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ABSTRACT

In this paper we shall consider polyharmonic hypersurfaces of order r

(briefly, r-harmonic hypersurfaces), where r ≥ 3 is an integer, into a space

formNm+1(c) of curvature c. For this class of hypersurfaces we shall prove

that, if c ≤ 0, then any r-harmonic hypersurface must be minimal provided

that the mean curvature function and the squared norm of the shape

operator are constant. When the ambient space is Sm+1, we shall obtain

the geometric condition which characterizes the r-harmonic hypersurfaces

with constant mean curvature and constant squared norm of the shape

operator, and we shall establish the bounds for these two constants. In

particular, we shall prove the existence of several new examples of proper

r-harmonic isoparametric hypersurfaces in Sm+1 for suitable values of m

and r. Finally, we shall show that all these r-harmonic hypersurfaces are

also ES-r-harmonic, i.e., critical points of the Eells–Sampson r-energy

functional.

1. Introduction and statement of the results

Let us consider a submanifold of the Euclidean space described by the isometric

immersion ϕ : Mm ↪→ Rn. We say that Mm is polyharmonic of order r

(briefly, r-harmonic) if

(1.1) Δrϕ = (Δrϕ1, . . . ,Δrϕn) = 0,

where r ≥ 1 is an integer and Δ denotes the Laplace operator associated to the

induced metric on Mm. Now, let H be the mean curvature vector field of Mm.

Since

H = − 1

m
Δϕ,

equation (1.1) is equivalent to

Δr−1H = 0.

In particular, minimal submanifolds are trivially r-harmonic for all r ≥ 1. The

case r = 2 corresponds to the so-called biharmonic submanifolds and it is the

most studied in the literature (for instance, see [11, 21, 38, 39]). In particular,

the Chen conjecture states that any biharmonic submanifold of Rn is minimal.

Although there are some results which prove that the conjecture holds under

suitable geometric restrictions (see [11, 12, 19, 30, 31]), the general case is still

open. In a similar spirit, the Maeta conjecture (see [22, 25, 36]) states that any

r-harmonic submanifold of Rn is minimal. Also in this case some partial results
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are available. For instance, the Maeta conjecture is true for curves (see [22]),

but again the general case is open.

For the purposes of this paper, it is necessary to extend these notions to the

case that the ambient space is a general manifold N . To this end, the starting

point is the notion of a harmonic map. Harmonic maps are the critical points

of the energy functional

(1.2) E(ϕ) =
1

2

∫
M

|dϕ|2 dV,

where ϕ : M → N is a smooth map between two Riemannian manifolds (M, g)

and (N, h). In particular, ϕ is harmonic if it is a solution of the Euler–Lagrange

system of equations associated to (1.2), i.e.,

(1.3) −d∗dϕ = trace∇dϕ = 0.

The left member of (1.3) is a vector field along the map ϕ or, equivalently,

a section of the pull-back bundle ϕ−1TN : it is called tension field and de-

noted τ(ϕ). In addition, we recall that, if ϕ is an isometric immersion, then ϕ

is a harmonic map if and only if the immersion ϕ defines a minimal subman-

ifold of N (see [16, 17] for background). Let us denote ∇M , ∇N and ∇ϕ the

induced connections on the bundles TM , TN and ϕ−1TN respectively. The

rough Laplacian on sections of ϕ−1TN , denoted Δ, is defined by

(1.4) Δ = d∗d = −
m∑
i=1

(∇ϕ
ei∇ϕ

ei −∇ϕ
∇M

ei
ei
),

where {ei}mi=1 is a local orthonormal frame field tangent to M .

Now, in order to define the notion of an r-harmonic map, we consider the fol-

lowing family of functionals, which represent a version of order r of the classical

energy (1.2). If r = 2s, s ≥ 1:

(1.5)

E2s(ϕ) =
1

2

∫
M

〈(d∗d) · · · (d∗d)︸ ︷︷ ︸
s times

ϕ, (d∗d) · · · (d∗d)︸ ︷︷ ︸
s times

ϕ〉
N
dV

=
1

2

∫
M

〈Δs−1
τ(ϕ),Δ

s−1
τ(ϕ)〉

N
dV.
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In the case that r = 2s+ 1, s ≥ 0:

(1.6)

E2s+1(ϕ) =
1

2

∫
M

〈d (d∗d) · · · (d∗d)︸ ︷︷ ︸
s times

ϕ, d (d∗d) · · · (d∗d)︸ ︷︷ ︸
s times

ϕ〉
N

=
1

2

∫
M

m∑
j=1

〈∇ϕ
ejΔ

s−1
τ(ϕ),∇ϕ

ejΔ
s−1

τ(ϕ)〉
N
dV.

We say that a map ϕ is r-harmonic if, for all variations ϕt,

d

dt
Er(ϕt)|t=0 = 0.

If r = 1, the functional (1.6) is just the energy. In the case that r = 2,

the functional (1.5) is called bienergy and its critical points are the so-called

biharmonic maps. At present, a very ample literature on biharmonic maps

is available and, again, we refer to [11, 21, 38, 39] for an introduction to this

topic. More generally, the r-energy functionals Er(ϕ) defined in (1.5), (1.6)

have been intensively studied (see [5, 6, 22, 23, 24, 32, 36, 46, 47], for instance).

In particular, the Euler–Lagrange equations for Er(ϕ) were obtained by Wang

[46] and Maeta [22] (see Equations (2.3) and (2.4)). We point out that an

inspection of the Euler–Lagrange equations for Er(ϕ) shows that a harmonic

map is always r-harmonic for any r ≥ 2. If the target manifold N is flat, then

an r-harmonic map is also (r+1)-harmonic for any r ≥ 1. Differently, when the

target manifold is nonflat, a non-harmonic r-harmonic map is not automatically

(r + 1)-harmonic (similarly, an r-harmonic submanifold, i.e., an r-harmonic

isometric immersion, is not necessarily (r + 1)-harmonic). For instance, the

hypersphere Sm(R) of radius R into Sm+1(1) is r-harmonic if and only if either

R = 1 (the harmonic case) or R = 1/
√
r, r ≥ 2 (see [32]). Thus, when the target

manifold is nonflat, we call an r-harmonic map proper if it is not harmonic

(similarly, an r-harmonic submanifold, i.e., an r-harmonic isometric immersion,

is proper if it is not minimal). As a general fact, when the ambient space

has nonpositive sectional curvature there are several results which assert that,

under suitable conditions, an r-harmonic submanifold is minimal (see [11], [22],

[25] and [36], for instance).

Things drastically change when the ambient space is positively curved. Let

us denote by Sm+1 the sphere Sm+1(1) of radius 1. Moreover, let us indicate

by A the shape operator of Mm into Sm+1 and by H = fη the mean curvature

vector field, where η is the unit normal vector field and f is the mean curvature
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function. Throughout the whole paper, when we write that Mm is a CMC

hypersurface we mean that f is a constant which will be denoted by α.

The first fundamental result in the theory of biharmonic hypersurfaces of

Sm+1 can be stated as follows:

Theorem 1.1 ([8, 9, 21]): Let Mm be a non-minimal CMC hypersurface in

Sm+1. Then Mm is proper biharmonic if and only if

|A|2 = m.

In a similar spirit, in the triharmonic case Maeta obtained a result which

implies:

Theorem 1.2 ([24]): Let Mm be a non-minimal hypersurface in Sm+1 and

assume that ∇A = 0. Then Mm is proper triharmonic if and only if

|A|4 −m|A|2 −m2α2 = 0.

The geometric restrictions given in Theorems 1.1 and 1.2 are of great interest

in the general theory of submanifolds of the sphere. For instance, we know that

the small hypersphere Sm(1/
√
2) and certain generalised Clifford tori verify the

conditions of Theorem 1.1. Similarly, Sm(1/
√
3) and some suitable generalised

Clifford tori are triharmonic, but a complete classification of proper biharmonic

(triharmonic) hypersurfaces in Sm+1 is a challenging open problem, even in the

compact CMC case. For the sake of completeness, we mention that, when r ≥ 4,

using completely different methods (equivariant differential geometry and vari-

ational principles), we recently proved that the small hypersphere Sm(1/
√
r)

and certain suitable generalised Clifford tori are r-harmonic (see [7, 32]).

We are now in the right position to state the main results of this paper. We

shall writeNm+1(c) to indicate an (m+1)-dimensional space form of curvature c

(m ≥ 1, c ∈ R).

Theorem 1.3: LetM2 be a CMC triharmonic surface inN3(c), c≤0. ThenM2

is minimal.

Theorem 1.4: LetMm be a CMC r-harmonic hypersurface in Nm+1(c), where

r ≥ 3 and c ≤ 0. If |A|2 is constant, then Mm is minimal.

Remark 1.5: The conclusion of Theorem 1.4 was obtained by Maeta (see [22])

in the case that r = 3 and Mm is compact.
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Next, we focus on the case that the ambient space is the Euclidean sphere.

Our results are:

Theorem 1.6: Let M2 be a CMC proper triharmonic surface in S3. Then M2

is an open part of the small hypersphere S2(1/
√
3).

Theorem 1.7: Let Mm be a compact, CMC proper triharmonic hypersurface

in Sm+1. Then either |A|2 = 2m and Mm = Sm(1/
√
3), or there exists a

point p ∈ Mm such that

m < |A|2(p) < 2m.

The following is an immediate consequence of Theorem 1.7:

Corollary 1.8: LetMm be a compact, CMC proper triharmonic hypersurface

in Sm+1. If |A|2 ≥ 2m, then |A|2 = 2m and Mm = Sm(1/
√
3).

Theorem 1.9: Let Mm be a CMC proper r-harmonic hypersurface in S
m+1,

r ≥ 3, and assume that |A|2 is constant. Then:

(i) |A|2 ∈ (m,m(r− 1)], and |A|2 = m(r− 1) if and only if Mm is an open

part of Sm(1/
√
r).

(ii) α2 ∈ (0, r − 1], and α2 = r − 1 if and only if Mm is an open part of

Sm(1/
√
r).

Theorem 1.9 describes the structure of a certain family of proper r-harmonic

hypersurfaces of the Euclidean sphere. The fact that this family contains several

significant examples will be illustrated by means of the following result:

Theorem 1.10: Let Mm be a non-minimal CMC hypersurface in Sm+1 and

assume that |A|2 is constant. Then Mm is proper r-harmonic (r ≥ 3) if and

only if

(1.7) |A|4 −m|A|2 − (r − 2)m2α2 = 0.

Remark 1.11: The special case r = 3 in Theorem 1.10 is a slight improvement

of Theorem 1.2. We also observe that the conclusions of Theorems 1.4 and 1.10

remain true for r = 2 even without the hypothesis |A|2 equal to a constant.

In order to illustrate the main applications of Theorem 1.10, it is now nec-

essary to recall some basic facts about isoparametric hypersurfaces of the Eu-

clidean sphere. These hypersurfaces have a long, beautiful history which started

in 1918 with the work of Laura and continued with the contributions of several
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authors, amongst which we cite E. Cartan, Abresch, Ozeki-Takeuchi, Münzner,

Stolz, Chi, Miyaoka and, more recently, Siffert (we refer to [1, 3, 15, 28, 29, 34,

35, 37, 41, 42, 43, 44] and references therein). A smooth function F : Sm+1 → R

is called isoparametric if both |∇F |2 and ΔF are functions of F . Isopara-

metric hypersurfaces are the regular level sets of isoparametric functions. Each

isoparametric hypersurface is CMC and has � distinct constant principal cur-

vatures k1, . . . , k� with constant multiplicities m1, . . . ,m�, m1 + · · ·+m� = m.

Moreover, the only possible values for � are 1, 2, 3, 4, 6, and mi+2 = mi, so that

there are at most two distinct multiplicities, which we shall denote m1,m2. The

integer � is called the degree of the isoparametric hypersurface. Any isopara-

metric function F has image F (Sm+1) = [−1, 1]. In order to state our results, it

is convenient to describe a family of parallel isoparametric hypersurfaces as fol-

lows. As in [3], we define Ms = F−1(cos �s), where 0 < s < π/�. Geometrically,

s represents the affine parameter such that

∇F/|∇F | = ∇s,

and so∇s is normal to Ms. In the cases � = 1, 2 the isoparametric hypersurfaces

Ms are small hyperspheres and generalised Clifford tori respectively. These

cases have been thoroughly studied, by different methods, in [7, 24, 32, 33].

Therefore, we focus on the remaining cases � = 3, 4, 6. By a suitable choice

of the orientation we can assume m1 ≤ m2 and we have the following explicit

description of the principal curvatures of Ms, s ∈ (0, π/�):

(1.8) ki(s) = cot
(
s+

(i− 1)π

�

)
, i = 1, . . . , �.

For a fixed s, the distributions on Ms corresponding to the ki’s are integrable

and the leaves are totally umbilical in Sm+1, i.e., they are small spheres of

dimension mi and radius sin(s+(i−1)π/�), i = 1, . . . , �. Moreover, these leaves

are totally geodesic in Ms.

The non-existence of proper biharmonic isoparametric hypersurfaces of degree

� = 3, 4, 6 was proved in [20]. Our results will extend this to the cases r = 3, 4,

but, on the other hand, the instances described in Example 1.16 will enable us

to conclude that there exist proper r-harmonic isoparametric hypersurfaces of

degree � = 4 for all r ≥ 5. Finally, we point out that the analysis of [20] shows

that, when � = 3, 4 or 6, |A|2 > m. This implies that, in this context, a solution

of (1.7) cannot be minimal.
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Case � = 3. There exist only four examples of this type, corresponding to

m1 = m2 = 1, 2, 4, 8. Our result is:

Theorem 1.12: Let Ms, 0 < s < π/3, be a family of parallel isoparametric

hypersurfaces of degree 3 in Sm+1. Then

(i) if 2 ≤ r ≤ 19, the family Ms does not contain any proper r-harmonic

hypersurface;

(ii) if r ≥ 20, the family Ms contains four (two geometrically distinct)

proper r-harmonic hypersurfaces.

Case � = 6. It was proved in [1] that in this case necessarily m1 = m2 and the

possible values are m1 = 1 or m1 = 2. Moreover, associated to each of them

there is a homogeneous example. Our result is:

Theorem 1.13: Let Ms, 0 < s < π/6, be a family of parallel isoparametric

hypersurfaces of degree 6 in Sm+1. Then

(i) if 2 ≤ r ≤ 109, the family Ms does not contain any proper r-harmonic

hypersurface;

(ii) if r ≥ 110, the family Ms contains four proper r-harmonic hypersur-

faces.

Case � = 4. This is the richest case. The only examples with m1 = m2

occur when m1 = m2 = 1 or m1 = m2 = 2. But we have examples with

m1 
= m2 provided that m1 = 4 and m2 = 5, or 1 + m1 + m2 is a multiple

of 2ξ(m1−1), where ξ(n) denotes the number of natural numbers p such that

1 ≤ p ≤ n and p ≡ 0, 1, 2, 4(mod8). Let Cm be the skew-symmetric Clifford

algebra over R generated by the canonical basis {e1, . . . , em} of Rm subject to

the only constraint

eiej + ejei = −2δijI,

where I is the identity element of Cm. A more explicit description of the pairs

(m1,m2) which can occur is the following (see [15]):

(m1,m2) = (m, kδm −m− 1),

where δm denotes the dimension of an irreducible module of Cm and the positive

integers m, k are such that the second entry is positive. The full classification

of the corresponding isoparametric hypersurfaces is now complete and we refer

the reader to the recent work of Chi [14]. Finally, for future reference, we
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point out that the following pairs of multiplicities occur: m1 = 1,m2 ≥ 2;

m1 = 2,m2 = 2k, k ≥ 2; m1 = 3,m2 = 4; m1 = 4,m2 = 4k − 5, k ≥ 3. Our

results are:

Theorem 1.14: Let Ms, 0 < s < π/4, be a family of parallel isoparametric

hypersurfaces of degree 4 in Sm+1 and assume that m1 = m2. Then

(i) if 2 ≤ r ≤ 41, the family Ms does not contain any proper r-harmonic

hypersurface;

(ii) if r ≥ 42, the family Ms contains four proper r-harmonic hypersurfaces.

Theorem 1.15: Let Ms, 0 < s < π/4, be a family of parallel isoparametric

hypersurfaces of degree 4 in S
m+1 and assume that m1 < m2. Let b = m2/m1

and define

(1.9)
Pb,r(y) =y4(b2r + 2br + r) + y3(−3b2r − 4b2 − 4br − r + 4)

+ y2(3b2r + 12b2 + 2br − 2b) + y(−b2r − 12b2 + 2b) + 4b2.

Then the family Ms contains a proper r-harmonic hypersurface if and only if the

fourth order polynomial Pb,r(y) admits a root y∗ ∈ (0, 1), and to any such root

corresponds a proper r-harmonic hypersurface Ms with s = (1/2) arccos(
√
y∗).

Moreover, there exist two natural numbers r∗∗ ≥ r∗ ≥ 5 such that

(i) if 2 ≤ r < r∗, the family Ms does not contain any proper r-harmonic

hypersurface;

(ii) if r ≥ r∗, the family Ms contains at least one proper r-harmonic hyper-

surface;

(iii) if r ≥ r∗∗, the familyMs contains four proper r-harmonic hypersurfaces.

Example 1.16: We observe that Pb,r(0) = 4b2 and Pb,r(1) = 4. It follows that,

in most examples, there is an even (possibly zero) number of roots in (0, 1). For

instance, performing a numerical analysis with the software Mathematica, we

were able to check that, when m1 = 1 and m2 = 10000, there are at least two

solutions for all r ≥ r∗ = 5, and r∗∗ = 312919. This shows that, in general, the

estimate r∗ ≥ 5 in Theorem 1.15 is sharp. In subsection 3.1 we shall provide

some upper bound for r∗ and r∗∗.

1.1. The definition of Eells and Sampson. The notion of r-harmonicity

which we have used in this paper represents, from both the geometric and

the analytic point of view, a convenient approach to the study of higher order

versions of the classical energy functional. On the other hand, we point out that
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the first idea of studying higher order energies was formulated in a different way.

More precisely, in 1965 Eells and Sampson (see [18]) proposed the following

functionals which we denote EES
r (ϕ) to commemorate these two outstanding

mathematicians:

(1.10) EES
r (ϕ) =

1

2

∫
M

|(d∗ + d)r(ϕ)|2dV.

Again, harmonic maps are trivially absolute minima for the functionals (1.10).

Therefore, we say that ϕ is a proper ES-r-harmonic map if it is a not

harmonic critical point of EES
r (ϕ). The study of (1.10) was suggested again

in [16], but so far not much is known about this subject. The functionalsEES
r (ϕ)

and Er(ϕ) coincide when r = 2, 3 and the difference between them appears when

we consider the case r = 4, where we have

EES
4 (ϕ) =

1

2

∫
M

|d2(τ(ϕ))|2 dV + E4(ϕ).

As observed in [16], d2(τ(ϕ)) is a 2-form with values in ϕ−1TN which can be

described as follows:

(1.11) d2(τ(ϕ))(X,Y ) = RN (dϕ(X), dϕ(Y ))τ(ϕ).

In general, aside from the special cases where dimM = 1 or the target N is

flat, the curvature term d2(τ(ϕ)) does not vanish and gives rise to difficulties

which increase as r does. In particular, by contrast to the case of Er(ϕ), the

explicit derivation of the Euler–Lagrange equation for the Eells–Sampson func-

tionals EES
r (ϕ) seems, in general, a very complicated task. These problems are

explained in detail in the recent paper [7], where the Euler–Lagrange equation

of the functional EES
4 (ϕ) was computed.

Nevertheless, in the context of the present paper, we can establish a significant

relationship between r-harmonicity and ES-r-harmonicity. That is achieved

proving the following rather general result, where, in a standard way, Δ
0
denotes

the identity operator:

Theorem 1.17: Let ϕ : (Mm, g) → Nn(c) be any smooth map from a Rie-

mannian manifold (Mm, g) into a space form. Let r ≥ 4 and assume that

(1.12) Δ
i
τ(ϕ)(x) ⊥ dϕ(TxM) ∀x ∈ M, i = 0, . . . , r − 4.

Then ϕ is r-harmonic if and only if it is ES-r-harmonic.
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The following corollary of the previous theorem is very important in our

context:

Corollary 1.18: Let ϕ : Mm → Nm+1(c) be a CMC hypersurface with |A|2
equal to a constant. Then ϕ is r-harmonic if and only if it is ES-r-harmonic.

We point out that, as a consequence of Corollary 1.18, the conclusion of

Theorem 1.10 holds if, in its statement, the word r-harmonic is replaced by

ES-r-harmonic. The same occurs for our results on isoparametric hypersur-

faces and, in particular, all the proper r-harmonic hypersurfaces obtained in

Theorems 1.12, 1.13, 1.14 and 1.15 are also proper ES-r-harmonic.

2. Proof of the first general results

In this section we prove Theorems 1.3–1.10. As a preliminary step, in the

following lemma we state without proof some standard facts which we shall use

in this section.

Lemma 2.1: Let ϕ : Mm → Nm+1(c) be a hypersurface. Let A denote the

shape operator and f = (1/m) traceA the mean curvature function. Then

(a) (∇A)(·, ·) is symmetric;

(b) 〈(∇A)(·, ·), ·〉 is totally symmetric;

(c) trace(∇A)(·, ·) = m grad f .

Next, we perform our first computation:

Lemma 2.2: Let ϕ : Mm → Nm+1(c) be a hypersurface and denote by η the

unit normal vector field. Then

(2.1) ΔH = (Δf + f |A|2)η + 2A(grad f) +mf grad f.

Proof. We work with a geodesic frame field {Xi}mi=1 around an arbitrarily fixed

point p ∈ Mm. Also, we simplify the notation writing ∇ for∇M . Since H = fη,

around p we have

∇ϕ
Xi

H = ∇⊥
Xi

H−AH(Xi) = (Xif)η − fA(Xi).
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Then, denoting by B the second fundamental form, at p we have

∇ϕ
Xi

∇ϕ
Xi

H =(XiXif)η − (Xif)A(Xi)− (Xif)A(Xi)

− f(∇XiA(Xi) +B(Xi, A(Xi)))

=(XiXif)η − 2(Xif)A(Xi)− f(∇A)(Xi, Xi)− f |A(Xi)|2η.
Now, taking the sum over i and using Lemma 2.1, we obtain (2.1) (note that

the sign convention for Δ and Δ is as in (1.4)).

Next, we assume that the mean curvature function f is constant and we

obtain

Lemma 2.3: Let ϕ : Mm → Nm+1(c) be a hypersurface and assume that its

mean curvature function f is equal to a constant α. Then

(2.2) Δ
2
H = α(Δ|A|2 + |A|4)η + 2αA(grad |A|2).

Proof. Since f is constant, according to Lemma 2.2 we have ΔH = α|A|2η and

so

Δ
2
H = αΔ(|A|2η).

Now, around p

∇ϕ
Xi

(|A|2η) = (Xi|A|2)η − |A|2A(Xi).

At p

∇ϕ
Xi

∇ϕ
Xi

(|A|2η) =(XiXi|A|2)η − (Xi|A|2)A(Xi)

− (Xi|A|2)A(Xi)− |A|2(∇XiA(Xi) +B(Xi, A(Xi))).

Taking the sum over i and using Lemma 2.1 we find

Δ(|A|2η) = (Δ|A|2)η + 2A(grad |A|2) +m|A|2 grad f + |A|4η
and, since f is constant, the proof ends immediately.

Next, we recall the formulas which describe the r-tension field of a general

map ϕ : M → N between two Riemannian manifolds (see [22]):

(2.3)

τ2s(ϕ) =Δ
2s−1

τ(ϕ) −RN (Δ
2s−2

τ(ϕ), dϕ(ei))dϕ(ei)

−
s−1∑
�=1

{RN(∇ϕ
eiΔ

s+�−2
τ(ϕ),Δ

s−�−1
τ(ϕ))dϕ(ei)

−RN (Δ
s+�−2

τ(ϕ),∇ϕ
eiΔ

s−�−1
τ(ϕ))dϕ(ei)},
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where Δ
−1

= 0 and {ei}mi=1 is a local orthonormal frame field tangent to M

(the sum over i is not written but understood). Similarly,

(2.4)

τ2s+1(ϕ) =Δ
2s
τ(ϕ) −RN (Δ

2s−1
τ(ϕ), dϕ(ei))dϕ(ei)

−
s−1∑
�=1

{RN (∇ϕ
eiΔ

s+�−1
τ(ϕ),Δ

s−�−1
τ(ϕ))dϕ(ei)

−RN(Δ
s+�−1

τ(ϕ),∇ϕ
eiΔ

s−�−1
τ(ϕ))dϕ(ei)}

−RN(∇ϕ
eiΔ

s−1
τ(ϕ),Δ

s−1
τ(ϕ))dϕ(ei).

We shall also need the expression for the sectional curvature tensor field in

the special case that N is a space form:

(2.5) RN(c)(X,Y )Z = c(〈Y, Z〉X − 〈X,Z〉Y ) ∀X,Y, Z ∈ C(TN(c)).

We are now in the right position to prove our first theorem.

Proof of Theorem 1.3. The 3-tension field is described by (2.4) with s = 1. In

the first part of the proof, for future reference, we do not make any assumption

on the dimension m and the curvature c. We observe that τ(ϕ) = mH and use

Lemma 2.2, Lemma 2.3 and (2.5). We have

(2.6)

m∑
i=1

RN(c)(Δτ(ϕ), dϕ(Xi))dϕ(Xi)

=cm

m∑
i=1

{〈dϕ(Xi), dϕ(Xi)〉ΔH− 〈dϕ(Xi),ΔH〉dϕ(Xi)}

=cm{mα|A|2η − 0} = cm2α|A|2η.

Similarly, we compute

(2.7)

m∑
i=1

RN(c)(∇ϕ
Xi

τ(ϕ), τ(ϕ))dϕ(Xi) = cm3α3η.

Inserting (2.2), (2.6) and (2.7) into (2.4) we obtain the explicit expression of

the 3-tension field:

τ3(ϕ) = mα[Δ|A|2 + |A|4 −mc|A|2 −m2cα2]η + 2mαA(grad |A|2).
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Therefore, we conclude that Mm is a triharmonic hypersurface in Nm+1(c) if

and only if either it is minimal or

(2.8)

⎧⎨
⎩
(i) Δ|A|2 + |A|4 −mc|A|2 −m2cα2 = 0,

(ii) A(grad |A|2) = 0.

From now on, we assume that Mm is not minimal and we use the hypothe-

sis c ≤ 0. If grad |A|2 = 0 on Mm, then Δ|A|2 = 0. Therefore, from (2.8)(i) we

deduce |A|4 = 0 which implies that α = 0, i.e., Mm is minimal (a contradiction).

Assume now that there exists a point p0 ∈ Mm such that grad |A|2(p0) 
= 0.

Then grad |A|2 
= 0 in a neighbourhood U of p0. We deduce from (2.8)(ii) that 0

is an eigenvalue of A on U . Now we use the assumption that m = 2. Since M2

is CMC, it is immediate to conclude that the two principal curvatures are con-

stant on U . But then also |A|2 is constant on U : this contradiction ends the

proof.

Now, it is convenient to proceed to the

Proof of Theorem 1.6. From the proof of Theorem 1.3 we know that

grad(|A|2) = 0, i.e., |A|2 is a constant on M2. It follows that, since M2 is

CMC,

k1 + k2 = constant and k21 + k22 = constant

and consequently M2 is an isoparametric surface in S3. Then M2 is an open

part of either a small hypersphere S2(R) of S3, 0 < R ≤ 1, or a Clifford

torus S
1(R1) × S

1(R2), R
2
1 + R2

2 = 1. But, since M2 is proper triharmonic,

we know from [22, 24] that the only possibility is that M2 is an open part of

S2(1/
√
3).

Proof of Theorem 1.7. The Cauchy inequality tells us that, for any hypersur-

face, we have

(2.9) |A|2 =
m∑
i=1

k2i ≥ (
∑m

i=1 ki)
2

m
= mf2.

Applying (2.9) to (2.8)(i) (with c = 1) we immediately deduce

Δ|A|2 ≤ |A|2(2m− |A|2)
and, integrating on the compact manifold Mm,

0 ≤
∫
Mm

|A|2(2m− |A|2) dV.
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Thus, either |A|2 = 2m or there exists a point p1 ∈ Mm such that |A|2(p1) < 2m.

On the other hand, (2.8)(i) (with c = 1) implies

Δ|A|2 > |A|2(m− |A|2)
on Mm. Therefore integration yields

0 >

∫
Mm

|A|2(m− |A|2) dV.

Thus there exists a point p2 ∈ Mm such that |A|2(p2) > m. Finally, as Mm is

connected, by an obvious continuity argument we deduce that, if |A|2 = 2m does

not hold onMm, then there exists a point p ∈ Mm such thatm < |A|2(p) < 2m.

It only remains to prove that, if |A|2 = 2m on Mm, then Mm = Sm(1/
√
3).

Indeed, if |A|2 = 2m on Mm, then (2.8)(i) (with c = 1) implies |A|2 = mα2.

But this is equivalent to saying that we have equality in (2.9), which means

that Mm is umbilical. Then Mm = Sm(R), 0 < R ≤ 1 and, as Mm is proper

triharmonic, we know that the only possibility is R = 1/
√
3.

Theorems 1.4 and 1.10 are an immediate consequence of the following general

result:

Theorem 2.4: Let Mm be a non-minimal CMC hypersurface in Nm+1(c) and

assume that |A|2 is constant. Then Mm is proper r-harmonic (r ≥ 3) if and

only if

|A|4 −mc|A|2 − (r − 2)m2cα2 = 0.

Proof. As |A|2 is constant, it follows from Lemma 2.3 that

(2.10) Δ
2
H = α|A|4η.

Now, we show that

(2.11) Δη = |A|2η.
Indeed, ∇ϕ

Xi
η = −A(Xi) and so

∇ϕ
Xi

∇ϕ
Xi

η = −(∇A)(Xi, Xi)− |A(Xi)|2η.
Summing over i and using Lemma 2.1 we obtain

Δη = m gradf + |A|2η = |A|2η.
Next, putting together (2.1), (2.10) and (2.11), we easily deduce that

(2.12) Δ
p
H = α|A|2pη ∀p ∈ N

∗.
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Now we are in a good position to perform the explicit calculation of the r-

tension field τr(ϕ) described in (2.3), (2.4). We begin with τ2s(ϕ), s ≥ 2. Using

(2.12), (2.5) and computing we obtain (as in (2.3), we omit to write the sum

over i)

1

m
τ2s(ϕ) =α|A|4s−2η

− c{〈dϕ(Xi), dϕ(Xi)〉α|A|4s−4η − 〈dϕ(Xi), α|A|4s−4η〉dϕ(Xi)}

− cm

s−1∑
�=1

{〈dϕ(Xi), α|A|2s−2�−2η〉(−α|A|2s+2�−4A(Xi))

− 〈dϕ(Xi),−α|A|2s+2�−4A(Xi)〉α|A|2s−2�−2η}

+ cm

s−1∑
�=1

{〈dϕ(Xi),−α|A|2s−2�−2A(Xi)〉α|A|2s+2�−4η

− 〈dϕ(Xi), α|A|2s+2�−4η〉(−α|A|2s−2�−2A(Xi))}
=α|A|4s−2η − cmα|A|4s−4η

− cm

{ s−1∑
�=1

[mα3|A|4s−6η] +

s−1∑
�=1

[mα3|A|4s−6η]

}

=α|A|4s−6{|A|4 −mc|A|2 − (2s− 2)m2cα2}η.
This completes the proof in the case r = 2s. The case r = 2s+1 is similar and

so we omit the details.

Proof of Theorem 1.9. (i) Since (1.7) holds, we use the Cauchy inequality (2.9)

and deduce

|A|4 = m|A|2 + (r − 2)m2α2 ≤ m|A|2 + (r − 2)m|A|2,
and, consequently,

|A|2 ≤ m(r − 1)

and |A|2 = m(r − 1) if and only if Mm is umbilical, i.e., Mm is an open part

of some small hypersphere Sm(R), 0 < R ≤ 1. But, since Mm is proper r-

harmonic, we know that the only possibility is R = 1/
√
r (see [7, 32]). On the

other hand, as α 
= 0,

|A|4 = m|A|2 + (r − 2)m2α2 ⇒ |A|2 > m

and so the proof of statement (i) is complete.
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(ii) Again, we start with (1.7) and deduce

|A|2 =
m

2
(1 +

√
1 + 4(r − 2)α2).

But |A|2 ≥ mα2 implies

(2.13) 1 +
√

1 + 4(r − 2)α2 ≥ 2α2.

We observe that when α2 = r − 1 we have equality in (2.13). From this it is

easy to conclude that

1 +
√

1 + 4(r − 2)α2 ≥ 2α2 ⇔ α2 ∈ (0, r − 1].

Finally, when α2 = r − 1, we have

|A|2 =
m

2

(
1 +

√
1 + 4(r − 2)(r − 1)) = m(r − 1) = mα2,

so Mm is umbilical and the conclusion is as in part (i).

3. Proof of the results on r-harmonic isoparametric hypersurfaces

Proof of Theorem 1.12. We know that m1 = m2 = m3 and using (1.8) with

� = 3 we can compute

|A|2 = m1

( 3∑
i=1

k2i

)
and α2 = (1/9)

( 3∑
i=1

ki

)2

.

Then, using standard trigonometric identities, we find that equation (1.7) be-

comes

(3.1)

m2
1

[
(2− r)

(
tan

(π
6
− s

)
− tan

(
s+

π

6

)
+ cot s

)2

+
(
tan2

(π
6
− s

)
+ tan2

(
s+

π

6

)
+ cot2 s

)2

− 3
(
tan2

(π
6
− s

)
+ tan2

(
s+

π

6

)
+ cot2 s

)]
= 0.

Next, using the standard addition and subtraction formulas for trigonometric

functions, we compute and find that (3.1) is equivalent to

(3.2)
9m2

1 csc
4 s[r cos(12s)− r + 28 cos(6s) + 44]

8(2 cos(2s) + 1)4
= 0.

Now, let x = cos(6s). Then (3.2) is equivalent to

rx2 + 14x+ 22− r = 0,
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whose solutions are

(3.3) x1 =
−√

r2 − 22r + 49− 7

r
and x2 =

√
r2 − 22r + 49− 7

r
.

Now, a routine inspection of (3.3) shows that there is no acceptable solution

if r ≤ 19. By contrast, when r ≥ 20, we have

−(1/2) ≥ x1 > −1 and − (1/5) ≤ x2 < 1.

From this the conclusion of the proof is immediate.

Finally, we observe that the two hypersurfaces Ms, Ms′ associated to x1 are

congruent and their distance from the minimal hypersurface Mπ/6 tends to zero

as r grows to +∞. Indeed, since s′ = π/� − s = π/3 − s, it is immediate to

deduce that, if we write Ms = F−1(a), where a = cos 3s, then Ms′ = F−1(−a).

Now, since F is the restriction to Sm+1 of a homogeneous polynomial of de-

gree 3 (odd), then Ms and Ms′ are congruent via the antipodal map. Simi-

larly, the two hypersurfaces associated to x2 are congruent and each of them

approaches one of the focal varieties as r increases to +∞, so the proof is

completed.

Proof of Theorem 1.13. The proof follows exactly the scheme of the proof of

Theorem 1.12. Here we have m1 = m2 = · · · = m6 and instead of (3.1) we find

m2
1

[
(2− r)

(
− tan(

π

6
− s

)
+ tan s+ tan

(
s+

π

6

)

+ cot
(π
6
− s

)
− cot s− cot

(
s+

π

6

))2

− 6
(
tan2

(π
6
− s

)
+ tan2 s+ tan2

(
s+

π

6

)

+ cot2
(1
6
(π − 6s)

)
+ cot2 s+ cot2

(π
6
− s

))

×
(
tan2

(π
6
− s

)
+ tan2 s+ tan2

(
s+

π

6

)

+ cot2
(π
6
− s

)
+ cot2 s+ cot2

(
s+

π

6

))2]
= 0

which turns out to be equivalent to

(3.4)
9m2

1 csc
4 s sec4 s[r cos(24s)− r + 64 cos(12s) + 224]

32(2 cos(4s) + 1)4
= 0.

Now, let x = cos(12s). Then (3.4) is equivalent to

rx2 + 32x+ 112− r = 0,
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whose solutions are

(3.5) x1 =
−√

r2 − 112r+ 256− 16

r
and x2 =

√
r2 − 112r + 256− 16

r
.

Now, a routine inspection of (3.5) shows that there is no acceptable solution

if r ≤ 109. By contrast, when r ≥ 110, we have

−(1/5) ≥ x1 > −1 and − (1/11) ≤ x2 < 1.

Now the conclusion of the proof is as in Theorem 1.12. The only difference, in

this case, is that F is the restriction to Sm+1 of a homogeneous polynomial of

even degree, and so we cannot conclude that the two solutions associated to x1

or x2 are congruent. In particular, we point out that Miyaoka showed that,

when � = 6 and m1 = m2 = 1, the two focal varieties F−1(1) and F−1(−1) are

not congruent (see [27]).

Proof of Theorem 1.14. Again, we use (1.8). Without making any assumption

on m1,m2 we find that (1.7) becomes

(3.6)

−4(r − 2)(m1 cot(2s)−m2 tan(2s))
2

+
(
m1 tan

2 s+m1 cot
2 s+m2 tan

2
(
s+

π

4

)
+m2 cot

2
(
s+

π

4

))2

− 2(m1 +m1)

×
(
m1 tan

2 s+m1 cot
2 s+m2 tan

2
(
s+

π

4

)
+m2 cot

2
(
s+

π

4

))
=0.

Now we use the assumption m1 = m2 and the proof follows the patterns of

Theorem 1.12. In particular, when m1 = m2, (3.6) becomes

(3.7) 2m2
1 csc

4(4s)[r cos(16s)− r + 40 cos(8s) + 88] = 0.

Next, let x = cos(8s). Then (3.7) is equivalent to

(3.8) rx2 + 20x+ 44− r = 0,

whose solutions are

(3.9) x1 =
−√

r2 − 44r + 100− 10

r
and x2 =

√
r2 − 44r + 100− 10

r
.

As above, inspection of (3.9) shows that there is no acceptable solution if r ≤ 41.

By contrast, when r ≥ 42, we have −(1/3) ≥ x1 > −1 and −(1/7) ≤ x2 < 1

and so the proof ends as in Theorem 1.13.
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Proof of Theorem 1.15. We simplify (3.6) without the assumption m1 = m2.

We obtain

(3.10)

4r(m1 +m2)
2 + 4m2 sec

2(2s)[2m1 −m2(r + 4) + 4m2 sec
2(2s)]

+
1

8
m1 csc

4 s sec4 s[cos(4s)(m1(r + 4)− 2m2)−m1(r − 4)+2m2]=0.

Next, we set y = cos2(2s). Then a straightforward computation shows that, in

terms of y, (3.10) becomes, up to the multiplicative quantity 4m2
1/y, Pb,r(y) = 0,

where Pb,r(y) is the polynomial defined in (1.9). This completes the proof of

the first part of the theorem.

Next, we define

Tr(s) = |A|4(s)−m|A|2(s)− (r − 2)m2α2(s),

where |A|2(s) and α2(s) are computed using the principal curvatures given

in (1.8) with � = 4 and m = 2(m1 + m2). We observe that, if r1 > r2,

then Tr1(s) ≤ Tr2(s) on (0, π/4). For any fixed value of r, we have

(3.11) lim
s→0+

Tr(s) = lim
s→(π/4)−

Tr(s) = +∞.

Moreover, for future use we point out that, if we restrict r to any arbitrary set

(0,K] (K > 0), there always exists a sufficiently small ε > 0 such that

(3.12) Tr(s) ≥ 1 ∀s ∈ (0, ε] ∪
[π
4
− ε,

π

4

)
and ∀r ∈ (0,K].

Next, we set R∗ = inf X , where X is the set defined as follows:

X = {r ∈ (0,+∞) : min{Tr(s), 0 < s < π/4} < 0}.
For future reference, we point out that inspection of (3.10) shows that R∗

depends on b = m1/m2. We can choose s0 ∈ (0, π/4) such that α2(s0) 
= 0. It

follows that Tr(s0) < 0 provided that r is sufficiently large. This fact, together

with (3.11), shows that the open set X is not empty. In fact, X is an open

half-line. On the other hand, we know from [20] that |A|4(s) − m|A|2(s) > 0

on (0, π/4), and from this it is immediate to conclude that R∗ ≥ 2. We note

that R∗ 
∈ X , i.e., TR∗(s) ≥ 0 on (0, π/4), and Tr(s) > 0 on (0, π/4) for

all r < R∗.
Next, we shall prove that R∗ > 4. To this purpose, first we observe that,

if 0<r≤4, P0,r(y) is positive on (0, 1). Then it suffices to show that, if 0<r≤4,

for any y ∈ (0, 1) we have

(3.13) Pb,r(y) > P0,r(y) ∀b > 0.
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The property (3.13) is an immediate consequence of the fact that, for all b ≥ 0,

dPb,r(y)

db
= 2(1− y)3(4 − ry)b+ 2y(1− y)(1 + yr(1 − y)) > 0

provided that 0 < r ≤ 4 and 0 < y < 1. Thus Pb,r(y) > 0 for any b > 0,

y ∈ (0, 1) and 0 < r ≤ 4, so the equation T4(s) = 0 does not admit any solution

in (0, π/4) and consequently T4(s) > 0 on this interval. The last inequality

implies R∗ ≥ 4.

Then it remains to prove that R∗ > 4. We assume R∗ = 4 and derive a con-

tradiction. Using (3.12) with K = 5 we deduce that, since R∗ = 4 = inf X , for

any n ∈ N∗ there exists sn ∈ (ε, π/4−ε) such that T4+1/n(sn) < 0. Now we can

extract a subsequence of {sn} which converges to some s1 ∈ [ε, π/4−ε] and pass-

ing to the limit we get T4(s1) ≤ 0. But this represents a contradiction, as T4(s)

is positive on (0, π/4). By a similar continuity argument, using again (3.12) we

also deduce that there exists an interior point ŝ such that TR∗(ŝ) = 0.

Finally, if R∗ is an integer we set r∗ = R∗, otherwise r∗ = �R∗�+1, where �x�
denotes the integer part of x ∈ R. By construction, this definition of r∗ ensures

that r∗ has the properties stated in (i), (ii) of the theorem.

By way of summary, it only remains to prove statement (iii). We observe

that α(s) is a strictly decreasing function on (0, π/4) and

lim
s→0+

α(s) = +∞, lim
s→(π/4)−

α(s) = −∞.

Therefore, there exists a unique value s∗ ∈ (0, π/4) such that α(s∗) = 0 (note

that s∗ = (1/2) arccos(
√

m2/(m1 +m2)) and Ms∗ is the minimal isoparametric

hypersurface of the family). It follows that Tr(s
∗) is a positive real number

which does not depend on r. From this, arguing similarly to the construction

of r∗ separately on (0, s∗) and (s∗, π/4), it is easy to conclude that there ex-

ists r∗∗ with the property stated in (iii) and so the proof is completed. Of

course, two solutions are always in the interval (0, s∗), while the other two must

belong to (s∗, π/4).

3.1. Upper estimates for r∗ and r∗∗. The arguments of the proof of Theo-

rem 1.15 apply to all the families of isoparametric hypersurfaces. In particular,

in the situations of Theorems 1.12, 1.13, 1.14 we were able to determine exactly

r∗ = r∗∗ = 20, 110, 42 respectively. By contrast, in the case of isoparametric hy-

persurfaces of degree 4 and different multiplicities, it seems to be a difficult task
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to determine the explicit values of r∗=r∗(b) and r∗∗=r∗∗(b), b = (m2/m1) > 1.

The aim of this subsection is to explain the type of difficulties which arise and

also provide some upper bounds for both r∗ and r∗∗.
We rewrite the polynomial Pb,r(y) in (1.9) as follows:

Pb,r(y) = Qb(y)− rRb(y),

where

Qb(y) = 2[2b2(1 − y)3 + by(1− y) + 2y3],

Rb(y) = (1− y)y[b(y − 1) + y]2.

We note that Qb(y) is positive on (0, 1), while Rb(y) is positive on (0, y0) and

(y0, 1), where y0 = b/(1 + b) = m2/(m1 + m2) corresponds to the minimal

hypersurface Ms0 , where

s0 =
1

2
arccos(

√
y0).

Moreover,

Rb(y0) = 0 and Qb(y0) = Pb,r(y0) =
6b2

(1 + b)2
> 0.

Now, since we want to determine the smallest value of r such that Pb,r(y) admits

a root in (0, 1), it is natural to define

R(y) =
Qb(y)

Rb(y)
, y ∈ (0, 1), y 
= y0,

and set

R1 = inf{R(y) : y ∈ (0, y0)},
R2 = inf{R(y) : y ∈ (y0, 1)}.

The connection with the proof of Theorem 1.15 is the following:

R∗ = min{R1,R2}; r∗∗ = �R∗∗�+ 1, where R∗∗ = max{R1,R2}.

The function R(y) is positive and tends to +∞ when y → 0+, y → y±0
and y → 1−. Therefore R(y) admits a minimum point y1 on (0, y0) and a min-

imum point y2 on (y0, 1), so that Ri = R(yi), i = 1, 2. Unfortunately, it is

difficult to compute the exact values of y1 and y2. A numerical analysis shows

that, when b is not too big, y1 is on the interval (0, y0/2), while y1 belongs to

(y0/2, y0) for large values of b. Similarly, y2 increases as b does. Therefore,
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a first reasonable upper estimate for R1 can be obtained by considering the

medium point. We have

R1 ≤ R(y0/2) =
8(b2 + 6b+ 10)

b(b+ 2)
.

Similarly, an upper estimate for R2 is given by

R2 ≤ R((1 + y0)/2) =
(8 + 48b+ 80b2)

(1 + 2b)
.

Next, we observe that

R((1 + y0)/2) > R(y0/2) ∀b > 1.

The conclusion of this analysis is the following. Let r∗ = r∗(b), r∗∗ = r∗∗(b)
(b > 1) be the integers defined in Theorem 1.15. Then

(3.14)

(i) r∗(b) ≤ 1 +
8(b2 + 6b+ 10)

b(b+ 2)
,

(ii) r∗∗(b) ≤ 1 +
(8 + 48b+ 80b2)

(1 + 2b)
.

For instance, when b is close to 1, (3.14) tells us that r∗(b) ≤ 46 and r∗∗(b) ≤ 46

(we know from Theorem 1.14 that r∗ = r∗∗ = 42 when b = 1). When b = 10000,

(3.14) gives r∗ ≤ 9 and r∗∗ ≤ 400005 (we pointed out in Example 1.16 that,

when b = 10000, r∗ = 5 and r∗∗ = 312919). Another geometrically significant

case which occurs is (m1,m2) = (7, 8). In this case, (3.14) with b = 8/7 yields

r∗ ≤ 41 and r∗∗ ≤ 51. A numerical analysis shows that, when b = 8/7, the

exact values are r∗ = 38 and r∗∗ = 47.

3.2. Remarks. (i) By a suitable choice of the orientation we assumed, for con-

venience, m1 ≤ m2 so that b = m2/m1 ≥ 1. We point out that, if one decides

to carry out the analysis for all b > 0, then there are no significant differences

because of the following fact, which is true for all b 
= 0, y, r ∈ R and can be

verified by a direct computation:

b2P1/b,r(1− y) = Pb,r(y).

(ii) In order to recover the correspondance between P1,r(y) and the second

order equation (3.8), one has to remember that y = cos2(2s), while x = cos(8s)

and consequently perform the changes of variable

y =
1

4
(2±

√
2
√
x+ 1).

Unfortunately, these changes of variable do not yield any simplification if b 
= 1.
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(iii) We think that it could be interesting to find an isoparametric family

with one or three distinct proper solutions for some r (necessarily, the degree

of such a family must be 4 and m1 
= m2). A necessary condition to have just

one solution is that the real number R∗ defined in the proof of Theorem 1.15

is an integer.

(iv) Using (1.7) and (1.8) with � = 1, 2, together with the technique of proof

of the present paper, it is possible to recover the characterisation of proper

r-harmonic small hyperspheres and generalised Clifford tori obtained by varia-

tional methods in [32].

4. ES-r-harmonicity and r-harmonicity

Proof of Theorem 1.17. It is convenient to separate two cases: r even and r

odd. First, let us assume that r = 2s ≥ 4. In this case, since if p 
= p′ the
subspace of p-forms is orthogonal to that of p′-forms, we have

(4.1) EES
2s (ϕ) =

1

2

∫
M

s−1∑
k=0

〈ω2k, ω2k〉 dV,

where ω2k are ϕ−1TN -valued 2k-differential forms on M . Each ω2k is the sum

of 2k-differential forms obtained by applying to τ a string of length 2s−2 made

of d’s and d∗’s. Since d∗ is the null operator on 0-forms, if we read from right

to left the string of a nonzero form, the number of d’s that we encounter in

any truncated string is always not smaller than the number of d∗’s, otherwise
the form automatically vanishes. In each of these strings the number nd of

occurrences of d minus the number nd∗ of occurrences of d∗ is equal to 2k. To

help the reader, let us give an explicit example of a 2k-form which can occur

when r = 26, 2k = 8:

(4.2) α8 = dd∗d6(d∗)3d5(d∗d)4τ (nd = 16, nd∗ = 8).

Definition 4.1: Let α2k be any 2k-form obtained applying to τ any string made

of d’s and d∗’s. We say that α2k is good if its string starts on the right with a

term of the type d2Δ
i
τ , for some i such that r − 4 ≥ i ≥ 0.

For instance, the 8-form in (4.2) is good with i = 4. The following lemma is

important for our purposes.



Vol. 249, 2022 POLYHARMONIC HYPERSURFACES 367

Lemma 4.2: Let α2k be a good form in the sense of Definition 4.1. Then, if

the map ϕ satisfies the hypotheses of Theorem 1.17, α2k vanishes.

Proof of Lemma 4.2. As in (1.11), we have

d2(Δ
i
τ)(X,Y ) = RN(c)(dϕ(X), dϕ(Y ))Δ

i
τ

and so, using (2.5), the conclusion follows immediately from (1.12).

Next, for k ≥ 1, let ω2k be the 2k-form which appears in (4.1). Then ω2k is

the sum of good forms. Indeed, this is a simple consequence of the fact that

nd − nd∗ = 2k ≥ 2. Therefore, since 〈, 〉 is bilinear, 〈ω2k, ω2k〉 is the sum of

addends of the type 〈α2k, β2k〉, where α2k, β2k are good forms. Now, as in [16],

we consider a variation {ϕt}t as a map Φ : R×M → N and denote by ∇Φ the

corresponding covariant derivative. Then we can study the first variation and

we have

(4.3)

d

dt

∫
M

〈(α2k)t, (β2k)t〉 dV |t=0

=

∫
M

{〈∇Φ
∂
∂t
(α2k)t|t=0, (β2k)0〉+ 〈(α2k)0,∇Φ

∂
∂t
(β2k)t|t=0〉}dV

=0,

where the ϕ−1
t TN -valued 2k-form (α2k)t is identified with a section in

Λ2kT ∗M ⊗ Φ−1TN,

and the last equality is a consequence of the fact that (α2k)0 and (β2k)0 are

good forms and so they vanish by Lemma 4.2.

By way of summary, if ϕ is a map which verifies the hypotheses of Theo-

rem 1.17, the first variation associated to the forms ω2k (k ≥ 1) in (4.1) auto-

matically vanishes. It remains to understand the contribution of ω0. To this

purpose, we observe that

ω0 = Δ
s−1

τ + good forms of degree zero .

It follows that

〈ω0, ω0〉 = 〈Δs−1
τ,Δ

s−1
τ〉+ addends of type 1+ addends of type 2,

where the terms of type 1 and 2 are, respectively, of the form 〈α0, β0〉 and

〈Δs−1
τ, α0〉, where α0, β0 are good forms of degree 0. Arguing as in (4.3), we

conclude that the first variation of the terms of type 1 vanishes automatically.
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As for type 2, let us first assume that M is compact. Then we can use the fact

that d∗ is the adjoint operator of d, i.e.,

(4.4)

∫
M

〈dα, β〉 dV =

∫
M

〈α, d∗β〉 dV

whenever α, β are, respectively, a p-form and a (p+ 1)-form. Therefore, before

taking the derivative with respect to t, we can transform, by means of suit-

able iterated applications of (4.4), any term of type 2 into a term of the type

〈α2k, β2k〉, where α2k, β2k are good forms (k ≥ 1) (it is easy to check that, in

this process, the maximum value which we can obtain for the exponent i of

Definition 4.1 is equal to r − 4).

The case thatM is not compact can be handled by using compactly supported

variations. More precisely, we consider all compact subsetsD ⊂ M with smooth

boundary and define

EES
r (ϕ;D) =

1

2

∫
D

|(d∗ + d)r(ϕ)|2 dV.

For each subset D we consider all smooth variations of ϕ which have their sup-

port inD, i.e., Φ = {ϕt}t such that ϕt = ϕ onM\D for any t. Denoting by V its

variation vector field, we observe that obviously V and its covariant derivatives

vanish on M\D and, by continuity, on M\D. Now, the only difference with

respect to the compact case appears when we study the first variation of the

terms of type 2. However, we can again proceed as above because (4.4) remains

true if one integrates on D instead of M . Indeed, as ∇Φ
∂/∂t(·)|t=0 and d, or d∗,

commute (on the whole M), we have

d

dt

∫
D

〈dαt, βt〉 dV |t=0 =

∫
D

{〈∇Φ
∂
∂t
(dαt)|t=0, β0〉+ 〈dα0,∇Φ

∂
∂t
βt|t=0〉} dV

=

∫
D

{〈d(∇Φ
∂
∂t
αt|t=0), β0〉+ 〈dα0,∇Φ

∂
∂t
βt|t=0〉} dV.

We note that the terms like ∇Φ
∂/∂tαt|t=0 can always be expressed as functions

of V and its covariant derivatives. For example,

∇Φ
∂
∂t
τ(ϕt)|t=0 = −ΔV − traceRN (dϕ(·), V )dϕ(·).

Then it is well-known that, in general, the difference

〈dσ, ρ〉 − 〈σ, d∗ρ〉
is the divergence of a vector field defined on M . Since the components of this

vector field are given in terms of V and its covariant derivatives, its divergence
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vanishes on the boundary ∂D. Therefore

d

dt

∫
D

〈dαt, βt〉 dV |t=0 =

∫
D

{〈∇Φ
∂
∂t
αt|t=0, d

∗β0〉+ 〈α0, d
∗(∇Φ

∂
∂t
βt|t=0)〉} dV

=
d

dt

∫
D

〈αt, d
∗βt〉 dV |t=0

and now the proof continues as in the compact case.

In summary, under the hypotheses of Theorem 1.17 the only relevant term

for the computation of the first variation of the functionals EES
2s (ϕ) is

〈Δs−1
τ,Δ

s−1
τ〉 = |Δs−1

τ |2,

i.e.,

d

dt
EES

2s (ϕt)|t=0 =
1

2

d

dt

∫
M

s−1∑
k=0

〈(ω2k)t, (ω2k)t〉 dV |t=0

=
1

2

d

dt

∫
M

〈(ω0)t, (ω0)t〉 dV |t=0

=
1

2

d

dt

∫
M

〈Δs−1
τ(ϕt),Δ

s−1
τ(ϕt)〉 dV |t=0

=
d

dt
E2s(ϕt)|t=0.

So the critical points of EES
2s (ϕ) coincide with those of E2s(ϕ) and the proof of

the case r = 2s is ended.

In the case that r = 2s+ 1 ≥ 5 we have

EES
2s+1(ϕ) =

1

2

∫
M

s−1∑
k=0

〈ω2k+1, ω2k+1〉 dV.

Now the proof is very similar to that of the case r = 2s and so we omit further

details.

Proof of Corollary 1.18. Since τ = mH, we know from (2.12) that

Δ
i
τ = (mα|A|2i)η ∀i ≥ 0.

Thus (1.12) holds and so the conclusion follows immediately from

Theorem 1.17.
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5. Further studies

(i) We point out that, as in the case of Theorem 1.10, the conclusion of The-

orem 2.4 also holds if, in its statement, the word r-harmonic is replaced by

ES-r-harmonic.

(ii) In the proof of Theorem 1.17, the geometric assumption (1.12) has been

used, together with the explicit form of the curvature tensor field of a space

form, to deduce that

(5.1) d2Δ
i
τ(ϕ) = 0, i = 1, . . . , r − 4.

Now, let ϕ : (M, g) → (N, h) be any smooth map between two Riemannian

manifolds. We point out that, as a consequence of the proof of Theorem 1.17,

if ϕ satisfies (5.1), then ϕ is r-harmonic if and only if it is ES-r-harmonic.

(iii) In this paper we have worked with the hypothesis that the mean curvature

function f and |A|2 are both constant. In general, if Mm is any hypersurface in

a space form of curvature c, then these two quantities are related to the scalar

curvature S of Mm by the following formula:

S = c(m− 1)m+m2f2 − |A|2.
It follows that if two amongst f , |A|2 and S are constant, then so is the third.

In the literature, the study of hypersurfaces in Sm+1 with constant scalar and

mean curvatures has attracted the attention of several geometers. For instance,

Chang proved the following result:

Theorem 5.1 ([10]): A compact hypersurface Mm of constant scalar curvature

and constant mean curvature in Sm+1 is isoparametric provided that it has 3

distinct principal curvatures everywhere.

To our knowledge, in the literature there are no examples of hypersurfacesMm

in Sm+1 which have constant f and S but are not isoparametric. Moreover, we

know that, when m = 3, any compact CMC hypersurface of constant scalar

curvature in S4 is isoparametric (see [2, 13]). Therefore, putting together the

results of [7, 24, 32], Theorem 1.12 and Corollary 1.18, we have a complete

classification of the compact, r-harmonic (ES-r-harmonic) hypersurfaces in S4

with constant f and |A|2. These hypersurfaces are precisely:

• The small hyperspheres S3(1/
√
r).

• The generalised Clifford tori S1(R1)× S2(R2) obtained in Theorem 1.2

of [32].

• The isoparametric hypersurfaces obtained in Theorem 1.12 withm1 = 1.
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On the other hand, we point out that recently Tang and Yan proved that any

hypersurfaceMm in Sm+1 which has constant f and S is isoparametric provided

that some extra conditions on the principal curvatures are verified (see [45]).

(iv) In conclusion, the known results and conjectures concerning biharmonic

hypersurfaces in a sphere (see [4, 38]) suggest to us to formulate the following:

Comjecture 1: Any proper r-harmonic (ES-r-harmonic) hypersurface

in Sm+1 is CMC and has |A|2 equal to a constant.

Or, even stronger:

Comjecture 2: Any proper r-harmonic (ES-r-harmonic) hypersurface

in Sm+1 is isoparametric.

As an additional comment to the above conjectures, we point out that results

similar to Theorem 5.1 hold without the assumption M compact or complete.

Indeed, it is not difficult to show that if a CMC hypersurface in a space form

Nm+1(c) has |A|2 constant and at most two distinct principal curvatures at each

point, then it is isoparametric of degree either 1 or 2. When the hypersurface

has three distinct principal curvatures we can prove the following local version

of Theorem 5.1:

Proposition 5.2: LetMm be a CMC hypersurface in Sm+1 with |A|2 constant.
Assume that, at each point, M has three distinct principal curvatures, each of

multiplicity at least two. Then M is isoparametric.

Proof. As M has a fixed number of distinct principal curvatures at each point,

their multiplicities are constant on M and the ki’s are smooth functions. More-

over, the corresponding distributions Ti are integrable and, since dimTi ≥ 2,

Xiki = 0 for any vector Xi ∈ Ti, i = 1, 2, 3 (see [40]). Then on M we have

⎧⎨
⎩
m1k1 +m2k2 +m3k3 = mα,

m1k
2
1 +m2k

2
2 +m3k

2
3 = a2,

where a = |A| > 0. Taking the derivative with respect to any X1 ∈ T1 we get

⎧⎨
⎩
m2(X1k2) +m3(X1k3) = 0,

m2k2(X1k2) +m3k3(X1k3) = 0.
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Now, since ∣∣∣∣∣ m2 m3

m2k2 m3k3

∣∣∣∣∣ = m2m3(k3 − k2) 
= 0,

we deduce thatX1k2 = X1k3 = 0. In the same way, we obtainX2k1 = X2k3 = 0

and X3k1 = X3k2 = 0. Therefore, k1, k2 and k3 are constant functions on M

and so M is isoparametric.

Remark 5.3: If we assume that Mm is complete, then, by a result in [26],

Proposition 5.2 holds without the hypothesis that |A|2 is constant.

Acknowledgments. The authors would like to thank the referees for their

valuable comments which have helped to improve the manuscript.

References

[1] U. Abresch, Isoparametric hypersurfaces with four or six distinct principal curvatures,

Mathematische Annalen 264 (1983), 283–302.

[2] S. C. de Almeida and F. G. B. Brito, Closed 3-dimensional hypersurfaces with constant

mean curvature and constant scalar curvature, Duke Mathematical Journal 61 (1990),

195–206.

[3] P. Baird, Harmonic Maps with Symmetry, Harmonic Morphisms and Deformations of

Metrics, Research Notes in Mathematics, Vol. 87, Pitman, Boston, MA, 1983.
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