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ABSTRACT

We show that in an ultraproduct of finite fields, the mod-n nonstandard

size of definable sets varies definably in families. Moreover, if K is any

pseudofinite field, then one can assign “nonstandard sizes mod n” to de-

finable sets in K. As n varies, these nonstandard sizes assemble into a

definable strong Euler characteristic on K, taking values in the profinite

completion Ẑ of the integers. The strong Euler characteristic is not canoni-

cal, but depends on the choice of a nonstandard Frobenius. When Abs(K)

is finite, the Euler characteristic has some funny properties for two choices

of the nonstandard Frobenius.

Additionally, we show that the theory of finite fields remains decidable

when first-order logic is expanded with parity quantifiers. However, the

proof depends on a computational algebraic geometry statement whose

proof is deferred to a later paper.
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1. Introduction

1.1. Euler characteristics. Let M be a structure and R be a ring. Let

Def(M) denote the collection of (parametrically) definable sets inM . Recall the

following definitions from [18] and [19]. An R-valued Euler characteristic is

a function χ : Def(M)→ R such that

• χ(∅) = 0,

• χ(X) = 1 if X is a singleton,

• χ(X) = χ(Y ) if X and Y are in definable bijection,

• χ(X × Y ) = χ(X) · χ(Y ),

• χ(X ∪ Y ) = χ(X) + χ(Y ) if X and Y are disjoint.

If the following additional property holds, then χ is called a strong Euler

characteristic:

• If f : X → Y is a definable function and there is an r ∈ R such that

χ(f−1(y)) = r for all y, then

χ(X) = r · χ(Y ).

For A ⊆M , we say that χ is A-definable if the following holds:

• For anyB-definable function f :X → Y , let Yr = {y∈Y :χ(f−1(y))=r}.
Then each Yr is AB-definable, and all but finitely many Yr are empty.1

We say that χ is definable if it is M -definable. For examples of Euler charac-

teristics, see [18, §3, §5].

1.2. Pseudofinite Euler characteristics. A structure is pseudofinite if

it is infinite, yet elementarily equivalent to an ultraproduct of finite structures.

Pseudofinite structures have strong Euler characteristics arising from counting

mod n. More precisely, if M is an ultraproduct of finite structures, there is

a canonical strong Euler characteristic χn : Def(M) → Z/nZ defined in the

following way. Let M be the ultraproduct
∏

i∈I Mi/U , and X = φ(M ; a) be a

definable set. Choose a tuple 〈ai〉i∈I ∈
∏

i∈I Mi representing a. Then define

χn(X) ∈ Z/nZ to be the ultralimit along U of the sequence

〈|φ(Mi; ai)|+ nZ〉i∈I ,

This ultralimit exists because Z/nZ is finite. The resulting χn is a Z/nZ-valued

strong Euler characteristic, not necessarily definable.

1 This latter condition is automatic when M is |R|+-saturated.
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On an ultraproduct M of finite structures, these χn maps are compatible in

the sense that the following diagram commutes when n divides m:

Def(M)
χm

χn

Z/mZ

Z/nZ

Consequently, they assemble into a map

χ̂ : Def(M)→ Ẑ,

where Ẑ is the ring lim←−n∈N
Z/nZ. Morally, χ̂ is a strong Ẑ-valued Euler charac-

teristic. If M is any structure, we will say that a map χ : Def(M)→ Ẑ is

(1) an Euler characteristic if all the compositions Def(M)→ Ẑ→ Z/nZ

are Euler characteristics,

(2) a strong Euler characteristic if all the compositions Def(M)→ Ẑ→Z/nZ

are strong Euler characteristics,

(3) a definable Euler characteristic if all compositions Def(M)→ Ẑ→Z/nZ

are definable Euler characteristics.

For 2 and 3, this is an abuse of terminology.

We can repeat the discussion above with the p-adics Zp = lim←−k
Z/pkZ instead

of Ẑ. Recall that by the Chinese remainder theorem

Ẑ ∼=
∏
p

Zp.

Giving an Euler characteristic χ̂ : Def(M)→ Ẑ is therefore equivalent to giving

an Euler characteristic χp : Def(M)→ Zp for every p. Moreover, χ̂ is strong or

definable if and only if every χp is strong or definable, respectively.

1.3. Main results for pseudofinite fields. By a theorem of Ax [2], a

field K is pseudofinite if and only if K satisfies the following three conditions:

• K is perfect,

• K is pseudo-algebraically closed: every geometrically integral variety

over K has a K-point,

• Gal(K) ∼= Ẑ, or equivalently, K has a unique field extension of degree n

for each n.

Our first main result can be phrased purely in terms of pseudofinite fields.
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Theorem 1.1:

(1) Let K =
∏

iKi/U be an ultraproduct of finite fields. Then the non-

standard counting functions χn are acleq(∅)-definable.
(2) Every pseudofinite field admits an acleq(∅)-definable Ẑ-valued strong

Euler characteristic.

We make several remarks:

(1) In Part 1, the acleq(∅) is necessary: the nonstandard counting function

is known to not be ∅-definable [18, Theorem 7.3].

(2) In Part 2, the Euler characteristic is not canonical, but depends on a

choice of a topological generator σ ∈ Gal(K).

One approach to proving Theorem 1.1 would be to use étale cohomology. (See

Conjecture 6.3 and the following discussion.) We will give a more elementary

proof using abelian varieties and jacobians of curves.

Aside from Theorem 1.1, there is also a decidability theorem in terms of

generalized parity quantifiers. For any n ∈ N and k ∈ Z/nZ, let μn
kx be a new

quantifier. Interpret μn
kx : φ(x) in finite structures as

The number of x such that φ(x) holds is congruent to k mod n.

In other words,

(M |= μn
k�x : φ(�x,�b)) ⇐⇒ (|{�a :M |= φ(�a,�b)}| ≡ k (mod n)).

For example, μ2
1x means “there are an odd number of x such that . . . ” We

call μn
k a generalized parity quantifier.

Let Lμrings be the language of rings expanded with generalized parity quanti-

fiers.

Theorem 1.2: Assuming Conjecture 5.2, the Lμrings-theory of finite fields is

decidable.

Unfortunately, this result is conditional on Conjecture 5.2, a technical state-

ment about definability in algebraic geometry. While the conjecture is certainly

true, it is hard to give a sane proof. A complete proof will (hopefully) appear

in future work [16].

1.4. Main results for periodic difference fields. The results of §1.3 can
be stated more precisely in terms of difference fields. Recall that a difference

field is a pair (K,σ) where K is a field and σ is an automorphism of K.
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Definition 1.3: A difference field (K,σ) is periodic if every element of K has

finite orbit under σ.

Periodic difference fields are not an elementary class in the language of dif-

ference fields. However, they constitute an elementary class when regarded as

multi-sorted structures (K1,K2, . . .) where Ki is the fixed field of σi, with the

following structure:

• The difference-field structure on each Ki.

• The inclusion map Kn → Km for each pair n,m with n dividing m.

These multi-sorted structures were considered by Hrushovski in [14], and we

will give an overview of their basic properties in §3 below.

To highlight the fact that we are no longer working in the language of differ-

ence fields, we will call these structures periodic fields. If (K1,K2, . . .) is a

periodic field, we let K∞ denote the associated periodic difference field

K∞ = lim−→
n

Kn.

We will abuse notation and write (K∞, σ) when we really mean the associated

periodic field (K1,K2, . . .).

For any q, let Frq denote (Falg
q , φq), where φq is the qth power Frobenius.

Thus (Frq)n = (Fqn , φq). We will call the Frq’s Frobenius periodic fields.

Frobenius periodic fields are “essentially finite” (every sort is finite). Conse-

quently, ultraproducts of Frobenius periodic fields admit Z/nZ-valued strong

Euler characteristics χn.

There is a theory ACPF whose class of models can be described in several

ways:

(1) The existentially closed periodic fields.

(2) The non-Frobenius periodic fields satisfying the theory of Frobenius

periodic fields.

(3) The periodic fields of the form (Kalg, σ), where K is pseudofinite and σ

is a topological generator of Gal(K).

(See Propositions 3.2, 3.15, and 3.4, respectively.) In particular, ACPF is the

model companion of periodic fields, and non-principal ultraproducts of Frobe-

nius periodic fields are models of ACPF.2

2 The situation is analogous to, but much simpler than, the situation with ACFA [15].
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Theorem 1.1 has the following analogue for periodic fields:

Theorem 1.4: Let C be the class of Frobenius periodic fields and existentially

closed periodic fields. There is a Ẑ-valued strong Euler characteristic χ on

(K,σ) in C with the following properties:

• χ is uniformly ∅-definable across C.
• If (K,σ) is a Frobenius periodic field, then χ is the counting Euler

characteristic:

χ(X) = |X |.

• If (K,σ) is an ultraproduct of Frobenius periodic fields, then χ is the

nonstandard counting Euler characteristic.

There are also statements in terms of parity quantifiers. Let Lpf be the first-

order language of periodic fields, and let Lμpf be its expansion by generalized

parity quantifiers.

Theorem 1.5:

(1) Generalized parity quantifiers are uniformly eliminated on the class of

Frobenius periodic fields.

(2) Assuming Conjecture 5.2, the Lμpf -theory of Frobenius periodic fields is

decidable.

This statement is stronger than what we can say about finite and pseudofinite

fields. In fact, generalized parity quantifiers are not uniformly eliminated on

finite fields (Lemma 6.8).

1.5. A special case. If p is a prime, let Z¬p be the prime-to-p completion

of Z:

Z¬p = lim←−
(n,p)=1

Z/nZ =
∏
� �=p

Z�.

If K is a field, let Abs(K) denote the subfield of absolute numbers, i.e., the

relative algebraic closure of the prime field. Say that a field K is a mock-Fq

if K is pseudofinite and Abs(K) ∼= Fq. For each prime power q, there is a unique

mock-Fq up to elementary equivalence, by work of Ax [2, Theorems 4 and 6].
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The nonstandard Euler characteristics behave in a funny way on mock-Fq’s:

Theorem 1.6: Let K be a mock-Fq, for some prime power q = pk. There are

two Z¬p-valued ∅-definable strong Euler characteristics χ and χ† on K, such

that:

(1) If V is a smooth projective variety over Fq, then

χ(V (K)) = |V (Fq)|,
χ†(V (K)) = |V (Fq)|/qdimV .

(2) If X is any Fq-definable set, then

χ(X) = |X ∩ dcl(Fq)|.

In particular, χ(X) ∈ Z.

(3) If X is any Fq-definable set, then χ†(X) ∈ Q.

1.6. Related work. Many people have considered non-standard sizes of de-

finable sets in pseudofinite fields [1, 5, 8, 18, 19]. Non-standard sizes modulo p

were considered by Kraj́ıček, who used them to prove the existence of non-trivial

strong Euler characteristics on pseudofinite fields [18]. However, most research

has focused on ordered Euler characteristics ([1, 19]) and the real standard part

of non-standard sizes ([5, 8]). These topics can be seen as “non-standard sizes

modulo the infinite prime.”

Dwork [7] and Kiefe [17] consider the behavior of |φ(Fq)| as q varies. Their

work can be used to calculate the non-standard mod-n sizes of ∅-definable sets

in pseudofinite fields of positive characteristic.

There are several variations on the notion of an Euler characteristic. One can

consider an Euler characteristic χ(D) defined only for ∅-definable sets D. (In

this setting, it no longer makes sense to talk about strong or definable Euler

characteristics.) More generally, if T is an incomplete theory, one can consider

Euler characteristics defined on the class of definable functors (i.e., formulas

up to logical equivalence). If k is a field of characteristic 0 and T is the the-

ory of pseudofinite fields extending k, then Denef and Loeser define such an

Euler characteristic on formulas, taking values in K0(Motk,Qalg) ⊗ Q, where

K0(Motk,Qalg) is a certain Grothendieck group of Chow motives [6, Proposi-

tion 3.4.4]. The Denef–Loeser Euler characteristic should be closely related to

ours; see Remark 6.4.
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Almost everything in §3 is well-known to experts. The results specific to

periodic fields appear in Hrushovski’s paper [14].

1.7. Notation. If K is a field, then Kalg (resp. Ksep) denotes the algebraic

(resp. separable) closure, and Gal(K) denotes the absolute Galois group

Gal(Ksep/K) = Aut(Ksep/K).

We let

Ẑ = lim←−
n

Z/nZ

denote the profinite completion of Z. The finite field with q elements is de-

noted Fq.

A variety over K is a finite-type separated reduced scheme over K, not nec-

essarily irreducible or quasi-projective. If V is a variety, then V (K) denotes the

set of K-points of V . A scheme X over K is geometrically integral or geo-

metrically irreducible ifX×KK
alg is integral or irreducible. A curve overK

is a geometrically integral 1-dimensional smooth projective variety over K.

Remark 1.7: If K is a perfect field and V is a variety, then geometrically irre-

ducible is equivalent to geometrically integral.

Acknowledgment. The author would like to thank Tianyi Xu, for helpful

discussions about recursive ind-definability, Tom Scanlon, who read an earlier

version of this paper appearing in the author’s dissertation, and the anonymous

referee, who offered countless helpful comments and introduced the author to

some of the important related papers.

This material is based upon work supported by the National Science Foun-

dation under Grant No. DGE-1106400 and Award No. DMS-1803120. Any

opinions, findings, and conclusions or recommendations expressed in this ma-

terial are those of the author and do not necessarily reflect the views of the

National Science Foundation.

2. Review of abelian varieties

Let A be an abelian variety over some field K. For any n ∈ N, let A[n] denote

the group of n-torsion in A(Kalg), viewed as an abelian group with Gal(K)-

action. Let T�A denote the �th Tate module [21, §18]. If g = dimA, then there
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are non-canonical isomorphisms

T�A ≈ Z2g
�

for all � �= char(K). In particular, T�A is a free Z�-module of rank 2g. If

p = char(K), then

TpA ≈ Zr
p

for some r known as the p-rank of A. The p-rank is at most g. Similar

statements hold for the torsion subgroups:

A[�k] ≈ (Z/�k)2g, � �= char(K);

A[pk] ≈ (Z/pk)r, p = char(K).

An isogeny on A is a surjective endomorphism f : A → A. An isogeny f has

a well-defined degree deg(f), which can be described in two ways:

• The length of the scheme-theoretic kernel of f (a finite group scheme

over K).

• The degree of the fraction field extension.

If f : A→ A is a non-surjective endomorphism, then deg(f) is defined to be 0.

Any endomorphism f : A → A induces an endomorphism T�(f) on the Tate

modules. We can talk about the determinant and trace of this endomorphism.

Fact 2.1 (cf. [21, Theorem 19.4] or [20, Proposition I.10.20]): If f : A → A is

any endomorphism, and � �= char(K), then deg(f) = detT�(f).

Corollary 2.2: If α1, . . . , α2g denote the eigenvalues of T�(f), then for any

polynomial P (X) ∈ Z[X ],

deg(P (f)) =

2g∏
i=1

P (αi).

Because the left-hand side is an integer independent of �, it follows that the αi

are algebraic numbers which do not depend on �.

The numbers α1, . . . , α2g are called the characteristic roots of the endo-

morphism f . The characteristic roots govern the counting of points on curves

over finite fields:
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Fact 2.3 ([20, Theorem III.11.1]): Let C be a curve over a finite field Fq, and

let J be its Jacobian. Then

|C(Fq)| = 1−
( 2g∑

i=1

αi

)
+ q

where the αi are the characteristic roots of the qth power Frobenius endomor-

phism φq : J → J .

Corollary 2.4: In the setting of Theorem 2.3, if � is prime-to-q, then

|C(Fq)| ≡ 1− Tr(φq|J [�k]) + Tr(φq |Gm[�k]) (mod �k)

where Gm denotes the multiplicative group, Gm[�k] denotes the group of �kth

roots of unity (in Falg
q ), and Tr(σ|M) denotes the trace of an endomorphism σ

of some free Z/�k-module M .

2.1. Bad characteristic. We would like an analogue of Corollary 2.4 in the

case of bad characteristic � = p.

Lemma 2.5: Let P (x) and Q(x) be two monic polynomials in Qp[x]. Let

β1, . . . , βm ∈ Qalg
p be the roots of P (x), and α1, . . . , αn ∈ Qalg

p be the roots

of Q(x). Suppose that

(1) vp

( m∏
i=1

F (βi)

)
≤ vp

( n∏
i=1

F (αi)

)

holds for every F (x) ∈ Z[x]. Then {β1, . . . , βm} is a submultiset of {α1, . . . , αm},
i.e., P (x) divides Q(x).

Proof. This follows by a similar argument to [20, Lemma I.10.21]. We leave the

necessary modifications as an exercise to the reader.

Recall that the degree of an isogeny f : A→ A is equal to the degree of the

fraction field extension, and therefore factors into separable and inseparable

parts:

deg(f) = degs(f) · degi(f).
Moreover, degs(f) is the size of the set-theoretic kernel of f [21, §6, Applica-
tion 3].

Fact 2.6: For any � (possibly � = p),

v�(detT�(φ)) = v�(| kerφ|) = v�(degs(φ)).
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Fact 2.6 is implicit in the proof of [21, Theorem 19.4] or [20, Theorem I.10.20].

Lemma 2.7: Let A be an abelian variety over Fq for q = pk. Let β1, . . . , βr be

the eigenvalues of Tp(φq), for φq the qth power Frobenius on A.

(1) {β1, . . . , βr} is a submultiset of the characteristic roots {α1, . . . , αr} of φq.
(2) Each βi has valuation zero in Qalg

p .

Proof. By Corollary 2.2 and Fact 2.6, the following holds for any polynomial

F (x) ∈ Z[x]:

vp

( r∏
i=1

F (βi)

)
= vp(detTp(F (φq))) = vp(degs(F (φq)))

≤ vp(deg(F (φq))) = vp

( 2g∏
i=1

F (αi)

)
.

Then (1) follows by Lemma 2.5. For (2), note that the βi are integral over Zp

because they are the eigenvalues of a linear map Zr
p → Zr

p. Integrality implies

that vp(βi) ≥ 0. Moreover, the map Zr
p → Zr

p is invertible, because the qth

power Frobenius is a bijection on points. Therefore, the β−1
i are also integral,

of nonnegative valuation.

Lemma 2.8: There is a computable function h1(d, d
′, p, s) with the following

property. Let (K, v) be an algebraically closed valued field of mixed character-

istic (0, p). Let Q(x) be a monic polynomial of degree d, with roots α1, . . . , αd.

Suppose d′ ≤ d and suppose that v(Q(pi)) ≥ v(pid
′
) for 1 ≤ i ≤ h1(d, d

′, p, s).
Then at least d′ of the αi satisfy v(αi) ≥ v(ps).
Proof. Because ACVF is recursively enumerable, it suffices to prove that

h1(d, d
′, p, s) exists for fixed d, d′, p, s. If h1(d, d′, p, s) fails to exist, then by com-

pactness there is (K, v) |= ACVF0,p and a monic polynomial Q(x) of degree d

such that

∀i ∈ N : v(Q(pi)) ≥ v(pid′
),

but fewer than d′ of the roots of Q(x) have valuation greater than v(ps). Let

Q(x)=adx
d+ad−1x

d−1+ · · ·+a1x+a0. Then for all but finitely many i, we have

id′ = v(pid
′
) ≤ v(Q(pi)) = min

0≤j≤d
v(ajp

ij) = min
0≤j≤d

(v(aj) + ij).

Therefore, v(aj) ≥ N for j < d′. By Newton polygons, at most d − d′ of the
roots of Q(x) have valuation less than v(ps), a contradiction.
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Lemma 2.9: Let G be a finite connected commutative group scheme of length

n over Fq. If n < q, then the qth-power Frobenius morphism G→ G is the zero

endomorphism.

Proof. Well-known (and easy).

Fact 2.10: Let G be a commutative finite group scheme over a field K.

• Let G′ be a finite subgroup scheme. Then the length of G′ divides the
length of G.

• Let G0 denote the connected component of G. Then

�(G0) = �(G)/|G(Kalg)|.
The first point follows from [22, Theorems 10.5-10.7]. The second point fol-

lows by the proof of [22, Proposition 15.3].

Lemma 2.11: Suppose A is a g-dimensional abelian variety over Fq. Suppose

q > p2gi. Let r be the p-rank of A. Let φq denote the qth power Frobenius

endomorphism of A. Then deg(φq − pi) is divisible by pi(2g−r).

Proof. Take � �= p. By Fact 2.1, deg(pi) = p2gi because T�A is a free Z�-module

of rank 2g. Let G denote the scheme-theoretic kernel of the multiplication-by-pi

endomorphism of A. Then G is a finite group scheme of length deg(pi) = p2gi.

By definition of p-rank, G(Falg
q ) ≈ (Z/pi)r, so G(Falg

q ) has size pir. Therefore,

the connected component G0 of G has length p2gi/pir = pi(2g−r), by Fact 2.10.

The endomorphism φq : A → A restricts to the qth-power Frobenius en-

domorphism on G and G0. By assumption, q > p2ig ≥ pi(2g−r), and so φq

annihilates G0 by Lemma 2.9.

Let G′ denote the kernel of φq − pi. Then G0 is a closed subgroup scheme

of G′. By Fact 2.10, �(G0) = pi(2g−r) divides �(G) = deg(φq − pi).
Proposition 2.12: There is a computable function h2(p, s, g) with the follow-

ing property. Let A be a g-dimensional abelian variety over Fq, with

q = pk > h2(p, s, g).

Let φq denote the qth power Frobenius on A. Let r be the p-rank of A. Then

we can write the characteristic roots of φq as α1, . . . , α2g, where

• α1, . . . , αr are the eigenvalues of Tp(φq) : TpA→ TpA,

• vp(αi) > vp(p
s) for i ∈ {r + 1, r + 2, . . . , 2g}.
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Proof. Define

h2(p, s, g) = max{p2g·h1(2g,d
′,p,s) : 0 ≤ d′ ≤ 2g},

where h1 is as in Lemma 2.8. Suppose the assumptions hold. Then for any

1 ≤ i ≤ h1(2g, 2g − r, p, s), we have

q = pk > h2(p, s, g) ≥ p2g·h1(2g,2g−r,p,s) ≥ p2gi.
By Lemma 2.11,

vp(deg(φq − pi)) ≥ vp(pi(2g−r)) for i ≤ h1(2g, 2g − r, p, s).
Let Q(x) be the rational polynomial whose roots are the αi. By Corollary 2.2,

deg(φq − pi) =
2g∏
i=1

(αi − pi) = Q(pi).

Thus
vp(Q(pi)) ≥ vp(pi(2g−r)) for i ≤ h1(2g, 2g − r, p, s).

By definition of h1 (Lemma 2.8), it follows that at least 2g − r of the roots

of Q(x) have p-adic valuation at least vp(p
s). Meanwhile, Lemma 2.7 gives r

roots β1, . . . , βr, coming from the eigenvalues of Tp(φq). Each of these roots has

valuation zero. There can be no overlap between the 2g − r roots of valuation

at least vp(p
s), and the r roots coming from Tp(φq), so these together account

for all 2g roots of Q(x).

Corollary 2.13: There is a computable function h(p, s, g) with the following

property. Let C be a curve of genus g over a finite field Fq, and let J be its

Jacobian. Suppose q is a power of p, and q > h(p, s, g). Then

|C(Fq)| ≡ 1− Tr(φq|J [ps]) + Tr(φq|Gm[ps]) (mod ps),

where the notation is as in Corollary 2.4.

Proof. Take h(p, s, g) to be the maximum of h2(p, s, g) and ps. Suppose

q > h(p, s, g). By Fact 2.3,

|C(Fq)| = 1 + q −
2g∑
i=1

αi.

Working modulo ps, the term q vanishes, because q > h(p, s, g) ≥ ps. Also,

q > h2(p, s, g), so by Proposition 2.12, we may assume that

• α1, . . . , αr are the eigenvalues of Tp(φq),

• αr+1, . . . , α2g have valuation at least vp(p
s).
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Working modulo ps, we can therefore ignore αr+1, . . . , α2g. Thus

|C(Fq)| ≡ 1−
r∑

i=1

αi (mod ps).

The right-hand side is 1 − Tr(φq |J [ps]). Finally, observe that Tr(φq|Gm[ps])

vanishes, because Gm[ps] is free of rank 0. (There is no p-torsion in the multi-

plicative group.)

3. Review of periodic difference fields

In this section, we review the basic facts about periodic fields. The original

source for these results is Hrushovski’s [14]. We will follow an approach that

mimics the closely related case of ACFA [4, 15].

Recall from §1.4 that a periodic field (K∞, σ) is regarded as a multi-sorted

structure (K1,K2, . . .) where Kn is the fixed field of σn on K∞.

3.1. Existentially closed periodic fields. If (K∞, σ) is a periodic field,

then Kn/K1 is a cyclic Galois extension of degree at most n. Say that (K∞, σ)
is non-degenerate if Gal(Kn/K1) ∼= Z/nZ for each n. Equivalently,Kn �⊆ Km

for any m < n.

Lemma 3.1: If (K∞, σ) is a non-degenerate periodic field and (L∞, σ) extends
(K∞, σ), then the natural map

ψn : L1 ⊗K1 Kn → Ln

is an isomorphism of difference rings for all n ∈ N ∪ {∞}.
Proof. The n =∞ case follows by taking the limit, so we may assume n <∞.

The image of ψn is the compositum KnL1. This is an intermediate field in

the Galois extension Ln/L1, so it must be Lm for some m dividing n. By

non-degeneracy, Kn �⊆ Lm for any m < n. Thus KnL1 = Ln and the map is

surjective. Non-degeneracy of K∞ implies non-degeneracy of L∞, and so

[Kn : K1] = n = [Ln : L1].

Counting dimensions, ψn must be injective.

Recall that a field extension L/K is regular if L ⊗K Kalg is a domain,

or equivalently, a field. A field K is pseudo algebraically closed (PAC)

if K is relatively existentially closed in every regular extension. An equivalent
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condition is that V (K) �= ∅ for every geometrically integral variety V over K.

This property is first-order [11, Proposition 10.9].

Proposition 3.2: A periodic field (K∞, σ) is existentially closed if and only if

(1) K∞ |= ACF,

(2) (K∞, σ) is non-degenerate, and
(3) K1 is PAC.

Proof. Suppose (1) fails. Extend σ to an automorphism σ′ of Kalg
∞ . Then

(K∞, σ) fails to be existentially closed in (Kalg∞ , σ′).
Suppose (2) fails, so that Kn = Km for some m < n. Let σ′ be the automor-

phism of K ′
∞ := K∞(x1, . . . , xn) extending σ and mapping

x1 �→ x2 �→ · · · �→ xn �→ x1.

Then (K∞, σ) is not existentially closed in (K ′
∞, σ

′). Indeed, the equation

σn(x) = x �= σm(x) has a solution in K ′
n but not Kn.

Suppose (3) fails, so K1 is not existentially closed in some regular extension

L/K1. The difference ring L∞ := L ⊗K1 K∞ is a field by regularity of L/K1.

Then L∞ is a periodic field extending K∞, and K∞ is not existentially closed

in L∞ because K1 is not existentially closed in L1.

Finally, suppose (1–3) all hold. Let L∞ be a periodic field extending K∞.

Let K∗
∞ be a big ultrapower of K∞ (in the language of periodic fields, not

difference fields). It suffices to embed L∞ into K∗∞ over K∞. Note that

K∗
∞ = K∗

1 ⊗K1 K∞ = K∗
1 ⊗K1 K

alg
1 .

The first equality holds by Lemma 3.1 and (2); the second equality holds by (1)

and the general fact that K∞/K1 is algebraic. Similarly

L∞ = L1 ⊗K1 K∞ = L1 ⊗K1 K
alg
1 .

Then L1/K1 is regular, so K1 is existentially closed in L1 by (3). It follows

that L1 embeds into K∗
1 over K1. Tensoring with K∞, this gives the desired

embedding of periodic fields:

L∞ = L1 ⊗K1 K∞ ↪→ K∗
1 ⊗K1 K∞ = K∗

∞.

The conditions of Proposition 3.2 are first order, in spite of appearances to

the contrary.

Definition 3.3: ACPF is the theory of existentially closed periodic fields. In

other words, ACPF is the model companion of periodic fields.
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The name “ACPF” is not standard, but is chosen by analogy with ACFA.

Recall that a field is pseudofinite if it is perfect, PAC, and has absolute Galois

group Ẑ. Models of ACPF are essentially pseudofinite fields with a choice of a

generator of the Galois group:

Proposition 3.4: If K is pseudofinite and σ is a topological generator of

Gal(K), then (Kalg, σ) |= ACPF. The periodic field (Kalg, σ) and the pseudofi-

nite field K are bi-interpretable after naming parameters. All models of ACPF

arise in this way from pseudofinite fields.

Proof. Except for bi-interpretability, this follows from Proposition 3.2. Note

that “(Kalg, σ)” is really the multisorted structure (K1,K2, . . .) where Kn is

the degree n extension of K. This can be interpreted in K by choosing a basis

for each Kn and interpreting Kn as Kn. Conversely, K is K1.

If (K,σ) is a periodic field, let Abs(K) denote the “absolute numbers,” the

relative algebraic closure of the prime field in K. We can regard Abs(K) as a

substructure of K. The field Abs(K) is algebraically closed whenever K is.

Lemma 3.5: Two models K1,K2 |= ACPF are elementarily equivalent if and

only if Abs(K1) ∼= Abs(K2). More generally, if F is a substructure of K1

and F = F alg, then any embedding of F into K2 is a partial elementary map

from K1 to K2.

The proof is the same as for ACFA [4, Theorem 1.3]. Lemma 3.5 generalizes

(and implies) the analogous statements for pseudofinite fields [2, Theorem 4].

3.2. Definable sets. The following standard fact is an easy application of

compactness:

Fact 3.6: Let M be a monster model. Let A ⊆M be small. Let P be a collec-

tion of A-definable subsets of Mn closed under positive boolean combinations.

Suppose the following holds:

For every a, b ∈Mn, if

∀X ∈ P : a ∈ X =⇒ b ∈ X,

then tp(a/A) = tp(b/A).

Then every A-definable subset of Mn is in P .



Vol. 247, 2022 COUNTING MOD n IN PSEUDOFINITE FIELDS 713

We shall need the following geometric form of almost quantifier elimination.

Recall that a morphism f : V1 → V2 of K-varieties is quasi-finite if the fibers of

the map V1(K
alg)→ V2(K

alg) are finite.

Proposition 3.7: Let (M, σ) be a model of ACPF. Let (K∞, σ) be a non-

degenerate substructure, with K1 perfect. Let X be a K∞-definable subset

of Mn
1 . Then X is the image of V (M1) → An(M1) for some quasi-finite mor-

phism V → An of K1-varieties.

Proof. ReplacingM with an elementary extension, we may assume M is |K∞|+-
saturated. Let P be the class of definable subsets of Mn

1 of the specified form.

We need to show that P contains every K∞-definable subset of Mn
1 .

Note that P is closed under finite unions, because we can form coproducts

V1 � V2 in the category of K1-varieties. Similarly, P is closed under finite inter-

sections, because of fiber products V1 ×An V2. Therefore, we can use Fact 3.6.

Let a, b be two points in Mn
1 . Suppose that for every X ∈ P ,
a ∈ X =⇒ b ∈ X.

We must show tp(a/K∞) = tp(b/K∞). Let (K1(a)
alg)1 denote the fixed field

of the periodic difference field K1(a)
alg ⊆M∞.

Claim 3.8: Let c be an m-tuple from (K1(a)
alg)1 and φ(x; y) be a quantifier-

free Lrings(K1)-formula such that φ(a; c) holds. Then there is an m-tuple d

from M1 such that φ(b; d) holds.

Proof of Claim 3.8. Strengthening φ(x; y), we may assume that

• φ(x; y) witnesses that y ∈ K1(x)
alg,

• φ(M∞) defines a locally closed subvariety W of An+m.

Then the projection W → An is a quasi-finite morphism of varieties over K1.

Let X ∈ P be the image of W (M1)→ An(M1). Then

(a; c) ∈W (M1) =⇒ a ∈ X =⇒ b ∈ X =⇒ (b; d) ∈W (M1)

for some m-tuple d ∈ M1.

By saturation, the Claim holds even when c is an infinite tuple and φ(x; y)

is a type. Letting c enumerate (K1(a)
alg)1 and φ(x; y) be the complete type of

(a, c) over K1, we obtain an embedding of fields

(K1(a)
alg)1 ↪→M1
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mapping a to b and K1 to K1 pointwise. By Lemma 3.1, we can apply the

functor −⊗K1 K∞ and obtain an embedding of periodic fields

K1(a)
alg ↪→ M∞

sending a to b, and K∞ to K∞ pointwise. By Lemma 3.5, this is a partial

elementary map, so tp(a/K∞) = tp(b/K∞).

Proposition 3.7 is similar in spirit to Kiefe’s quantifier elimination [17, §3], but
stronger in that we are restricting to positive boolean combinations of images.

It is also quite similar to the quantifier elimination using Galois stratifications

(e.g., [6, Theorem 2.3.1]).

In Proposition 3.7, note that dim(V ) ≤ n, because the geometric fibers of

V → An are finite. In the 1-dimensional case, V is essentially a collection of

curves:

Fact 3.9: Let K be a perfect field, and V be a 1-dimensional variety over K.

In other words, V (Kalg) is 1-dimensional as a definable set in Kalg. Then there

exist curves3 C1, C2, . . . , Cn and a definable bijection between a cofinite subset

of V (K) and a cofinite subset of
∐n

i=1 Ci(K).

3.3. The theory of Frobenius periodic fields. Recall the Frobenius pe-

riodic fields Frq = (Falg
q , φq), where φq is the qth power Frobenius. There is an

analogy

finite fields : pseudofinite fields :: Frobenius periodic fields : e.c. periodic fields.

Ax showed that a field K is pseudofinite if and only if it is elementarily equiva-

lent to a non-principal ultraproduct of finite fields. The analogous thing happens

here.

Definition 3.10: ÃCPF is the theory of periodic fields K∞ such that

(1) K∞ |= ACF,

(2) K∞ is non-degenerate,

(3) K1 is a model of the theory Tfin of finite fields,

(4) if K1 has size q <∞, then σ acts as the qth power Frobenius on K∞.

Ax showed that the models of Tfin are exactly the finite and pseudofinite

fields.

3 Geometrically irreducible, smooth, and projective as always.
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Lemma 3.11: The models of ÃCPF are exactly the models of ACPF and the

Frobenius periodic fields.

Proof. If (K∞, σ) |= ACPF, then Axioms (1) and (2) hold by definition, (3)

holds because K1 is pseudofinite by Proposition 3.4, and (4) is vacuous, as

pseudofinite fields are infinite. If (K,σ) is the qth Frobenius periodic field Frq,

then all the axioms are trivial. Conversely, suppose (K∞, σ) |= ÃCPF. If

|K1| = q <∞, then Axiom (1) forces

K∞ ∼= Falg
q

and Axiom (4) forces

(K∞, σ) ∼= Frq .

If K1 is infinite, then (3) forces K1 to be pseudofinite, hence PAC. Then (1)

and (2) ensure (K∞, σ) |= ACPF.

Corollary 3.12: If (K∞, σ) is a non-principal ultraproduct of Frobenius pe-

riodic fields, then (K∞, σ) |= ACPF.

Lemma 3.13: If (K∞, σ) |= ACPF and K∞ has characteristic 0, then (K∞, σ)
is elementarily equivalent to an ultraproduct of Frobenius periodic fields Frp

with p prime.

Proof. For each prime p, let F̃p be the periodic field (Qun
p , σ), where Qun

p is the

maximal unramified algebraic extension of Qp, and σ induces the pth power

Frobenius on the residue field. By the Chebotarev density theorem, there is a

non-principal ultraproduct (F̃ ∗, σ) of F̃p such that

(Abs(F̃ ∗), σ) ∼= (Abs(K), σ).

Now F̃ ∗ has a σ-invariant valuation whose residue field is an ultraproduct F ∗

of Frobenius periodic fields Frp. Then F ∗ has characteristic 0, the valuation is

equicharacteristic 0, and the residue map gives an isomorphism

(Abs(F̃ ∗), σ) ∼= (Abs(F ∗), σ).

By Lemma 3.5 and Corollary 3.12, (K,σ) ≡ (F ∗, σ).

Lemma 3.14: If (K∞, σ) |= ACPF and K has characteristic p > 0, then K is

elementarily equivalent to a non-principal ultraproduct of Frobenius periodic

fields Frq, with q ranging over powers of p.

Proof. Similar to Lemma 3.13, but easier (no valuations or Chebotarev).
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Proposition 3.15:

(1) A periodic field (K,σ) is existentially closed if and only if it is elemen-

tarily equivalent to a non-principal ultraproduct of Frobenius periodic

fields.

(2) The elementary class generated by Frobenius periodic fields consists of

the Frobenius periodic fields and existentially closed periodic fields.

(3) ÃCPF is the theory of Frobenius periodic fields.

Let Tprime be the theory of finite prime fields Fp. Ax showed that the mod-

els of Tprime are exactly the finite prime fields and the pseudofinite fields of

characteristic 0. Analogously, one can show:

Proposition 3.16:

(1) A periodic field (K,σ) is existentially closed of characteristic 0 if and

only if it is elementarily equivalent to a non-principal ultraproduct of

prime Frobenius periodic fields.

(2) The elementary class generated by prime Frobenius periodic fields con-

sists of:

• Prime Frobenius periodic fields.

• Existentially closed periodic fields of characteristic 0.

(3) The theory of prime Frobenius periodic fields is axiomatized by ÃCPF

and the statement that K1 |= Tprime.

4. Proof of the main theorem

4.1. The implicit definition. Using Beth implicit definability, Kraj́ıček

proves that if a theory admits a unique R-valued strong Euler characteristic χ,

then χ is definable [18, Theorem 7.2]. We will use a similar strategy to define

our strong Ẑ-valued Euler characteristic. We will use the following two variants

of Beth implicit definability:

Fact 4.1 ([13, Theorem 6.6.4]): Let L+ ⊇ L− be languages. Let T− be an L−

theory and T+ be an L+ theory extending T−. Let φ(x) be an L+ formula.

Suppose that whenever N |= T−, and M+
1 and M+

2 are two expansions of N to

a model of T+, that φ(M+
1 ) = φ(M+

2 ). Then there is an L−-formula ψ(x) such

that T+ � φ↔ ψ.
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Corollary 4.2: Let L+ ⊇ L− be languages. Let T− be an L− theory and T+

be an L+ theory extending T−. Suppose that:

• T− is the theory of some (non-elementary) class C of L−-structures.
• Every model of T− has at most one expansion to a model of T+.

• Every model in C has at least one expansion to a model of T+.

Then every model of T− has a unique expansion to a model of T+, and T+ is

a definitional expansion of T−.

Proof. If M |= T−, then M is elementarily equivalent to an ultraproduct

M ≡M ′ =
∏
i∈I

Mi/U

of structures Mi ∈ C. Each Mi can be expanded to a model of T+, so the

same holds for the ultraproduct M ′. By Fact 4.1 and the assumptions, the

T+-structure on M ′ is ∅-definable from the T−-structure. Therefore the T+-

structure transfers along the elementary equivalence M ′ ≡ M , giving a T+-

structure on M . So every model of T− expands to a model of T+ in a unique

way. By Fact 4.1, T+ is a definitional expansion of T−.

We will apply both versions of implicit definability in the following context:

• The language L− is the language of periodic fields.

• The theory T− is ÃCPF, the theory of Frobenius periodic fields as

in §3.3.
• C is the class of Frobenius periodic fields.

• The language L+ is the expansion of L− by a new predicate Pφ,n,k(�y)

for every formula φ(�x; �y) ∈ L−, every n ∈ N, and every k ∈ Z/nZ.

(Compare with the proof of [18, Theorem 7.2].)

The theory T+ is T− plus the following axioms:

(1) For every φ, n, and b, there is a unique k ∈ Z/nZ such that Pφ,n,k(b)

holds.

(2) If φ(K; b) = φ′(K; b′), then

Pφ,n,k(b) ⇐⇒ Pφ′,n,k(b
′).

(3) If X is a definable set φ(K; b), let χn(X) denote the unique k such that

Pφ,n,k(b) holds. (This is well-defined by (1) and (2).) Then χn is a

strong Euler characteristic for each n.
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(4) The diagram

Def(M)
χn

χm

Z/nZ

Z/mZ

commutes when m divides n.

(5) Let C be a genus-g curve overK1, and let J be its Jacobian. Let pk be a

prime power. Let h be the function from Corollary 2.13. If char(K) �= p

or if |K1| > h(g, p, k), then χpk(C(K1)) is given by the formula

χpk(C(K1)) = 1− Tr(σ|J [pk]) + Tr(σ|Gm[pk]).

Here, if G is a commutative group variety over K1, then Tr(σ|G[n])
denotes the trace of the action of σ on the group of n-torsion in G(K∞).

Axioms (1)–(4) encode the statement that χ is a Ẑ-valued strong Euler char-

acteristic, and Axiom (5) determines its value on curves over K1. We discuss

why Axiom (5) is first-order in §5.

4.2.Uniqueness.The “existence”part of Corollary 4.2 has already been verified:

Proposition 4.3: If Frq is a Frobenius periodic field, and χ is the counting

Euler characteristic, then χ satisfies T+. In particular, Frq admits an expansion

to a model of T+.

Proof. Examining the definition of T+, Axioms (1)–(4) merely say that χ is

a Ẑ-valued strong Euler characteristic, which is trivial. Axiom (5) holds by

Corollaries 2.4 and 2.13.

Therefore, it remains to prove the “uniqueness” part. Our goal is to show

that on any (K,σ) |= ÃCPF, there is at most one Ẑ-valued Euler characteristic

satisfying the axioms of T+. Until Proposition 4.7, we will restrict our attention

to models of ACPF.

Remark 4.4: In Axiom (5) of T+, the condition “|K1| > h(g, p, k)” is automatic

when K1 is infinite, i.e., when (K∞, σ) |= ACPF. Therefore, for models of

ACPF, Axiom (5) says the following: for any curve C over K1 with Jacobian J ,

χpk(C(K1)) = 1− Tr(σ|J [pk]) + Tr(σ|Gm[pk]).

By the Chinese remainder theorem, this formula determines χn(C) for any n.
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Lemma 4.5: Let (K∞, σ) be a model of ACPF, admitting two expansions to

a model of T+. Let χ and χ′ be the corresponding Ẑ-valued strong Euler

characteristics. Then χ(X) = χ′(X) for every unary definable set X ⊆ K1.

Proof. Say that a definable set is good if χ(X) = χ′(X). Finite sets are good.

If X is in definable bijection with Y and X is good, then so is Y . A disjoint

union of two good sets is good. If S is a cofinite subset of X , then S is good

if and only if X is good. Consequently, if a cofinite subset of X is in definable

bijection with a cofinite subset of Y , then X is good if and only if Y is good.

If C is a curve over K1, then C(K1) is good, by Remark 4.4. Any disjoint

union of sets of this form is also good. By Fact 3.9, the set V (K1) is good for

any 1-dimensional variety X over K1.

Now let X be a definable subset of (K1)
1. By Proposition 3.7, X is the

image of V1(K1) → A1(K1) for some morphism V1 → A1 of K1-varieties with

geometrically finite fibers. Let Vn denote the n-fold fiber product

V1 ×A1 V1 ×A1 · · · ×A1 V1.︸ ︷︷ ︸
n times

Each of the morphisms Vn → A1 has geometrically finite fibers, so each vari-

ety Vn is 1-dimensional. Hence each set

Yn := Vn(K1)

is good. Note that Yn is the n-fold fiber product of Y1 over X .

Let m be a bound on the size of the fibers of Y1 → X . For 1 ≤ k ≤ m,

let Xk denote the set of a ∈ X such that f−1(a) has size k. Let αk and βk

denote χ(Xk) and χ
′(Xk).

Because χ and χ′ are strong Euler characteristics,

χ(Yn) =

m∑
k=1

αkk
n,

χ′(Yn) =
m∑

k=1

βkk
n,

for all n. As the Yn’s are good,

m∑
k=1

αkk
n =

m∑
k=1

βkk
n
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for n=1, . . . ,m. By invertibility of the Vandermonde matrix 〈kn〉1≤k≤m, 1≤n≤m,

and the fact that Ẑ has no Z-torsion, it follows that αk = βk for all k. Conse-

quently,

(2) χ(X) =

m∑
k=1

αk =

m∑
k=1

βk = χ′(X).

Therefore X is good.

The proof method of Lemma 4.5 is essentially due to Kiefe [17, Proof of

Lemma 8].

Lemma 4.6: For any n, the following statements are true:

(Sn) Let (K∞, σ) be a model of ACPF, admitting two expansions to a model

of T+. Let χ and χ′ be the corresponding Ẑ-valued strong Euler char-

acteristics. Then χ(X) = χ′(X) for every definable subset X ⊆ (K1)
n.

(Tn) If (K∞, σ) is a model of ACPF, admitting an expansion to a model

of T+, and χ is the corresponding Ẑ-valued strong Euler characteristic,

then for every definable family {Xa}a∈Y of subsets of (K1)
n, for every

m ∈ N and for every k ∈ Z/mZ, the set

{a ∈ Y (K) : χ(Xa) ≡ k (mod m)}

is definable in the L−-reduct (K∞, σ).

Proof. Statement S1 is Lemma 4.5. The implication Sn =⇒ Tn follows by

Beth implicit definability. It suffices to show

(S1 and Sn and Tn) =⇒ Sn+1.

Assume the left hand side. Let (K∞, σ), χ, χ′, and X ⊆ K1 × (K1)
n be as in

the statement of Sn+1. Fix m ∈ N; we claim χm(X) = χ′
m(X). For t ∈ K1, let

Xt = {�x ∈ (K1)
n : (t, �x) ∈ X}.

By statements Sn and Tn, the sets

Yk = {t ∈ K1 : χ(Xt) ≡ k (mod m)},
Y ′
k = {t ∈ K1 : χ′(Xt) ≡ k (mod m)}
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are equal and definable. Because χ and χ′ are strong Euler characteristics,

χm(X) =
∑

k∈Z/mZ

k · χm(Yk),

χ′
m(X) =

∑
k∈Z/mZ

k · χ′
m(Y ′

k).

Then χm(Yk) = χ′
m(Yk) by statement S1, so putting things together,

χm(X) = χ′
m(X).

As m was arbitrary, Sn holds.

Proposition 4.7: If (K,σ) is a model of ÃCPF, then there is at most one

expansion of (K,σ) to a model of T+.

Proof. If (K,σ) is a Frobenius periodic field, then K∞ is essentially finite and

there is at most one Ẑ-valued Euler characteristic. So assume (K∞, σ) |= ACPF.

Let χ, χ′ be two Ẑ-valued Euler characteristics satisfying T+. Note that the

sort Kn is in definable bijection with (K1)
n. If X is any definable set in K∞,

then X is therefore in definable bijection with a definable subset Y ⊆ (K1)
m

for some m. By statement Sm of Lemma 4.6,

χ(X) = χ(Y ) = χ′(Y ) = χ′(X).

By Corollary 4.2 and Proposition 4.3, we conclude

Proposition 4.8: If (K,σ) is a model of ÃCPF, then there is a unique expan-

sion of (K,σ) to a model of T+.

Theorem (Theorem 1.4): Let C be the class of Frobenius periodic fields and

existentially closed periodic fields. There is a Ẑ-valued strong Euler character-

istic χ on (K,σ) in C with the following properties:

• χ is uniformly ∅-definable across C.
• If (K,σ) is a Frobenius periodic field, then χ is the counting Euler

characteristic:

χ(X) = |X |.
• If (K,σ) is an ultraproduct of Frobenius periodic fields, then χ is the

nonstandard counting Euler characteristic.

Definition 4.9: The canonical Euler characteristic on (K,σ) |= ÃCPF is the

Ẑ-valued Euler characteristic of Theorem 1.4.
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5. A digression on definability and computability

This section discusses some of the technical issues related to Axiom (5) in the

definition of T+. If one is willing to sweep these issues under the rug, this

section can be skipped.

Lemma 5.1: The theory T+ of §4.1 is first-order.

Proof sketch. The difficulty lies in expressing Axiom (5) via first-order axioms.

The assertion

J is the Jacobian of C

can be expressed as

J is a smooth projective group variety that is birationally equiv-

alent (over K1) to Symg C, the gth symmetric product of C.

Indeed, the Jacobian is a smooth projective group variety because it is an

abelian variety, and it is birationally equivalent to Symg C by the construc-

tion of the Jacobian in [23, §V.1]. By Theorem I.3.8 in [20], any birational map

between two projective group varieties extends to an isomorphism.

Even the following statement is rather non-trivial to express:

C is a (smooth projective) curve of genus g.

Smoothness can be witnessed by covering projective space with Zariski open

patches on which C is cut out by a system of equations whose matrix of par-

tial derivatives has rank no higher than the codimension of C. Geometric irre-

ducibility can be witnessed as in the appendix of [10]. Genus can be determined

by counting zeros and poles on a meromorphic section of the tangent bundle.

Alternatively, genus can be calculated by projecting into the plane, calculating

the delta invariants of the singularities, and applying the degree-genus formula.

Hopefully, everything will be spelled out in greater detail in [16].

Conjecture 5.2: The theory T+ of §4.1 is recursively axiomatizable.

Conjecture 5.2 is almost certainly true, by the method of Lemma 5.1. How-

ever, it is surprisingly difficult to write out a proof that is both rigorous and

human-readable. In future work ([16]), I will develop a toolbox for working

with recursively ind-definable sets. This toolbox enables a smooth proof of

Conjecture 5.2 along the lines of Lemma 5.1.
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Alternatively, there may be clever algebraic proofs of Conjecture 5.2. But it

would be more conceptually satisfying to explain why the informal argument

can be formalized, rather than cheating and appealing to algebraic tricks.

6. Further results

6.1. Uniform definability of the counting Euler characteristic.

Theorem 1.4 implies that the counting Euler characteristic is uniformly de-

finable across all Frobenius periodic fields. This can be restated more explicitly

as follows:

Corollary 6.1: For any formula φ(x; y) in the language of periodic fields,

any n ∈ N, and any k ∈ Z/nZ, there is a formula ψφ,n,k(y) such that for any

Frobenius periodic field Frq and any tuple b from Frq,

Frq |= ψφ,n,k(b) ⇐⇒ |φ(Frq; b)| ≡ k (mod n)

6.2. Evaluation on curves.

Proposition 6.2: Let (K∞, σ) be a model of ACPF. Let C be a curve overK1,

and J be the jacobian. For any prime � (possibly the characteristic), the �-adic

component of χ(C(K1)) is determined by the trace of the action of σ on the

�-adic Tate modules of J and the multiplicative group Gm:

1− Tr(σ|T�J) + Tr(σ|T�Gm).

Proof. This follows directly from Axiom 5 of T+, and Remark 4.4.

For � �= char(K), there should be a generalization using �-adic étale cohomol-

ogy with compact supports:

Conjecture 6.3: Let (K∞, σ) be a model of ACPF, let V be a variety overK1,

and let � be a prime different from the characteristic. Then the �-adic component

of χ(V (K1)) is given by the formula

2 dim(V )∑
i=0

(−1)iTr(σ−1|Hi
c(V ;Q�)),

where Hi
c(V ;Q�) denotes the �-adic cohomology with compact supports.
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I suspect that Conjecture 6.3 is trivial with the right tools. If I under-

stand correctly, the conjecture holds for Frobenius periodic fields, because of

Grothendieck’s trace formula [9, Chapter II, Theorem 4.2]. As long as Conjec-

ture 6.3 can be stated as a conjunction of first-order sentences, it transfers to

models of ACPF by Proposition 3.15. Thus, the only thing needing verifica-

tion is that the groups Hi
c(V ;Z/�k) depend definably on V . This should follow

easily from the base change theorem for direct images with proper support [9,

Chapter 1, Theorem 8.7(1)].

Remark 6.4: Fix a field k of characteristic 0. Denef and Loeser [6] assign to

each formula φ in the language of k-algebras an invariant χc(φ) depending only

on the realizations of φ in pseudofinite fields extending k. The invariant χc(φ)

is a virtual motive, i.e., an element of K0(Motk,Qalg)⊗Q, where K0(Motk,Qalg)

is the Grothendieck group of Chow motives over k with coefficients in Qalg.

Let K be a pseudofinite field extending k, let σ be a topological generator

of Gal(K), let χ̂ be the associated Ẑ-valued strong Euler characteristic, and

let � be a prime. Generalizing Conjecture 6.3, one expects the �-adic part of

χ̂(φ(K)) to be given by F (χc(φ)), where F : K0(Motk,Qalg)⊗Q→ Q� is the ring

homomorphism sending (the class of) a motive M to the trace of σ−1 acting on

the �-adic realization of M .

6.3. Pseudofinite fields.

Lemma 6.5: Let K be a pseudofinite field and σ be a topological generator

of Gal(K). The canonical Ẑ-valued definable strong Euler characteristic on

(Kalg, σ) restricts to an acleq(∅)-definable strong Euler characteristic on K.

Proof. The structure (Kalg, σ) and the field K have equivalent categories of

(parametrically) definable sets, by the bi-interpretability of Proposition 3.4.

Therefore, the definable strong Euler characteristic on (Kalg, σ) determines a

definable strong Euler characteristic χ′ on K.

To prove acleq(∅)-definability of χ′, we may pass to an elementary extension

and assume K and (Kalg, σ) are monster models. The Euler characteristic χ′ is
not determined in an Aut(K)-invariant way, because of the choice of σ. How-

ever, there are only boundedly many choices for σ. Therefore χ′ has only

boundedly many conjugates under Aut(K), so χ′ is acleq(∅)-definable.
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Theorem (Theorem 1.1):

(1) Let K =
∏

iKi/U be an ultraproduct of finite fields. Then the non-

standard counting functions χn are acleq(∅)-definable.
(2) Every pseudofinite field admits an acleq(∅)-definable Ẑ-valued strong

Euler characteristic.

Proof. Part 2 is Lemma 6.5. For part 1, given an ultraproduct K =
∏

i Fqi/U ,
let (L, σ) =

∏
i Fr

qi /U be the corresponding ultraproduct of Frobenius periodic

fields. Then K ∼= L1. The nonstandard counting functions on K are induced

by the canonical Euler characteristic on (L∞, σ). Therefore the nonstandard

counting functions on K are acleq(∅)-definable, by Lemma 6.5.

6.4. Elimination of parity quantifiers. Let μn
kx be a generalized par-

ity quantifier, as in §1.3. Let Lμrings and Lμpf be the language of rings and

the language of periodic fields, respectively, expanded with generalized parity

quantifiers.

Proposition 6.6 (Theorem 1.5.(1)): Frobenius periodic fields uniformly elim-

inate generalized parity quantifiers. If φ(�x) is a formula in Lμpf , then there is

a formula φ′(�x) ∈ Lpf such that for any Frobenius periodic field Frq and any

tuple �a,

Frq |= φ(�a) ⇐⇒ Frq |= φ′(�a).

Proof. Proceed by induction on the complexity of φ(�x). We may assume φ(�x)

has the form

μn
k�y : ψ(�x, �y),

for some formula ψ(�x, �y) ∈ Lpf . In this case, we can eliminate μn
k by Corol-

lary 6.1.

Example 6.7: The Lμpf -sentence

τ
def⇐⇒ μ5

2x ∈ K1 : x = x

is equivalent in Frobenius periodic fields Frq to the Lpf -sentence

τ ′ def⇐⇒ 5 �= 0 ∧ ∀x ∈ K4 : (x5 = 1→ σ(x) = x2).

To see this, break into cases according to the congruence class of q modulo 5.

Note that Frq |= τ ⇐⇒ q ≡ 2 (mod 5).
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• If q ≡ 0 (mod 5), then Frq has characteristic 5, so τ ′ and τ are both

false.

• If q ≡ 2 (mod 5), then Frq does not have characteristic 5, and

∀x ∈ K∞ : (x5 = 1→ xq = x2),

so τ and τ ′ are both true.

• If q ≡ j (mod 5) for j �= 0, 2, then Frq does not have characteris-

tic 5. Let x be a primitive fifth root of unity. Then x ∈ K4, because

Gal(K1(x)/K1) is a subgroup of

(Z/5Z)× ∼= Z/4Z.

Also,

xq = xj �= x2,

and so τ ′ is false.

In contrast to Proposition 6.6, generalized parity quantifiers are not elimi-

nated in finite fields:

Lemma 6.8: There is no Lrings-sentence ρ equivalent to the following Lμrings-
sentence in every finite field:

μ5
2x : x = x.

Proof. Suppose ρ exists. Then the following are equivalent for any model

(K∞, σ) |= ÃCPF:

• K1 satisfies ρ.

• K∞ does not have characteristic 5, and the action of σ on the fifth roots

of unity is given by

σ(ω) = ω2.

Now take (K∞, σ) satisfying ACPF and the two equivalent conditions. (For

example, we can take K∞ to be a non-principal ultraproduct of Frp where p

ranges over primes congruent to 2 mod 5. A non-principal ultrafilter exists by

Dirichlet’s theorem.) Then K1 satisfies ρ, and σ acts on the fifth roots of unity

by squaring. Consider a dual model

(K†
∞, σ) ∼= (K∞, σ−1).
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From the axioms of ACPF, it is clear that (K†
∞, σ) |= ACPF. Since σ acts on

fifth roots by squaring, σ−1 acts by cubing:

σ−1(ω) = ω3,

as 2 and 3 are multiplicative inverses modulo 5. So (K†∞, σ) does not satisfy

the two equivalent conditions, and in particular, K†
1 �|= ρ. But this is absurd,

since K†
1 is isomorphic as a field to K1.

Remark 6.9: The proof of Lemma 6.8 actually proves something stronger: par-

ity quantifiers are not eliminated on the class of prime fields Fp. The non-

elimination of parity quantifiers in finite fields was originally proven in [18,

Theorem 7.3], using a slightly different method.

6.5. Decidability. Recall the theory T+ of §4.1. For the rest of this section,

we assume Conjecture 5.2.

Lemma 6.10: (Assuming Conjecture 5.2.) There is a computable function

which takes a formula φ(�x) in the language of T+ and outputs a formula φ′(�x)
in the language of periodic fields, such that

T+ � φ↔ φ′.

Proof. By Conjecture 5.2, the theory ÃCPF of §3.3 and the theory T+ of §4.1
are recursively axiomatized.

For each φ, an equivalent formula φ′ exists by Beth implicit definability

(Fact 4.1) and the existence and uniqueness of the expansion to T+ (Propo-

sition 4.8). An algorithm can find φ′ by searching all consequences of T+ until

it finds one of the form

∀�x : φ(�x)↔ φ′(�x)

with φ′ a formula in the pure language of periodic fields.

Corollary 6.11: (Assuming Conjecture 5.2.)

(1) In Corollary 6.1, the formula ψφ,n,k can be chosen to depend computably

on φ.

(2) In Proposition 6.6, the elimination of generalized parity quantifiers can

be carried out computably—the formula φ′ can be chosen to depend

computably on φ.
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Proof.

(1) Corollary 6.1 is an instance of Lemma 6.10, so the conversion can be

done computably.

(2) As in the proof of Proposition 6.6, one converts a Lμpf -formula into a

pure Lpf -formula by recursion on the formula.

Theorem (Theorems 1.5.(2) and 1.2): (Assuming Conjecture 5.2.)

(1) The Lμpf -theory of Frobenius periodic fields is decidable.

(2) The Lμrings-theory of finite fields is decidable.

Proof. First note that the (Lpf -)theory of Frobenius periodic fields is decidable.

By Proposition 3.15, the theory is completely axiomatized by ÃCPF. Therefore,

the theory is computably enumerable. The theory is also co-computably enu-

merable. Indeed, a sentence τ is not part of the theory if and only if Frq |= ¬τ
for some q. There is an algorithm taking q and τ and outputting whether or

not Frq |= τ , because Frq is essentially finite. So we can enumerate all the

statements that fail in some Frobenius periodic field, which is the complement

of the theory of Frobenius periodic fields. Thus the theory of Frobenius periodic

fields is decidable, as claimed.

Now given a Lμpf -sentence τ , we can computably convert it into an equiva-

lent Lpf -sentence τ ′, and use the previous paragraph to computably determine

whether or not τ ′ holds in every Frobenius periodic field. This proves the first

point.

The second point follows, because there is a computable way to convert an

Lμrings-sentence τ into a Lμpf -sentence τ ′ such that

(K∞, σ) |= τ ′ ⇐⇒ K1 |= τ

for any essentially finite periodic field (K∞, σ). TakingK∞ to be Frq, we see that

Frq |= τ ′ ⇐⇒ Fq |= τ.

Therefore, τ holds in every finite field if and only if τ ′ holds in every Frobenius

periodic field. Then we can apply the oracle for the first point to τ ′.
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7. Mock-finite fields

Recall that Abs(K) denotes the substructure of absolute numbers of K—the

elements algebraic over the prime field.

Definition 7.1:A fieldK ismock-finite ifK is pseudofinite and Abs(K) is finite.

We will see that mock-finite fields admit particularly nice Euler characteristics.

Definition 7.2: A field K is a mock-Fq if K is pseudofinite and Abs(K) ∼= Fq.

Note thatK is mock-finite if and only ifK is a mock-Fq for some q. For fixed q,

the theory of mock Fq’s is consistent and complete [2, Theorems 4 and 6].

Lemma 7.3: Let K be a mock-Fq. Then the restriction homomorphism

Gal(K)→ Gal(Fq)

is an isomorphism. Consequently, there is a unique topological generator

σ ∈ Gal(K) extending the qth power Frobenius φq ∈ Gal(Fq).

Proof. The restriction homomorphism is surjective because Fq is relatively al-

gebraically closed in K. Both Galois groups are isomorphic to Ẑ, and any

continuous surjective homomorphism Ẑ→ Ẑ is an isomorphism.

Definition 7.4: If K is a mock-Fq, the mock Frobenius automorphism is

the unique σ ∈ Gal(K) extending the qth-power Frobenius φq ∈ Gal(Fq).

If p is a prime, let Z¬p be the prime-to-p completion of Z:

Z¬p = lim←−
(n,p)=1

Z/nZ =
∏
� �=p

Z�.

Definition 7.5: Let K be a mock-finite field, and σ be the mock Frobenius

automorphism.

(1) The principal Euler characteristic on K is the Z¬p-valued Euler

characteristic induced by σ.

(2) The dual Euler characteristic on K is the Z¬p-valued Euler charac-

teristic induced by σ−1.

The reason for the prime-to-p restriction will become clear soon.

Lemma 7.6: The principal and dual Euler characteristics are ∅-definable.
Proof. They are definable by Lemma 6.5, and Aut(K/∅)-invariant by construc-

tion.
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7.1. Mock-frobenius periodic fields.

Definition 7.7: A periodic field (K,σ) is a mock-Frq if (K,σ) |= ACPF and

Abs(K,σ) ∼= Frq.

Proposition 7.8: Let q be a prime power.

(1) The theory of mock-Frq periodic fields is consistent and complete.

(2) If K is a mock-Fq and σ is the mock Frobenius, then (Kalg, σ) is a

mock-Frq. Every mock-Frq arises this way.

Proof. (1) Mock-Frq fields exist because we can embed Frq into an existen-

tially closed periodic field. Any two mock-Frq fields are elementarily

equivalent by Lemma 3.5.

(2) Clear from Proposition 3.4 and the definitions.

7.2. The principal Euler characteristic. Dwork proved the following

part of the Weil conjectures, in [7].

Fact 7.9 (Dwork): If V is a variety over Fq, then there are non-zero algebraic

integers α1, . . . , αm and β1, . . . , βm′ such that for every n,

|V (Fqn)| = αn
1 + · · ·+ αn

m − βn
1 − · · · − βn

m′ .

There is no assumption that V is smooth, proper, or connected.

Fix a copy Qalg of the algebraic numbers. For each prime �, fix an extension

of the �-adic valuation v� from Q to Qalg. Note that v� is non-negative on the

algebraic integers.

Lemma 7.10: Let V, αi, βj be as in Fact 7.9. Let (K∞, σ) be a mock Frq, and

let χ� be the �-adic part of the canonical Euler characteristic on K. Then

(3) χ�(V (K1)) = α′
1 + · · ·+ α′

m − β′
1 − · · · − β′

m′ ,

where

α′
i =

⎧⎨
⎩
αi, v�(αi) = 0,

0, v�(αi) > 0;

β′
i =

⎧⎨
⎩
βi, v�(βi) = 0,

0, v�(βi) > 0.



Vol. 247, 2022 COUNTING MOD n IN PSEUDOFINITE FIELDS 731

In other words, χ�(V (K1)) is obtained from |V (Fq)| by dropping the terms

of positive �-adic valuation.

Proof. Take a non-principal ultrafilter U on N, concentrating on the sets 1+nZ

for every non-zero ideal nZ. It suffices to prove the following two Claims:

Claim 7.11: The ultralimit of |V (Fqn)| in Z� is given by the right-hand side

of (3).

Claim 7.12: The ultralimit of |V (Fqn)| in Z� is given by the left-hand side

of (3).

Claim 7.11 follows from a direct calculation. Claim 7.12 holds because the

theory of K is the limit of the theory of Frq
n

as n→ U . We leave the details as

an exercise to the reader.

Lemma 7.13: Let (K∞, σ) be a mock-Frq.

(1) If C is a curve over Fq, and α1, . . . , α2g are the characteristic roots of

the qth-power Frobenius, then the prime-to-p part of χ(C(K1)) equals

|C(Fq)|.
(2) If V is a 1-dimensional variety over Fq, then the prime-to-p part of

χ(V (K1)) equals |V (Fq)|.
(3) If X is an Frq-definable subset of K1, then the prime-to-p part of χ(X)

equals |X ∩ Fq|.
Proof.

(1) By the Weil conjectures for curves [12, Appendix C, §1], we know that

C(Fqn) = 1− αn
1 − · · · − αn

2g + qn

for all n. Moreover, the Poincaré duality part of the Weil conjectures

gives an equality of multi-sets:

{α1, . . . , α2g} = {q/α1, . . . , q/α2g}.
It follows that each αi has �-adic valuation 0, for � prime-to-p. There-

fore, by Lemma 7.10, the �-adic part of χ(C(K1)) agrees with |C(Fq)|.
(2) An exercise using Part (1) and Fact 3.9 (applied to the field Fq).

(3) By Proposition 3.7, there is a quasi-finite morphism V → A1
Fq

of Fq-

varieties such that X is the image of

V (K1)→ A1(K1) = K1.



732 W. JOHNSON Isr. J. Math.

For each n, let Vn be the fiber product of n copies of V over A1. Then

Vn → A1
Fq

is still quasi-finite, so Vn has dimension at most 1. By

Part (2), χ(Vn(K1)) = |Vn(Fq)|.
Now use the argument of Lemma 4.5. Let f : V (K1) → X be the

surjection induced by V → A1. Let Xk be the definable set of a ∈ X
such that the fiber f−1(a) has size k. Note that if a ∈ X∩Fq, then every

point in the fiber is field-theoretically algebraic over a, hence in V (Fq).

The upshot is that the fibers of V (Fq) → (X ∩ Fq) have size k over

Xk∩Fq, and more generally the fibers of Vn(Fq)→ (X∩Fq) have size k
n

over Xk ∩ Fq. Therefore,

|Vn(Fq)| =
∑
k

kn · |Xk ∩ Fq|,

χ(Vn(K1)) =
∑
k

kn · χ(Xk),

where the second line is as in the proof of Lemma 4.5. By Part (2), the

left hand sides agree. By the invertibility of Vandermonde matrices, it

follows that χ(Xk) = |Xk ∩ Fq|. Summing over k, we see

χ(X) = |X ∩ Fq|.
Proposition 7.14: Let K be a mock-Fq. Let χ be the principal Euler charac-

terisic on K. For any Fq-definable set X ⊆ Kn, we have

χ(X) = |X ∩ Fn
q |.

In particular, χ(X) ∈ Z.

Proof. Proceed by induction on n. For the base case n=1, expandK to a mock-

Frq by Proposition 7.8.(2), and then apply Lemma 7.13.(3). Suppose n>1. For

a ∈ K1, let Xa denote the slice of X over a:

Xa = {�b ∈ (K1)
n−1 : (a,�b) ∈ X}.

Fix �k, and work with χ modulo �k. For i ∈ Z/�k, let Si be the set of a ∈ K1

such that χ(Xa) ≡ i (mod �k). Each set Si is Fq-definable, so by induction

χ(Si) = |Si ∩ Fq|. Now for a ∈ Si ∩ Fq, the set Xa is Fq-definable, so by
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induction χ(Xa) = |Xa ∩ Fn−1
q |. Then the following holds modulo �k:

χ(X) ≡
∑

i∈Z/�k

i · χ(Si) ≡
∑

i∈Z/�k

i · |Si ∩ Fq|

≡
∑

i∈Z/�k

∑
a∈Si∩Fq

i ≡
∑

i∈Z/�k

∑
a∈Si∩Fq

χ(Xa)

≡
∑
a∈Fq

χ(Xa) ≡
∑
a∈Fq

|Xa ∩ Fn−1
q |.

The final sum is |X ∩ Fn
q |.

This lets us simplify Lemma 7.10:

Corollary 7.15: Let V, αi, βj be as in Fact 7.9. Let F be a mock Fq, and χ

be its principal Euler characteristic. Then

χ(V (F )) = α1 + · · ·+ αm − β1 − · · · − βm′ .

This implies something about the numbers appearing in Dwork’s theorem.

Corollary 7.16: If V is a variety over Fq, then the αi and βj of Fact 7.9 have

�-adic valuation zero for � prime-to-q.

Proof. Let α′
i and β

′
i be as in Lemma 7.10. Let F be a mock-Fq, and χ� be the

�-adic part of the principal Euler characteristic. Comparing Lemma 7.10 and

Corollary 7.15, we see that

α′
1 + · · ·+ α′

m − β′
1 − · · · − β′

m′ = α1 + · · ·+ αm − β1 − · · · − βm′ .

Replacing Fq with Fqn changes αi to α
n
i and α′

i to (α
′
i)

n. Therefore, the following

holds for any n ≥ 1:

(α′
1)

n + · · ·+ (α′
m)n − (β′

1)
n − · · · − (β′

m′)n = αn
1 + · · ·+ αn

m − βn
1 − · · · − βn

m′ .

Comparing Poincaré series, one gets equality of multisets

{α′
1, . . . , α

′
m} = {α1, . . . , αm},

{β′
1, . . . , β

′
m′} = {β1, . . . , βm′}.

Therefore, none of the α′
i or β

′
i are zero, and every αi and βi has �-adic valua-

tion 0.

Remark 7.17: Corollary 7.16 can be proven using �-adic cohomology, but the

proof given here is more elementary.
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7.3. The dual Euler characteristic. Let K be a mock-Fq. Recall that

the dual Euler characteristic on K is the prime-to-q part of the canonical

Euler characteristic induced by σ−1, where σ is the mock Frobenius.

Lemma 7.18: Let V be a variety over Fq, and let α1, . . . , αm, β1, . . . , βm′ be

the algebraic integers from Fact 7.9. Let K be a mock-Fq and let χ† be the

dual Euler characteristic. Then

χ†(V (K)) = α−1
1 + · · ·+ α−1

m − β−1
1 − · · · − β−1

m′ .

Moreover, this value is rational.

Proof. Similar to Lemma 7.10, but using an ultrafilter that concentrates on

−1 + nZ for all n. Corollary 7.16 ensures that v�(αi) = 0 for all i, so there is

no need for any α′
i’s or β

′
i’s. Rationality is an easy exercise, using the fact that

αn
1 + · · ·+ αn

m − βn
1 − · · · − βn

m′ ∈ Z

for all n ∈ N.

Proposition 7.19: If K is a mock-Fq and χ† is the dual Euler characteristic

on K, then χ†(X) ∈ Q for every Fq-definable set X .

Proof. If X is the set of K-points in some Fq-definable variety, this follows from

Lemma 7.18.

If X is a definable subset ofKn, then Proposition 3.7 yields a quasi-finite mor-

phism V →An of varieties over Fq, such thatX is the image of V (K1)→An(K1).

Let Vn be the n-fold fiber product of V over A1. By the argument of Lemma 4.5,

χ†(X) is given by some rational linear combination of the χ†(Vn(K)).

Example 7.20: If V is a d-dimensional smooth projective variety over Fq, then

the following identities of multisets hold by the Poincaré duality part of the

Weil conjectures:

{α1, . . . , αm} = {qd/α1, . . . , q
d/αm},

{β1, . . . , βm′} = {qd/β1, . . . , qd/βm′}.
Therefore, for K a mock-Fq with dual Euler characteristic χ†,

χ†(V (K)) = α−1
1 + · · ·+ α−1

m − β−1
1 − · · · − β−1

m′

= (α1 + · · ·+ αm − β1 − · · · − βm′)/qd = |V (Fq)|/qd.
Putting everything together, we have proven:
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Theorem (Theorem 1.6): Let K be a mock-Fq, for some prime power q = pk.

There are two Z¬p-valued ∅-definable strong Euler characteristics χ and χ†

on K, such that

(1) If V is a smooth projective variety over Fq, then

χ(V (K)) = |V (Fq)|,
χ†(V (K)) = |V (Fq)|/qdimV .

(2) If X is any Fq-definable set, then

χ(X) = |X ∩ dcl(Fq)|.
In particular, χ(X) ∈ Z.

(3) If X is any Fq-definable set, then χ†(X) ∈ Q.

Example 7.20 can be generalized to arbitrary pseudofinite fields:

Proposition 7.21: Let K be a pseudofinite field, and σ be a topological gen-

erator of Gal(K). Let χ and χ† be the Ẑ-valued Euler characteristics associated

to σ and σ−1, or the prime-to-p-parts if char(K) = p > 0. Let V be a smooth

projective variety over K. Then χ(K) is invertible in Ẑ or Z¬p, and

(4) χ†(V (K)) = χ(V (K))χ(K)− dim(V ).

Proof. By Axiom 5 in §4.1, χ(K) is given by the trace of σ on torsion in

Gm(Kalg). This trace is invertible, because σ is invertible and the torsion

has rank 1 (away from the characteristic). So χ(K) is invertible in Ẑ or Z¬p.

The identity (4) can be expressed by a conjunction of first-order sentences in

the language of (Kalg, σ) |= ACPF. Indeed, this follows by the definability

of χ and χ†, and the fact that the family of smooth projective d-dimensional

varieties is uniformly ind-definable. Now, when (Kalg, σ) is a mock Frobenius

periodic field, (4) holds by Example 7.20. But every model of ACPF is elemen-

tarily equivalent to an ultraproduct of mock Frobenius periodic fields, by an

argument similar to Lemma 3.13.

Proposition 7.21 could probably also be derived using Conjecture 6.3.

Remark 7.22: Both Proposition 7.21 and Example 7.20 seem closely related to

Bittner’s duality involution on the Grothendieck group of varieties [3]. WhenV is

a d-dimensional smooth projective variety, this involution sends [V ] to [V ]·L−d,

where L = [A1].
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8. Directions for future research

There are several immediate directions for future research. The most important

next step is verifying Conjecture 5.2, completing the proof that the Lμrings-theory
of finite fields is decidable (Theorem 1.2). This will hopefully be carried out in

[16]. Another key task is to relate the Z�-valued Euler characteristic to �-adic

étale cohomology (Conjecture 6.3).

Another interesting direction is the following variant of Theorem 1.2:

Conjecture 8.1: The Lμrings-theory of the rings Z/nZ is decidable.

Lastly, it may be possible to generalize the definability of the canonical Eu-

ler characteristic from ACPF to its expansion ACFA. Although ACFA is not

pseudofinite, its models are ultraproducts of Frobenius difference fields [15], and

definable sets of finite rank are naturally pseudofinite.

8.1. Interactions with number theory? We have relied heavily on alge-

braic geometry and number theory to prove a relatively simple model-theoretic

fact. One could dream of reversing the process to obtain new results in number

theory. Ultraproducts of finite fields are not the only source of pseudofinite

fields. For example, if σ is chosen randomly in Gal(Q), then (Qalg, σ) |= ACPF

with probability 1, by [11, §16.6]. Perhaps one can prove non-trivial facts by

reasoning about nonstandard sizes of definable sets in these structures.

Unfortunately, we have probably done nothing interesting from a number-

theoretic point of view. The nonstandard “sizes” on pseudofinite fields should

be a simple artifact of étale cohomology, by Conjecture 6.3. Étale cohomol-

ogy is already well-understood. Combinatorial facts about sizes correspond to

well-known facts about cohomology. The fact that χ(X × Y ) = χ(X) · χ(Y )

corresponds to the Künneth formula. When f : E → B is a morphism, the

strong Euler characteristic property allows us to calculate the “size” of E by

“integrating” the “sizes” of the fibers over B. This property corresponds to the

Leray spectral sequence.

One tool which might be new on the model-theoretic side is elimination of

imaginaries, which holds in ACPF by work of Hrushovski [14]. When X is

interpretable, or definable with quantifiers, we know that χ(X) is “integral,”

lying in Ẑ rather than Ẑ ⊗Z Q. There may be some number-theoretic content

to this.
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It feels as if there could be some connection between the canonical Euler

characteristic and p-adic L-functions. The classical L-functions associated to

number fields and elliptic curves are defined in terms of point counting. In

some cases, these L-functions can be converted to p-adic analytic functions by

extrapolating the values at negative integers. Insofar as we are counting points

on varieties mod pk, there is a spiritual connection to the p-adic part of the

canonical Euler characteristic.

Moreover, p-adic integration appears in both contexts. If χ is a strong Zp-

valued Euler characteristic, and f : E → B is a definable function, then χ

induces a p-adic measure μ on B, and one can calculate χ(E) by p-adic inte-

gration

χ(E) =

∫
x∈B

χ(f−1(x)) dμ(x).

This was essentially how χ(X) was calculated in Lemma 4.6. Meanwhile, p-adic

integration plays a key role in the theory of p-adic L-functions. For example,

the Riemann zeta function is given on negative integers by a p-adic Mellin

transform: there is some c ∈ Z×
p and p-adic measure μ on Zp such that for

positive integers k,

(5) ζ(−k) = 1

1− ck+1

∫
Zp

xk dμ(x).

This Mellin transform is the underlying reason why the Kubota–Leopoldt p-adic

zeta function exists. In some cases, the measure μ can be given a pseudofinite

interpretation. For example, if p is odd and α is a nonstandard integer whose

p-adic standard part is −1/2, then ζ(−k) is given by the p-adic standard part

of the sum

1

2− 2−k

α∑
n=1

nk.

In other words, (5) holds with c = 1/2 and μ equal to (half) the nonstandard

counting measure on the pseudofinite set {1, 2, . . . , α}.
Thus there are several vague connections between the canonical Euler char-

acteristic on pseudofinite fields, and p-adic L-functions. I lack the expertise to

pursue this connection further.
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