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ABSTRACT

In this paper, we study the proportion of vanishing elements of finite

groups. We show that the proportion of vanishing elements of every finite

non-abelian group is bounded below by 1/2 and classify all finite groups

whose proportions of vanishing elements attain this bound. For symmetric

groups of degree at least 5, we show that this bound is at least 2327/2520

which is best possible.

1. Introduction

Let G be a finite group. An element g ∈ G is called a vanishing element

of G if there exists an irreducible complex character χ of G such that χ(g) = 0.

In this case, g is said to be a zero of χ. Let V (G) denote the set of all

vanishing elements of G. Elements in the set N (G) = G − V (G) are called

non-vanishing elements of G. A classical result by Burnside states that every

∗ The first author was supported by the DFG grant MO 3377/1-2.

Received August 12, 2020 and in revised form January 5, 2021

441



442 L. MOROTTI AND H. P. TONG-VIET Isr. J. Math.

non-linear complex irreducible character of a finite group must vanish at some

element of the group. As a consequence, if G is non-abelian, then V (G) is

non-empty. Zero of characters is an interesting topic in character theory. For

more results concerning the influence of zeros of characters to the structure of

the groups, see the recent survey paper [1].

In this paper, we are interested in studying the proportions of vanishing

and non-vanishing elements in finite groups. To be more precise, for a finite

group G, we call Pv(G) = |V (G)|/|G| the proportion of vanishing elements

of G, and Pn(G) = |N (G)|/|G| the proportion of non-vanishing elements of G.

Clearly Pv(G) + Pn(G) = 1 for any finite group G. Obviously, Pv(G) = 0

if G is abelian. If G is non-abelian, then by the result of Burnside’s mentioned

above, Pv(G) > 0. In general, since the identity element is a non-vanishing

element of any finite group G, V (G) is always a proper subset of G and thus

0 ≤ Pv(G) < 1.

Let p be a fixed prime. Let Pn denote an extra-special group of order p2n+1,

where n ≥ 1 is an integer. Then V (Pn) = Pn − Z(Pn) as |Z(Pn)| = p and so

Pv(Pn) = 1 − 1/p2n. Hence Pv(Pn) → 1 as n → ∞. Next, let G be a fixed

non-abelian group. Then 0 < Pn(G) < 1 and thus by applying Lemma 2.1

repeatedly, we have Pn(G
k) = Pn(G)

k → 0 when k approaches infinity which

implies that Pv(G
k) → 1 as k → ∞. On the other hand, we determine a lower

bound for Pv(G) when G is non-abelian.

Theorem 1.1: The proportion of vanishing elements in a finite non-abelian

group is at least 1/2.

This bound is best possible as Pv(S3) = 1/2. As a consequence of Theo-

rem 1.1, we obtain the following characterization of finite abelian groups.

Corollary 1.2: Let G be a finite group. Then G is abelian if and only if

Pv(G) < 1/2.

For a finite group G, we denote by Irr(G) the set of complex irreducible

characters of a finite group G and cd(G) = {χ(1) : χ ∈ Irr(G)} the set of char-

acter degrees of G. Let k(G) = | Irr(G)| be the number of conjugacy classes

of G and Cl(G) be the set of conjugacy classes of G. Let P (G) = |A|/k(G)2,
where A is the set of pairs (χ, gG) in Irr(G) × Cl(G) with χ(g) = 0. The frac-

tion P (G) is called the proportion of zeros in the character table of G. Miller [8]

showed that the set {P (G) : G is a finite group} is dense in the interval [0, 1].
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Thus the proportion of zeros in the character table behaves differently than the

proportion of vanishing elements, since for example there is no finite group G

with 0 < Pv(G) < 1/2.

In our next theorem, we completely describe the structure of finite groups G

with Pv(G) = 1/2.

Theorem 1.3: Let G be a finite group. Then Pv(G) = 1/2 if and only

if G/Z(G) is a Frobenius group with kernel F/Z(G), where F is abelian

and |G : F | = 2.

Consequently, if G is a finite group with Pv(G) = 1/2, then G is metabelian

and cd(G) = {1, 2}.
Recall that a finite group G is an almost simple group with a non-abelian

simple socle S if S �G ≤ Aut(S). In the next two theorems, we determine the

lower bounds for the proportions of vanishing elements for symmetric groups

and some other almost simple groups (and some closely related groups). Note

that these bounds are best possible.

Theorem 1.4: Let n ≥ 1 be an integer. Then

(i) Pv(Sn) = 0, if n = 1, 2;

(ii) Pv(Sn) = 1/2, if n = 3;

(iii) Pv(Sn) = 5/6, if n = 4;

(iv) Pv(Sn) ≥ Pv(S7) = 2327/2520, if n ≥ 5.

As a consequence of Theorem 1.4 and the classification of finite simple groups,

we obtain the following.

Theorem 1.5: Let G be a finite group and let N �G. If G/N is almost simple

with socle S/N and G/S is abelian, then Pv(G) ≥ Pv(A7).

We should point out that all finite quasi-simple groups (finite perfect groups L

with L/Z(L) being a non-abelian simple groups) are included in Theorem 1.5.

In [1], it is conjectured that if G is a finite non-solvable group, then

Pv(G) ≥ Pv(A7) = 1067/1260 ≈ 85%.

Theorem 1.5 above verifies this conjecture in some cases. To provide further

evidence, we prove the following result.
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Theorem 1.6: Let G be a finite group. If Pv(G) ≤ 2/3, then G is solvable.

Moreover, if Pv(G) < 2/3, then G is abelian or Pv(G) = 1/2.

Calculation with GAP [3] seems to suggest that

{Pv(G) : G is a finite group} ∩ [0, 1067/1260) = {(m− 1)/m : 1 ≤ m ≤ 6}.
It is easy to find a finite group whose proportion of vanishing elements is one

of the rational values in the above set. (See Lemmas 2.5 and 2.6.)

The paper is organized as follows. Theorems 1.4 and 1.5 are proved in Sec-

tion 3 and the remaining theorems in Section 4, after some preliminary results

are presented in Section 2.

Our notation is standard. We follow [5] for the character theory of finite

groups and [7] for the representation theory of symmetric groups.

2. Preliminaries

In this section, we collect and prove some results which will be needed in our

proofs of the main theorems.

Lemma 2.1: Let G = A×B be a direct product of two finite groups A and B.

Then

Pn(G) = Pn(A)Pn(B) and Pv(G) = Pv(A) + Pv(B)− Pv(A)Pv(B).

Proof. Since

Irr(G) = {θ × λ : θ ∈ Irr(A), λ ∈ Irr(B)},
we see that N (G) = N (A) × N (B) and the results follow.

For a finite group G and a prime p, an element x ∈ G is said to be p-singular

if p divides the order of g. An irreducible character χ of G is said to have p-

defect zero if p does not divide |G|/χ(1). By a result of R. Brauer ([5, Theorem

8.17]), if χ ∈ Irr(G) has p-defect zero, then χ(g) = 0 for every p-singular element

g ∈ G. The next lemma is well-known; for the reader’s convenience, we include

its proof here.

Lemma 2.2: LetG be a finite group and letN�G. Let p be a prime dividing |N |
and let θ ∈ Irr(N) be of p-defect zero. If χ ∈ Irr(G) lies above θ, then χ

vanishes on all p-singular elements of N. In particular, if N is non-solvable,

then N ∩ V (G) 	= ∅.
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Proof. Note that if θ ∈ Irr(N) has p-defect zero, then every G-conjugate of θ

also has p-defect zero. Now let χ ∈ Irr(G) be lying above θ, where θ ∈ Irr(N)

has p-defect zero. By [5, Theorem 6.2], χN = e
∑t

i=1 θi, where each θi is a

G-conjugate of θ = θ1. It follows that

χ(x) = e
t∑

i=1

θi(x) = 0

for every p-singular element x ∈ N.

Now assume that N � G is non-solvable. There exist normal subgroups

L ≤M ≤ N ofG such thatM/L is a non-abelian chief factor ofG. We have that

M/L is a non-abelian minimal normal subgroup of G/L. IfM/L∩V (G/L) 	= ∅,
then M ∩V (G) 	= ∅ and we are done. So, working by induction we may assume

that L = 1. We can write M ∼= Sn, where S is a non-abelian simple group and

n ≥ 1 is an integer. Let p ≥ 5 be a prime divisor of |S|. From [4, Corollary 2], S

has a character λ ∈ Irr(S) of p-defect zero. Let φ = λn = λ× · · · × λ ∈ Irr(M).

Then φ has p-defect zero. Now let χ ∈ Irr(G) be an irreducible constituent

of φG. From the previous claim, we have χ(x) = 0 for every p-singular element

x ∈M.

The following is key to our proofs.

Lemma 2.3: Let G be a finite group and letN be a normal subgroup of G. Then

Pv(G) ≥ Pv(G/N) + |N ∩ V (G)|/|G| ≥ Pv(G/N).

Moreover, if N is non-solvable, then Pv(G) > Pv(G/N).

Proof. Observe that if χ is an irreducible character of G/N , then χ can be

considered as an irreducible character of G with N ⊆ Ker(χ). Moreover, if

gN ∈ G/N such that χ(gN) = 0, then χ(gn) = χ(gN) = 0 for all n ∈ N and

thus gN ⊆ V (G). It follows that

C :=
⋃

gN∈V (G/N)

gN ⊆ V (G).

Note that if gN ∈V (G/N), then g∈G−N . In particular, C and N ∩ V (G) are

disjoint subsets of V (G). Hence |V (G)|≥ |N ||V (G/N)|+|N ∩ V (G)| and the

first part of the lemma follows by dividing both sides by |G|. Now, if N is non-

solvable, then N ∩V (G) 	=∅ by Lemma 2.2; therefore, Pv(G)>Pv(G/N).
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We will use the previous lemma together with the following result which

describes the structure of minimal non-abelian solvable groups.

Lemma 2.4: Let G be a finite solvable group and assume that G′ is the unique
minimal normal subgroup of G. Then all non-linear irreducible characters of G

have the same degree f and one of the following cases holds.

(a) G is a p-group for some prime p, Z(G) is cyclic, G/Z(G) is elementary

abelian of order f2.

(b) G is a Frobenius group with an abelian Frobenius complement of order

f and kernel G′ which is an elementary abelian p-group.

Moreover, if χ is an irreducible character of G of degree f , then χ vanishes on

G− Z(G) in case (a) and on G−G′ in case (b).

Proof. This follows from [5, Lemma 12.3] and its proof.

The non-vanishing elements in finite solvable groups were studied in [6]. Using

their results, we can compute the proportions of vanishing elements in finite p-

groups and some Frobenius groups. Note that if G is a finite group, then

Z(G) ⊆ N (G). The converse is also true for finite p-groups.

Lemma 2.5: Let G be a finite non-abelian p-group. Then V (G) = G − Z(G)

and

Pv(G) = 1− 1

|G : Z(G)| ≥ 1− 1

p2
.

Proof. By [6, Theorem B], every non-vanishing element of G lies in Z(G) and

thus N (G) = Z(G) which implies that V (G) = G− Z(G). It follows that

Pv(G) =
|V (G)|
|G| =

|G− Z(G)|
|G| =

|G| − |Z(G)|
|G| = 1− 1

|G : Z(G)| .

Since G is non-abelian, G/Z(G) is non-cyclic, hence |G : Z(G)| ≥ p2 which

forces Pv(G) = 1− 1/|G : Z(G)| ≥ 1− 1/p2 as wanted.

Lemma 2.6: Let G be a Frobenius group with kernel F and let n = |G : F | ≥ 2.

Then G − F ⊆ V (G) and Pv(G) ≥ (n − 1)/n. Moreover, if n = 2 or F is an

abelian p-group for some prime p, then V (G) = G− F and Pv(G) = 1− 1/n.

Proof. Let λ be a non-principal irreducible character of F . Then χ = λG is an

irreducible character of G. Thus χ vanishes on G−F . Therefore G−F ⊆ V (G),

which implies that Pv(G) ≥ (n− 1)/n and that N (G) ⊆ F .
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Assume that F is an abelian p-group. Then F is a normal Sylow p-subgroup

of G. By [6, Theorem A], all elements in F = Z(F ) are non-vanishing elements

in G. Hence G− F = V (G) and

Pv(G) = |G− F |/|G| = 1− 1/|G : F | = 1− 1/n.

Assume next that n = 2. Then G = 〈h〉F , where 〈h〉 is a Frobenius comple-

ment of G of order 2. In this case, F is abelian by [5, Lemma 7.21]. Hence h

inverts each element of F . Now let x ∈ F and let χ be any non-linear irreducible

character of G. Then χ = λG for some linear character λ of F . Therefore,

since o(x) is odd, we have

χ(x) = λ(x) + λh(x) = λ(x) + λ(hxh−1) = λ(x) + λ(x−1) = 2Re(λ(x)) 	= 0.

Thus V (G) = G− F as N (G) = F. The lemma now follows.

Lemma 2.7: Let G be a finite non-abelian group and let N � G. Suppose

that G/N is a Frobenius group with Frobenius kernel F/N . Assume further

that |G : F | = 2 and F is abelian. Let U ∈ Syl2(F ). If U is central in G or if

Pv(G) < 3/4, then Pv(G) = 1/2.

Proof. Let T be a 2-complement of F . Then F = T × U.

(i) Assume that U ≤ Z(G). Since G/N is a Frobenius group with a Frobe-

nius complement of order 2, V (G/N) = G/N − F/N by Lemma 2.6 and so

G− F ⊆ V (G). To show that Pv(G) = 1/2, we only need to show that every

element of F is a non-vanishing element of G. Fix g ∈ F. Then g = tu, where

t ∈ T and u ∈ U . Hence m := o(t) is odd and u ∈ U ⊆ Z(G).

Since F � G is abelian of index 2, by Itô’s theorem [5, Theorem 6.15],

every non-linear irreducible character of G has degree 2. Let χ ∈ Irr(G).

If χ(1) = 1, then χ(g) 	= 0. Assume that χ(1) = 2. Then χF = ψ1 + ψ2,

where ψ1, ψ2 ∈ Irr(F ) are G-conjugate linear characters of F by Clifford’s the-

orem. We also have χU = χ(1)λ for some λ ∈ Irr(U) since U ≤ Z(G). So

χ(g) = λ(u)χ(t).

Clearly λ(u) 	= 0. Hence we need to show that χ(t) 	= 0. Now t ∈ F and

thus χ(t) = ψ1(t) + ψ2(t), where ψi(t)’s are mth-roots of unity. However, as m

is odd, the sum of two mth-roots of unity cannot be zero. Thus g ∈ F is a

non-vanishing element of G. Therefore G−F = V (G) and hence Pv(G) = 1/2.
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(ii) Assume that Pv(G)<3/4. Since F/N is of odd order, we know that U≤N.
We will show that U ≤ Z(G) and hence Pv(G) = 1/2 by part (i). Since

T = O2′(F ) and U = O2(F ), both T and U are normal in G. Furthermore,

as |G : F | = 2, G/T is a 2-group. If G/T is non-abelian, then Pv(G/T ) ≥ 3/4

by Lemma 2.5, hence Pv(G) ≥ 3/4, contradicting our assumption. Hence G/T

is abelian. It follows that [G,U ] ≤ T ∩U = 1 and hence U is central in G.

3. Proportions of vanishing elements in symmetric and simple groups

The following result compares vanishing elements of symmetric and alternating

groups.

Lemma 3.1: Let n ≥ 3 be an integer. Then

V (Sn) = (Sn −An) ∪ V (An) and Pv(An) = 2Pv(Sn)− 1.

Proof. It suffices to show that N (Sn) = N (An). Since n ≥ 3, Sn possesses a

self-conjugate partition λ of n and so χλ, when restricted to An, splits into

the sum of two irreducible characters, say χλ± of the same degree. Thus

χλ = μSn for each μ ∈ {χλ±}. It follows that χλ vanishes on Sn −An and

so Sn −An ⊆ V (Sn). Therefore, N (Sn) ⊆ An.

Fix now g ∈ An and a partition λ of n. Let θ be any irreducible character

appearing in the restriction of χλ to An. We will prove that θ(g) = 0 if and

only if χλ(g) = 0. Together with the previous paragraph this will prove that

N (Sn) = N (An). If λ 	= λ′ then θ = (χλ)An , so clearly θ(g) = 0 if and

only if χλ(g) = 0. Thus we may assume that λ = λ′, in which case θ = χλ±.
Let h(λ) = (h11, h22, . . . , hkk) be the partition of n, where hij is the (i, j)-hook

length at the position (i, j) of the Young diagram [λ] of λ and k is the length

of the main diagonal of [λ]. By [7, Corollary 2.4.8, Theorem 2.5.13] if the cycle

partition of g is different from h(λ), then θ(g) = χλ(g)/2, so in this case θ(g) = 0

if and only if χλ(g) = 0. If on the other hand g has cycle partition h(λ), then

χλ(g) = t and θ(g) =
(t±

√
t
∏k

i=1 hii)

2

for some t ∈ {±1}. Since n ≥ 3, so that
∏k

i=1 hii > 1, and then in this case

θ(g) 	= 0 and χλ(g) 	= 0. So N (Sn) = N (An).

Since Sn is a disjoint union of N (Sn) and V (Sn), the lemma follows.
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We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. The result is clear if n ≤ 4 or n = 7, so we may assume

that n ≥ 5 with n 	= 7. Since Pv(Sn) + Pn(Sn) = 1, it suffices to show

that Pn(Sn) ≤ Pn(S7) = 193/2520.

Assume that for some a ≥ 0 and r ≥ 1 there exists an r-core partition

μ = (μ1, . . . , μh) of n − ar (that is a partition with no hook length divisible

by r). Let λ := (μ1 + ar, μ2, . . . , μh). If g ∈ Sn has more than a cycles of

length r, then χλ(g) = 0 by [7, 2.4.7].

By [4, Theorem 1] we then have that if g ∈ N (Sn), then g has cycle partition

(3a, 2b, 1n−3a−2b) for some a, b ≥ 0. We will first find bounds on a and b by

studying 2- and 3-core partitions.

Let τ(k) := (k, k − 1, . . . , 1). Then τ(k) is a 2-core and |τ(k)| = k(k + 1)/2

(where for any partition ψ, |ψ| is the sum of the parts of ψ). So |τ(k)| is even
if k ≡ 0, 1 (mod 4) and |τ(k)| is odd else. Let k be maximal such that

|τ(k)| ≡ n (mod 2) and |τ(k)| ≤ n.

Then

n ≤ |τ(k + 3)| − 2

(since for some 1 ≤ x ≤ 3 we have that |τ(k + x)| ≡ n (mod 2) ). Furthermore

|τ(k + 3)| − 2− |τ(k)|
2

=
3k + 4

2
≤ 3√

2

√
|τ(k + 3)| − 2.

Since |τ(k)| ≤ n ≤ |τ(k + 3)| − 2, it follows that

n− |τ(k)|
2

≤ 3√
2

√
n.

Consider now 3-core partitions. For k ≥ 0 let ϕ(k) := (2k, 2k − 2, . . . , 2)

and for k ≥ 1 let ψ(k) := (2k − 1, 2k − 3, . . . , 1). Then |ϕ(k)| = k(k + 1),

so |ϕ(k)| ≡ 2 (mod 3) if k ≡ 1 (mod 3) and |ϕ(k)| ≡ 0 (mod 3) else, while

|ψ(k)| = k2, so |ψ(k)| ≡ 0 (mod 3) if k ≡ 0 (mod 3) and |ψ(k)| ≡ 1 (mod 3)

else. Furthermore

|ϕ(k + 3)| − 3− |ϕ(k)|
3

= 2k + 3 ≤ 2
√
|ϕ(k + 3)| − 3,

|ψ(k + 3)| − 3− |ψ(k)|
3

= 2k + 2 ≤ 2
√
|ψ(k + 3)| − 3.

In particular, there exists a 3-core ξ with |ξ| = n− 3m with 0 ≤ m ≤ 2
√
n.
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If g ∈ N (Sn) has cycle partition (3a, 2b, 1n−3a−2b), it then follows that

a ≤ �2√n� and b ≤ �3√n/2�. In particular, g moves at most mn points, where

mn := 3�2√n�+ 2�3
√
n/2�.

So g is contained in one of the
(

n
mn

)
Sn-conjugates of Smn . If n ≥ 106 then

n−mn ≥ 4, so

Pn(Sn) ≤
(

n
mn

)|Smn |
|Sn | =

1

(n−mn)!
≤ 1

4!
< 193/2520.

So we only still have to consider 5 ≤ n ≤ 105 with n 	= 7. In this case better

upper bounds for a and b can be found by studying small 2- and 3-cores (for

3-cores note that any partition of the form

(2c+ d, 2c+ d− 2, . . . , d+ 2, de, (d− 1)2, (d− 2)2, . . . , 12)

with c, d ≥ 0 and 1 ≤ e ≤ 2 is a 3-core). Furthermore b is even, since by

Lemma 3.1 non-vanishing elements of Sn are contained in An. This allows to

check that n −mn ≥ 4, where mn is the maximal number of moved points by

any non-vanishing element of Sn, unless possibly if n ∈ {11, 13}. Reasoning

as above we may then assume that n ∈ {11, 13}, in which case a ∈ {0, 1}
and b ∈ {0, 2, 4} and then the theorem holds by considering the sizes of the

corresponding conjugacy classes.

Note that the proof of this theorem actually proves that Pn(Sn) → 0, that

is Pv(Sn) → 1. Furthermore the number of non-vanishing conjugacy classes

of Sn can be bounded above by Cn for some constant C.

Proof of Theorem 1.5. In view of Lemma 2.3, we may assume that N = 1, so G

is almost simple with socle S and G/S is abelian.

It is well-known that (see [4, Corollary 2]) for every prime divisor p of |S|, S
has an irreducible character of p-defect zero except for the following cases:

(i) p = 2 and S is isomorphic to one of the following simple groups:

M12,M22,M24, J2,HS, Suz,Ru,Co1,Co3,B and An for some integer

n ≥ 5.

(ii) p = 3 and S is isomorphic to Suz,Co3 orAn for a certain integer n ≥ 5.

It follows from [5, Theorem 8.17] that if S has an irreducible character of

p-defect zero for each prime divisor of |S|, then V (S) = S − {1} and thus

Pv(S) = (|S| − 1)/|S| = 1− 1/|S| ≥ 1− 1/60 = 59/60 > 1067/1260.
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If S is one of the sporadic simple groups in Cases (i) and (ii) above, then

we can check directly using [3] that Pv(S) > 1067/1260. Assume now that

S ∼= An with n ≥ 5. By Lemma 3.1 and Theorem 1.4, we have

Pv(An) = 2Pv(Sn)− 1 ≥ 2 · 2327
2520

− 1 =
1067

1260
= Pv(A7).

Thus we may now assume that |G : S| > 1. Let g ∈ G − S. Then gS ∈ G/S

induces an outer automorphism, say α, of S. By [2, Theorem C], α does not

fix some conjugacy class of S. By Brauer’s permutation lemma [5, Theorem

6.32], α does not fix some irreducible character, say θ, of S. Now let I = IG(θ)

be the inertial group of θ in G. Since S = G′ ≤ I 	= G, I is a proper normal

subgroup of G. Therefore |G : I| ≥ 2. Let ϕ ∈ Irr(I) be lying above θ. Then

χ = ϕG ∈ Irr(G) by Clifford’s corresponding theorem [5, Theorem 6.11]. It

follows that χ vanishes on the set G− I. Thus χ(g) = 0. Hence G−S ⊆ V (G).

If S has a defect zero irreducible character for each prime p, then

S − {1} ⊆ V (G) and so V (G) = G − {1} by Lemma 2.2. If S is one of

the sporadic simple groups in cases (i) and (ii) the theorem can be checked

using [3]. So we may assume that S ∼= An with n ≥ 5. Since A6 has defect

zero characters for any p, we may also assume that n 	= 6, so G ∼= Sn in which

case the result follows by Theorem 1.4.

4. Lower bound for proportions of vanishing elements in finite non-

abelian groups

We now prove the remaining results in the introduction.

Let G be a finite non-abelian group. Let N�G be maximal such that G/N is

non-abelian. Then (G/N)′ is a unique minimal normal subgroup of G. If G/N

is solvable, then we can apply Lemma 2.4 together with Lemmas 2.5 and 2.6

to obtain a lower bound for Pv(G). We next consider the case when G/N is

non-solvable. In this situation, (G/N)′ is perfect.

Proposition 4.1: Let G be a finite non-abelian group. Suppose that G′ = G′′

is perfect. Then Pv(G) > 3/4.

Proof. We proceed by induction on |G|. Since G is non-abelian and G′ is per-
fect, G′ is non-abelian. Let G′/N be a chief factor of G. Since G′ is per-

fect, G′/N is perfect and so G/N is non-solvable. If N is non-trivial, then

by Lemma 2.3 and induction, we have Pv(G) ≥ Pv(G/N) > 3/4. Thus we
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may assume that N = 1 and so G′ is a minimal normal subgroup of G.

Let C = CG(G
′). Then G/C also satisfies the hypothesis of the proposition

and if C 	= 1, then Pv(G) ≥ Pv(G/C) > 3/4 again. Therefore, we can as-

sume that C = 1 and hence G′ is the unique minimal normal subgroup of G.

Write G′ = S1 × S2 × · · · × Sn, where Si
∼= S for 1 ≤ i ≤ n, S is a non-abelian

simple group and n ≥ 1 is an integer.

If n = 1, then G is almost simple with simple socleG′ and the result follows by

applying Theorem 1.5. So we may assume that n ≥ 2. Let Ω = {S1, S2, . . . , Sn}.
Then G acts transitively on Ω with a point stabilizer B := NG(S1). Note that

G′ ≤ B �G and thus B = NG(Si) for all i. Hence B is also the kernel of the

action of G on Ω and |G : B| = n.

Let λ ∈ Irr(S1) be a non-principal character and let

θ = λ× 1× · · · × 1 ∈ Irr(G′).

We see that IG(θ) ≤ B. Let ϕ ∈ Irr(B) be lying above θ. It follows from

Clifford’s theory that ϕG ∈ Irr(G). Since B �G, ϕG vanishes on G−B and so

G−B ⊆ V (G).

Let g ∈ B −G′. Since G′ ≤ SiCG(Si)� G and G acts transitively on Ω, we

deduce that G′ = S1CG(S1). Since

g ∈ B −G′ = NG(S1)− S1CG(S1),

g induces a nontrivial outer automorphism on S1. By Brauer’s permutation

lemma and [2, Theorem C], there exists μ ∈ Irr(S1) such that μg 	= μ.

Let φ = μ × 1 × · · · × 1 ∈ Irr(G′). We see that φg 	= φ and so g ∈ G − IG(φ),

where G′ ≤ IG(φ)�G. Again, if ψ ∈ Irr(IG(φ)) lying above φ, then ψG ∈ Irr(G)

and thus ψG vanishes on G − IG(φ). In particular, g ∈ V (G) and thus

B −G′ ⊆ V (G).

We have shown that G−G′ ⊆ V (G). Since G′ is non-solvable, G′∩V (G) 	= ∅
by Lemma 2.2. It follows that G−G′ is a proper subset of V (G) and hence

Pv(G) > |G−G′|/|G| = (k − 1)/k,

where

k = |G : G′| = |G : B| · |B : G′| = n|B : G′|.
If k ≥ 4, then (k − 1)/k ≥ 3/4 and so Pv(G) > 3/4 as wanted. Thus we

can assume that k ≤ 3. As k = n|B : G′| and n ≥ 2, we must have that

k = n ∈ {2, 3} and B = G′.
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We next claim that

(G−G′) ∪ V (G′) ⊆ V (G).

Fix g ∈ V (G′) and θ = θ1× θ2× · · ·× θn ∈ Irr(G′) with θ(g) =
∏n

i=1 θi(gi) = 0,

where g = (g1, g2, . . . , gn) ∈ S1 × S2 × · · · × Sn and θi ∈ Irr(Si), 1 ≤ i ≤ n. It

follows that θj(gj) = 0 for some j. Now let φ = θj × θj × · · · × θj ∈ Irr(G′).
Then φ is G-invariant and since G/G′ is cyclic, φ extends to φ0 ∈ Irr(G) by [5,

Corollary 11.22]. Clearly φ0(g) = φ(g) = 0 and so g ∈ V (G). Thus

Pv(G) ≥ (|G−G′|+ |V (G′)|)/|G| = (n− 1)/n+ Pv(G
′)/n.

Note that Pv(G
′) ≥ Pv(S) > 1/2 by Lemma 2.3 and Theorem 1.5. Hence, as

2n ≥ 4,

Pv(G) > (n− 1)/n+ 1/2n = (2n− 1)/2n ≥ 3/4.

The proof is now complete.

From the proofs of Theorem 1.5 and Proposition 4.1 for non-solvable groups

and Lemma 2.4 for solvable groups, we obtain the following.

Corollary 4.2: Let G be a finite group. Suppose that G′ is the unique

minimal normal subgroup of G and that |G : G′| > 1. Then there exist a

character ψ ∈ Irr(G) and a subgroup G′ ≤ L ≤ G with |G : L| > 1 such that ψ

vanishes on G− L.

Proof of Theorem 1.1. We will prove the theorem by induction on |G|. Let G

be a finite non-abelian group. Let N be a minimal normal subgroup of G. If

G/N is non-abelian, then Pv(G/N) ≥ 1/2 by induction since |G/N | < |G|
and thus Pv(G) ≥ Pv(G/N) ≥ 1/2 by Lemma 2.3. Therefore G/N is abelian

for every nontrivial normal subgroup N of G. It follows that G′ is the unique

minimal normal subgroup of G.

Assume that G is non-solvable. Then G′ is perfect and so by Proposition 4.1,

we have Pv(G) > 3/4 > 1/2. Assume next that G is solvable. By Lemma

2.4, G is either a non-abelian p-group for some prime p or G is a Frobenius

group with Frobenius kernel G′ and n = |G : G′| ≥ 2. If the former case holds,

then Pv(G) ≥ 1 − 1/p2 ≥ 1 − 1/4 = 3/4 > 1/2 by Lemma 2.5. In the latter

case, we have Pv(G) = 1− 1/n ≥ 1/2 by Lemma 2.6.
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Lemma 4.3: Let G be a finite group and let N � G. Suppose that G/N is a

Frobenius group with kernel F/N , |G : F | = 2 and that F is non-abelian. Then

Pv(G) ≥ 13/18.

Proof. Let H/N be the Frobenius complement of G/N . Then |H/N | = 2.

Hence H/N is cyclic of order 2 and so F/N is abelian by [5, Lemma 7.21]. It

follows from Lemma 2.6 that Pv(G/N) = 1/2 and V (G/N) = G/N − F/N

which implies that G− F ⊆ V (G).

Write H = 〈h〉N for some h ∈ H − N. Note that h2 ∈ N . Since F is non-

abelian, by Corollary 4.2, there exist normal subgroups K � U of F , and a

character ψ ∈ Irr(F/K) with |F : U | = s > 1 such that ψ vanishes on F − U .

We may assume that U is maximal normal in F and so s ≥ 2 is a prime. Hence,

either U �G or F = UUh and |L| = |F |/s2, where L := U ∩ Uh �G.

If ψh = ψ, then ψ is G-invariant and since G/F is cyclic of order 2, ψ

extends to ψ0 ∈ Irr(G) by [5, Corollary 11.22]. Thus F −U ⊆ V (G). Therefore

G− U ⊆ V (G) and |G : U | = 2s. Hence

Pv(G) ≥ |G− U |/|G| = 1− 1/(2s) ≥ 3/4 ≥ 13/18.

Assume that ψh 	= ψ. Then IG(ψ) = F and so

χ = ψG ∈ Irr(G) and χF = ψ + ψh.

We see that ψh vanishes on F − Uh. It follows that χ(x) = ψ(x) + ψh(x) = 0

for every x ∈ F − (U ∪ Uh). Thus F − (U ∪ Uh) ⊆ V (G). If Uh = U, then

F − U ⊆ V (G) and we get Pv(G) ≥ 13/18 as in the previous paragraph. So,

assume Uh 	= U . Then F = UUh. Therefore

|F − (U ∪ Uh)| = |F | − |U ∪ Uh| = |F | − 2|U |+ |U ∩ Uh| = |G|(s− 1)2/2s2.

Since |V (G)| ≥ |G−F |+ |F − (U ∪Uh)|, we have Pv(G) ≥ 1/2+ (s− 1)2/2s2.

Assume that s = 2. Then G/L is a 2-group of order 8. If G/L is non-abelian,

then Pv(G) ≥ Pv(G/L) ≥ 3/4 > 13/18 by Lemma 2.5. Assume that G/L is

abelian. Then U �G and thus Uh = U , contradicting our assumption Uh 	= U.

Assume that s ≥ 3. Then

1

2
+

(s− 1)2

2s2
=

1

2
+

1

2

(
1− 1

s

)2

≥ 1

2
+

1

2

(
1− 1

3

)2

=
13

18

and so Pv(G) ≥ 13/18 as wanted.
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Proof of Theorem 1.3. Let G be a finite group with Pv(G) = 1/2.We will show

that G/Z(G) is a Frobenius group with kernel F/Z(G), where |G : F | = 2 and F

is abelian.

Obviously, G is non-abelian. Let N �G be maximal such that G/N is non-

abelian. It follows that (G/N)′ is the unique minimal normal subgroup of G/N .

Write G = G/N. By Lemma 2.3, we have 1/2 = Pv(G) ≥ Pv(G). By Theo-

rem 1.1, Pv(G) ≥ 1/2 and thus Pv(G) = 1/2. It follows from Proposition 4.1

that G is solvable.

By Lemma 2.4, either G is a non-abelian p-group or a Frobenius group

whose kernel is an elementary abelian p-group, where p is a prime. If G

is a non-abelian p-group, then Pv(G) ≥ 3/4 by Lemma 2.5 and thus

Pv(G) ≥ Pv(G) ≥ 3/4 > 1/2, a contradiction. Thus G is a Frobenius group.

By Lemma 2.6,

Pv(G) ≥ Pv(G) ≥ (n− 1)/n,

where n is the order of the Frobenius complement ofG, say T . Since Pv(G)=1/2

and n ≥ 2, we deduce that n = 2. Let F be the Frobenius kernel of G.

Let T, F ≤ G be the full inverse images of T , F in G. So G/N is a Frobenius

group with kernel F/N and |G : F | = 2. By Lemma 4.3, F is abelian.

Write F = U ×K, where U ∈ Syl2(F ) and K is a 2-complement of F . Since

F �G, both U and K are normal in G. As |G : F | = 2, G/K is a 2-group. By

Lemmas 2.3 and 2.5, G/K is abelian. It follows that [G,U ] ≤ K ∩ U = 1 and

hence U ≤ Z(G). Write G = F 〈h〉 for some 2-element h ∈ G. As |G : F | = 2,

we deduce that h2 ∈ U ≤ Z(G). Since K is abelian and 〈h〉 acts coprimely

on K, we have that K = [K, 〈h〉] × CK(h). Since [K,h2] = 1, h inverts each

element of [K, 〈h〉]; hence

Z(G) = U ×CK(h) and F = Z(G)× [K, 〈h〉];

therefore, G/Z(G) is a Frobenius group with kernel

F/Z(G) ∼= [K, 〈h〉],

where F is abelian and |G : F | = 2.

For the converse, assume that G/Z(G) is a Frobenius group with a Frobenius

kernel F/Z(G), where F is abelian and |G : F | = 2. It follows that |F/Z(G)|
is odd. Hence, if U ∈ Syl2(F ), then U ≤ Z(G). Thus Pv(G) = 1/2 by Lemma

2.7. The proof is now complete.
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Proof of Theorem 1.6. (i) Let G be a finite group with Pv(G) ≤ 2/3. We

prove by induction on |G| that G is solvable. Let N be a minimal normal

subgroup of G. By Lemma 2.3, we have 2/3 ≥ Pv(G) ≥ Pv(G/N) and thus

Pv(G/N) ≤ 2/3. As |G/N | < |G|, by induction we deduce thatG/N is solvable.

If G has two distinct minimal normal subgroups, say N1 and N2, then

N1 ∩N2 = 1 and G/Ni is solvable for i = 1, 2. It follows that G(∞), the last

term of the derived series of G, lies in both N1 and N2. Since N1 ∩ N2 = 1,

G(∞) = 1 and G is solvable. Thus G has a unique minimal normal subgroup,

sayM , and G/M is solvable. IfM is solvable, then G is solvable. So we assume

that M is non-solvable.

If G/M is abelian, then G′ = M is perfect and so by Proposition 4.1,

we have Pv(G) > 3/4 > 2/3, which is a contradiction. Thus we may as-

sume that G/M is non-abelian. Since G/M is non-abelian solvable, by Lemma

2.4, there exist normal subgroups M � N � G of G such that G/N is a non-

abelian p-group for some prime p or a Frobenius group. If G/N is a p-group,

then Pv(G/N) ≥ (p2 − 1)/p2 ≥ 3/4 by Lemma 2.5. But this would imply

that Pv(G) ≥ Pv(G/N) ≥ 3/4 > 2/3, a contradiction. Thus G/N is a Frobe-

nius group with a Frobenius complement H/N and kernel F/N . By Lemma

2.6, we have Pv(G/N) ≥ (m − 1)/m, where m = |H/N | ≥ 2. If m ≥ 3, then

Pv(G/N) ≥ 2/3. Moreover, as N is non-solvable, N ∩V (G) 	= ∅ by Lemma 2.2

and so Pv(G) > 2/3. Thus we can assume that m = 2. Now by Lemma 4.3,

we have Pv(G/M) > 2/3 and thus Pv(G) > 2/3. This contradiction proves

that G is solvable.

(ii) Assume that Pv(G)<2/3.We show that G is abelian or Pv(G)=1/2. By

part (i), G is solvable. Assume thatG is non-abelian. Then 1/2 ≤ Pv(G) < 2/3.

Let N�G be maximal such that G/N is non-abelian. As G/N is solvable, G/N

is a non-abelian p-group for some prime p or G/N is a Frobenius group with

kernel F/N and complement H/N by Lemma 2.4. If the former case holds,

then Pv(G) ≥ Pv(G/N) ≥ 3/4 > 2/3 by Lemma 2.5. Assume now that

the latter case holds. By Lemma 2.6, we have Pv(G/N) ≥ (m − 1)/m with

m = |G : F | ≥ 2. It follows that m = |G : F | = 2 as 2/3 > Pv(G) ≥ Pv(G/N).

By Lemma 4.3, F is abelian. Finally, by Lemma 2.7, Pv(G) = 1/2 and the

proof is now complete.
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