in N. Let $ be a letter not in Σ; we will

use $ as a separator. Consider the set S ⊆ (Σ ∪ {$})∗ of 0m$τ for m < ω and

τ ∈ Σ∗ with the property that

Σ(m)τ ∩ L = ∅;
in other words, if we replace each zero with any letter and delete the separator,

the result is never in L. So 0m$τ ∈ S if and only if τ is a forbidden suffix

for L ∩ Σ(m+|τ |). Then S is regular: it is not too hard to construct a non-

deterministic finite automaton (NFA) for the complement, which suffices (see,

e.g., [21, Section 2.2]). Since there are arbitrarily large gaps in A we get that

there are elements 0m$τ ∈ S with m arbitrarily large. Indeed, suppose we are
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given m. Find a gap of size 2dm; then this gap will contain two multiples of dm,

say a, a+ dm. Then if τ ∈ Σ∗ is such that [τ ] = a
dm then τ is a forbidden suffix

for L ∩ Σ(m+|τ |); so 0m$τ ∈ S.

Pick 0m$τ ∈ S with m bigger than the pumping length of S (as defined in

Fact 4.5). Then by the pumping lemma we can write m = r + s so

that 0r(0s)∗$τ ⊆ S; so τ is a forbidden suffix for L ∩Σ(r+|τ |+sN).

The following technical lemma is the source of instability in Proposition 4.4.

For K < ω we define a partial binary operation +K on Σ∗ by setting σ +K τ

to be the unique representation of [σ] + [τ ] of length K, if one exists.

Lemma 4.7: Suppose L ⊆ Σ∗ is regular but not sparse, and satisfies L = L∗

and

(†)
there are r, s ∈ N such that L ∩ Σ(r+sN) is infinite

and has a forbidden suffix σ.

Then for all N < ω there is K < ω such that the binary relation x+K y ∈ L on

Σ∗ has an N -ladder.

Proof. Pick σ, r, s as in (†). Since L∩Σ(r+sN) is infinite, there is a ∈ Σ(|σ|) that
occurs as a suffix of some element of L∩Σ(r+sN). Suppose [a] ≤ [σ]; we will see

at the end how to modify the argument in the case [a] > [σ]. Note since σ is a

forbidden suffix of L∩Σ(r+sN) that a �= σ; so, since |a| = |σ| and we are working

over Σ = {0, . . . , d − 1}, we get that [a] �= [σ]. Our assumption that [a] ≤ [σ]

then yields that [a] < [σ].

Let ≤N be the preorder on Σ∗ induced by the ordering on N via [·]: that

is, τ1 ≤N τ2 if [τ1] ≤ [τ2]. We may assume a is maximal under ≤N among

the b ∈ Σ(|σ|) that occur as a suffix of some element of L ∩ Σ(r+sN) and sat-

isfy [b] ≤ [σ]. Fix a′ ∈ Σ(|σ|) such that [a′] = [a] + 1; note such a′ exists

since [a] < [σ] < d|σ|, and hence [a] + 1 < d|σ| can be represented by a string of

length |σ|. Then by maximality of a we get that a′ does not occur as a suffix

of some element of L ∩ Σ(r+sN).

Consider the set S of τ ∈ L ∩ Σ(r+sN) with a as a suffix such that τ is ≤N-

maximal among the elements of L ending in a that are of the same length as τ .

Then S is infinite: since L = L∗ and a occurs as a suffix of some μ ∈ L∩Σ(r+sN),

we get for k < ω that μ1+sk ∈ L ∩ Σ(r+sN) also has a as a suffix, and hence

that S contains a word of length (1 + sk)|μ|. Furthermore S is regular: using
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the fact that {(
�1

�′1

)
· · ·
(
�n

�′n

)
∈ (Σ2)∗ : [�1 · · · �n] < [�′1 · · · �′n]

}
and Σ∗a are regular, one can construct an NFA for the complement of S. So

by the pumping lemma (Fact 4.5) S contains a set of the form uv∗w with

v �= ε. By prepending a power of v to w we may assume |w| ≥ |a|; in particular,

since uw ∈ S must have a as a suffix, we get that w has a as a suffix (and is

non-empty).

Since L = L∗ and uv∗w ⊆ S ⊆ L we get that L ⊇ (uv∗w)∗ ⊇ u{wu, v}∗w.
This, together with the maximality of elements of S, the fact that a′ is a for-

bidden suffix for L∩Σ(r+sN), and the fact that |uv∗w| ∈ r+ sN, will be enough

to construct our ladder.

Pick n,m such that n|wu| = m|v|; then u(wu)nw ∈ L and ends in a, so since

uvmw ∈ S and |uvmw| = |u(wu)nw| we get that [u(wu)nw] ≤ [uvmw], and

hence that [(wu)n] ≤ [vm].

Case 1: Suppose [(wu)n] < [vm]; then since [vm] − [(wu)n] ≤ [vm] there

is α ∈ Σ(m|v|) such that [α] = [vm] − [(wu)n] > 0. Fix N < ω; to avoid

notational clutter, we will produce K for which there exists an (N + 1)-ladder,

not just an N -ladder. We let

K = |uvmNw| ∈ r + sN,

di = u(wu)n(N−i)vmiw,

ei = 0|u|αN−i,

for i ≤ N . Then di+K ej is defined for all i, j; i.e., [di]+[ej ] has a representation

of length K. Indeed, |ej | ≤ K − |w| ≤ K − |a|; so [ej ] < dK−|a|. So if we

write di = τa for some τ (possible since di has w, and hence a, as a suffix) then

[di] + [ej] < [τa] + dK−|a| = [τa] + d|τ | = [τa′] < dK

since |τa′|= |di|=K. So [di]+[ej ] has a representation of lengthK, and di +K ej

is defined. In fact the above proof shows that di +K ej has either a or a′ as a
suffix: by the above we get that [di] + [ej] satisfies

[0|τ |a] ≤ [τa] = [di] ≤ [di] + [ej] < [τa′] ≤ [(d− 1)|τ |a′]

and |τa| = |τa′| = K; so, since [a′] = [a] + 1, we get that di +K ej has a′ as a
suffix if [di] + [ej ] ≥ [0|τ |a′], and otherwise has a as a suffix.
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An important property of the di, ej is that if i ≤ j then

di +K ej = uvm(N−j)(wu)n(j−i)vmiw.

Indeed, recall that

[(wu)n] + [α] = [vm];

then writing out the sum [di]+[ej] = [u(wu)n(N−i)vmiw]+[0|u|αN−j ] and lining

up substrings of equal lengths, we get:

u

N−j copies︷ ︸︸ ︷
(wu)n · · · (wu)n

j−i copies︷ ︸︸ ︷
(wu)n · · · (wu)n vmiw

+ 0|u| α · · · α

u vm · · · vm (wu)n · · · (wu)n vmiw

So [di] + [ej ] = [uvm(N−j)(wu)n(j−i)vmiw]; thus since

|uvm(N−j)(wu)n(j−i)vmiw| = |di| = K,

we indeed get that di +K ej = uvm(N−j)(wu)n(j−i)vmiw.

We now show that the di, ej form an (N +1)-ladder. Since [α] > 0 it is clear

that the ei are strictly decreasing. Suppose i > j; then

[di +K ej] = [di] + [ej ] > [di] + [ei] = [di +K ei] = [uvmNw].

So if di +K ej has a as a suffix then, since uvmNw ∈ S and di +K ej has the

same length, has a as a suffix, and represents a strictly larger number, we get

that di +K ej /∈ L. Otherwise as noted above we get that di +K ej has a′ as a
suffix, in which case di +K ej /∈ L since a′ is a forbidden suffix for L ∩ Σ(r+sN)

and |di +K ej | = K ∈ r + sN. Conversely suppose i ≤ j; then

di +K ej = uvm(N−j)(wu)n(j−i)vmiw ∈ u{wu, v}∗w ⊆ L.

So the di, ei form an (N + 1)-ladder for x+K y ∈ L.

Case 2: Suppose [(wu)n] = [vm]; so (wu)n = vm. Then

uv∗w ⊇ u((wu)n)∗w = ((uw)n)∗uw;

so if we let u′ = ε, v′ = (uw)n, and w′ = uw then u′(v′)∗w′ ⊆ uv∗w ⊆ S.

Furthermore v′ �= ε since |v′| = n|uw| = m|v| > 0, and v′ ∈ L since L = L∗

and uw ∈ uv∗w ⊆ L. So we may replace u, v, w with u′, v′, w′ respectively,

and we may thus assume that u = ε and v, w ∈ L. (Recall that the only

requirements we had of u, v, w were that uv∗w ⊆ S, that v �= ε, and that w

have a as a suffix.)
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By [4, Proposition 7.1] since L is not sparse there are x, y1, y2, z ∈ Σ∗

with y1, y2 distinct, non-trivial, and of the same length such that x{y1, y2}∗z⊆L.
Let b = xy1z and c = xy2z; so |b| = |c| with b, c ∈ L and b �= c. By replac-

ing b, c, v with powers thereof we may assume |b| = |c| = |v|. Then since b �= c we

get that one of b, c, without loss of generality say b, has b �= v, and thus [b] �= [v].

Note since L = L∗ that L ⊇ {b, v}∗w.
Since vw ∈ S and since bw has the same length as vw, has a as a suffix, and

lies in L, we get that [bw] ≤ [vw]. So [b] ≤ [v], and since b �= v we get [b] < [v].

Then since [v]− [b] < [v] there is α ∈ Σ(|v|) such that [α] = [v]− [b]. Fix N < ω;

we again show there exists K for which we can produce an (N + 1)-ladder. We

then let

K = |vNw| ∈ r + sN,

di = bN−iviw,

ei = αN−i,

for i ≤ N . Then by an argument identical to the previous case the di, ei form an

(N + 1)-ladder for x+K y ∈ L. The case [a] > [σ] is similar; we outline it here.

We take minimal such a under ≤N, and define S to be the set of τ ∈ L∩Σ(r+sN)

ending in a that are ≤N-minimal among the elements of L ending in a that are

of the same length as τ . Then S is again infinite and regular, and thus contains

a set of the form uv∗w; we again assume w has a as a suffix. If n|wu| = m|v|
then dually to before we get [(wu)m] ≥ [vn]. Fix N < ω; again our goal will be

to find K for which we can produce an (N + 1)-ladder. If [(wu)n] > [vm], say

with α ∈ Σ(m|v|) with [α] = [(wu)n]− [vm] > 0, then we’d like to let

K = |uvmNw|,
di = u(wu)n(N−i)vmiw,

ei = 0|u|(−α)N−i,

and claim this as our ladder. Unfortunately we’re working over Σ, not Σ±, so
we cannot allow the ei to use negative digits. This is easily fixed, however: note

for all i, j that [di] ≥ d|u|+Nm|v| ≥ −[ej] (since [a] �= 0 and w, and hence di,

has a as a suffix). So we can take d′i, e
′
i ∈ Σ∗ such that [d′i] = [di]− d|u|+Nm|v|

and [e′i] = ei + d|u|+Nm|v|. Then [d′i] + [e′j ] = [di] + [ej ], and now as before one

can show that d′i +K e′j is always defined and is in L if and only if i ≤ j.
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If [(wu)n] = [vm] we do a similar trick. As before we may assume u = ε

and v, w ∈ L, and we get some b ∈ L with |b| = |v| and [b] �= [v]; dually to

before we get [b] > [v], say with α ∈ Σ(|v|) such that [α] = [b]− [v]. Our initial

attempt at a ladder will now be

K = |vNw|,
di = bN−iviw,

ei = (−α)N−i.

Now we have [di] ≥ dN |v| ≥ −[ej]; so we can pull the same trick to turn the di, ei

into a ladder.

Suppose M = (Q, q0, F, δ) is a DFA over Σ. For q ∈ Q we let

Lq = {σ ∈ Σ∗ : δ(q, σ) = q};

that is, Lq is the set of words which take state q back to state q in M . Note

that Lq is regular: it is recognized by the automaton (Q, q, {q}, δ).
We will primarily be interested in Lq for q a non-dead state:

Definition 4.8: Suppose M = (q, q0, F, δ) is a DFA over Σ. We say q ∈ Q is a

dead state if there is no σ ∈ Σ∗ such that δ(q, σ) ∈ F .

Lemma 4.9: Suppose A ⊆ N is d-automatic but not d-sparse; suppose A

is not generic in N. Fix an automaton M = (Q, q0, F, δ) that recognizes

{σ ∈ Σ∗ : [σ] ∈ A}. Then there is a non-dead q ∈ Q such that Lq satisfies the

hypotheses of Lemma 4.7: namely Lq is regular but not sparse, Lq = L∗
q, and Lq

satisfies (†).
Proof. Note we always have that Lq is regular and Lq = L∗

q; so we only need

non-sparsity and (†). We first note some facts about how non-sparsity and (†)
interact with Lq. Recall that (†) applied to Lq states that there are r, s ∈ N

such that Lq ∩ Σ(r+sN) is infinite and has a forbidden suffix.

Claim 4.10:

(1) If q is a finish state of M and Lq is infinite then Lq satisfies (†).
(2) There is a non-dead q such that Lq is not sparse.

(3) If q, q′ are states in M with a path from q to q′ and vice-versa then Lq

is sparse if and only if Lq′ is.
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Proof of Claim 4.10. (1) We may assume that for every q′ ∈ Q there is μ ∈ Σ∗

such that δ(q0, μ) = q′; that is, every state is reachable from the start state.

Indeed, if X is the set of q′ for which there is no such μ, then

(Q \X, q0, F \X, δ � (Q \X))

is a DFA recognizing the same language that has the desired property.

Fix μ ∈ Σ∗ such that δ(q0, μ) = q; let L = {σ ∈ Σ∗ : [σ] ∈ A}. By

non-genericity of A in N and Lemma 4.6 there are r, s ∈ N for which there is a

forbidden suffix for L∩Σ(r+sN). Note that if τ is a forbidden suffix for L∩Σ(r+sN)

then τ0t is a forbidden suffix for L∩Σ(r+t+sN) (since L is closed under removing

trailing zeroes). So there is a forbidden suffix for L ∩ Σ(r′+sN) for any r′ ≥ r.

Since Lq is infinite we can find r′ ≥ max{r, |μ|} such that Lq ∩ Σ(r′−|μ|+sN) is

infinite. Then since q is a finish state, the forbidden suffix for L ∩ Σ(r′+sN) is

also a forbidden suffix for Lq ∩ Σ(r′−|μ|+sN). So Lq satisfies (†).
(2) By [4, Proposition 7.1] there is a non-dead state q and distinct non-empty

u, v ∈ Σ∗ such that δ(q, u) = δ(q, v) = q and δ(q, x) �= q for x any proper

non-empty prefix of u or v. Then taking b, c to be powers of u, v respectively

such that |b| = |c|, we get that b �= c (otherwise u or v would be a prefix of

the other); also δ(q, a) = δ(q, b) = q, so b, c ∈ Lq. So Lq ⊇ {b, c}∗, and a quick

computation shows that Lq is not sparse.

(3) Let δ(q, μ) = q′ and δ(q′, ν) = q. Suppose Lq is not sparse. Then

Lq′ ⊇νLqμ

is also not sparse.

By Claim 4.10 (2) there is q such that Lq is not sparse and q has a path to a

finish state q′. If Lq′ is not sparse then by Claim 4.10 (1) q′ satisfies the desired
properties, and we’re done; suppose then that it is sparse. We show in this case

that there is a forbidden infix for Lq (i.e., some τ that does not appear as a

substring of any element of Lq), and hence in particular that Lq satisfies (†)
with r = 0 and s = 1.

Note that there is no path from q′ to q, else by Claim 4.10 (3) Lq′ would

not be sparse. Enumerate the states of M with a path to q (and hence to q′)
as (qi : i<n). Inductively pick σi∈Σ∗ as follows: if δ(qi, σ0 · · ·σi−1) has no path

to q we let σi = ε, and otherwise we pick σi such that δ(qi, σ0 · · ·σi) = q′. Note
then that δ(qi, σ0 · · ·σi) has no path to q; hence neither does δ(qi, σ0 · · ·σn−1).
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Let τ = σ0 · · ·σn−1. We have shown that if r is a state with a path to q (so

one of the qi) then δ(r, τ) has no path to q. Clearly if r has no path to q then

neither does δ(r, τ). Hence for all r ∈ Q we get that δ(r, τ) has no path to q;

that is, τ is a forbidden infix for Lq.

With the above lemmas, we are almost ready to prove Proposition 4.4. We

will need the notion of a minimal automaton:

Definition 4.11: The minimal automaton of a regular language L ⊆ Σ∗ is an

automaton (Q, q0, F, δ) recognizing L satisfying the following:

• all states are reachable from the start state, and

• given distinct q, q′ ∈ Q there is ν ∈ Σ∗ such that δ(q, ν) ∈ F if and only

if δ(q′, ν) /∈ F .

Such automata exist and are unique: see the proof of the right-to-left direction

of [21, Theorem 4.7].

Proof of Proposition 4.4. Suppose A ⊆ N is d-automatic and neither d-sparse

nor generic in N; we wish to show that A is not stable in N. Fix a minimal

automaton M = (Q, q0, F, δ) for the set of representations over Σ of elements

of A. By Lemma 4.9 there is a non-dead q such that Lq satisfies the hypotheses

of Lemma 4.7. Using minimality, for each q′ �= q let σq′ ∈ Σ∗ and εq′ ∈ {0, 1}
be such that

(δ(q, σq′ ) ∈ F )εq′ ∧ (δ(q′, σq′ ) ∈ F )1−εq′

holds (where, as before, ϕ0 denotes ¬ϕ and ϕ1 denotes ϕ). If θ ∈ Q then θ = q

if and only if ∧
q′ �=q

(δ(θ, σq′ ) ∈ F )εq′

holds. Consider then the following formula in the variables x = (xq′ : q′ �= q)

and y:

ϕ(x; y) =
∧
q′ �=q

(xq′ + y ∈ A)εq′ .

We show that ϕ is unstable in N, and hence since ϕ is a Boolean combination

of instances of x+ y ∈ A that A is unstable in N.
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Fix N < ω; we show there exists an N -ladder for the relation x + y ∈ A.

Recall that Lq satisfies the hypotheses of Lemma 4.7; so for some K < ω there

is an N -ladder (di, ei : i < N) for x+K y ∈ Lq. We may assume each |di| = K.

Take any μ ∈ Σ∗ such that δ(q0, μ) = q, and let

bi,q′ = [μdiσq′ ],

ci = [0|μ|ei].

These

bi := (bi,q′ : q
′ �= q), ci

will be our N -ladder for ϕ. Note that bi,q′ + cj = [μ(di +K ej)σq′ ]. Then

ϕ(bi; cj) ⇐⇒
∧
q′ �=q

(bi,q′ + cj ∈ A)εq′

⇐⇒
∧
q′ �=q

(δ(q0, μ(di +K ej)σq′ ) ∈ F )εq′

⇐⇒
∧
q′ �=q

(δ(δ(q, di +K ej), σq′ ) ∈ F )εq′

⇐⇒ δ(q, di +K ej) = q

⇐⇒ di +K ej ∈ Lq

⇐⇒ i ≤ j.

So ϕ is unstable in N, and thus A is unstable in N.

We can now do the case A ⊆ Z:

Proof of Theorem 4.2. Suppose A ⊆ Z is d-automatic but neither d-sparse nor

generic in Z; we wish to show that A is not stable in (Z,+).

Case 1: Suppose one of A ∩ N and −A ∩ N is generic in N and the other is

d-sparse. Then taking finitely many translates and unioning we get a set B

where (say) B ∩ N is d-sparse and B ⊇ −N. (Note that d-sparsity is closed

under translation and finite union.) In fact this is enough to deduce that B ∩N

is disjoint from some coset:

Claim 4.12: If C ⊆ N is d-sparse then there are r, s ∈ N with r < s such that

C ∩ (r + sN) = ∅.
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Proof. Let L ⊆ Σ∗ be the set of canonical representations of elements of C; so

L is sparse. Recall by [21, Theorem 3.8] that the set of prefixes of a sparse set is

also sparse, and in particular is not all of Σ∗. So there is some σ ∈ Σ∗ that does

not occur as a prefix of an element of L; i.e., σ is a forbidden prefix for L. Note

that if σ is a forbidden prefix for L then so is σ1; so, by possibly appending a 1,

we may assume that σ has no trailing zeroes. Let r = [σ] and s = d|σ|; so r < s.

Then if a ∈ r + sN then the canonical representation of a is στ , where τ is the

canonical representation of

a− r

s
=
a− [σ]

d|σ|
.

In particular, the canonical representation of a begins with σ, and is thus not

in L; so a /∈ C. So (r + sN) ∩ C = ∅, as desired.

Pick such r, s ∈ N for B ∩ N; so (r + sZ) ∩ B = r + sZ<0. It follows that

(r + sZ) ∩B is unstable in (Z,+): if x, y ∈ sZ then

x ≤ y ⇐⇒ r + x− y − s ∈ r + sZ<0.

So (x + y ∈ r + sZ) ∧ (x+ y ∈ B) is unstable in (Z,+). But x + y ∈ r + sZ is

stable in (Z,+), since it is definable in (Z,+); so B is unstable in (Z,+). So

since B is a finite union of translates of A we get that A is unstable in (Z,+).

Case 2: Suppose otherwise. I claim that one of A ∩ N and −A ∩ N is neither

generic in N nor d-sparse. Indeed, suppose otherwise; so A∩N is either generic

in N or d-sparse, and likewise with −A ∩ N. Since A is not generic in Z, at

most one of A ∩ N or −A ∩ N is generic in N; likewise with d-sparse. So one

of A ∩ N,−A ∩ N is generic in N, and the other is d-sparse; so we are in the

previous case, a contradiction.

So one of A∩N or −A∩N is neither generic in N nor d-sparse. Note that A is

stable in (Z,+) if and only if −A is. Hence replacing A by −A if necessary we

may assume A∩N is neither generic in N nor d-sparse. Then by Proposition 4.4

there are arbitrarily large ladders in N for x+y ∈ A∩N; since N is closed under

addition, we get that these are also ladders in Z for x + y ∈ A. Hence A is

unstable in (Z,+).

As an illustration of our theorem we note that the following automatic sets

are not stable in (Z,+). Indeed, it is easily checked that they are all neither

sparse nor generic.
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Corollary 4.13: The following automatic sets are unstable in (Z,+):

• The set of a ∈ Z such that the canonical base-d representation of a ends

in ±1 (assuming d > 2).

• The set of a ∈ Z such that the canonical base-d representation of a does

not contain a 0 (assuming d > 2).

• The set of a ∈ Z such that the canonical base-d representation of a is

of even length.

• The set of a ∈ Z such that the canonical binary representation of a takes

the form 0k010k11 · · · 10km1 or 0k0(−1)0k1(−1) · · · (−1)0km(−1) for some

even k0, . . . , km (possibly zero); i.e., does not contain a block of zeroes

of odd length. These are precisely the a ∈ Z such that the Baum–Sweet

sequence has a 1 in the |a|th position. See [2, Section 5.1] for more

details on the Baum–Sweet sequence.

The converse of Theorem 4.2 is certainly false. For example, let A ⊆ Z be

as in the example at the beginning of Section 3; so A is d-sparse and unstable

in (Z,+). Then the complement of A remains unstable, and is generic since A

does not contain a pair of adjacent integers.

5. The general case

Gabriel Conant pointed out to me in private communications that Theorems 3.1

and 4.2, together with [9, Theorem 2.3 (iv)], allow us to deal with arbitrary d-

automatic stable subsets of Z.

Theorem 5.1: Suppose A ⊆ Z is d-automatic and stable in (Z,+). Then A is

a finite Boolean combination of

• cosets of subgroups of (Z,+), and

• basic groupless Fd-sets in Z.

Proof. It is known that stable subsets of a group are close to being a finite union

of cosets, in the sense that they have non-generic symmetric difference with such;

see [9, Theorem 2.3 (iv)] (taking δ(x, y) to be x + y ∈ A and ϕ(x) ∈ Defδ(G)

to be x ∈ A). So there is a subgroup H ≤ Z and a union Y of cosets of H such

that Z := A � Y is non-generic in Z. Since Y is a union of cosets it is also

stable in (Z,+) and d-automatic. Hence Z is both d-automatic and stable in

(Z,+). Theorem 4.2 yields that Z is d-sparse, and then Theorem 3.1 yields that

Z is a finite Boolean combination of basic groupless Fd-sets. Hence A = Z� Y

is a finite Boolean combination of sets of the desired form.
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Corollary 5.2: Suppose A ⊆ Z is d-automatic. The following are equivalent:

(1) Th(Z,+, A) is stable.

(2) A is stable in (Z,+).

(3) A is a finite Boolean combination of

• cosets of subgroups of (Z,+), and

• basic groupless Fd-sets in Z.

(4) A is definable in (Z,+, dN).

Proof. That (1) =⇒ (2) is clear; that (2) =⇒ (3) is Theorem 5.1; and that

(4) =⇒ (1) is [16, Theorem A]. For (3) =⇒ (4), it suffices to show that each

C(a; r) = a
( (dr)N − 1

dr − 1

)
\ {0}

is definable in (Z,+, dN); for this it suffices to show that each (dr)N is definable

in (Z,+, dN). Fix r > 1, and let ϕ(x) be

(x ∈ dN) ∧ ((dr − 1) | x− 1).

(Note that (dr − 1) | x− 1 is definable in (Z,+, dN) since r is fixed.) It is clear

that (dr)N ⊆ ϕ(Z). Conversely, suppose we are given some element dn of ϕ(Z);

write n = qr+ s for some 0 ≤ s < r. Then 1 ≡ dn ≡ ds (mod dr − 1); so, since

1 ≤ ds < dr − 1, we get that ds = 1, and s = 0. So dn = dqr ∈ (dr)N, and (dr)N

is definable in (Z,+, dN).

6. Two NIP expansions of (Z,+)

In this final section we show how to apply automata-theoretic methods to pro-

duce some NIP expansions of (Z,+); see [20] for background on NIP.

6.1. (Z,+, <, dN) is NIP. Fix d > 0. That Th(Z,+, <, dN) is NIP was shown

recently by Lambotte and Point (it is an instance of [13, Corollary 2.33]), but

our proof is novel and short. It will be convenient to work in (N,+) rather

than (Z,+, <). Since (Z,+, <, dN) is interpretable in (N,+, dN), it will suffice

to prove:

Theorem 6.1: Th(N,+, dN) is NIP.

Before proving the theorem, let us observe that since all d-sparse subsets of N

are definable in (N,+, dN)—see [19, Theorem 5]—and as A ⊆ Z is d-sparse if

and only if both A ∩ N and −A ∩ N are, we get:
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Corollary 6.2: The expansion of (Z,+) by all d-sparse subsets is NIP.

Our proof of Theorem 6.1 will make use of a result of Chernikov and Simon on

NIP pairs of structures; we briefly recall their setup and result. We let L = {+}
and N = (N,+); we fix Th(N ) as our ambient theory.

Definition 6.3: Let LP be L expanded by a unary predicate P . A bounded LP -

formula is one of the form (Q1x1 ∈ P ) · · · (Qnxn ∈ P )ϕ for some quantifiers Qi

and some ϕ ∈ L. If M is an L-structure and A ⊆ M we say A is bounded

in M if every LP -formula is Th(M,A)-equivalent to a bounded one.

Definition 6.4: Suppose M is a structure and A ⊆ M . The induced struc-

ture AM of M on A has domain A and atomic relations D ∩ An for each ∅-
definable D ⊆Mn.

Fact 6.5 ([6, Corollary 2.5]): SupposeM is a structure and A ⊆M is bounded

in M . If Th(M) and Th(AM ) are NIP then so is Th(M,A).

We wish to apply this to (M,A) = (N , dN). Boundedness follows from earlier

work of Point:

Proposition 6.6: dN is bounded in N .

Proof. Propositions 9 and 11 of [18] state that

Th
(
N,+, −̇, <, 0, 1, ·

n
, λd, S, S

−1
)
n≥1

admits quantifier elimination, where

• a −̇ b = max{a− b, 0},
• S(dn) = dn+1 and S(a) = a for other a,

• S−1(dn+1) = dn and S−1(a) = a for other a,

• λd(x) = d�logd(x)� for x > 0 and λd(0) = 0.

It then remains to show that any quantifier-free formula in this signature is

equivalent to a bounded LP -formula. But a quantifier-free formula

ϕ(. . . , λd(t), . . .)

involving λd is equivalent to

(∃x ∈ dN) ((x ≤ t) ∧ (∀y ∈ dN)¬(x < y ≤ t) ∧ ϕ(. . . , x, . . .))
∨ ((t = 0) ∧ ϕ(. . . , 0, . . .))
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So at the cost of quantifying over dN we can eliminate occurrences of λd; we

can similarly dispense with occurrences of S and S−1. Repeatedly applying

this yields that any quantifier-free formula ϕ in {+, −̇, <, 0, 1, ·
n , λd, S, S

−1}n≥1

is equivalent to one of the form (Q1x1 ∈ dN) · · · (Qnxn ∈ dN)ψ where ψ is a for-

mula in {+, −̇, <, 0, 1, ·
n}n≥1. But since (N,+, −̇, <, 0, 1, ·

n )n≥1 is a definitional

expansion of (N,+), we get that ϕ is equivalent to a bounded LP -formula.

It is well-known that N is NIP; it is definable in (Z,+, <), which is NIP as

all ordered abelian groups are (see [11]). It remains to show that the induced

structure (dN)N is NIP.

The following is well-known; see, e.g., [5, Theorem 6.1], of which it is a

weakening.

Fact 6.7: All definable subsets of N are d-automatic.

We therefore wish for a description of how d-automatic sets can intersect dN.

Proposition 6.8: If X ⊆ N
n is d-automatic then the relation

{(k1, . . . , kn) ∈ N
n : (dk1 , . . . , dkn) ∈ X}

is definable in (N,+).

Proof. By symmetry and disjunction it suffices to check the case k1 ≤ · · · ≤ kn.

It will be convenient to work with (X ∩N
n
>0)− �, where � ∈ N

n is the tuple

all of whose entries are 1; note that this is also d-automatic. Then taking

σi =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

d− 1
...

d− 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with i − 1 zeroes, we get for k1 ≤ · · · ≤ kn that

(dk1 , . . . , dkn) ∈ X ⇐⇒ (dk1 − 1, . . . , dkn − 1) ∈ (X ∩ N
n
>0)− �

⇐⇒ [σk1
1 σk2−k1

2 · · ·σkn−kn−1
n ] ∈ (X ∩ N

n
>0)− �

(since the base-d representation of dki − 1 consists of d − 1 repeated ki times).

But by Proposition 2.2 the last condition is definable in (N,+), as desired.
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Our theorem now follows easily:

Proof of Theorem 6.1. Proposition 6.8 and Fact 6.7 imply that the map k 
→ dk

induces an interpretation of (dN)N in (N,+). But Th(N,+) is NIP; so Th(dN)N
is NIP. But dN is bounded in N by Proposition 6.6, and N is NIP. So Th(N , dN)

is NIP by Fact 6.5.

6.2. (Z,+, dN,×�dN) is NIP. Next we consider the expansion of (Z,+) by

the monoid (dN,×); that is, we consider the structure (Z,+, dN,×�dN), view-
ing ×�dN as a ternary relation on Z. Note that as the ordering on dN is definable

here, (Z,+, dN,×�dN) is not stable. However:
Theorem 6.9: Th(Z,+, dN,×�dN) is NIP.

We first note that this is not a consequence of Theorem 6.1; that is,

(Z,+, dN,×�dN) is not a reduct of (Z,+, <, dN). Indeed, we remarked above

that [5, Theorem 6.1] implies that every definable subset of N is d-automatic;

in fact, it can be used to show that every definable subset of (Z,+, <, dN) is

d-automatic. But ×�dN itself is not d-automatic: since⎡⎢⎣
⎛⎜⎝ 0i1

0i1

0i+1

⎞⎟⎠ ·

⎛⎜⎝0j+1

0j+1

0j1

⎞⎟⎠
⎤⎥⎦ ∈ ×�dN ⇐⇒ i = j + 1

it follows from the Myhill-Nerode theorem (see, e.g., [21, Theorem 4.7]) that

the set of canonical representations of elements of ×�dN is not regular. So ×�dN
is not definable in (Z,+, <, dN).

It is perhaps surprising that our methods are useful even though we are ex-

panding by a set that is not automatic. The reason automatic methods still

apply is Fact 6.7, together with the following generalization of Proposition 6.8,

which tells us that the interaction between iterated concatenation and member-

ship in automatic sets can be described using Presburger arithmetic.

Lemma 6.10: Suppose X ⊆ Z
m is d-automatic and

(�11, . . . , �1n1), . . . , (�m1, . . . , �mnm)

are tuples from (Σ±)<ω. Then the relation⎧⎪⎪⎨⎪⎪⎩(kij) :

⎛⎜⎜⎝
[�k11
11 · · · �k1n1

1n1
]

...

[�km1
m1 · · · �kmnm

mnm ]

⎞⎟⎟⎠ ∈ X

⎫⎪⎪⎬⎪⎪⎭ ⊆ N
n1 × · · · × N

nm

is definable in (N,+).
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Proof. We define a map P : (Σ∗
±)

m → (Σm
± )∗ as follows. Take as input

σ1, . . . , σm ∈ Σ∗
±,

and let N = max{|σ1|, . . . , |σm|}. Then⎛⎜⎜⎝
σ10

N−|σ1|
...

σm0N−|σm|

⎞⎟⎟⎠
is a tuple of strings all of which have length N . We can view such a tuple as a

string over Σm
± : if we write⎛⎜⎜⎝

σ10
N−|σ1|
...

σm0N−|σm|

⎞⎟⎟⎠ =

⎛⎜⎜⎝
�′11 · · · �′1N

...

�′m1 · · · �′mN

⎞⎟⎟⎠
for �′ij ∈ Σ± then ⎛⎜⎜⎝

�′11
...

�′m1

⎞⎟⎟⎠ · · ·

⎛⎜⎜⎝
�′1N
...

�′mN

⎞⎟⎟⎠ ∈ (Σm
± )∗.

We then define

P

⎛⎜⎜⎝
σ1
...

σm

⎞⎟⎟⎠ =

⎛⎜⎜⎝
�′11
...

�′m1

⎞⎟⎟⎠ · · ·

⎛⎜⎜⎝
�′1N
...

�′mN

⎞⎟⎟⎠ ;

so, roughly speaking, P pads its input with zeroes and views the result as a

string over Σm
± . Note in particular that⎡⎢⎢⎣P

⎛⎜⎜⎝
σ1
...

σm

⎞⎟⎟⎠
⎤⎥⎥⎦ =

⎛⎜⎜⎝
[σ1]
...

[σm]

⎞⎟⎟⎠ .

I claim that for any �ij , any automaton (Q, q0, δ, F ), and any q1, q2 ∈ Q the

relation ⎧⎪⎪⎨⎪⎪⎩(kij) : δ

⎛⎜⎜⎝q1, P
⎛⎜⎜⎝
�k11
11 · · · �k1n1

1n1

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎠ = q2

⎫⎪⎪⎬⎪⎪⎭
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is definable in (N,+). In fact this suffices to prove the lemma. Indeed, fix an

automaton (Q, q0, δ, F ) for the set of representations over Σm± of elements of X .

Then ⎛⎜⎜⎝
[�k11
11 · · · �k1n1

1n1
]

...

[�km1
m1 · · · �kmnm

mnm ]

⎞⎟⎟⎠ ∈ X ⇐⇒

⎡⎢⎢⎣P
⎛⎜⎜⎝
�k11
11 · · · �k1n1

1n1

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎤⎥⎥⎦ ∈ X

⇐⇒
∨
q∈F

δ

⎛⎜⎜⎝q0, P
⎛⎜⎜⎝
�k11
11 · · · �k1n1

1n1

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎠ = q

is definable in (N,+) by the claim.

We now show the claim. We apply strong induction on (m,n1, . . . , nm);

our ordering will be given by (m′, n′
1, . . . , n

′
m′) ≺ (m,n1, . . . , nm) if m′ < m

or m′ = m and (n′
1, . . . , n

′
m) precedes (n1, . . . , nm) in the lexicographical or-

der. The base case is m = 0; this is vacuous. For the induction step, sup-

pose that for any m′, n′
1, . . . , n

′
m with (m′, n′

1, . . . , n
′
m′) ≺ (m,n1, . . . , nm) we

have for any (�11, . . . , �1n′
1
), . . . , (�m′1, . . . , �m′n′

m′ ) ∈ (Σ±)<ω, any automaton

(Q, q0, δ, F ), and any q1, q2 ∈ Q that the relation⎧⎪⎪⎪⎨⎪⎪⎪⎩(kij) : δ

⎛⎜⎜⎜⎝q1, P
⎛⎜⎜⎜⎝

�k11
11 · · · �k1n′

1

1n′
1

...

�
km′1
m′1 · · · �

km′n′
m′

m′n′
m′

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ = q2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is definable in (N,+). We show the same holds of

(m,n1, . . . , nm).

Fix (�11, . . . , �1n1), . . . , (�m1, . . . , �mnm) ∈ (Σ±)<ω, an automaton (Q, q0, δ, F ),

and states q1, q2 ∈ Q.

Suppose first that some ni = 0; say for ease of notation that i = 1. We define

a new automaton (Q, q0, δ
′, F ) over Σm−1

± by setting

δ′

⎛⎜⎜⎝q,
⎛⎜⎜⎝
�′2
...

�′m

⎞⎟⎟⎠
⎞⎟⎟⎠ = δ

⎛⎜⎜⎜⎜⎝q,
⎛⎜⎜⎜⎜⎝

0

�′2
...

�′m

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠
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for any �′2, . . . , �
′
m ∈ Σm−1

± . So given an input σ ∈ (Σm−1
± )∗ we get

that δ′(q1, σ) = δ(q1, ( 0
|σ|
σ

)) (here 0|σ| ∈ Σ∗± is a single string consisting of

|σ|-many 0s). In particular we have

δ

⎛⎜⎜⎜⎜⎝q1, P
⎛⎜⎜⎜⎜⎝

ε

�k21
21 · · · �k2n2

2n2

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ = q2 ⇐⇒ δ

⎛⎜⎜⎜⎜⎝q1,
⎛⎜⎜⎜⎜⎝

0maxi(ki1+···+kini
)

P

⎛⎜⎜⎝
�k21
21 · · · �k2n2

2n2

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ = q2

⇐⇒ δ′

⎛⎜⎜⎝q1, P
⎛⎜⎜⎝
�k21
21 · · · �k2n2

2n2

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎠ = q2

and by the induction hypothesis the latter is definable in (N,+) (since

(m− 1, n2, . . . , nm) ≺ (m, 0, n2, . . . , nm)).

Suppose then that no ni = 0. Suppose k11 is minimum among the ki1. Then

for q ∈ Q we get that

δ

⎛⎜⎜⎜⎜⎝q, P
⎛⎜⎜⎜⎜⎝

�k12
12 · · · �k1n1

1n1

�k21−k11
21 �k22

22 · · · �k2n2
2n2

...

�km1−k11
m1 �km2

m2 · · · �kmnm
mnm

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠ = q2

is definable in (N,+) by the induction hypothesis (since we have that

(m,n1 − 1, n2, . . . , nm) ≺ (m,n1, . . . , nm)). Moreover since Q is finite we get

that

δ

⎛⎜⎜⎝q1,
⎛⎜⎜⎝
�k11
11
...

�k11
m1

⎞⎟⎟⎠
⎞⎟⎟⎠

is ultimately periodic in k11; hence for q ∈ Q we get that

q = δ

⎛⎜⎜⎝q1,
⎛⎜⎜⎝
�k11
11
...

�k11
m1

⎞⎟⎟⎠
⎞⎟⎟⎠
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is definable in (N,+). Thus

δ

⎛⎜⎜⎝q1, P
⎛⎜⎜⎝
�k11
11 · · · �k1n1

1n1

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎠ = q2

⇐⇒
∨
q∈Q

⎛⎜⎜⎜⎜⎝q=δ
⎛⎜⎜⎝q1,

⎛⎜⎜⎝
�k11
11
...

�k11
m1

⎞⎟⎟⎠
⎞⎟⎟⎠ ∧ δ

⎛⎜⎜⎜⎜⎝q, P
⎛⎜⎜⎜⎜⎝

�k12
12 · · · �k1n1

1n1

�k21−k11
21 �k22

22 · · · �k2n2
2n2

...

�km1−k11
m1 �km2

m2 · · · �kmnm
mnm

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠=q2

⎞⎟⎟⎟⎟⎠
is definable in (N,+).

Similarly we get definability in the case ki1 is minimum for some i > 1. So

taking disjunctions we get that the relation⎧⎪⎪⎨⎪⎪⎩(kij) : δ

⎛⎜⎜⎝q1, P
⎛⎜⎜⎝
�k11
11 · · · �k1n1

1n1

...

�km1
m1 · · · �kmnm

mnm

⎞⎟⎟⎠
⎞⎟⎟⎠ = q2

⎫⎪⎪⎬⎪⎪⎭
is definable in (N,+), as desired.

For our proof of Theorem 6.9 it will be convenient to assume d ≥ 8. In fact

this suffices: consider for example the case d = 4. Assuming the theorem holds

when d = 42 = 16, we get that (Z,+, 16N,×�16N) is NIP. But ×�4N is definable

in (Z,+, 16N,×�16N): we have (a, b, c) ∈ ×�4N if and only if

(4ia, 4jb, 4i+jc) ∈ ×�16N for some i, j ∈ {0, 1}.
This is because x is a power of 4 if and only if one of x, 4x is a power of 16.

So (Z,+, 4N,×�4N) is a reduct of (Z,+, 16N,×�16N), and is thus NIP. Similar

arguments work for all 2 ≤ d < 8.

Proof of Theorem 6.9. We assume d ≥ 8. We will apply an extension due to

Conant and Laskowski of the result of Chernikov and Simon we used previously

(Fact 6.5). Since these results only apply to subsets of the domain, our first

task is to encode dN and ×�dN as such. Let

B = dN ∪ {[7i6j4i] : i, j ∈ N}.
The point is that from B we will be able to extract both dN and{a− 1

d− 1
+ 2

b− 1

d− 1
+ 4

c− 1

d− 1
: (a, b, c) ∈ ×�dN, a ≤ b

}
.

These together will be enough to recover ×�dN.
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Claim 6.11: dN and ×�dN are definable in (Z,+, B).

Proof. Note first that dN is definable in (Z,+, B): we have a ∈ dN if and only

if a = 1 or 0 �= a ∈ B and a ≡ 0 (mod d). I now claim that (a, b, c) ∈ ×�dN
with a ≤ b if and only if a, b, c ∈ dN and

a− 1

d− 1
+ 2

b− 1

d− 1
+ 4

c− 1

d− 1
∈ B.

For the left-to-right direction, note that if (di, dj , di+j) ∈ ×�dN with i ≤ j then

di − 1

d− 1
+ 2

dj − 1

d− 1
+ 4

di+j − 1

d− 1
= [1i] + [2j ] + [4i+j ] = [7i6j−i4i] ∈ B.

For the right-to-left direction, suppose di, dj , dk satisfy

[1i] + [2j ] + [4k] =
di − 1

d− 1
+ 2

dj − 1

d− 1
+ 4

dk − 1

d− 1
∈ B.

If i = j = k = 0 then (di, dj , dk) ∈ ×�dN and di ≤ dj , as desired; suppose

then that at least one is non-zero. Then [1i] + [2j ] + [4k] �≡ 0 (mod d), so

[1i]+[2j]+[4k] ∈ B\dN, and is thus equal to [7i
′
6j

′
4i

′
] = [1i

′
]+[2j

′+i′ ]+[42i
′+j′ ]

for some i′, j′.
But the map (x, y, z) 
→ [1x]+[2y]+[4z] is injective. Indeed, we can represent

[1x]+[2y]+[4z ] by an element of {1, . . . , 7}∗; note that each element of {1, . . . , 7}
can be represented uniquely as a sum of a subset of {1, 2, 4}. We can then

recover x from the canonical representation of [1x] + [2y] + [4z] as the number

of occurrences of � ∈ {1, . . .7} that use a 1 in this sum representation; we can

likewise recover y, z.

So since [1i] + [2j ] + [4k] = [1i
′
] + [2j

′+i′ ] + [42i
′+j′ ] we get by injectivity that

j = j′ + i′ ≥ i′ = i and k = 2i′ + j′ = i + j; so (di, dj , dk) ∈ ×�dN and dj ≥ di,

as desired.

But (a, b, c) ∈ ×�dN ⇐⇒ (b, a, c) ∈ ×�dN; so

(x ≤ y ∧ (x, y, z) ∈ ×�dN) ∨ (y ≤ x ∧ (y, x, z) ∈ ×�dN)

defines ×�dN in (Z,+, B).

So it suffices to show that (Z,+, B) is NIP. We again check that the induced

structure on B is NIP. When using Fact 6.5, we only concerned ourselves with

the structure induced from the ∅-definable sets; however, to use the result of

Conant and Laskowski, we will need that the structure induced by all sets

definable with parameters from Z is NIP.
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Claim 6.12: Let Z be (Z,+) expanded by names for all the constants. Then

the induced structure BZ is NIP.

Proof. Let

D = {(e1, 1, 0, 0) : e1 ∈ N} ∪ {(0, 0, e3, e4) : e3, e4 ∈ N} ⊆ N
4;

note that D is definable in (N,+). Consider Φ: N4 → Z given by

(e1, e2, e3, e4) 
→ [0e11e27e36e44e3 ];

note that Φ(D) ⊆ B, and in fact Φ: D → B is bijective. I claim that Φ de-

fines an interpretation of BZ in (N,+). Recall that (Z,+, 0, 1, δN)δ>0 admits

quantifier elimination (see, e.g., [15, Exercise 3.4.6]). So if X ⊆ Z is defin-

able in Z then X is a Boolean combination of congruences and equalities, and

hence X ∩ N is definable in (N,+); likewise with −X ∩ N. Thus by Fact 6.7

we get that X ∩ N and −X ∩ N (and hence X ∩ −N) are d-automatic. So

since d-automatic sets are closed under Boolean combinations we get that X is

d-automatic. One argues similarly that if X ⊆ Z
m is definable in Z then X

is d-automatic. So to show that Φ defines an interpretation it suffices to show

that whenever X ⊆ Z
m is d-automatic we have that⎧⎪⎪⎨⎪⎪⎩(eij) ∈ Dm :

⎛⎜⎜⎝
[0e111e127e136e144e13 ]

...

[0em11em27em36em44em3 ]

⎞⎟⎟⎠ ∈ X

⎫⎪⎪⎬⎪⎪⎭
is definable in (N,+). But this follows from Lemma 6.10 (and definability of D).

So Φ defines an interpretation of BZ in (N,+); so BZ is NIP.

Now by [8, Theorem 2.9] we get since Th(Z,+) is weakly minimal (see, e.g.,

[8, Proposition 3.1]) and BZ is NIP that (Z,+, B) is NIP. So (Z,+, dN,×�dN)
is NIP.

Despite the similarity of methods in Theorems 6.1 and 6.9, we do not know

whether Th(Z,+, <, dN,×�dN) is NIP. (Indeed, it is not even clear to us whether

(Z,+, <, dN,×�dN) is a definitional expansion of (Z,+, dN,×�dN), though it

seems unlikely.) One might hope to apply Fact 6.5 with (Z,+, <) as the base

NIP structure and B as the new predicate. Indeed, as in the proof of Claim 6.12

one can show that the induced structure on B is NIP by observing that the de-

finable subsets of (Z,+, <) are d-automatic. Checking boundedness, however,



692 C. HAWTHORNE Isr. J. Math.

is not simply a matter of adapting the arguments of Theorem 6.1 as the quan-

tifier elimination result of Point that applied to dN does not seem to apply to

B. Nor does the result of Conant and Laskowski yield boundedness as (Z,+, <)

is not weakly minimal. So if one wishes to use our approach to show that

Th(Z,+, <, dN,×�dN) is NIP one needs a new way to check boundedness.

One can restate Theorem 6.9 as saying that expanding (Z,+) by a singly

generated submonoid of (Z \ {0},×) yields an NIP structure. It would be

natural to ask about finitely generated submonoids in general, but it seems

unlikely that our automata-theoretic methods will apply as there is no obvious

choice of d in general.
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