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ABSTRACT

An Engel sink of an element g of a group G is a set E (g) such that for every

x ∈ G all sufficiently long commutators [· · · [[x, g], g], . . . , g] belong to E (g).

(Thus, g is an Engel element precisely when we can choose E (g) = {1}.) It

is proved that if a profinite group G admits an elementary abelian group

of automorphisms A of coprime order q2 for a prime q such that for each

a ∈ A \ {1} every element of the centralizer CG(a) has a countable (or

finite) Engel sink, then G has a finite normal subgroup N such that G/N

is locally nilpotent.
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1. Introduction

It is well known that if a finite group G admits a non-cyclic abelian group

of automorphisms A of coprime order, then G = 〈CG(a) | a ∈ A#〉, where

A# = A\{1} (see, for example, [10, Theorem 6.2.4]). Therefore many properties

of the group G can be derived from the properties of the centralizers CG(a). For

example, we proved in [13] that the exponent of G is bounded in terms of the

exponents of the CG(a) and |A|. In most cases it is natural to assume that A

is an elementary abelian group of order q2 for a prime q.

Results of this kind have also been recently extended to profinite groups

admitting a non-cyclic abelian finite group acting by coprime automorphisms

[2, 3, 4, 5, 6]. In particular, Acciarri, Shumyatsky, and Silveira [3] proved the

following.

Theorem 1.1 ([3, Theorem B2]): If a profinite group G admits an elementary

abelian q-group A of order q2 acting by coprime automorphisms on G in such

a way that all elements in CG(a) are Engel in G for every a ∈ A#, then G is

locally nilpotent.

This result can be viewed as an ‘automorphism’ extension of the Wilson–

Zelmanov theorem [28, Theorem 5] saying that a profinite Engel group is lo-

cally nilpotent. This Wilson–Zelmanov theorem was based on Zelmanov’s deep

results [29, 30, 31] on Lie algebras with Engel conditions, and the proof in the

aforementioned ‘automorphism’ extension also used these results.

Recall that a group G is called an Engel group if for every x, g ∈ G the equa-

tion [x, ng] = 1 holds for some n = n(x, g) depending on x and g. Henceforth,

we use the left-normed simple commutator notation

[a1, a2, a3, . . . , ar] := [· · · [[a1, a2], a3], . . . , ar]

and the abbreviation

[a, kb] := [a, b, b, . . . , b]

where b is repeated k times. A group is said to be locally nilpotent if every

finite subset generates a nilpotent subgroup.

In recent papers [14, 15, 16, 17, 18, 19] we considered generalizations of Engel

conditions for finite, profinite, and compact groups using the concept of Engel

sinks.
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Definition: An Engel sink of an element g of a group G is a set E (g) such

that for every x ∈ G all sufficiently long commutators [x, g, g, . . . , g] belong

to E (g), that is, for every x ∈ G there is a positive integer n(x, g) such that

[x, ng] ∈ E (g) for all n � n(x, g).

(Thus, g is an Engel element precisely when we can choose E (g) = {1},
and G is an Engel group when we can choose E (g) = {1} for all g ∈ G.)

In [15, 18] we considered compact (Hausdorff) groups in which every element

has a finite or countable Engel sink and proved the following theorem.

Theorem 1.2 ([18, Theorem 1.2]): If every element of a compact group G has

a countable Engel sink, then G has a finite normal subgroup N such that G/N

is locally nilpotent.

(By “countable” we mean “finite or denumerable”.)

The purpose of this paper is to obtain the following ‘automorphism’ extension

of this result for profinite groups.

Theorem 1.3: Let q be a prime, and A an elementary abelian q-group of

order q2. Suppose that A acts by coprime automorphisms on a profinite groupG

in such a way that for each a ∈ A# every element of CG(a) has a countable

Engel sink in G. Then G has a finite normal subgroup N such that G/N is

locally nilpotent.

In the proof, first the case of pro-p groups is considered, where Lie ring

methods are applied including Zelmanov’s theorem on Lie algebras satisfying

a polynomial identity and generated by elements all of whose products are ad-

nilpotent [29, 30, 31], in conjunction with the Bahturin–Zaitsev theorem [7]

on polynomial identities of Lie algebras with automorphisms. This analysis

provides a reduction to uniformly powerful pro-p groups, for which a different

Lie algebra over p-adic integers is used canonically connected with the group via

the Baker–Campbell–Hausdorff formula. There is no straightforward connection

between Engel commutators in the group and in the corresponding Lie algebra,

or between Engel sinks of their elements. Nevertheless the Lie algebra is used to

prove that in a uniformly powerful pro-p group, elements with countable Engel

sinks are in fact Engel elements. Then the desired result is derived for the case

of pronilpotent groups. In the general case, firstly an open locally nilpotent

subgroup is found, and the proof proceeds by induction on its index.
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2. Preliminaries

In this section we recall some notation and terminology and several known

properties of Engel sinks in profinite groups.

Our notation and terminology for profinite groups is standard; see, for exam-

ple, [9, 23, 27]. A subgroup (topologically) generated by a subset S is denoted

by 〈S〉. Recall that centralizers are closed subgroups, while commutator sub-

groups [B,A] = 〈[b, a] | b ∈ B, a ∈ A〉 are the closures of the corresponding

abstract commutator subgroups.

We denote by π(k) the set of prime divisors of k, where k may be a positive

integer or a Steinitz number, and by π(G) the set of prime divisors of the orders

of elements of a (profinite) group G. Let σ be a set of primes. An element g

of a group is a σ-element if π(|g|) ⊆ σ, and a group G is a σ-group if all of its

elements are σ-elements. We denote by σ′ the complement of σ in the set of all

primes. When σ = {p}, we write p-element, p′-element, etc.

Recall that a pro-p group is an inverse limit of finite p-groups, a pro-σ group

is an inverse limit of finite σ-groups, a pronilpotent group is an inverse limit of

finite nilpotent groups, a prosoluble group is an inverse limit of finite soluble

groups.

We denote by γ∞(G) =
⋂

i γi(G) the intersection of the lower central series

of a group G. A profinite group G is pronilpotent if and only if γ∞(G) = 1.

Profinite groups have Sylow p-subgroups and satisfy analogues of the Sy-

low theorems. Prosoluble groups satisfy analogues of the theorems on Hall

π-subgroups. Pronilpotent groups are Cartesian products of their Sylow p-

subgroups. We refer the reader to the corresponding chapters in [23, Ch. 2] and

[27, Ch. 2].

For a group A acting by automorphisms on a group B we use the usual

notation for commutators [b, a] = b−1ba and commutator subgroups

[B,A] = 〈[b, a] | b ∈ B, a ∈ A〉,

as well as for centralizers

CB(A) = {b ∈ B | ba = b for all a ∈ A}
and

CA(B) = {a ∈ A | ba = b for all b ∈ B}.
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If ϕ is an automorphism of a finite group H of coprime order, that is, such

that (|ϕ|, |H |) = 1, then we say for brevity that ϕ is a coprime automorphism

of H . Among many well-known properties of coprime automorphisms of finite

groups, we recall the following.

Lemma 2.1 (see [10, Theorem 6.2.4]): If A is an elementary abelian group of

order q2 for a prime q acting by coprime automorphisms on a finite group G,

then G = 〈CG(a) | a ∈ A#〉.
We say that ϕ is a coprime automorphism of a profinite group H meaning

that a procyclic group 〈ϕ〉 faithfully acts on H by continuous automorphisms

and π(〈ϕ〉) ∩ π(H) = ∅. Since the semidirect product H〈ϕ〉 is also a profinite

group, ϕ is a coprime automorphism of H if and only if for every open normal

ϕ-invariant subgroup N of H the automorphism (of finite order) induced by ϕ

on H/N is a coprime automorphism. The following folklore lemma follows from

the Sylow theory for profinite groups and an analogue of the Schur–Zassenhaus

theorem.

Lemma 2.2 (see [18, Lemma 4.1]): If A is a group of coprime automorphisms

of a profinite group G, then for every prime q ∈ π(G) there is an A-invariant

Sylow q-subgroup of G. If G is in addition prosoluble, then for every subset

σ ⊆ π(G) there is an A-invariant Hall σ-subgroup of G.

The following lemma is a profinite analogue of the well-known property of

coprime automorphisms of finite groups.

Lemma 2.3 ([23, Proposition 2.3.16]): If A is a group of coprime automorphisms

of a profinite group G and N is an A-invariant closed normal subgroup of G,

then every fixed point of A in G/N is an image of a fixed point of A in G, that

is, CG/N (A) = C(A)N/N .

As a consequence, we also have the following.

Lemma 2.4 ([18, Lemma 4.3]): If A is a group of coprime automorphisms of a

profinite group G, then [[G,A], A] = [G,A].

The following well-known fact is a straightforward consequence of the Baire

Category Theorem (see [12, Theorem 34]).

Theorem 2.5: If a compact Hausdorff group is a countable union of closed

subsets, then one of these subsets has non-empty interior.
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We now recall a few general properties of Engel sinks. Clearly, the intersection

of two Engel sinks of a given element g of a group G is again an Engel sink

of g, with the corresponding function n(x, g) being the maximum of the two

functions. Therefore, if g has a finite Engel sink, then g has a unique smallest

Engel sink. If E (g) is the smallest Engel sink of g, then the restriction of

the mapping x �→ [x, g] to E (g) must be surjective, which gives the following

characterization.

Lemma 2.6 ([18, Lemma 2.1]): If an element g of a group G has a finite Engel

sink, then g has a smallest Engel sink E (g) and for every s ∈ E (g) there is

k ∈ N such that s = [s, kg].

For profinite groups we proved in [18] the following lemma as a consequence

of the Baire Category Theorem 2.5; we include it here with the proof for the

reader’s benefit.

Lemma 2.7: Suppose that an element g of a profinite group G has a countable

Engel sink. Then there are positive integers i, k and a coset Nb of an open

normal subgroup N such that

[[nb, ig], g
k] = 1 for all n ∈ N.

Proof. Let {s1, s2, . . . } be an Engel sink of g. We define the sets

Skl = {x ∈ G | [x, kg] = sl}.
Note that each Skl is a closed subset of G. Then

G =
⋃
k,l

Skl

by the definition of the Engel sink. By Theorem 2.5 one of these sets Sij contains

an open subset, which contains a cosetNb of an open normal subgroupN . Thus,

[nb, ig] = sj for all n ∈ N.

Since G/N is a finite group, the coset Nb is invariant under conjugation by

some power gk. Then

sg
k

j = [b, ig]
gk

= [bg
k

, ig]

= [nb, ig] for some n ∈ N

= sj.

In other words, gk commutes with sj , so that

[[nb, ig], g
k] = [sj , g

k] = 1 for all n ∈ N.
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Remark 2.8: When a finite group A acts by automorphisms on a group G,

if H is a subgroup of finite index, then
⋂

a∈A Ha is an A-invariant subgroup of

finite index. We freely use this property throughout the paper without special

references.

Recall that a section of a group G is a quotient S/T , where T is a normal

subgroup of a subgroup S. If ϕ is an automorphism (or an element) of G, then a

section S/T is said to be ϕ-invariant if both S and T are ϕ-invariant subgroups

(respectively, normalized by ϕ).

Remark 2.9: If an element g of a group G has a finite (or countable) Engel sink

in G, then its image also has a finite (respectively, countable) Engel sink in

any g-invariant section of G. We freely use this property throughout the paper

without special references.

3. Uniformly powerful pro-p groups

In this section we consider a special class of pro-p groups, the finitely generated

uniformly powerful pro-p groups, for which we prove that any element with a

countable Engel sink must in fact be an Engel element.

Recall that a pro-p group G is powerful if [G,G] � Gp for p 	= 2, or

[G,G] � G4 for p = 2. Henceforth Gn denotes the (closed) subgroup gener-

ated by all n-th powers of elements of G. In a powerful pro-p group G, for

every k ∈ N the subgroup Gpk

consists of pk-th powers of elements of G, and

the subgroups Gpk

form a central series of G.

A powerful pro-p group G is said to be uniformly powerful if the mapping

x �→ xp

induces an isomorphism of Gpi

/Gpi+1

onto Gpi+1

/Gpi+2

for every i ∈ N. This

definition implies that a uniformly powerful pro-p group is torsion-free.

If G is a finitely generated uniformly powerful pro-p group, then the struc-

ture of a Lie algebra L over the p-adic integers Zp on the same underlying set

G = L can be defined in a certain canonical way; see [9, Theorem 4.30]. The

additive group of L is isomorphic to a direct sum of copies of Zp. The group

multiplication in G is then reconstructed from the Lie Zp-algebra operations

in L by the Baker–Campbell–Hausdorff formula; see [9, Theorem 9.10].
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Let X,Y be free generators of a free associative algebra of formal power series,

which also becomes a Lie algebra with respect to the Lie product

[U, V ]L = UV − V U.

The Baker–Campbell–Hausdorff formula has the form

(3.1)

Φ(X,Y )=log(exp(X) · exp(Y ))

=X+Y +
1

2
[X,Y ]L+

1

12
[[X,Y ]L, Y ]L− 1

12
[[X,Y ]L, X ]L+· · · ,

where

log(1 + Z) =

∞∑
i=1

(−1)i
Zi

i
and exp(Z) =

∞∑
i=0

Zi

i!

are formal power series, and the right-hand side of (3.1) is a series in Lie algebra

commutators of increasing weights in X,Y with rational coefficients. The group

operation in the uniformly powerful pro-p group G is expressed in terms of Lie

Zp-algebra operations as

(3.2) xy = Φ(x, y) = x+ y +
1

2
[x, y]L +

1

12
[[x, y]L, y]L − 1

12
[[x, y]L, x]L + · · · .

To avoid confusion, in this section we use [ , ]G for group commutators in G,

and [ , ]L for Lie algebra commutators in L, and we write 0L = 1G to denote the

zero in L and the identity in G. Although the denominators of the coefficients

in (3.1) may be divisible by powers of p, all the terms in (3.2) are well defined in

the Zp-algebra L because [L,L]L � pL (or [L,L]L � 4L when p = 2). Roughly

speaking, if a power pk appears in the denominator of a coefficient of a Lie

algebra commutator in this series, this commutator always belongs to pkL and

therefore has a unique pk-th root in the additive group of L, so that the product

is well-defined in L. Moreover, the p-adic estimates of the coefficients in (3.1)

show that the condition [L,L]L � pL (or [L,L]L � 4L when p = 2) ensures

a ‘surplus’ divisibility by powers of p that makes the series convergent in the

p-adic topology on L; see [9, Theorem 6.28]. The group commutator is also

expressed as a series

[x, y]G = [x, y]L + · · ·
in Lie algebra commutators of increasing weights in x, y with rational coeffi-

cients, which is also well-defined and convergent.
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It is known that

(3.3) [x, y]G = 1 if and only if [x, y]L = 0,

and for α ∈ Zp we have

(3.4) G 
 xα = αx ∈ L,

where xα is the α-th power of an element x ∈ G and αx is the α-th multiple

of x regarded as an element of L.

The passages fromG to L and vice versa described above constitute a category

isomorphism between finitely generated uniformly powerful pro-p groups and

uniformly powerful Lie Zp-algebras; see [9, Theorem 9.10].

The main result of this section is the following.

Proposition 3.1: Let G be a finitely generated uniformly powerful pro-p

group. If an element g ∈ G has a countable Engel sink, then g is an Engel

element of G.

Proof.Assume thatG is in the ‘category correspondence’ with a Lie Zp-algebra L

with the same underlying sets G = L, as described above.

By Lemma 2.7, there is a coset bN of an open normal subgroupN and positive

integers l, s such that [[bn, lg]G, g
s]G = 1 for all n ∈ N . By (3.3) and (3.4) this

means that

0L = [[bn, lg]G, g
s]L = [[bn, lg]G, sg]L = s[[bn, lg]G, g]L.

Since G (or the additive group of L) is torsion-free, we get [[bn, lg]G, g]L = 0,

that is, [bn, l+1g]G = 1. To simplify notation, we redenote l + 1 by l, so

[bn, lg]G = 1 for all n ∈ N .

We can assume that N = Gpm

. Then

bN = b+N

and therefore b+ n ∈ b+N = bN for any n ∈ N . Thus, we have

(3.5) [b+ n, lg]G = 1 for any n ∈ N.

We also have bp
m ∈ N , and the idea is to replace b in (3.5) with powers

b1+pm

, b1+p2m

, . . . belonging to b+N and take linear combinations of the result-

ing equations to eliminate b, so for any given n ∈ N we will obtain [n, lg]G = 1.

For further references, we note that

(3.6) 1 = [b+ bp
im

+ n, lg]G = [(1 + pim)b+ n, lg]G = 0L

for any n ∈ N and any i ∈ N.
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First we consider a free Q-algebra of formal power series in non-commuting

variables x, y, z. This is a Lie Q-algebra with respect to the product

[u, v]L = uv−vu. The Baker–Campbell–Hausdorff formula defines the structure

of a group on the same set, and elements x, y, z generate a free group; see [8,

Ch. II] for details. We denote by [u, v]G = [u, v]L + · · · the group commutator

in this group.

We write the group commutator [x+y, lz]G as an (infinite) linear combination

of Lie algebra commutators with rational coefficients resulting from repeated

application of the Baker–Campbell–Hausdorff formula:

(3.7) [x+ y, lz]G = [x+ y, lz]L + · · · .
Note that when we substitute elements of our uniformly powerful pro-p group G

instead of x, y, z, the same formula holds with the series on the right becoming

convergent in L. Expanding brackets and collecting terms we represent the

right-hand side as

[x+ y, lz]G = w0(x, y, z) + w1(x, y, z) + w2(x, y, z) + · · · ,
where wi(x, y, z) is an infinite Q-linear combination of Lie algebra commutators

in x, y, z each having weight i in x. Substituting x = b, y = n ∈ N , z = a we

see from (3.5) that

1G = [b+ n, lg]G = w0(b, n, g) + w1(b, n, g) + w2(b, n, g) + · · · = 0L,

where every term wi(b, n, g) belongs to L as a sum of a convergent series. More-

over, if pf(i) is the least power of p such that wi(b, n, g) ∈ pf(i)L, then

(3.8) lim
i→∞

f(i) = ∞.

This follows from the p-adic estimates of the Baker–Campbell–Hausdorff for-

mula and the powerfulness condition [L,L] � pL (or [L,L] � 4L for p = 2); see

[9, Theorem 6.28 and Corollary 6.38].

Note that

(3.9) w0(b, n, g) = w0(0, n, g) = [n, lg]G.

Our aim is to show that w0(b, n, g) = 0 for any n ∈ N , which will imply that g

is an Engel element. We fix the elements b and n ∈ N for what follows.

First we conduct a certain linearization process with the free variables x, y, z.

We shall be using the relations wi(λx, y, z) = λiwi(x, y, z), λ ∈ Q, which hold

because wi(x, y, z) is an (infinite) linear combination of Lie algebra commutators
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in x, y, z each having weight i in x. We denote for brevity wi = wi(x, y, z).

Replacing x in (3.7) with x1+pim

= (1 + pim)x for i = 1, 2, . . . we obtain an

infinite family of equations

(3.10)

[x+y, lz]G=w0+w1+w2+w3+· · ·
[(1+pm)x+y, lz]G=w0+(1+pm)w1+(1+pm)2w2+(1+pm)3w3+· · ·
[(1+p2m)x+y, lz]G=w0+(1+p2m)w1+(1+p2m)2w2+(1+p2m)3w3+· · ·

...

The coefficients of the wi on the right form an infinite matrix of Vandermond

type. For every k = 1, 2, . . . we find a linear combination with rational coeffi-

cients c0, . . . , ck−1 (which may be different for different k) of the top k of these

equations for i = 0, . . . , k− 1 such that its right-hand side would have the form

w0 + βkwk + βk+1wk+1 + · · · ,
that is, the coefficients of w1, . . . , wk−1 would vanish. For that we consider

the k × k matrix V in the left upper corner of the coefficient matrix of the

right-hand sides in (3.10), which is a Vandermond matrix. Then we can take

for c0, . . . , ck−1 the first row of the inverse matrix V −1. As a result we obtain

(3.11)

k−1∑
i=0

ci[(1 + pim)x+ y, lz]G = w0 + βkwk + βk+1wk+1 + · · · .

When we substitute x = b, y = n, z = g into [(1 + pim)x + y, lz]G we obtain

by (3.6)

[(1 + pim)b+ n, lg]G = 1G = 0L,

but the coefficients ci have denominators divisible by p, so that we cannot use

them in L. Instead we multiply (3.11) by the determinant Δ = detV , so that

all the products ciΔ become integers:

(3.12)

k−1∑
i=0

ciΔ[(1 + pim)x+ y, lz]G = Δw0 + βkΔwk + βk+1Δwk+1 + · · · .

Then the substitution makes sense in L for the left-hand side of (3.12), in which

each term becomes ciΔ[(1+pim)b+n, lg]G = 1G = 0L, for every i = 0, . . . , k−1.

However, before we can interpret this substitution in L for the right-hand side

of (3.12), we need to consider the coefficients βi. For that we continue using

calculation with the free variables.
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Let us say for brevity that a rational number t/s, where t, s ∈ Z, is a

p-integer if the denominator s is coprime to p, that is, t/s belongs to the

localization Z(p) of Z at p. The p-integers Z(p) are naturally contained in the

ring of p-adic integers Zp, which is the completion of Z(p) with respect to the

p-adic valuation.

Lemma 3.2: All the coefficients βi in (3.11) are p-integers.

Proof. Recall that the coefficients βi appear after taking the linear combination

of the equations (3.10) with coefficients c0, . . . , ck given by the first row of the

inverse matrix V −1, where

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1

1 1 + pm (1 + pm)2 · · · (1 + pm)k

1 1 + p2m (1 + p2m)2 · · · (1 + p2m)k

...
...

...
. . .

...

1 1 + pkm (1 + pkm)2 · · · (1 + pkm)k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The inverse matrix V −1 is known explicitly (see, for example, [20, § 1.2.3, Ex-
ercise 40]). The first row (c0, c1, . . . , ck−1) is given by the formulae

c0 =
(1 + pm)(1 + p2m) · · · (1 + p(k−1)m)

(−pm)(−p2m) · · · (−p(k−1)m)

and

cs =
(1 + pm)(1 + p2m) · · · ̂(1 + psm) · · · (1 + p(k−1)m)

psm(psm − pm)(psm − p2m) · · · ̂(psm − psm) · · · (psm − p(k−1)m)

for s = 1, 2, . . . , k − 1, where ̂ means omitting this term.

We already have the k equations with p-integer values

β0 =
k−1∑
i=0

ci = 1

and

βt =

k−1∑
i=0

ci(1 + pim)t = 0 for t = 1, . . . , k − 1

given by V −1. We need to show that the similar sums with t � k are also

p-integers. Expanding the powers (1 + pim)t into powers of pim and using the
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fact that
∑k−1

i=0 ci = 1 we see by induction on t that the sums

βt =

k−1∑
i=0

ci(1 + pim)t

are p-integers for t = 1, 2, . . . if and only if the sums

k−1∑
i=1

ci
(
pim

)u

are p-integers for u = 1, 2, . . . (note that the last sum starts from i = 1). We

already have this property for u = 1, 2, . . . , k − 1. It remains to consider the

values u � k. But for these big values of u in fact every product

ci
(
pim

)u
is a p-integer for any u � k and every i = 1, 2, . . . , k − 1. Indeed, the exponent

of the highest power of p dividing the denominator of ci is mi(2k − i − 1)/2,

which is less than mik � miu.

We return to the proof of Proposition 3.1. Since all the coefficients βk, βk+1, . . .

in (3.12) are p-integers by Lemma 3.2, on substitution x = b, y = n, z = g we

obtain an equation in L:

0 =

k−1∑
i=0

ciΔ[(1 + pim)b+ n, lg]G

= Δw0(b, n, g) + βkΔwk(b, n, g) + βk+1Δwk+1(b, n, g) + · · · ,
so that

Δw0(b, n, g) = −βkΔwk(b, n, g)− βk+1Δwk+1(b, n, g)− · · · .
Since the additive group of L is torsion-free, it follows that

(3.13) w0(b, n, g) = −βkwk(b, n, g)− βk+1wk+1(b, n, g)− · · · .
Such an equation holds for every k = 1, 2, . . . (with different sets of coeffi-

cients βi for different k). It follows that w0(b, n, g) = 0. Indeed, recall that

wi(b, n, g) ∈ pf(i)L. Since the coefficients βi are p-integers, we obtain that the

right-hand side of (3.13) belongs to

pminj�k f(j)L.
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Since limi→∞ f(i) = ∞ as noted in (3.8), we also have

lim
k→∞

min
j�k

f(j) = ∞.

Therefore the validity of (3.13) for all k ∈ N implies that

w0(b, n, g) ∈
∞⋂
i=0

piL = 0.

As a result, we obtain w0(b, n, g) = 0, which by (3.9) is equivalent to the

desired equation [n, lg]G = 1. This holds for any n ∈ N , and since G/N is a

finite p-group, it follows that g is an Engel element of G.

4. Pronilpotent groups

When G is a pronilpotent group, the conclusion of the main Theorem 1.3 is

equivalent to G being locally nilpotent, and this is what we prove in this section.

Theorem 4.1: Suppose thatG is a pronilpotent group admitting an elementary

abelian group of coprime automorphisms A of order q2 for a prime q. If for each

a ∈ A# every element of the centralizer CG(a) has a countable Engel sink,

then G is locally nilpotent.

The proof of Theorem 4.1 is mostly about the case where G is a pro-p group.

While the special case of uniformly powerful pro-p groups is all but covered

in the previous section, for arbitrary pro-p groups we need different Lie ring

methods, which we now describe.

For a prime number p, the Zassenhaus p-filtration of a group G (also called

the p-dimension series) is defined by

Gi = 〈gpk | g ∈ γj(G), jpk � i〉 for i ∈ N.

This is indeed a filtration (or an N-series, or a strongly central series) in

the sense that

(4.1) [Gi, Gj ] � Gi+j for all i, j.
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Then the Lie ring Dp(G) is defined with the additive group

Dp(G) =
⊕
i

Gi/Gi+1,

where the factors Qi = Gi/Gi+1 are additively written. The Lie product is

defined on homogeneous elements xGi+1 ∈ Qi, yGj+1 ∈ Qj via the group

commutators by

[xGi+1, yGj+1] = [x, y]Gi+j+1 ∈ Qi+j

and extended to arbitrary elements of Dp(G) by linearity. Condition (4.1) en-

sures that this product is well-defined, and group commutator identities imply

that Dp(G) with these operations is a Lie ring. Since all the factors Gi/Gi+1

have prime exponent p, we can view Dp(G) as a Lie algebra over the field of p

elements Fp. We denote by Lp(G) the subalgebra generated by the first fac-

tor G/G2. (Sometimes, the notation Lp(G) is used for Dp(G).) If u ∈ Gi\Gi+1,

then we define δ(u) = i to be the degree of u with respect to the Zassenhaus

filtration.

We shall use the following characterization of p-adic analytic pro-p groups in

terms of the Zassenhaus filtration. Namely, a finitely generated pro-p group G

is p-adic analytic if and only if the Lie algebra Lp(G) is nilpotent. This result

goes back to Lazard [21]; see also [25, Proposition D]. In terms of the Lubotzky–

Mann theory of powerful pro-p groups [22], another result of Lazard [21, III,

3.1.3, 3.4.4] states that a finitely generated pro-p group G is p-adic analytic if

and only if it has an open powerful subgroup.

In order to obtain the nilpotency of the Lie algebra of the type of Lp(G)

that appears in the proof of Theorem 4.1, we will be using the following deep

result of Zelmanov [29, 30, 31]. (The proofs of the Wilson–Zelmanov theorem

[28, Theorem 5] on local nilpotency of profinite Engel groups, as well as of

Theorems 1.1 and 1.2, were also based on this theorem of Zelmanov.)

Theorem 4.2 (Zelmanov [29, 30, 31]): Let L be a Lie algebra over a field and

suppose that L satisfies a polynomial identity. If L can be generated by a finite

set X such that every commutator in elements of X is ad-nilpotent, then L is

nilpotent.

The following lemma is derived from the Baire Category Theorem 2.5, the

Bahturin–Zaitsev theorem [7] on Lie algebras with automorphisms whose fixed

points satisfy a polynomial identity, and the Wilson–Zelmanov theorem [28,

Theorem 1] on Lie algebras of groups satisfying a coset identity.
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Lemma 4.3 ([2, Proposition 2.6]): Assume that a finite group F acts coprimely

on a profinite group G in such a manner that CG(F ) is locally nilpotent. Then

for each prime p the Lie algebraLp(G) satisfies a multilinear polynomial identity.

We now consider the case of pro-p groups.

Proposition 4.4: Suppose that P is a finitely generated pro-p group admitting

an elementary abelian group of coprime automorphisms A of order q2 for a

prime q. If for each a ∈ A# every element of the centralizer CG(a) has a

countable Engel sink, then P is nilpotent.

The plan of the proof of this proposition is as follows. First we prove that

the Lie algebra Lp(P ) is nilpotent (which is actually proved for the Lie algebra

obtained by extension of the ground field). This will mean that the group P is

p-adic analytic and therefore has a characteristic open subgroup that is a uni-

formly powerful pro-p group. By Proposition 3.1, an element with a countable

Engel sink in a uniformly powerful pro-p group is actually an Engel element.

Then the application of Theorem 1.1 gives nilpotency of the uniformly powerful

subgroup and therefore the solubility of P . The proof is completed by induction

on the derived length.

We begin with ad-nilpotency of homogeneous elements ofCLp(P )(a) for a∈A#.

Lemma 4.5: For each a ∈ A# every homogeneous element ḡ of Lp(P ) that

belongs to CLp(P )(a) is ad-nilpotent.

Proof. By Lemma 2.3 the element ḡ is the image of some element g ∈ CP (a) in

the corresponding factor Pδ(g)/Pδ(g)+1 of the Zassenhaus filtration, where δ(g)

is the degree of g. We fix the notation g and ḡ for the rest of the proof of this

lemma.

By Lemma 2.7 for any element g ∈ CP (a) there are positive integers i, s and

a coset Nb of an open normal subgroup N such that

[[nb, ig], g
s] = 1 for all n ∈ N.

Since P is a pro-p group, we can assume that s is a power of p, so that

(4.2) [[nb, ig], g
pk

] = 1 for all n ∈ N.

For generators x, y, z, t of a free group, write

[[xy, iz], t] = [[x, iz], t] · [[y, iz], t] · v(x, y, z, t),
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where the word v(x, y, z, t) is a product of commutators of weight at least i+3,

each of which involves x, y, t and involves z at least i times. Substituting x = n,

y = b, z = g, and t = gp
k

and using (4.2) we obtain that

[[n, ig], g
pk

] = v(n, b, g, gp
k

)−1 for all n ∈ N.

If |P/N | = pm, then for any h ∈ P we have [h, mg] ∈ N , so that we also have

(4.3) [[h, i+mg], gp
k

] = v([h, mg], b, g, gp
k

)−1.

We claim that ḡ is ad-nilpotent in Lp(P ) of index i+m+ pk.

Recall that δ(u) denotes the degree of an element u ∈ P with respect to the

Zassenhaus filtration. It is known that

(4.4) up ∈ Ppδ(u).

Furthermore, in Lp(P ) for the images of u and up in Pδ(u)/Pδ(u)+1 and

Ppδ(u)/Ppδ(u)+1, respectively, we have

(4.5) [x, ūp] = [x, pū]

(see, for example, [8, Ch. II, § 5, Exercise 10]). By (4.4) the degree of

v([h, ma], b, g, gp
k

)

on the right of (4.3) is at least δ(b) + δ(h) + (i +m+ pk)δ(g), strictly greater

than d = δ(h) + (i+m+ pk)δ(g). This means that the image of the right-hand

side of (4.3) in Pd/Pd+1 is trivial. At the same time, by (4.5) the image of

the left-hand side of (4.3) in Pd/Pd+1 is equal to the image of [h, i+m+pkg] in

Pd/Pd+1, which is in turn equal to the element [h̄, i+m+pk ḡ] in Lp(P ). Thus,

for the corresponding homogeneous elements of Lp(P ) we have

[h̄, i+m+pk ḡ] = 0.

Since here h̄ can be any homogeneous element, we obtain that ḡ is ad-nilpotent

of index i+m+ pk, as claimed.

The Lie algebra Lp(P ) is generated by its first homogeneous component

L1 = P/(P p[P, P ]), which is the additively written Frattini quotient of P . By

Lemmas 2.1 and 2.3 we have

L1 =
∑

a∈A#

CL1(a).
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Thus we obtain a finite set of generators of Lp(P ) that are ad-nilpotent by

Lemma 4.5. But we also need all commutators in the generators to be ad-

nilpotent. We cannot, however, say that a commutator in elements of CL1(a)

for different a ∈ A# is again an element of CLp(P )(b) for some b ∈ A#. Instead,

we extend the ground field by a primitive q-th of unity ζ by forming

L̃ = Lp(P )⊗Z Z[ζ]

and choose a generating set of L̃ consisting of common eigenvectors for A. We

shall prove that L̃ is nilpotent using Theorem 4.2. This will obviously imply

the nilpotency of Lp(P ).

The next two lemmas confirm that the hypotheses in Theorem 4.2 are satisfied

for L̃.

Lemma 4.6: The Lie algebra L̃ is generated by finitely many elements all com-

mutators in which are ad-nilpotent.

Proof. The Lie algebra L̃ is generated by its first homogeneous component

L̃1 = L1 ⊗Z Z[ζ], which is a finite p-group. Since the ground field of L̃ is a

splitting field for the linear transformations induced by A and A is abelian of

coprime order, every Li is a sum of common eigenspaces for A. In particular,

we can choose finitely many generators of L̃ among common eigenvectors for A

in L̃1. Note that since A is non-cyclic, every common eigenspace for A is

contained in one of the centralizers CL̃(a) for a ∈ A#.

Therefore, since a commutator in common eigenvectors for A is again a com-

mon eigenvector for A, every commutator of weight i in these generators belongs

to CL̃i
(a) for some a ∈ A#. It remains to prove that any element u ∈ CL̃i

(a) is

ad-nilpotent, for each a ∈ A# and for any i.

Clearly,

CL̃i
(a) = CLi(a)⊗Z Z[ζ].

Hence,

u = v0 + ζv1 + ζ2v2 + · · ·+ ζq−2vq−2

for some vi ∈ CLi(a). Each of the summands ζivi is ad-nilpotent by Lemma 4.5.

A sum of ad-nilpotent elements need not be ad-nilpotent in general. But in our

case, we shall see that these summands generate a nilpotent subalgebra, and we

shall be able to apply the following lemma.
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Lemma 4.7 ([13, Lemma 5]): Suppose thatM is a Lie algebra,H is a subalgebra

of M generated by s elements h1, . . . , hs such that all commutators in the hi

are ad-nilpotent of index t. If H is nilpotent of class c, then for some (s, t, c)-

bounded number ε, we have

[M,H, . . . , H︸ ︷︷ ︸
ε

] = 0.

Recall that we are proving that u = v0 + ζv1 + ζ2v2 + · · ·+ ζq−2vq−2 is ad-

nilpotent, where vi ∈ CLi(a). Let H be the Lie subalgebra generated by the

elements v0, ζv1, ζ
2v2, . . . , ζ

q−2vq−2. It is contained in

CL̃(a) = CLp(P )(a)⊗Z Z[ζ] =
⊕

CLi(a)⊗Z Z[ζ].

By Lemma 2.3 each CLi(a) is the image of a subgroup of CP (a) in the corre-

sponding factor of the Zassenhaus p-filtration. All elements of the pro-p group

CP (a) have countable Engel sinks by hypothesis, and therefore CP (a) is locally

nilpotent by Theorem 1.2. It follows that CLp(P )(a) and CL̃(a) are also lo-

cally nilpotent. In particular, the Lie subalgebra H = 〈v0, ζv1, . . . , ζq−2vq−2〉
is nilpotent of certain class c. There are only finitely many commutators of

weight at most c in the generators v0, ζv1, . . . , ζ
q−2vq−2, each of which has the

form ζkw, where w is a homogeneous element of Lp(P ) contained in CLp(P )(a).

By Lemma 4.5 all such commutators are ad-nilpotent, so taking t to be the

maximum of their ad-nilpotency indices we can apply Lemma 4.7 to obtain

that u = v0 + ζv1 + ζ2v2 + · · ·+ ζq−2vq−2 is also ad-nilpotent.

Lemma 4.8: The Lie algebra L̃ satisfies a polynomial identity.

Proof. Choose any a ∈ A#. The centralizer CP (a) is locally nilpotent by Theo-

rem 1.1. Then Lp(P ) satisfies a multilinear polynomial identity by Lemma 4.3.

Since the Lie algebra Lp(G) satisfies a multilinear polynomial identity, the same

identity holds on L̃.

Proof of Proposition 4.4. Recall that P is a finitely generated pro-p group ad-

mitting an elementary abelian group of coprime automorphisms A of order q2

for a prime q such that for each a ∈ A# every element of the centralizer CG(a)

has a countable Engel sink; we need to show that P is nilpotent. By Lem-

mas 4.8 and 4.6 the Lie algebra L̃ = Lp(P ) ⊗Z Z[ζ] satisfies the hypotheses of

Theorem 4.2, by which L̃ is nilpotent, and therefore the Lie algebra Lp(P ) is

also nilpotent. As mentioned at the beginning of the section, by a theorem of
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Lazard [21] (see also [25, Proposition D]) the nilpotency of Lp(P ) for the finitely

generated pro-p group P is equivalent to P being a p-adic analytic group. Fur-

thermore, in terms of the Lubotzky–Mann theory of powerful pro-p groups [22],

another result of Lazard [21, III, 3.1.3, 3.4.4] states that a finitely generated

pro-p group P is p-adic analytic if and only if it has an open powerful sub-

group. Therefore P has a characteristic open subgroup U , which is a uniformly

powerful pro-p group of finite rank (see [9, Corollaries 4.3 and 8.34]).

By Proposition 3.1, elements with countable Engel sinks in a uniformly pow-

erful pro-p group are actually Engel elements. Therefore A acts on U in such

a way that for each a ∈ A# every element of the centralizer CU (a) is an Engel

element. By Theorem 1.1 the group U is nilpotent. As a result, the group P is

soluble.

We now complete the proof by induction on the derived length of P . By

induction hypothesis, P has an abelian characteristic subgroup V such that P/V

is nilpotent. By Theorem 1.1 it is sufficient to show that for each a ∈ A# every

element of the centralizer CP (a) is an Engel element. Since P/V is nilpotent,

it is sufficient to show that every element g ∈ CP (a) is an Engel element in

the product V 〈g〉. Since all elements of V 〈g〉 have countable Engel sinks, the

group V 〈g〉 is nilpotent by Theorem 1.2, whence the result.

Proof of Theorem 4.1. By Theorem 1.1, it is sufficient to prove that for each

a ∈ A# every element h ∈ CG(a) is an Engel element in G. For each prime p,

let Gp denote the Sylow p-subgroup of G, so that G is a Cartesian product of

the Gp, since G is pronilpotent. Given any two elements g ∈ G and h ∈ CG(a),

we write

g =
∏
p

gp and h =
∏
p

hp,

where gp, hp ∈ Gp. Clearly, [gq, hp] = 1 for q 	= p.

By Lemma 2.7, for the element h ∈ CG(a) there are positive integers i, k and

a coset Nb of an open normal subgroup N such that

(4.6) [[nb, ih], h
k] = 1 for all n ∈ N.

Let l be the (finite) index ofN inG. ThenN contains all Sylow q-subgroups ofG

for q 	∈ π(l). Hence we can choose b to be a π(l)-element. Let π = π(l) ∪ π(k);

note that π is a finite set of primes.
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We claim that

[gq, i+1hq] = 1 for q 	∈ π.

Indeed, since b commutes with elements of Gq for q 	∈ π and Gq � N , by (4.6)

we have

(4.7)

1 = [[gqb, ih], h
k] = [[gq, ih], h

k] · [[b, ih], h
k]

= [[gq, ih], h
k]

= [[gq, ihq], h
k
q ].

Thus, hk
q centralizes [gq, ihq]. Since k is coprime to q, we have 〈hk

q 〉 = 〈hq〉.
Therefore (4.7) implies that [[gq, ihq], hq] = 1, as claimed.

For every prime p the group Gp is locally nilpotent by Proposition 4.4, so

there is kp such that [gp, kphp] = 1. Now for m = max{i + 1,maxp∈π{kp}}
we have [gp, mhp] = 1 for all p, which means that [g, mh] = 1. Thus, for each

a ∈ A# every element h ∈ CG(a) is an Engel element in G. Therefore G is

locally nilpotent by Theorem 1.1.

5. Profinite groups

First we recall some lemmas in [18] about Engel sinks of coprime automor-

phisms.

Lemma 5.1 ([18, Lemma 4.7]): Let ϕ be a coprime automorphism of a pronilpo-

tent group F with a countable Engel sink E (ϕ) in the semidirect product F 〈ϕ〉.
Then the set K = {[g, ϕ] | g ∈ F} is a finite smallest Engel sink of ϕ in the

semidirect product F 〈ϕ〉.
The next lemma was basically proved in [18, Lemma 4.7], but we cannot make

a direct reference and therefore give a short proof.

Lemma 5.2: Let ϕ be a coprime automorphism of a locally nilpotent profinite

group F . If ϕ has a countable Engel sink E (ϕ) in the semidirect product F 〈ϕ〉,
then γ∞(F 〈ϕ〉) is finite and γ∞(F 〈ϕ〉) = [F, ϕ].

Proof. By Lemma 5.1, the set K = {[g, ϕ] | g ∈ F} is finite. Then the com-

mutator subgroup [F, ϕ] = 〈K〉 is nilpotent, since F is locally nilpotent. By

Lemma 2.4,

(5.1) [[F, ϕ], ϕ] = [F, ϕ].
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Let V be the quotient of [F, ϕ] by its derived subgroup. For any u, v ∈ V

we have [uv, ϕ] = [u, ϕ][v, ϕ], since V is abelian, and [V, ϕ] = V by (5.1).

Hence V consists of the images of elements of K, and therefore is finite. Then

the nilpotent group [F, ϕ] is also finite (see, for example, [24, 5.2.6]).

The quotient F 〈ϕ〉/[F, ϕ] is the direct product of the images of F and 〈ϕ〉
and therefore is pronilpotent. Hence, γ∞(F 〈ϕ〉) � [F, ϕ] and in view of (5.1)

we obtain

γ∞(F 〈ϕ〉) = [F, ϕ].

In particular, γ∞(G〈ϕ〉) is finite.

Proof of Theorem 1.3. We now embark on the proof of the main result. Recall

that G is a profinite group admitting a coprime elementary abelian group of

automorphisms A of order q2 for a prime q such that for each a ∈ A# all

elements in CG(a) have countable Engel sinks. We want to prove that G is

finite-by-(locally nilpotent).

By Theorem 4.1 any pronilpotent A-invariant section of G is locally nilpotent.

In particular, every Sylow p-subgroup of G is locally nilpotent, since there is an

A-invariant Sylow p-subgroup. The next lemma extends Lemma 5.2.

Lemma 5.3: Suppose that a section S = FC of the group G is a product of a

normal locally nilpotent subgroup F and a subgroup C such that every element

of C has a countable Engel sink in S. Then γ∞(F 〈g〉) is finite for every g ∈ S.

Proof. Write g=fh for f ∈F and h∈C. Since F 〈g〉=F 〈h〉, we work with h∈C.

For a prime p, let P be a Sylow p-subgroup of F (G), and write h = hphp′ ,

where hp is a p-element and hp′ a p′-element both lying in C, and [hp, hp′ ] = 1.

Then P 〈hp〉 is a normal Sylow p-subgroup of P 〈h〉, on which hp′ induces by

conjugation a coprime automorphism. By Lemma 5.2 the subgroup

[P, hp′ ] = [P 〈hp〉, hp′ ] = γ∞(P 〈h〉)

is finite.

The quotient P 〈h〉/γ∞(P 〈h〉) is the direct product of the images of 〈hp′〉
and P 〈hp〉. The latter is a pro-p group, which is locally nilpotent by Theorem 4.1

as noted above. Thus, the quotient P 〈h〉/γ∞(P 〈h〉) is locally nilpotent, and

therefore we can choose a finite smallest Engel sink Ep(h) ⊆ γ∞(P 〈h〉) of h

in P 〈h〉.
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Note that

(5.2) if Ep(h) = {1}, then γ∞(P 〈h〉) = 1.

Indeed, if Ep(h) = {1}, then, in particular, the image h̄ of h in 〈h〉/C〈h〉([P, hp′ ])

is an Engel element of the finite group [P, hp′ ]〈h̄〉 and therefore h̄ is contained

in its Fitting subgroup by Baer’s theorem [24, 12.3.7]. Then

γ∞(P 〈h〉) = [P, hp′ ] = [[P, hp′ ], hp′ ] = [[P, hp′ ], h̄p′ ] = 1.

By Lemma 2.6, for every s ∈ Ep(h) we have s = [s, kh] for some k ∈ N, and

then also

(5.3) s = [s, klh] for any l ∈ N.

We claim that Ep(h) = {1} for all but finitely many primes p. Suppose

the opposite, and Epi(h) 	= {1} for each prime pi in an infinite set of primes π.

Choose a nontrivial element spi ∈ Epi(h) for every pi ∈ π. For any subset σ ⊆ π,

consider the (infinite) product

sσ =
∏
pj∈σ

spj .

Note that the elements spj commute with one another belonging to different

normal Sylow subgroups of F . If E (h) is any Engel sink of h in H , then for

some k ∈ N the commutator [sσ, kh] belongs to E (h). Because of the properties

(5.3), all the components of [sσ, kh] in the Sylow pj-subgroups of F for pj ∈ σ

are non-trivial, while all the other components in Sylow q-subgroups for q 	∈ σ

are trivial by construction. Therefore for different subsets σ ⊆ π we thus obtain

different elements of E (h). The infinite set π has continuum of different subsets,

whence E (h) is uncountable, contrary to h having a countable Engel sink by

the hypothesis.

Thus, for all but finitely many primes p we have Ep(h) = {1}, which is the

same as γ∞(P 〈h〉) = 1 by (5.2). Therefore the subgroup

γ∞(F 〈g〉) = γ∞(F 〈h〉) =
∏
p

γ∞(P 〈h〉)

is finite.

Our next step in the proof of Theorem 1.3 is proving thatG has an open locally

nilpotent subgroup. Recall that by Theorem 4.1 any pronilpotent A-invariant

section of G is locally nilpotent. In particular, the largest pronilpotent normal
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subgroup of an A-invariant section H is also the largest locally nilpotent normal

subgroup of H , and we call it the Fitting subgroup F (H) of H . Then further

terms of the Fitting series are defined as usual by induction: F1(H) = F (H)

and Fi+1(H) is the inverse image of F (H/Fi(H)). A group H has finite Fitting

height k if Fk(H) = H for k ∈ N and k is the least number with this property.

Proposition 5.4: The group G has an open A-invariant normal locally nilpo-

tent subgroup.

Proof. For each a ∈ A# the centralizer CG(a) is finite-by-(locally nilpotent)

by Theorem 1.2. Hence G has an A-invariant open subgroup H such that each

centralizer CH(a) for a ∈ A# is locally nilpotent. By Lemma 2.3 the same holds

for every finite quotient of H by an A-invariant open normal subgroup. By a

theorem of Ward [26] such finite quotients are soluble and have Fitting height

at most 2. Hence H is prosoluble and h(H) � 2.

Lemma 5.5: For each a ∈ A# the subgroup F (H)CH(a) is finite-by-(locally

nilpotent).

Proof. By Theorem 1.2, it is sufficient to show that every element g∈F (H)CH(a)

has a finite Engel sink. Since CH(a) is locally nilpotent, an Engel sink of g

inF (H)〈g〉 is also an Engel sink of g in F (H)CH(a). By Lemma 5.3 the subgroup

γ∞(F (H)〈g〉) is finite. If the pronilpotent quotient F (H)〈g〉/γ∞(F (H)〈g〉) was
locally nilpotent, we would obtain a finite Engel sink of g in γ∞(F (H)〈g〉).
But we cannot immediately apply Theorem 4.1, since this quotient is not

A-invariant.

To work around this difficulty we need to consider A-invariant subgroups.

Write g = fh for f ∈ F (H) and h ∈ CH(a). Let

M = F (H)〈gA〉 = F (H)〈hA〉,
where, as usual,

〈xA〉 = 〈xa | a ∈ A〉.
Since F (M) � F (H), it is sufficient to show that g has a finite Engel sink in M .

Since M � H , we have M = F (M)CM (a), the centralizer CM (a) is locally

nilpotent, and by Lemma 2.3 the same holds for any A-invariant section of M .

Since CH(a) is locally nilpotent, the subgroup 〈hA〉 is nilpotent, and therefore

M/F (M) is a finitely generated nilpotent group. We now construct by induction

a finite series of nested finite normal subgroupsKi ofM such that the nilpotency
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class of (M/Ki)/F (M/Ki) diminishes at every step, up to class 0 corresponding

to the trivial group. As a result we will obtain a finite normal subgroup of M

with locally nilpotent quotient, thus proving that g has a finite Engel sink in M .

As a basis of the inductive construction we put K0 = 1. Suppose that we

have already constructed anA-invariant finite normal subgroupKi such that the

nilpotency class of M̄/F (M̄) is c � 1, where bars denote images in M̄ = M/Ki.

Choose finitely many elements z1, . . . , zm whose images generate the centre

of M̄/F (M̄). This is possible, since M̄/F (M̄) is a finitely generated nilpotent

group. Then each subgroup F (M̄)〈zai 〉 for a ∈ A is normal in M̄ . The sub-

groups γ∞(F (M̄)〈zai 〉) are also normal in M̄ . By Lemma 5.3 the subgroups

γ∞(F (M̄)〈zai 〉) are finite. Therefore their product is a finite normal A-invariant

subgroup

K =

m∏
i=1

∏
a∈A

γ∞(F (M̄)〈zai 〉),

and we define Ki+1 to be the full inverse image of K. Consider the product

L =

m∏
i=1

∏
a∈A

F (M̄)〈zai 〉.

Its image L/K in the quotient M̄/K is a product of the images of the normal

pronilpotent subgroups F (M̄)〈zai 〉/γ∞(F (M̄)〈zai 〉) and is therefore pronilpo-

tent. By Theorem 4.1 the quotient L/K is locally nilpotent. Hence the nilpo-

tency class of M̄/F (M̄) is less than c.

The above construction terminates when M/Kk becomes locally nilpotent, at

some finite step k. Thus, M has a finite normal A-invariant subgroup N = Kk

with locally nilpotent quotient, and therefore the element g has a finite Engel

sink in M contained in N . As a result, every element of F (H)CH(a) has a

finite Engel sink and therefore F (H)CH(a) is finite-by-(locally nilpotent) by

Theorem 1.2.

We return to the proof of Proposition 5.4. Since every subgroup F (H)CH(a) is

finite-by-(locally nilpotent) by Lemma 5.5, there is an open normal A-invariant

subgroup R such that R ∩ γ∞(F (H)CH(a)) = 1 for each a ∈ A#. Since

F (R) � F (H) and CR(a) � CH(a),

we have

γ∞(F (R)CR(a)) � γ∞(F (H)CH(a)) ∩R = 1
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for each a ∈ A#. By Theorem 4.1 we obtain that for each a ∈ A# the subgroup

F (R)CR(a) is locally nilpotent. Since R/F (R) is also locally nilpotent, it follows

that every element in CR(a) is Engel in R, for each a ∈ A#. Then R is locally

nilpotent by Theorem 1.1.

We now complete the proof of Theorem 1.3. Since any pronilpotent A-

invariant section of G is locally nilpotent by Theorem 4.1, we only need to

prove that γ∞(G) is finite. By Proposition 5.4 the quotient G/F (G) by the

Fitting subgroup is finite. We proceed by induction on the index of F (G).

If G/F (G) has a proper normal A-invariant subgroup B/F (G), then by the

induction hypothesis γ∞(B) is finite, and it remains to apply the induction

hypothesis to G/γ∞(B).

Thus, we can assume that G/F (G) has no proper normal A-invariant sub-

groups. First consider the case whereG/F (G) is abelian. ThenG = F (G)CG(a)

for some a ∈ A#. For every g ∈ G the subgroup γ∞(F (G)〈g〉) is finite by

Lemma 5.3 and it is a normal subgroup of F (G). Since G/F (G) is finite,

γ∞(F (G)〈g〉) has finitely many conjugates in GA and their product E is a fi-

nite normal A-invariant subgroup. The A-invariant section F (G)〈gA〉/E is a

product of the images of the normal pronilpotent subgroups F 〈ga〉/γ∞(F 〈ga〉)
and therefore is pronilpotent and locally nilpotent by Theorem 4.1. Hence g

has a finite Engel sink contained in E. Thus, every element of G has a finite

Engel sink, and therefore G is finite-by-(locally nilpotent) by Theorem 1.2.

We now consider the case where G/F (G) is a direct product of non-abelian

finite simple groups. Let p be a prime divisor of |G/F (G)|, and let P be an

A-invariant Sylow p-subgroup of G. By the induction hypothesis, γ∞(F (G)P )

is finite, and it is a normal A-invariant subgroup of F (G). Since G/F (G) is

finite, γ∞(F (G)P ) has finitely many conjugates in GA and their product is a

finite normal A-invariant subgroup. Passing to the quotient by this subgroup

we can assume that γ∞(F (G)P ) = 1. This means that [P, Fp′ ] = 1, where Fp′ is

the Hall p′-subgroup of F (G). Then also [PG, Fp′ ] = 1, where PG is the normal

closure of P . Since

G = PGF (G),

it follows that γ∞(G) = γ∞(PG) and therefore [γ∞(G), Fp′ ] = 1.

We repeat this argument with another prime divisor q of |G/F (G)| and an A-

invariant Sylow q-subgroup Q of G, in addition assuming that γ∞(F (G)Q) = 1.

We obtain that γ∞(G) = γ∞(QG) and [γ∞(G), Fq′ ] = 1.
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Since F (G) = Fp′Fq′ , it follows that [γ∞(G), F (G)] = 1.

We also have

γ∞(G) = [γ∞(G), G] = [γ∞(G), γ∞(G)F (G)] = [γ∞(G), γ∞(G)].

As a result, γ∞(G) ∩ F (G) is contained in the centre of γ∞(G). Since

γ∞(G)F (G) = G, this means that γ∞(G) ∩ F (G) is isomorphic to a homo-

morphic image of the Schur multiplier of the finite group G/F (G). Since the

Schur multiplier of a finite group is finite [11, Hauptsatz V.23.5], we obtain that

γ∞(G) ∩ F (G) is finite, and so is γ∞(G), as required.
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