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ABSTRACT

We consider the C1-open set V of partially hyperbolic diffeomorphisms

on the space T2 × T2 whose non-wandering set is not stable, introduced

by M. Shub in [57]. Firstly, we show that the non-wandering set of each

diffeormorphism in V is a limit of horseshoes in the sense of entropy. After-

wards, we establish the existence of a C2-open set U of C2-diffeomorphisms

in V and of a C2-residual subset R of U such that any diffeomorphism in R

has equal topological and periodic entropies, is asymptotic per-expansive,

has a sub-exponential growth rate of the periodic orbits and admits a prin-

cipal strongly faithful symbolic extension with embedding. Besides, such

a diffeomorphism has a unique probability measure with maximal entropy

describing the distribution of periodic orbits. Under an additional as-

sumption, we prove that the skew-products in U preserve a unique ergodic

SRB measure, which is physical, whose basin has full Lebesgue measure

and which coincides with the measure with maximal entropy.
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1. Introduction

Let f : M → M be a diffeomorphism of a manifold into itself and Ω(f) be

its non-wandering set. When Ω(f) does not admit a hyperbolic structure, it

may be difficult to describe completely its orbit structure. Motivated by this

problem, R. Bowen suggested to look for invariant components of Ω(f) with

large entropy on which the dynamics of f may be simpler to characterize. The

key idea is to find closed invariant subsets, say topological horseshoes, within

which the dynamics is conjugate to subshifts that may be good approximations,

in some sense, of the global dynamics. For instance, this strategy might provide

information on the topological entropy of a complicated dynamics by taking the

least upper bound over its restrictions to those horseshoes. In this case, the sys-

tem is said to be a limit of horseshoes in the sense of entropy. L.-S. Young

studies in [61] systems that are limits of this type, including piecewise mono-

tonic maps of the interval, the Poincaré map of the Lorenz attractor [33] and

Abraham–Smale’s examples [2], leaving unsolved the case of the partially hyper-

bolic, robustly transitive, entropy-expansive and non-Ω-stable diffeomorphisms

constructed by Shub in [57]. In this work we consider precisely a class of those

Shub’s examples, explore the dynamical properties of their measures of maximal

entropy and show that these examples are indeed limits of horseshoes.

In what follows, we will call Shub’s examples to the diffeomorphisms in a C1-

open neighborhood of a skew-product FS on T2×T2 whose construction we will

detail on Subsection 4.1. The Cr-diffeomorphism FS , r � 1, with base dynamics

given by an Anosov diffeomorphism Φ : T2 → T2 having two fixed points p and q,

was obtained in [57] through an isotopy between a linear Anosov diffeomorphism

L : T2 → T2 and a Derived from Anosov diffeomorphism D of T2. The latter

is generated by a smooth local bifurcation of a fixed point of L into a sink and

two saddles, as described in [2]. This way, FS : T2 × T2 → T2 × T2 is defined

by FS(x, y) = (Φ(x), fx(y)), where fp = L, fq = D and there exist small values

0 < �1 < �2 such that

fx =

⎧⎨⎩L if x /∈ B�2(q)

D if x ∈ B�1(q)

where B�(q) stands for the open ball centered at q with radius �. The diffeo-

morphisms in V are robustly transitive, non-uniformly hyperbolic, topologically

Ω-stable but not Ω-stable.
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The first study of the ergodic properties of these systems was done by New-

house and Young in [48], where it is proved that there exists a C1-open set V

of Shub’s examples such that each G ∈ V has a unique probability measure

with maximal entropy. One expects that this measure has a strong tie with

other dynamical properties; in particular, it would be relevant to show that this

measure describes the distribution of the periodic points of G (meaning that it

is the weak∗-limit of the sequence of Dirac measures supported on the sets of

n-periodic points, n ∈ N). We prove that this attribute, which is known to be

valid within the uniformly hyperbolic setting (cf. [9]) and for Mañé’s Derived

from Anosov examples on T3 (cf. [22, Theorem 1.3]), also holds in a C2-residual

subset R of V. Both properties of G are a consequence of the existence of

a semi-conjugation between G and the uniformly hyperbolic dynamics Φ × L,

besides a careful analysis of the periodic fibers induced by the semi-conjugation.

The second question we address concerns the growth rate of periodic orbits

with respect to the period, and whether the distribution of these orbits is de-

tected by the measure with maximal entropy. To estimate the growth rate of

periodic orbits of a diffeomorphism f : M → M one takes, for each n ∈ N,

the cardinal grn(f) of the set of isolated fixed points of fn, and verify how it

changes when n goes to +∞. The nature of this growth rate seems to depend

mainly on the amount of hyperbolicity f exhibits and its degree of regularity.

For instance, for any r � 1, there is a Cr-dense subset of diffeomorphisms f

whose growth rate is at most exponential (cf. [5]), that is, there exists K > 0

such that grn(f) � enK . Besides, every Axiom A C1-diffeomorphism f satisfies

limn→+∞ grn(f) = enhtop(f), where htop(f) stands for the topological entropy

of f (cf. [14]). On the other hand, in the complement of the hyperbolic setting,

Kaloshin proved in [40] the super-exponential growth of periodic points within

Newhouse C2-domains on surfaces. We recall that the latter are C2-open sets

of diffeomorphisms where maps with homoclinic tangencies are dense; and that

the standard way to get Newhouse domains is by the generic unfolding of a ho-

moclinic tangency of a C2-surface diffeomorphism [47]. Kaloshin showed that,

in any such a domain and for every sequence of positive integers a = (an)n∈N,

there exists a C2-residual subset, which depends on a, whose elements f satisfy

the condition lim supn→+∞ grn(f)/an = +∞. In particular, this indicates that

the Cr-dense subset constructed in [5] is not Cr-generic when r � 2. A result

similar to [40] in the C1-topology and in any manifold M of dimension � 3 was

proved by Bonatti, Dı́az and Fisher [7], replacing the Newhouse domains by the
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open set of diffeomorphisms with a C1-robust heterodimensional cycle. Since

there are no Newhouse C1-domains on surfaces (cf. [46]), Kaloshin’s result is

still an open problem in this context. It is not known (though it is not expected)

whether the construction in [7] is valid for higher regularity topologies, due to

the dependence on techniques which are only feasible within the C1-topology.

The C2-diffeomorphisms of T2 ×T2 we consider in this work exhibit C1-robust

heterodimensional cycles, and we show that C2-generically these examples have

an asymptotic exponential growth rate of the number of periodic orbits given

by the topological entropy, as happens in the hyperbolic setting. Thereby, we

also convey an improved description of the symbolic dynamics of the diffeo-

morphisms in R. More precisely, we show that every diffeomorphism in the

C2-residual set R has a sub-exponential growth rate of the periodic orbits in

arbitrarily small scales (the so-called asymptotically per-expansiveness as de-

fined in [17]). This result enables us to build a symbolic extension, from whose

properties we conclude that C2-generically in V the set of Borel invariant prob-

ability measures is homeomorphic to the space of Borel probability measures

invariant by a subshift.

For topologically transitive Axiom A C2-attractors, the work of Bowen, Ru-

elle and Sinai (we refer the reader to [14] and references therein) proves the

existence of a unique invariant probability measure, the so-called SRB measure,

that is characterized by obeying Pesin’s formula [51]. From Ledrappier and

L.-S. Young’s work [43], the property that defines an SRB measure for a C2-

diffeomorphism is known to be equivalent to the existence of a disintegration of

the measure in conditional measures on unstable manifolds which are absolutely

continuous with respect to the Lebesgue measure. Moreover, the SRB measure

is also the unique physical measure (cf. [14, Theorem 4.12]; a thorough essay on

the existence and uniqueness of both SRB and physical measures within more

general settings may be read in [62]). Regarding the C2-diffeomorphisms in V,

the existence of an SRB measure was proved in [25]. We show that, under the

additional assumption that Φ and L are both linear hyperbolic automorphisms

of the 2-torus, and reducing, if necessary, the set of C2 diffeomorphisms G

we consider in the neighborhood V of FS , then G is mostly contracting with

a minimal strong unstable foliation, and so (cf. [6]) it has a unique ergodic

SRB measure, whose basin of attraction has full Lebesgue measure (hence it is

also G’s unique physical measure).
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2. Main results

Denote by Diffr(M), r � 1, the space of Cr-diffeomorphisms of a compact

Riemannian manifoldM in itself, endowed with the Cr-norm. Let f ∈ Diff1(M)

be the restriction of an Axiom A diffeomorphism with no cycles to a basic piece

of its Smale’s spectral decomposition. It is known that f satisfies the following

conditions, which are strongly related to the expansiveness and specification

properties that hyperbolic systems comply with:

Unique measure with maximal entropy. f preserves a unique probability

measure μ which satisfies hμ(f) = htop(f), where hμ(f) denotes the metric

entropy of the f -invariant probability measure μ and htop(f) stands for the

topological entropy of f (cf. [11] and [59] for definitions).

Equidistribution of the periodic points. The measure with maximal

entropy of f is the limit in the weak∗ topology of the sequence of Dirac measures

supported on the sets of n-periodic points, say Pern(f) = {x ∈M : fn(x) = x},
for n ∈ N (cf. [11]).

Limit of horseshoes in the sense of entropy. Given ε > 0 there exists

a hyperbolic f -invariant subset Λε such that f |Λε is conjugate to a subshift of

finite type and htop(f |Λε) > htop(f)− ε (cf. [61]).

Equal topological and periodic entropies. One has

lim
n→+∞

1

n
log#Pern(f) = htop(f)

(cf. [14]).

Symbolic extension. f is a factor of a subshift of finite type (cf. [10]). This

symbolic extension of f is principal and strongly faithful with embedding, in

the sense of [17].
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These attributes are not valid in general outside the hyperbolic setting (cf. [7,

36]). The aim of this work is to prove them on a class of partially hyperbolic dif-

feomorphisms of T2×T2 with a non-hyperbolic one-dimensional central direction,

contained in the family of Shub’s examples. In order to do so, we will need to de-

mand more regularity of those systems and restrict to a residual subset of them.

We start remarking that, in a broad class of non-hyperbolic systems, the ex-

istence of at least one probability measure with maximal entropy is guaranteed.

Indeed, this is valid for entropy-expansive diffeomorphisms (cf. [45]), and it was

shown in [25] (see also [26, 27] for generalizations) that, when the central bundle

is one-dimensional, then the system is entropy-expansive. So Shub’s examples

are endowed with a probability measure with maximal entropy.

Moreover, the construction in [48] provides a C1-open set of Shub’s examples

for which the uniqueness of the measure with maximal entropy is also ensured

(a generalization of this property for equilibrium states may be found in [23]).

Nevertheless, without additional assumptions, this measure may not describe

the distribution of the periodic points and the topological entropy may be dif-

ferent from the periodic one. Yet, as we will explain, Shub’s examples may be

obtained as the C1-neighborhood V of an adequate C∞ skew-product FS in

such a way that each diffeomorphism in V is a limit of horseshoes in the sense

of entropy.

Besides, if we restrict to the Kupka–Smale C2-diffeomorphisms (which we

denote by KS) then we can control the growth of the periodic orbits at arbi-

trarily small scales, which implies the equality of the topological and periodic

entropies and the equidistribution of the periodic points, this way improving

the statement of [22, Theorem 1.3].

Theorem A: There exist a C∞ skew-product

FS : T2 × T2 → T2 × T2

and a C1-open neighborhood V of FS in Diff1(T2 ×T2) such that every G in V

is a limit of horseshoes in the sense of the entropy. Moreover, there is a C2-open

set U ⊂ V in Diff2(T2×T2) such that every diffeomorphism G in the C2-residual

subset R = U ∩KS satisfies the following properties:

(a) htop(G) = limn→+∞ 1
n log#Pern(G).

(b) The measure with maximal entropy of G describes the distribution of

periodic points.
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As previously mentioned, Shub’s examples are entropy-expansive, and this is

a sufficient condition for the existence of a principal symbolic extension (cf. [26]).

Moreover, if we restrict to R, the diffeomorphisms satisfy a stronger property

(namely the asymptotically per-expansiveness) and such an extension may be

constructed in such a way that the corresponding semi-conjugation preserves

the periodic points and induces a homeomorphism between the respective spaces

of invariant probability measures.

Theorem B: Every diffeomorphism of the C2-residual subset R has a principal

strongly faithful symbolic extension with embedding.

According to [38, Chapter 8], there exists a C1-neighborhood V of FS such

that for each G ∈ V there is a homeomorphism ΓG : T2×T2 → T2×T2 such that

Sp(G) := ΓG ◦G ◦ Γ−1
G : T2 × T2 → T2 × T2

is a partially hyperbolic skew-product with base dynamics Φ and for which we

may find a continuous surjective skew-product HG such that

(HG ◦ Sp(G))(x, y) = (Φ× L) ◦HG(x, y) ∀(x, y) ∈ T2 × T2.

Moreover, the open neighborhoods V and U of FS may be chosen so that,

if FS is of class C2 and G ∈ U, then Sp(G) satisfies the technical assumption

in [39, Definition 2], and so Sp(G) is of class C2 as well and belongs to V

(cf. [39, p. 2398]). Therefore, the strong unstable foliation of Sp(G) is minimal

(cf. Proposition 5.2), and so, if Φ is a linear hyperbolic automorphism of T2,

then Sp(G) is mostly contracting (see Lemma 10.1). Thus, as stated by [6],

Sp(G) has a unique ergodic SRB measure, whose basin of attraction has full

Lebesgue measure. Consequently, this SRB measure is Sp(G)’s unique physical

measure. Under this additional assumption on Φ, the skew-product Sp(G)

inherits from Φ× L two further properties.

Theorem C: Assume that Φ and L are both linear hyperbolic automorphisms

of T2. Then, for every G ∈ U, the set T2 × T2 is a partially hyperbolic attrac-

tor supporting a unique ergodic SRB probability measure whose basin has full

Lebesgue measure. Thus, it is the unique physical measure of G. Moreover, for

every G ∈ U, one has:

(a) The image by (HG)∗ of the SRB measure of Sp(G) is the Lebesgue

measure of T2 × T2.

(b) The SRB measure of Sp(G) is its measure with maximal entropy.
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2.1. Organization of the paper. Section 3 contains a short glossary for the

reader’s convenience. In Section 4 we describe the class of partially hyperbolic

diffeomorphisms of T2 × T2 this work comprises, state their main properties

and present the construction of a C∞ skew-product belonging to the family of

Shub’s examples. In Section 5 we prove some preliminary information, to be

summoned later when we show the main results. The proofs of the first part and

items (a) and (b) of Theorem A are given in Sections 6, 7 and 8, respectively.

Theorem B is proved in Section 9 and the argument to set up Theorem C is

explained in Section 10.

3. Glossary

We begin introducing the main definitions used in this work. Given a compact

metric space (X, d) and a continuous map f : X → X , denote by P(X) the

set of Borel probability measures on X endowed with the weak∗-topology, and
by P(X, f) and Pe(X, f) its subsets of f -invariant and f -invariant ergodic

elements, respectively.

3.1. Maximal entropy measures. For each μ in P(X, f), consider the met-

ric entropy hμ(f) of f with respect to μ (definition in [59, Section 4]). The Vari-

ational Principle [59, Theorem 9.10] states that the topological entropy htop(f)

of f coincides with the supremum of the operator μ 	→ hμ(f) restricted to either

P(X, f) or Pe(X, f). A measure μ ∈ P(X, f) such that

hμ(f) = htop(f)

is called a measure with maximal entropy of f .

3.2.Distribution of periodic points. Assume that the cardinality #Pern(f)

of the set of the fixed points of fn is finite for every n ∈ N. We say that a prob-

ability measure μ ∈ P(X, f) describes the distribution of the periodic

points of f if μ is the weak∗ limit of the sequence of probability measures

n ∈ N 	→ 1

#Pern(f)

∑
x∈Pern(f)

δx

where δx denotes the Dirac measure supported at x.
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3.3. Expansiveness. Denote by Bρ(x) the open ball in the metric d centered

at x with radius ρ, and by Bρ(x) its closure. Define, for each n ∈ N, the

equivalent metric

(x, y) ∈ X ×X 	→ dn(x, y)
def
= max

0�j�n−1
d(f j(x), f j(y)).

Given ε > 0, n ∈ N and a compact subset Y ⊂ X , a subset S of X is said to

be (n, ε)-spanning of Y , if for every y ∈ Y there is a ∈ S such that

dn(y, a) � ε.

The minimum cardinality of the (n, ε)-spanning subsets of Y is denoted

by rn(Y, ε). Define

r(Y, ε)
def
= lim sup

n→+∞
1

n
log rn(Y, ε) and htop(f, Y )

def
= lim

ε→0+
r(Y, ε).

Having fixed ε > 0 and x ∈ X , consider the set of points in X whose forward

orbits by f are ε-close to the forward orbit of x, that is,

(3.1) Bf
∞,ε(x)

def
=
⋂
i∈N

f−i(Bε(f i(x))) = {y ∈ X : d(f i(x), f i(y)) � ε, ∀i ∈ N}.

Now define

(3.2) h∗top(f, ε)
def
= sup

x∈X
htop(f,B

f
∞,ε(x)) and h∗top(f)

def
= lim

ε→0+
h∗top(f, ε).

When f is a homeomorphism we ought also to consider backward iterates in

the previous definitions of dn and Bf
∞,ε; that is,

(3.3) dn(x, y)
def
= max

|j|≤n−1
d(f j(x), f j(y)) and Bf

∞,ε(x)
def
=
⋂
i∈Z

f−i(Bε(f i(x))).

However, as X is compact, the new value of h∗top(f, ε) is equal to the one

obtained in (3.2) with the definition (3.1), as proved in [12, Corollary 2.3].

The map f is said to be entropy-expansive if there is ε > 0 such that

h∗top(f, ε) = 0,

and asymptotically entropy-expansive if

h∗top(f) = 0.

Misiurewicz has shown in [45] that for asymptotically entropy-expansive maps

the entropy operator μ ∈ P(X, f) → hμ(f) is upper semi-continuous, guaran-

teeing the existence of at least a measure with maximal entropy for f .
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Given ε > 0, consider

(3.4)
Per(f, ε)

def
= lim sup

n→+∞
1

n
sup
x∈X

log#(Pern(f) ∩Bf
∞,ε(x)),

Per∗(f) def
= lim

ε→0+
Per(f, ε).

Following [17], the map f is said to be asymptotically per-expansive if

Per∗(f) = 0. For instance, expansive or aperiodic maps are asymptotically

per-expansive. An interesting connection between the entropy, the growth of

the cardinality of the periodic orbits with the period and the asymptotic per-

expansiveness is given in the next lemma.

Lemma 3.1 ([18, Lemma 2.2]): lim supn→+∞
1
n log#Pern(f) �htop(f)+Per∗(f).

Thus, if f is asymptotically per-expansive then

lim sup
n→+∞

1

n
log#Pern(f) � htop(f),

an inequality that generalizes [59, Theorem 8.16].

3.4. Partial hyperbolicity. Assume that X is a compact connected Rie-

mannian manifold and that f is a Cr-diffeomorphism, r � 1. An f -invariant

compact set Λ ⊂ X is partially hyperbolic if the tangent bundle on Λ admits

a Df -invariant splitting

Es(f)⊕ Ec(f)⊕ Eu(f)

such that Es is uniformly contracted, Eu is uniformly expanded and the possible

contraction and expansion of Df along Ec(f) are weaker than those in the

complementary bundles. More precisely, there exist constants N ∈ N and λ > 1

such that, for every x ∈ Λ and every unit vector v∗ ∈ E∗(x, f), where ∗ = s, c, u,

we have

(a) λ‖DfN
x (vs)‖ < ‖DfN

x (vc)‖ < λ−1‖DfN
x (vu)‖,

(b) ‖DfN
x (vs)‖ < λ−1 < λ < ‖DfN

x (vu)‖.
We say that an f -invariant compact set Λ ⊂ X is a partially hyperbolic

attracting set if there exists an open neighborhood U of Λ such that f(U) ⊂ U

and Λ =
⋂

n∈N
fn(U), and there is a continuous Df -invariant splitting of the

tangent bundle at Λ into a strong unstable sub-bundle Eu and a center sub-

bundle Ec dominated by Eu. More precisely, TΛX = Eu ⊕ Ec and

‖(Df |Eu)−1‖ < 1 and ‖Df |Ec‖‖(Df |Eu)−1‖ < 1.
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Partial hyperbolicity is a C1-robust property, and a partially hyperbolic dif-

feomorphism f admits stable and unstable foliations, say W s(f) and W u(f),

which are f -invariant and tangent to Es(f) and Eu(f). However, the center

bundle Ec(f) may not have a corresponding tangent foliation (cf. [37]). For a

comprehensive exposition on partial hyperbolicity, we refer the reader to [8].

Suppose that f has a partially hyperbolic attracting set. We say that f is

mostly contracting if, from the point of view of the natural volume within

the unstable leaves, the asymptotic forward behavior along the central direction

is contracting; that is, given any u-dimensional disk D inside an unstable leaf of

W u, there exists a positive volume measure subset A ⊂ D whose points satisfy

lim sup
n→+∞

1

n
log ‖Dfn|Ec(x)‖ < 0 ∀x ∈ A.

We note that, by [3], the set of partially hyperbolic diffeomorphisms whose

central direction is mostly contracting is open in the Cr-topology for any r � 2.

3.5. Symbolic extensions. A map f : X → X has a symbolic extension

if there exists m ∈ N, a closed σ-invariant subset Σ of {0, 1, . . . ,m}Z, and a

continuous surjective map π : Σ → X such that f ◦ π = π ◦ σ, where σ stands

for the shift map. Such a symbolic extension is principal if π preserves the

metric entropy, that is, hη(σ) = hμ(f) for every f -invariant measure μ and

every σ-invariant measure η such that μ = π∗(η). If, in addition, there is a

Borel measurable map τ : X → Σ such that

π ◦ τ = IdentityX , σ ◦ τ = τ ◦ f and Σ = τ(X),

then (Σ, σ, π, τ) is called a symbolic extension with embedding. A sym-

bolic extension (Σ, σ, π) is said to be strongly faithful if the induced map

π∗ : P(Σ, σ) → P(X, f) is a homeomorphism and if π preserves periodic points,

that is, for any n ∈ N one has

π(Pern(σ|Σ)) = Pern(f).

The existence of symbolic extensions seems to depend on hyperbolic-type

properties of f and its degree of differentiability. For instance, it was proved

by Boyle, D. Fiebig and U. Fiebig in [15], and independently by Downarowicz

in [28], that if f is asymptotically entropy-expansive, then it has a principal

symbolic extension. Years before, using Yomdin’s theory [60], Buzzi established

in [20] that C∞ diffeomorphisms are asymptotically entropy-expansive; thus

such systems admit principal symbolic extensions. In addition, Downarowicz
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and Maass proved in [29] the existence of symbolic extensions for interval Cr-

maps (r > 1), and Burguet showed in [16] that, for C2-diffeomorphisms on

surfaces, symbolic extensions are sure to exist. On the other hand, Downarowicz

and Newhouse proved in [30] that a generic area-preserving C1-diffeomorphism

of a compact surface is either Anosov or has no symbolic extension. Regarding

the nonexistence of symbolic extensions for generic C1-diffeomorphisms, we also

refer the reader to [4, 24, 21].

In addition, Cowieson and L.-S. Young showed in [25] that every partially

hyperbolic C1-diffeomorphism with a one-dimensional center bundle is entropy-

expansive (see generalizations in [26, 27, 19] regarding partially hyperbolic

systems with either a central bundle splitting in a dominated way into one-

dimensional sub-bundles or a 2-dimensional center bundle). Therefore, if f is

partially hyperbolic with a one-dimensional center bundle then a principal sym-

bolic extension exists. In particular, every Shub’s example in V has a principal

symbolic extension. We will show that, if we restrict to R, then the diffeomor-

phisms are asymptotically per-expansive and have a strongly faithtful extension

with embedding.

For future use, we register that, according to [17, Main Theorem], the fol-

lowing four conditions together are enough to guarantee that f has a principal

strongly faithful symbolic extension with embedding:

(1) f is entropy-expansive.

(2) f is asymptotically per-expansive.

(3) Per(f) is zero-dimensional.

(4) There exists K > 0 such that

(i) htop(f) < logK;

(ii) #Pern(f) � Kn for every n ∈ N.

3.6. Hyperbolic measures. Given x ∈ X and v ∈ TxX , define the upper

Lyapunov exponent of v at x by

λ+(x, v)
def
= lim sup

n→+∞
1

n
log ‖Dxf

n(v)‖.

The lower Lyapunov exponent of v at x, say λ−(x, v), is obtained replacing

lim sup by lim inf in the previous definition. The function λ+ : TX → R can

only take a finite number �(x) of different values on each tangent space TxX ,

say λ1(x) < λ2(x) < · · · < λ�(x)(x), and associated to these there exists a

filtration L1(x) ⊂ L2(x) ⊂ · · · ⊂ L�(x)(x) = TxX such that λ+(x, v) = λi(x) for
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every x ∈ X and all v ∈ Li(x) \ Li−1(x). Besides, the maps (λi(x))1�i��(x) are

measurable and f -invariant; their values are called the Lyapunov exponents

of f at x. For each 1 � i � �(x) and x ∈ X , the number

ki(x) = dimLi(x)− dimLi−1(x)

is the multiplicity of the i-th exponent at x. Moreover, there exists a subset

O(f) ⊂ X such that, if x belongs to O(f), then the limit

λ+(x, v) = λ−(x, v) = lim
n→+∞

1

n
log ‖Dxf

n(v)‖
exists for every v 
= 0. The elements in O(f) are called regular points, and

Oseledets’ Theorem [49] ensures that the set of regular points O(f) has full μ

measure for any μ ∈ P(X, f). If, in addition, μ is ergodic, then the functions

x→ λi(x) and x→ �(x) are constant at μ almost everywhere. We denote these

constants by λ1(μ) < · · · < λ�(μ). An ergodic probability measure μ is said to

be hyperbolic if λi(μ) 
= 0 for every i = 1, . . . , �.

3.7. SRB measures. Let x ∈ X be a regular point of a C1-diffeomorphism

f : X → X , and consider the sum (with multiplicity) of all the positive Lya-

punov exponents at x, say

χu(x)
def
=

∑
{i:λi(x)>0}

ki(x)λi(x).

Margulis–Ruelle inequality [56] states that the metric entropy of every

μ ∈ P(X, f) is bounded above by the space average of χu, that is,

hμ(f) �
∫
χudμ.

On the other hand, by Oseledets’ Theorem, if Eu(x) stands for the subspace

of TxX corresponding to the positive Lyapunov exponents at the regular point

x ∈ X and Ju(x) denotes the Jacobian of Df restricted to the subspace Eu(x),

then

χu(x) = lim
n→+∞

1

n

n−1∑
i=0

log |Ju(f i(x))|.

Thus, for every Borel f -invariant probability measure μ one has

(3.5) hμ(f) �
∫

log |Ju|dμ.

A probability measure μ attaining the equality in (3.5) is called an SRB mea-

sure.
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Pesin proved in [51] that if μ ∈ P(X, f) is equivalent to the Lebesgue measure

(the Riemannian volume) then μ is an SRB measure. Afterwards, Ledrappier

and L.-S. Young identified all the measures satisfying Pesin’s entropy formula,

establishing in [43] that the equality (3.5) holds if and only if the conditional

measures of μ along the (Pesin) unstable manifolds are absolutely continuous

with respect to the Lebesgue measure.

3.8. Physical measures. Let μ be a Borel f -invariant probability measure

on X . A point x ∈ X is called μ-generic if

lim
n→+∞

1

n

n−1∑
i=0

ϕ(f i(x)) =

∫
ϕdμ ∀ϕ ∈ C0(X,R)

where C0(X,R) stands for the space of continuous maps ϕ : X → R with the

uniform norm. We denote by B(μ) the set of μ-generic points, also called the

basin of attraction of μ. The measure μ is called physical ifB(μ) has positive

Lebesgue measure. Note that, if the basin of μ has full Lebesgue measure, then

μ is the unique physical measure of f .

For topologically transitive Axiom A C2-attractors, there exists a unique

invariant probability measure μ which is characterized by each of the following

properties, equivalent to one another (cf. [14]):

(1) Equality (3.5) holds (that is, μ is SRB).

(2) The conditional measures of μ on unstable manifolds are absolutely

continuous with respect to the Lebesgue measure.

(3) Lebesgue almost every point in a neighborhood of the attractor is

generic with respect to μ (that is, μ is physical).

4. The setting

In this section we describe the class of skew-products introduced in [48] (Sub-

section 4.1), then we detail some of its properties (Subsection 4.2) and later we

rebuild this class to increase the regularity of its maps (Subsection 4.3).
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4.1. Skew-products. Let Φ and L be two Anosov diffeomorphisms of the

2-torus T2, L being a linear automorphism. Consider a family of C1-diffeo-

morphisms (fx)x∈T2 acting on T2 and take the skew-product induced by Φ and

(fx)x∈T2 , defined by

(4.1)
F : T2 × T2 → T2 × T2

(x, y) 	→ F (x, y) = (Φ(x), fx(y)).

Assume that F has the following properties (see [48, p. 612]):

(S1) The map x ∈ T2 → fx ∈ Diff1(T2) is continuous.

(S2) F is homotopic to Φ×L as a bundle map, that is, the homotopic path

is made of skew-products with fixed base dynamics Φ.

(S3) There is a one-dimensional lamination F of T2×T2 which is F -invariant

and normally expanding.

The first property means that each leaf F(x, y) through (x, y) is a

smoothly immersed line in {x} × T2 such that

F (F(x, y)) = F(F (x, y));

the second one means that there is a continuous splitting

(x, y) → Eu(x, y)⊕ Ec(x, y)

of the tangent space to {x} × T2 such that:

• Dyfx(E
u(x, y)) = Eu(F (x, y)) and Dyfx(E

c(x, y)) = Ec(F (x, y)).

• Ec(x, y) = T(x,y)F(x, y).

• There is a Riemannian metric on {x} × T2 with induced norm ‖.‖
such that

inf
(x,y)∈T2×T2

‖Dyfx|Eu(x,y)‖ > max{1, sup
(x,y)∈T2×T2

‖Dyfx|Ec(x,y)‖}.

Thus, F is partially hyperbolic with a one-dimensional center bundle and a

splitting

(4.2) T(T2 × T2) = Ess ⊕ Ec ⊕ Eu ⊕ Euu

where the splitting Ess ⊕ Euu is related to the hyperbolicity of the base Φ and

the splitting Ec ⊕Eu is related to the dynamics at the leaves of the lamination

L := {{x} × T2}x. Note that F preserves the lamination L thus, replacing Φ

by one of its iterates if necessary, we can assume that F is normally hyperbolic

to L.
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4.2. Properties. For future use, we list here the main properties of the pre-

vious skew-products.

4.2.1. Semi-conjugation with an Anosov diffeomorphism. Under the previous

assumptions on F , it was shown in [48, Lemmas 1 & 3] that there exists a

continuous surjective skew-product H : T2 × T2 → T2 × T2 of the form

H(x, y) = (x, hx(y)),

where hx : {x} × T2 → {x} × T2 is homotopic to the identity, satisfies the

equality

(4.3) hΦ(x) ◦ fx = L ◦ hx ∀x ∈ T2

and:

(H1) For every (x, y) ∈ T2 × T2, one has

(4.4) (H ◦ F )(x, y) = (Φ× L) ◦H(x, y).

(H2) htop(H
−1{(x, y)}) = 0 ∀(x, y) ∈ T2 × T2.

The semi-conjugation H can be seen as the result of a parameterized version of

a theorem due to Franks [31]. An immediate consequence of (H2) and Bowen’s

inequality [13] is the following estimate:

(4.5) htop(F ) = htop(Φ× L) = htop(Φ) + htop(L).

4.2.2. Unique maximal entropy measure. Using the semi-conjugation H be-

tween F and Φ × L, Newhouse and L.-S. Young have established in [48] suf-

ficient conditions for the existence of a unique probability measure μmax of

maximal entropy for F , and proved that H∗(μmax) = νmax, where νmax stands

for the probability measure with maximal entropy of Φ×L. Moreover, the pairs

(F, μmax) and (Φ × L, νmax) are almost conjugate: more precisely, there exists

a Φ-invariant Borel set B such that B×T2 is contained in the set of injectivity

points of H , say

A
def
= {(x, y) ∈ T2 × T2 : #H−1(x, y) = 1}

and satisfies:

(M1) μmax(B × T2) = νmax(B × T2) = 1.

(M2) The restrictions F |B×T2 and (Φ× L)|B×T2 are conjugated by H |B×T2 .
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Actually, B × T2 is a subset of E (cf. [48, p. 624]), where

E
def
= {(x, y) ∈ T2 × T2 : λc+(F )(x, y) < 0} ⊂ A

and λc+(F ) stands for the upper Lyapunov exponent of F along to the one-

dimension central direction Ec(F ). Therefore,

(4.6) μmax(E) = νmax(E) = 1.

We remark that the properties (M1)–(M2) are satisfied by the skew-products

(which are Shub’s examples) constructed in [48, p. 626].

Taking into account that B ×T2 ⊂ A, we also note that the properties (M1)

and (H2) of Subsection 4.2.1 allow us to apply [22, Theorem 1.5] to F , and

thereby conclude that:

(M3) The maximal entropy measure μmax describes the distribution of peri-

odic classes of F .

Let us be more precise regarding this property. Consider the equivalence relation

on the set T2 × T2 given by

(x, y) ∼ (x0, y0) ⇔ H(x, y) = H(x0, y0).

Then the elements in the class [(x, y)] are the ones in H−1({H(x, y)}). The

class [(x, y)] is said to be n-periodic if H(x, y) belongs to Pern(Φ× L). Denote

by P̃ern(F ) the set of periodic classes with period n. Then μmax describes the

distribution of periodic classes of F if μmax is the weak∗ limit of the sequence

of measures

n ∈ N 	→ ζn
def
=

1

#P̃ern(F )

∑
[(x,y)]∈˜Pern(F )

δ[(x,y)]

where δ[(x,y)] is any Fn-invariant probability measure supported on the class

[(x, y)].

4.2.3. Persistent properties. According to [38, Chapter 8], there exists a C1-

neighborhood V of F such that for each G ∈ V there is a homeomorphism

ΓG : T2 × T2 → T2 × T2 so that

(4.7) Sp(G) := ΓG ◦G ◦ Γ−1
G : T2 × T2 → T2 × T2

is a bundle map covering Φ satisfying the conditions (S1)–(S3) above. In par-

ticular, Sp(G) is a partial hyperbolic skew-product with splitting

(4.8) T (T2 × T2) = Ess
Sp(G) ⊕ Ec

Sp(G) ⊕ Eu
Sp(G) ⊕ Euu

Sp(G).
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Therefore, for each G ∈ V there exists a continuous surjective skew-product HG

such that

(4.9) HG ◦ Sp(G)(x, y) = (Φ× L) ◦HG(x, y) ∀(x, y) ∈ T2 × T2

and HG satisfies the conditions (H1)-(H2). Consequently, every G in V has the

following properties:

(P1) htop(G) = htop(Sp(G)) = htop(Φ× L) = htop(Φ) + htop(L) > 0.

(P2) G has a unique measure with maximal entropy.

(P3) G is semi-conjugated to Φ × L by hG := HG ◦ ΓG, that is, hG ◦ G =

(Φ× L) ◦ hG.
We remark that, if F is of class C2 and satisfies the technical assumption

called modified dominated splitting condition in [39, Definition 2], then we can

apply [39] and conclude that, for small enough ρ > 0, any ρ-perturbation G

of F in the C2-topology has additional properties, such as:

(P4) There exists a continuous map ℘G : T2 × T2 → T2 such that

℘G ◦G = Φ ◦ ℘G

and the homeomorphism ΓG : T2 × T2 → T2 × T2 has the form

(4.10) ΓG(x, y) = (℘G(x, y), y)

(cf. [39, Theorem 1]).

(P5) The skew-product Sp(G) in (4.7) is of class C2, is given by

(4.11) (x, y) ∈ T2 × T2 	→ Sp(G)(x, y) = (Φ(x), gx(y)),

and satisfies dC2(fx, gx) � o(ρ) uniformly in x ∈ T2 (cf. [39, p. 2398]).

According to [39, Appendix A.2], the family (gx)x defining the second coor-

dinate of the skew-product Sp(G) satisfies

(4.12) gx(y) = π2(G(β̃x(y), y)) = G2(β̃x(y), y)

where π2 is the natural projection on the second factor of T2 × T2,

G(x, y) = (G1(x, y), G2(x, y))

and the pairs

{(β̃x(y), y) : y ∈ T2}
parameterize the leaf Wx of the G-invariant central lamination (Wx)x∈T2

given by [38, Theorems 7.1, 7.4] (cf. [39, Subsection 3.3]). This lamination

is C2-normally hyperbolic, plaque expansive (cf. [48]) and C2-near to the
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foliation ({x}×T2)x∈T2 (cf. [38, Section 6A]). In particular, as G is of class C2,

then so is Sp(G) and one has dC2(fx, gx) � o(ρ) (cf. the computation in

[39, p. 2398]).

4.3. Construction of Shub’s examples. We now describe the construction

of a Shub’s example of class C∞, say FS , satisfying the properties (S1)–(S3)

on Subsection 4.1. Consequently, for every 1 � r � +∞, we can consider a

Cr-open set U ⊂ Diffr(T2 × T2) of Shub’s examples containing FS .

To build such a C1-skew-product FS and the corresponding neighborhood U

in the C1-topology, Shub considered a Derived from Anosov (DA) defined by

splitting a saddle of the linear automorphism L into a source and two saddles

by a large C1-isotopy. Let p 
= q be fixed points of L2 and consider the map

FS : T2 × T2 → T2 × T2 defined by

FS(x, y) = (L2(x), fx(y)),

where x ∈ T2 	→ fx ∈ Diff1(T2) is chosen so that

• fx = L for every x outside a small disc B of T2 such that p ∈ T2 \B;

• fx = DA for every x inside a smaller disc B′ ⊂ B such that q ∈ B′;
• in between, the map x→ fx is an isotopy gluing L and DA.

Shub proceeded proving that FS is a topologically transitive diffeomorphism,

hence Ω(FS) = T2 × T2. Moreover, by the Equivariant Fibration Theorem

[57, Proposition 8.6] there exists a C1-open neighborhood V of FS such that

every G in V is a topologically transitive partially hyperbolic diffeomorphism

with a one-dimensional central direction. The results in [2] also show that no

such G is structurally stable.

4.3.1. Construction of a C∞ skew-product FS . Let Φ be a C∞ Anosov diffeo-

morphism having two fixed points, say p 
= q and θ0 ∈ T2 the fixed point of L.

Denote by λs and λu the eigenvalues associated to the unstable and stable eigen-

vectors vu and vs of the matrix DL (which we still denote by L if no confusion

arises). Suppose that 0 < λs < 1 < λu = λ−1
s . Fix a small open neighborhood

W
def
= W1 ×W2 of (q, θ0), within which we use coordinates u1v

u + u2v
s along

each fiber {w} ×W2, where w ∈ W1. Let � > 0 be small enough so that the

ball B�(q, θ0) = B�(q)×B�(θ0) of radius � centered at (q, θ0) is contained inW .

Take a C∞ bump function δ : T2 × T2 → R defined by

δ(x, y)
def
= b(x)b(y),
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where b : T2 → R is a bump function satisfying 0 � b(x) � 1 for every x ∈ T2,

b(x) = 1 if |x| < �/2 and b(x) = 0 if |x| > �. Afterwards, consider the system

of differential equations in T2 × T2 given by

(4.13)

⎧⎨⎩ẇ = 0 in T2,

(u̇1, u̇2) = (0, u2δ(|w − q|, |(u1, u2)|)) in T2.

Denote by ϕt the flow of the differential equation (4.13), that is,

(4.14) ϕt(w, (u1, u2)) = (w,ψt
w(u1, u2))

where

ψt
w(u1, u2) = (u1, ψ

t
w,2(u1, u2)).

Note that (w, u1, u2) → ϕt(w, (u1, u2)) is C∞ and that the support of ϕt − id

is contained in W . Moreover, the derivative of the flow at (w, θ0) in terms of

the (w, u1, u2)-coordinates is given by

D(w,θ0)ϕ
t =

(
1 0

0 Dθ0ψ
t
w

)
where Dθ0ψ

t
w =

(
1 0

0 etb(|w−q|)

)
while the bold numbers 0 and 1 stand for the null 2 × 2 matrix and the 2 × 2

identity matrix, respectively. Fix now T > 0 such that 1 < λse
T < λu and

define FS : T2 × T2 → T2 × T2 by

(4.15) FS
def
= ϕT ◦ (Φ× L).

Note that fx(θ0) = θ0 for all x ∈ T2 and that, by the choice of T , the fixed

point θ0 is a source of fq at the fiber {q} × T2 (see Figure 1).

Furthermore, for each x ∈ T2 we have fx = ψT
Φ(x) ◦ L, so the map

x ∈ T2 → fx ∈ Diff∞(T2)

is of class C∞ (property (S1)). Besides, for every t ∈ [0, T ], the map ϕt◦(Φ×L)
is a skew-product with fixed base Φ, so FS is homotopic to Φ×L as bundle map

(property (S2)). Finally, for every t, the flow ϕt preserves the stable foliation

F := W s
L of L. Using the arguments of [55, p. 300], it is not difficult to verify

the existence of a DFS-invariant expanding fiber bundle Eu(x, ·) of the tangent
space to {x} × T2, whose integration provides a foliation Wu transverse to F.

Summarizing,

(4.16) T{x}×T2 = Eu(x, ·)⊕ Ec(x, ·), Ec(x, y) = T(x,y)F(x, y), F =W s
L.
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Anosov

θ0

p
q

θ0

Derived from Anosov

Figure 1. Homotopic deformation from Φ× L to FS .

The inequality (S3) relating the norms ‖Dyfx|Eu(x,y)‖ and ‖Dyfx|Ec(x,y)‖ fol-

lows from the choice of T , which also ensures that FS satisfies the modified

dominated splitting of [39, Definition 2] we referred to on Subsection 4.2.3,

namely

(4.17) max{max{κ1, κ2}+ ‖Dx(fx)
±‖C0 , ‖Dy(fx)

±‖C0} < min{κ−1
1 , κ−1

2 }
where 0 < κ1 < 1, 0 < κ2 < 1, ‖DΦ|Es‖ � κ1 and ‖DΦ−1|Eu‖ � κ2.

5. Periodic points and minimal foliations

In this section we collect some additional information that will be used in the

proofs of our main results. Throughout this section U ⊂ Diff2(T2 × T2) de-

notes a small C2-neighborhood of the C∞ diffeomorphism FS defined by (4.15),

whose elements comply with the results we have mentioned from Shub’s [57],

Newhouse–Young’s [48], Ilyashenko–Negut’s [39] and Andersson’s [3] articles.
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5.1. Hyperbolic periodic points. Recall that to each G ∈ U we can as-

sociate a C2-skew-product Sp(G) satisfying the properties of Section 4, and a

homeomorphism ΓG of T2 × T2 such that Sp(G) ◦ ΓG = ΓG ◦G (cf. (4.7)).

Proposition 5.1: Let n ∈ N. If (x, y) is a hyperbolic fixed point of Gn, then

ΓG(x, y) is a hyperbolic fixed periodic point of Sp(G)n.

Proof. Recall from (4.11) that Sp(G)(x, y) = (Φ(x), gx(y)), where the family of

maps (gx)x∈T2 in Diff2(T2) is the one presented in (4.12). For every n ∈ N, write

Gn(x, y) = (Gn
1 (x, y), G

n
2 (x, y)) and Sp(G)n(x, y) = (Φn(x), gnx (y))

where gnx : T
2 → T2 stands for the composition

gnx (y)
def
= gΦn−1(x) ◦ gΦn−2(x) ◦ · · · ◦ gx(y).

Since Sp(G)n ◦ ΓG = ΓG ◦ Gn for every n ∈ N and ΓG(x, y) = (℘G(x, y), y)

(see (4.10)) one has for all (x, y) ∈ T2 × T2

(5.1)

gn℘G(x,y)(y) = gΦn−1(℘G(x,y)) ◦ gΦn−2(℘G(x,y)) ◦ · · · ◦ g℘G(x,y)(y)

= π2 ◦ Sp(G)n(ΓG(x, y))

= π2 ◦ ΓG(G
n(x, y))

= Gn
2 (x, y).

Suppose now that the Gn(x0, y0) = (x0, y0) and that (x0, y0) is hyperbolic.

Then ΓG(x0, y0) is a fixed point of Sp(G)n and

Dyg
n
℘G(x0,y0)

(Ec
Sp(G)(ΓG(x0, y0))) = Ec

Sp(G)(ΓG(x0, y0))

where Ec
Sp(G) of Sp(G) is the fiber central bundle mentioned in (4.8). The

equations (5.1) imply that Ec
Sp(G)(ΓG(x0, y0)) is also invariant by DyG

n
2 (x0, y0).

Thus, the hyperbolicity of (x0, y0) with respect toGn ensures that the restriction

of Dyg
n
℘G(x0,y0)

to the bundle Ec
Sp(G)(ΓG(x0, y0)) is different from the identity.

Therefore, ΓG(x0, y0) is a fixed hyperbolic point of Sp(G)n. This ends the proof

of the proposition.

5.2. Minimal foliations. Consider r � 1 and f ∈ Diffr(M). An f -invariant

foliation Ff of M is called minimal if its leaves are dense on the manifold M .

If, in addition, the foliation has a continuation Fg for every diffeomorphism g

which is Cr-close to f and this continuation is minimal, then Ff is said to be

Cr-robustly minimal.
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Let FS ∈ Diffr(T2 ×T2) be the map defined in (4.15), r � 1, and consider its

unstable foliation Wu(FS), tangent to E
u ⊕Euu. Note that, for every G which

is Cr-near FS , there is a continuation Eu
G⊕Euu

G of those bundles, and so G has

an unstable foliation Wu(G) as well.

Proposition 5.2: The strong unstable foliation Wu(FS) is Cr-robustly

minimal.

Proof. The proposition follows directly from [53, Section 5].

6. Proof of Theorem A: First part

Throughout this section, V ⊂ Diff1(T2×T2) denotes a small C1-neighborhood of

the diffeomorphism FS defined by (4.15). To prove the first part of Theorem A

we need to recall an auxiliary result which extends to C1-diffeomorphisms the

classic Katok’s theorem [41, Corollary 4.3] on the existence of horseshoes in the

presence of hyperbolic measures.

Lemma 6.1 (Theorem 1-(iv) in [32]): Let f be a C1-diffeomorphism of a smooth

Riemannian manifold M and μ a hyperbolic ergodic f -invariant Borel proba-

bility measure with positive entropy hμ(f) > 0. Suppose that the support

of μ admits a dominated splitting. Then, for every ε > 0, there exists a basic

set Λε ⊂M such that

|htop(f |Λε)− htop(f)| < ε.

We are left to prove that, when G is in V, then the assumptions of Lemma 6.1

are valid for the corresponding skew-product Sp(G).

Proposition 6.2: For every diffeomorphism G ∈ V, there exists an Sp(G)-

invariant Borel probability measure μSp(G) which is hyperbolic and maximizes

the entropy.

Assume for the moment this proposition, and let us complete the proof of the

first part of Theorem A.
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Proof. If μSp(G) is the measure as in Proposition6.2, we know that (see item(P1)

in Subsection 4.2)

hμSp(G)
(Sp(G)) = htop(Sp(G)) = htop(G) = htop(FS) = htop(Φ) + htop(L) > 0.

So we can apply Lemma 6.1 and get, for every ε > 0, a set Λε ⊂ T2 ×T2 which

is invariant by Sp(G) and satisfies

htop(Sp(G)|Λε) > htop(Sp(G))− ε.

Since G and Sp(G) are conjugate by ΓG, then ΔG,ε := Γ−1
G (Λε) is a G-invariant

set such that

htop(G|Δε) = htop(Sp(G)|Λε) > htop(Sp(G))− ε = htop(G) − ε.

So G is a limit of horseshoes in the sense of entropy.

Let us now show the pending result.

Proof of Proposition 6.2. Recall that, for every G ∈ V, the non-wandering set

of the skew-product Sp(G), equal to T2 × T2, is partially hyperbolic with a

splitting of the form (see (4.8))

(6.1) T (T2 × T2) = Ess
Sp(G) ⊕ Ec

Sp(G) ⊕ Eu
Sp(G) ⊕ Euu

Sp(G).

In particular, the support of every Sp(G)-invariant probability measure admits

a dominated splitting. Moreover, since dim(E∗
Sp(G)) = 1, ∗ = ss, c, u, uu, the

splitting (6.1) is the (unique) finest dominated splitting of T (T2 × T2), that

is, the bundles of any other dominated splitting of T (T2 × T2) can be ob-

tained by the union of the bundles E∗
Sp(G), ∗ = s, c, u, uu. Therefore, for every

ergodic Sp(G)-invariant measure μ the corresponding Oseledets’ splitting coin-

cides with (4.8) at μ almost every point in T2 × T2 (for more details see [1,

Subsection 2.4]). Thus, there exist four Lyapunov exponents for μ, namely

(6.2) λss(μ) < λc(μ) < λu(μ) < λuu(μ)

satisfying λss(μ) < 0 < λu(μ).

We will now check that the (unique ergodic) measure with maximal en-

tropy μmax of FS provided in [48] is hyperbolic, that is, λc(μmax) 
= 0. For

that, consider the set O(FS) of regular points of FS given by Oseledets’s Theo-

rem [49]. Both O(FS)∩ (B×T2) and O(FS)∩E have full μmax measure. Thus,

the points (x, y) in this intersections satisfy

(6.3) λc+(FS)(x, y) = λc(μmax) < 0.
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We must also show that, if G ∈ V, then the diffeomorphism Sp(G), which

has a unique (ergodic) measure with maximal entropy as well, satisfies a

property similar to (6.3). Consider the measure μSp(G) of maximal entropy

for Sp(G). From [48, Theorem 1-(3)], the push-forward (π1)∗(μSp(G)), where

π1 : T2 × T2 → T2 is the natural projection on the first factor, is the measure

with maximal entropy ν of Φ. To verify that λc+(Sp(G)) < 0, we will show that

there exist a setBSp(G)⊂T2 such that ν(BSp(G))=1 (so μSp(G)(BSp(G)×T2)=1)

and λc+(Sp(G))(x, y) < 0 at every point (x, y) ∈ BSp(G) × T2.

Recall from [48] that the set B for FS is obtained applying Birkhoff’s Ergodic

Theorem to Φ, ν and the map ς : T2 → R defined by

ς(x) = sup
y∈T2

‖Dyfx(y)|Ec(x,y)‖

which satisfies

(6.4)

∫
log ς dν < 0

and

λc(FG)(x, y) � l̃og ς(x) for every (x, y) ∈ T2 × T2,

where l̃og ς(x) denotes the limit given by Birkhoff’s Ergodic Theorem of the

sequence (
1

n

n−1∑
i=0

log ς(Φi(x))

)
n∈N

.

Since, for every G ∈ V, the homeomorphism ΓG is C0 arbitrarily near the

identity, then the function ςG for Sp(G), defined as done with ς , satisfies an

inequality similar to (6.4) (see [48, p. 627]), which means that the set BSp(G) is

obtained by an analogous application of Birkhoff’s Ergodic Theorem.

7. Proof of Theorem A: Second part

In the remainder of the paper, U ⊂ Diff2(T2×T2) denotes a small C2-neighbor-

hood of the diffeomorphism FS in (4.15). Let KS ⊂ Diff2(T2 × T2) be the

C2-residual subset of Kupka–Smale diffeomorphisms. We write

R
def
= U ∩KS.
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This section is committed to prove the following proposition, which implies

Theorem A-(a):

Proposition 7.1: For every G ∈ R and n ∈ N, one has

(7.1) #Pern(Φ× L) � #Pern(G) � 3#Pern(Φ× L).

Consequently,

lim
n→+∞

1

n
log#Pern(G) = htop(G).

The key idea to show this proposition consists in finding upper and lower

estimates for the cardinals

(x, y) ∈ Pern(Φ× L) and n ∈ N 	→ #(H−1
G (x, y) ∩ Pern(Sp(G)))

where HG is the semi-conjugation between Sp(G) and Φ × L given in (4.9).

Thus, recalling that, for every G ∈ U (see property (P1) in Subsection 4.2 and

[14]), one has

htop(G) = htop(Sp(G)) = htop(Φ× L) = lim
n→+∞

1

n
log#Pern(Φ× L)

those estimates allow us to get equation (7.1) for Sp(G), hence for G by conju-

gation.

This task has two parts: the first one is to show that, if (x, y) ∈ Pern(Φ×L),
then the set H−1

G (x, y) is an interval (Subsection 7.1); the second one consists

of an analysis of the dynamic of Sp(G) on the periodic leaf ({x} × T2)x∈Per(Φ)

(Subsection 7.2).

7.1. Connectedness of the induced classes. In [48, Lemma 3], it is shown

that, given G ∈ V, for each (x, y) ∈ T2 × T2 the set H−1
G (x, y), called a class

induced by H , is contained in an interval inside a single center leaf of Sp(G),

whose length is bounded by a constant independent of (x, y). In what follows

we need a stronger assertion, though: that these induced classes are connected

subsets of those intervals whenever G ∈ U.

We start studying the connectedness of the induced classes of FS . Recall

that Wu is the foliation tangent to the expanding bundle Eu in (4.16), F is

the central foliation of FS in (4.16) and that there exists a semi-conjugation

H : T2×T2 → T2×T2 between FS and Φ×L in (4.4). The goal of this subsection

is to show that, for all (x, y) ∈ T2×T2, H−1(x, y) is a one-dimensional compact

connected subset (an interval) of a single leaf of F.
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Consider a foliation W of a simply connected compact Riemannian mani-

foldM and lift it to the universal cover M̃ , obtaining a foliation we denote by W̃.

For points x, y on the same leaf W̃ of W̃, one can define a distance D
˜W
(x, y) as

the length of the shortest path inside the leaf W̃ linking x and y. We say that

the lifted foliation W̃ of W is quasi-isometric if there is a constant C > 1 such

that for any x, y ∈ M̃ lying on the same leaf of W̃ we have

D
˜W
(x, y) < CD(x, y) + C

where D denotes the metric on M̃ . The next assertion is inspired by [34].

Claim 7.2: For every x ∈ T2, both W̃u(x, ·) and F̃(x, ·) are quasi-isometric.

Proof. Since we wish to estimate the intrinsic distance between two points of

the same leaf of either W̃u or F̃, which is contained in some fiber {x̃} × R2

with x̃ ∈ R2, it is sufficient to consider the lifts of Wu and F, which we still

denote by W̃u and F̃, to the universal cover T2 ×R2 of T2 ×T2 with respect to

the second factor.

Firstly, we observe that from [52, Lemma 4.A.5] we know that, for each x ∈ T2,

the foliations W̃u(x, ·) and F̃(x, ·) inside {x} ×R2 have a global product struc-

ture. Therefore, W̃u(x, ·) and F̃(x, ·) are quasi-isometric due to [52, Propo-

sition 4.3.9]. Indeed, this result informs that, for every x ∈ T2, there exist

C1,x, C2,x > 1 such that, for every ỹ, z̃ in R2, one has

D
˜Wu((x, ỹ), (x, z̃)) < C1,x‖ỹ − z̃‖+ C1,x

and

D
˜F
((x, ỹ), (x, z̃)) < C2,x‖ỹ − z̃‖+ C2,x.

The next result is a parameterized version of [58, Proposition 3.1].

Lemma 7.3: For every (x, y) ∈ T2 ×T2, the set H−1(x, y) is a one-dimensional

compact connected subset of a single center leaf of FS .

Proof. The equality (4.4) can be expressed in T2×R2 by lifting (4.3) to {x}×R2,

which provides the equality H̃ ◦ F̃S = (Φ× L̃) ◦ H̃ , where H̃(x, ỹ) = (x, h̃x(ỹ))

is a proper map at a bounded distance from the identity. The former property

of H̃ implies that h̃−1
x (ỹ) is a compact subset of R2 for every (x, ỹ) ∈ T2 × R2.

The latter leads to the following estimate: for every x ∈ T2 and ỹ, z̃ ∈ R2,

(7.2) h̃x(ỹ) = h̃x(z̃) ⇔ ∃ K > 0 : ‖F̃n
S (x, ỹ)− F̃n

S (x, z̃)‖ < K ∀n ∈ Z.
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Besides, if W̃ s
Φ×L stands for the lifts of the weak stable foliation of Φ × L to

T2 × R2, then (cf. [48, Lemma 2])

h̃x(F̃(x, ỹ)) = W̃ s
Φ×L(H̃(x, ỹ)).

We are left to verify that h̃−1
x (ỹ) is a connected set. This is a consequence of

the following adaptation of [58, Lemma 3.2].

Claim 7.4: If h̃x(ỹ) = h̃x(z̃), then (x, z̃) ∈ F̃(x, ỹ).

Proof. Suppose that (x, z̃) /∈ F̃(x, ỹ). Let (x, w̃) = W̃u(x, z̃) ∩ F̃(x, ỹ). Note

that such a point (x, w̃) exists and is unique (cf. [35, Proposition 2.4]). Consider

Dc = D
˜F
((x, ỹ), (x, w̃)) and Du = D

˜Wu((x, z̃), (x, w̃)).

Recall now the choice of T > 0 in the definition of FS (see (4.15)) and the

eigenvalues 0<λs<1<λu=λ
−1
s of L, and take γ1 :=λs and 1<γ2 :=e

Tλs<λu.

So, by definition 0 < γ1 < γ−1
2 < 1. Using γ1 and γ2, one can find constants

0 < γ̃1 < γ̃−1
2 < 1 such that

‖F̃n
S (x, ỹ)− F̃n

S (x, w̃)‖ � γ̃n2Dc and D
˜Wu(F̃

n
S (x, z̃), F̃

n
S (x, w̃)) � γ̃−n

1 Du.

Since W̃u(x, ·) is quasi-isometric (Claim 7.2), we also have

‖F̃n
S (x, z̃)− F̃n

S (x, w̃)‖ � 1

K
(γ̃−n

1 Du −K).

Therefore,

‖F̃n
S (x, ỹ)− F̃n

S (x, z̃)‖ >
1

K
(γ̃−n

1 Du −K)− γ̃n2Dc.

The last quantity goes to infinity as n → +∞, which implies, by (7.2), that

h̃x(ỹ) 
= h̃x(z̃). This finishes the proof of the claim.

Claim 7.5: For every x ∈ T2 and ỹ ∈ R2, the pre-image h̃−1
x (ỹ) is connected.

Proof. Fix x ∈ T2. We will see that, given z̃ and w̃ in h̃−1
x (ỹ), then the arc

in the center manifold joining z̃ and w̃ is contained in h̃−1
x (ỹ). From (7.2), we

know that there exists K > 0 such that ‖F̃n
S (x, z̃) − F̃n

S (x, w̃)‖ < K for every

n ∈ Z. Let ϑ̃ be a point in that arc. Bringing forth Claim 7.2, we conclude

that, for every n ∈ Z,

‖F̃n
S (x, z̃)− F̃n

S (x, ϑ̃)‖ � D
˜FS
(F̃n(x, z̃), F̃n

S (x, ϑ̃))

� D
˜F
(F̃n

S (x, z̃), F̃
n
S (x, ỹ)) � C2,xK + C2,x.
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Therefore, by (7.2), we know that ϑ̃ belongs to h̃−1
x (ỹ). By projecting, the

same property is valid for the map hx. This ends the proof of Claim 7.5 and of

Lemma 7.3.

Now we turn to a more general G ∈ V and its skew-product Sp(G) with the

semi-conjugation HG with Φ × L. Since FS abides by the stronger estimates

of the partial hyperbolicity (called absolute partial hyperbolicity in [58,

Proposition 3.1]) demanded from the values γ1 and γ2 that were used to prove

Claim 7.4, and the absolute partial hyperbolicity is a C1-open condition, then

Sp(G) satisfies this property as well. Moreover, the proof of the quasi-isometric

nature of the foliations asserted in Claim 7.2 also works for Sp(G). Conse-

quently, a statement analogous to the one of Lemma 7.3 is true for Sp(G), that

is, for every (x, y) ∈ T2×T2, the set H−1
G (x, y), which is contained in an interval

inside a single center leaf of Sp(G) (cf. [48, Lemma 3]), is connected.

7.2. The dynamics on the periodic fiber {x} × T2
. Consider G ∈ R and

its corresponding skew-product Sp(G) (see (4.11)) defined by

(x, y) ∈ T2 × T2 	→ Sp(G)(x, y) = (Φ(x), gx(y)).

For every n ∈ N, write

Sp(G)n(x, y) = (Φn(x), gnx (y))

where gnx : T
2 → T2 stands for the map

y ∈ T2 	→ gnx(y)
def
= gΦn−1(x) ◦ gΦn−2(x) ◦ · · · ◦ gx(y).

Recall that there is a skew-productHG, say HG(x, y) = (x, hGx (y)) (see (4.4)),

which semi-conjugates Sp(G) and Φ× L (cf. (4.9)).

Proposition 7.6: Let n ∈ N and x0 ∈ Pern(Φ). Then either gnx0
is Anosov

(conjugated to Ln) or a Derived from Anosov (obtained from Ln).

Proof. Firstly note that gnx0
and Ln are semi-conjugated. Indeed, as x0∈Pern(Φ)

then hGΦn(x0)
= hGx0

(see (4.3)) and so, for every y ∈ T2, one has

hGx0
◦ gnx0

(y) = hGΦn(x0)
◦ gΦn−1(x0) ◦ gn−1

x0
(y)

= L ◦ hGΦn−1(x0)
◦ gn−1

x0
(y)

...

= Ln ◦ hGx0
(y).
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Thus, if for every y ∈ T2 the interval (HG)
−1

(x0, y) = {x0}×(hGx0
)
−1

(y) reduces

to a point, then y 	→ HG(x0, y) is a conjugation between gnx0
and Ln, hence gnx0

is an Anosov diffeomorphism. The remaining case is dealt with on the next

lemma.

Lemma 7.7: Consider n ∈ N and x0 ∈ Pern(Φ). If for some y ∈ T2 the interval

H−1
G (x0, y) is non-degenerate, then the diffeomorphism gnx0

is a Derived from

Anosov obtained from Ln.

Proof. To check that gnx0
satisfies the standard properties of a Derived from

Anosov we will follow the reference [55, p. 300].

Claim 7.8: θ0 is a source of gnx0
.

Proof. Since, by construction, when any expansion exists within Ec the greatest

expansion is attained at θ0, we have

‖Dgnx |Ec(x,θ0)‖ � ‖Dgnx |Ec(x,y)‖ ∀(x, y) ∈ T2 × T2 ∀n ∈ N.

On the other hand, if H−1
G (x0, y) is a non-degenerated interval then

λc+(x0, y) � 0

(recall that E ⊂ A, see Subsection 4.2). As (x0, θ0) is a fixed point of Sp(G)n,

the Lyapunov exponent λc(Sp(G)n)(x0, θ0) is well defined and satisfies

λc(Sp(G)n)(x0, θ0) = n lim sup
k→+∞

1

nk
log ‖Dgnkx0

|Ec(x0,θ0)‖

= nλc+(Sp(G))(x0, θ0)

� nλc+(Sp(G))(x0, y) � 0.

Thus, ‖Dgnx0
|Ec(x0,θ0)‖ � 1. Yet, as G ∈ R then, due to Proposition 5.1, one

must have ‖Dgnx0
|Ec(x0,θ0)‖ > 1, and so θ0 is indeed a source of gnx0

.

Claim 7.9: The map gnx0
has three fixed points in W s(θ0, L

n), namely θ0

and two new saddle points θ1 and θ2, one in each connected component of

W s(θ0, L
n) \ {θ0}.

Proof. Recall, from the construction of FS in Subsection 4.3, the definition and

use of the neighborhood W =W1 ×W2 of (q, θ0) and the ball

B�(q, θ0) = B�(q)×B�(θ0)
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contained in W . Since H−1
G (x0, y) is a non-degenerate interval, there exists

0 � i � n such that Φi(x0) ∈ B�(q). By construction, outside the open set W2

the slope of the graph of the restriction of the map

gnΦi(x0)
: T2 → T2

to W s(θ0, L
n) is smaller than one: due to the dynamics within the stable mani-

fold W s(θ0, L
n), the one-dimensional map gnΦi(x0)

is a contraction, so its deriva-

tive has absolute value smaller than one. Therefore, there exist two fixed points

by gnΦi(x0)
, say θi1 and θi2, on each side of θ0, which belong to W2 ∩W s(θ0, L

n).

The points θ1 and θ2 we were looking for are obtained intersecting the orbits

of θi1 and θi2 with the fiber {x0}×T2. Figure 2 illustrates this information.

θ0 �

gΦk−1(x0)

w2

L|[θ0,w2)

gnΦi(x0)

θi1

�

Ln|[θ0,w2)

θ0� w2

Figure 2. The maps gΦk−1(x0) when Φk(x0) ∈ B�(q) (left) and

the fixed point θi1 of gnΦi(x0)
(right).

Since G is Kupka–Smale, both (x0, θ
i
1) and (x0, θ

i
2) are hyperbolic periodic

points of Sp(G). Furthermore, the fixed points θi1 and θi2 of gnΦi(x0)
are the

unique saddles inside W2 which are fixed by gnΦi(x0)
. Indeed, denoting by

[θ0, w2] ⊂ {Φi(x0)} × T2

the closure of the connected component of (W s(θ0, L
n) \ {θ0})∩W2 containing

the saddle θi1 (the corresponding notation for θi2 is [−w2, θ0]) and identifying all

the fibers {Φj(x0)} × T2 with T2, we deduce that each one-dimensional map

gΦi(x0) : [θ0, w2] → [θ0, w2], i ∈ {0, 1, . . . , n− 1}
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satisfies

• gΦi(x0)(θ0) = θ0;

• gx0(w2) = gΦj(x0)(w2), for every j ∈ {0, . . . , n− 1};
• there is i ∈ {0, 1, . . . , n− 1} such that the restriction gΦi(x0)|(θ0,w2) has

a unique (saddle) fixed point (different from θ0).

Observe that these properties are due to the fact that the map gΦi(x0) is uni-

formly C2-close to fΦi(x0), the unstable and center foliations of Sp(G) and FS

are also C2-close (cf. [38, Section 6]), the Derived from Anosov is a structurally

stable diffeomorphism (cf. [54]) and the maps (fΦi(x0))i∈{0,1,...,n−1} have these

properties by construction of FS .

Similarly, for every i = 0, 1, . . . , n− 1, the map

gΦi(x0) : [−w2, θ0] → [−w2, θ0]

is C2-close to the corresponding fΦi(x0), which ensures the existence of a unique

saddle θi2 inside (−w2, θ0) which is fixed by gnΦi(x0)
. Consequently, apart from θ0,

the points θi1 and θi2 are the unique fixed points of gnΦi(x0)
in {Φi(x0)} × T2.

Claim 7.10: The non-wandering set of gnx0
is given by Ω(gnx0

) = {θ0} ∪ Λn
x0
,

where Λn
x0

is a hyperbolic attractor of topological dimension one.

Proof. Note that, regarding the splitting Eu(L) ⊕ Es(L) of the tangent space

TT2, the derivative of each gΦi(x0) is determined by a matrix DgΦi(x0) =(aij),

which is lower triangular since a11=λu and a12=0 for the whole family (gx)x∈T2 .

Thus,

(7.3) Dgnx0
(y) =

(
(λu)

n 0

b21(y) b22(y)

)

with 0 < b22 < 1 at the saddle fixed points θ1 and θ2. Moreover, we can assume

that both b22(θ1) and b22(θ2) are smaller than or equal to λns . Let V ⊂ T2 be

a neighborhood of θ0 not containing θ1 and θ2, and such that

(i) b22 > 1 for w ∈ V (that is, gnx0
is an expansion along Ec in V );

(ii) 0 < b22 < 1 for w /∈ gnx0
(V ) (that is, gnx0

is a contraction along Ec

outside gnx0
(V ));

(iii) gnx0
(V ) ⊃ V .
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We observe that such a neighborhood V exists (cf. Exercise 7.36 of [55]) and

V ⊂Wu(θ0, g
n
x0
). So it is a local unstable manifold of θ0 and

Wu(θ0, g
n
x0
) =

⋃
i�1

ginx0
(V ).

Let N = T2 \ V . Then N is a trapping region because gnx0
(V ) ⊃ V . Set

Λn
x0

def
=
⋂
i�1

ginx0
(N).

This is an attracting set and Λn
x0

= T2 \Wu(θ0, g
n
x0
). Thus,

Ω(gnx0
) = {θ0} ∪ Λn

x0
.

We are left to show that Λn
x0

is hyperbolic. Due to (7.3), Es(L) = Ec(Sp(G))

is an invariant bundle and every vector in this bundle is contracted by Dzg
n
x0

for z ∈ Λn
x0
. This is precisely the stable bundle on Λn

x0
. Let C > 0 be a global

upper bound of |b21|. Consider α = C[(λu)
n − (λs)

n]−1 and take the cones

C
def
= {(v1, v2) ∈ Eu(L)⊕ Es(L) : |v2| < α|v1|}.

Then it can be checked, using the lower triangular nature of the derivative of

gx, that these cones are invariant and

Eu(gnx0
, z) =

∞⋂
j=1

Dg−jn
x0

(z)g
jn
x0
(C(g−jn

x0
(z)))

is an invariant bundle on which the derivative is an expansion for every point

z ∈ Λn
x0
. This provides the unstable bundle on Λn

x0
, hence assigning a hyperbolic

splitting at the points of this set. This ends the proof of the claim.

As mentioned, Claims 7.9 and 7.8 complete the proof of Lemma 7.7.

Lemma 7.7 was the missing part to solve the remaining case, so the proof of

Proposition 7.6 is finished.

7.3. Proof of Proposition 7.1. We start establishing the first of the in-

equalities in (7.1).

Lemma 7.11: For every n ∈ N and every (x, y) ∈ Pern(Φ× L), one has

1 � #(H−1
G (x, y) ∩ Pern(Sp(G))).

Consequently,

#Pern(Φ× L) � #Pern(Sp(G)) ∀n ∈ N.
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Proof. By Lemma 7.3, for every (x, y) ∈ Pern(Φ× L) the map

Sp(G)n : H−1
G (x, y) → H−1

G (x, y)

is a homeomorphism of a closed (possibly degenerate) interval. Brouwer’s Fixed

Point Theorem guarantees the existence of a fixed point of Sp(G)n|H−1
G (x,y), for

every (x, y) ∈ Pern(Φ× L). Hence the desired inequality.

The remaining inequality in (7.1) is a consequence of the following lemma.

Lemma 7.12: For every n ∈ N and every (x, y) ∈ Pern(Φ× L), one has

#(H−1
G (x, y) ∩ Pern(Sp(G))) � 3.

Consequently,

#Pern(Sp(G)) � 3#Pern(Φ× L) ∀n ∈ N.

Proof. From Proposition 7.6, we already know that, given x ∈ Pern(Φ), ei-

ther gnx is Anosov or a Derived from Anosov. In the former case, the interval

H−1
G (x, y) is a point. In the latter, the interval H−1

G (x, θ0) associated to the

fixed point (x, θ0) has exactly three fixed points by gnx . Yet, we must also

estimate the cardinality of H−1
G (x, y) ∩ Pern(G) when y is different from θ0.

Claim 7.13: Take (x, y) ∈ Pern(Φ× L) and assume that gnx is a Derived from

Anosov. If y 
= θ0, then H
−1
G (x, y) is a point.

Proof. Suppose, on the contrary, that H−1
G (x, y) is a non-degenerated inter-

val. Then the map Sp(G)n : H−1
G (x, y) → H−1

G (x, y) is a Morse-Smale dif-

feomorphism of this interval (recall that G ∈ R). Since gnx is a preserving

orientation map, the boundary points of the interval H−1
G (x, y), say (x, a1)

and (x, a2), are necessarily fixed by Sp(G)n. This implies, using the fact that

H−1
G (x, θ0) ∩H−1

G (x, y) = ∅, that
{(x, a1), (x, a2)} ⊂ {x} × Ω(gnx ) \ {(x, θ0)} = {x} × Λn

x

and therefore (x, a1) and (x, a2) are two sinks of Sp(G)n|H−1
G (x,y). This forces

the existence of a third point

(x, a3) ∈ H−1
G (x, y) \ {(x, a1), (x, a2)}

such that Sp(G)n(x, a3) = (x, a3) and (x, a3) is a source of Sp(G)
n|H−1

G (x,y). But

(x, a3) also belongs to {x} × Ω(gnx ) \ {(x, θ0)} = {x} × Λn
x , so this conclusion

contradicts Claim 7.10.

This completes the proof of Lemma 7.12.
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Finally, we observe that, for every G in R and n ∈ N, one has

(7.4)

Pern(Sp(G)) = H−1
G (Pern(Φ× L)) ∩ Pern(Sp(G))

=
⋃

(x,y)∈Pern(Φ×L)

H−1
G (x, y) ∩ Pern(Sp(G)).

Thus, #Pern(Φ × L) � #Pern(SP (G)) � 3#Pern(Φ × L) for every n ∈ N, as

claimed. This ends the proof of the proposition.

Remark 7.14: As G ∈ R is conjugate to Sp(G), there exists K > 0 such that

1

n
log#Pern(G) � logK ∀n ∈ N

since this is true for Φ× L, hence for Sp(G) by Lemma 7.12.

8. Proof of Theorem A: Third part

Let G ∈ R and consider its unique measure μmax(G) of maximal entropy

(cf. [48]). We now prove that μmax(G) is the weak∗ limit of the following

sequence of probability measures on T2 × T2

n ∈ N 	→ μn(G)
def
=

1

#Pern(G)

∑
(x,y)∈Pern(G)

δ(x,y) ∈ P(T2 × T2, G).

Firstly, observe that the map ΓG introduced in (4.10) satisfies

(ΓG)∗δ(x,y) = δΓG(x,y) for all (x, y),

so

(8.1) (ΓG)∗(μmax(G))=μmax(Sp(G)) and (ΓG)∗(μn(G))=μn(Sp(G)) ∀n∈N.

To simplify the notation, in what follows we write μmax instead of μmax(Sp(G))

and μn instead of μn(Sp(G)). Consider the sequence of probabilities (νn)n∈N

on T2 × T2 defined by

n ∈ N 	→ νn
def
=

1

#Pern(Φ× L)

∑
(x,y)∈Pern(Φ×L)

δ(x,y).

It is known that this sequence of measures converges in the weak∗ topology to

the measure νmax of maximal entropy of Φ× L.
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Proposition 8.1: The sequence ((HG)∗(μn))n∈N converges to νmax in the

weak∗ topology.

To prove this assertion it is enough to show that the weak∗ limit of any

convergent subsequence of ((HG)∗(μn))n is equal to νmax. This is a consequence

of the following two statements.

Lemma 8.2: Let f : X → X be a continuous map defined on a compact metric

space (X, d). Consider two sequences of f -invariant Borel probability measures

(ηk)k∈N and (ζk)k∈N on X satisfying

(8.2) ∃C > 1 : C−1ζk � ηk � Cζk ∀k ∈ N.

Assume that (ζk)k∈N and (ηk)k∈N converge in the weak∗ topology to probability

measures ζ and η respectively. Then C−1ζ � η � Cζ. In particular, ζ and η

are equivalent.

Lemma 8.3: If η and ζ are f -invariant probability measures on X such that η

is ergodic and ζ is absolutely continuous with respect to η, then ζ = η.

Let us postpone for the moment the proofs of these lemmas and complete the

argument to show Proposition 8.1.

Proof of Proposition 8.1. Using equation (7.4) and the fact that for every

(x, y) ∈ T2 × T2 we have

(HG)∗δ(x,y) = δHG(x,y),

we deduce that the (Φ× L)-invariant probability measure (HG)∗(μn) satisfies

(HG)∗(μn) =
1

#Pern(Sp(G))

∑
(x,y)∈Pern(Φ×L)

#(H−1
G (x, y) ∩ Pern(Sp(G)))δ(x,y)

=
(#Pern(Φ× L)

#Pern(Sp(G))

) 1

#Pern(Φ× L)

×
∑

(x,y)∈Pern(Φ×L)

#(H−1
G (x, y) ∩ Pern(Sp(G)))δ(x,y).

Besides, after Lemmas 7.12 and 7.11 we know that

∀n ∈ N 1 � #(H−1
G (x, y)∩Pern(Sp(G))) � 3 and

1

3
� #Pern(Φ× L)

#Pern(Sp(G))
� 1.
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Thus,

∀n ∈ N ∀ Borel set A ⊂ T2 × T2 1

3
νn(A) � (HG)∗(μn)(A) � 3νn(A).

Let ηk := (HG)∗(μnk
) be a subsequence converging to a probability measure ν0

in the weak∗ topology. Since ζk := νnk
converges to νmax, it follows from

Lemma 8.2 that ν0 and νmax are equivalent measures. On the other hand, as

νmax is ergodic, Lemma 8.3 implies that ν0 = νmax.

We now return to the proof of the two pending lemmas.

Proof of Lemma 8.2. By symmetry of the inequality (8.2) it is enough to check

that for every open set U of T2 × T2 we have η(U) � Cζ(U). Indeed, due the

regularity of the measures ζ and η, from the previous inequality we get, for

every Borel set A in T2 × T2,

η(A) = inf{η(G) : G is open and A ⊂ G}
� C inf{ζ(G) : G is open and A ⊂ G} = Cζ(A).

So, ζ(A) = 0 implies η(A) = 0. Now, consider the sequence of closed sets in

T2 × T2 defined by

k ∈ N 	→ Δk =
{
x ∈ X : d(x,X \ U) � 1

k

}
.

From Uryshon’s Lemma there exists a continuous function ξk : X → [0, 1] such

that

�Δk
� ξk � �U ∀k ∈ N.

We may assume that, letting k go to +∞, the sequence (ξk)k converges to �U

in a monotonic and increasing way. Thus,

η(U) = sup
k

∫
ξkdη (by the Monotone Convergence Theorem)

= sup
k

lim
n

∫
ξkdηn (by the weak∗ convergence of (ηn)n∈N)

� C sup
k

lim
n

∫
ξkdζn (by equation (8.2))

= C sup
k

∫
ξkdζ (by the weak∗ convergence of (ζn)n∈N)

= Cζ(U) (by the Monotone Convergence Theorem).
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Proof of Lemma 8.3. Consider a Borel set A ⊂ X . By Birkhoff’s Ergodic The-

orem we have

φA(x) := lim
n→+∞

1

n
{0 � j � n− 1 : f j(x) ∈ A} = μ(A)

for μ almost every x ∈ X , and ν(A) =
∫
φA(x)dν(x). Since ν � μ, we also

get φA(x) = μ(A) for ν almost every x. So,
∫
φA(x)dν(x) = μ(A). Hence

ν(A) = μ(A).

Corollary 8.4: The sequence (μn(G))n∈N converges to μmax(G) in the weak∗

topology.

Proof. Taking into account both the continuity of η → (ΓG)
−1
∗ (η) and the

equation (8.1), it is enough to show that the sequence (μn)n∈N converges to

μmax in the weak∗ topology. Consider a subsequence (μnk
)k converging to a

probability measure μ0. We will verify that hμ0(Sp(G)) = htop(Sp(G)), and so,

by the uniqueness of the measure with maximal entropy of Sp(G), we deduce

that μ0 = μmax.

Using item (H2) in Subsection 4.2 and Ledrappier–Walters’ formula, if follows

that

(8.3) hη(Sp(G)) = h(HG)∗(η)(Φ× L), ∀η ∈ P(T2 × T2, Sp(G)).

Besides, from Proposition 8.1 and the continuity of η → (HG)∗(η), we deduce

that (HG)∗(μ0) = νmax. Then, using (8.3) and property (P1) in Subsection 4.2,

we obtain
hμ0(Sp(G)) = h(HG)∗(μ0)(Φ× L) = hνmax(Φ× L)

= htop(Φ× L) = htop(Sp(G)).

9. Proof of Theorem B

We start recalling that the set of periodic points of G ∈ R is countable, and so

zero-dimensional. Besides, G has the small boundary property (cf. [17, Subsec-

tion 2.1] or [44], where it was proved that on a finite-dimensional manifold any

dynamical system whose set of periodic points is countable have this property).

Moreover, as already mentioned, the central direction of G is one-dimensional,

thus G is entropy-expansive. After summoning Remark 7.14 and property (P1)

in Subsection 4.2, to show the existence of a principal strongly faithful symbolic

extension with embedding for G we are left to control the growth rate of the

periodic points with the period at arbitrarily small scales.
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Lemma 9.1: Every diffeomorphism G in R is asymptotically per-expansive.

Proof. Since the conjugation ΓG (see (4.10)) between G and Sp(G) is C0 close

to the identity, it is enough to show that Per∗(Sp(G)) = 0 (recall that the

definition of Per∗(f) was given in (3.4)). For that, take a small ε > 0 and

(x0, y0) ∈ T2 × T2, and consider the set (see (3.3))

BSp(G)
∞,ε (x0, y0) := {(x, y) ∈ T2×T2 : d(Sp(G)i(x, y), Sp(G)i(x0, y0)) � ε, ∀i∈Z}.

We claim that

∀ε > 0 ∀n ∈ N ∀(x0, y0) ∈ T2 × T2 #(Pern(Sp(G)) ∩BSp(G)
∞,ε (x0, y0)) � 3.

Firstly, note that the central foliation FSp(G) of Sp(G) (see (S3) in Subsec-

tion (4.1)) is plaque expansive (cf. [38, p. 116] and [48, p. 626]), that is, there

exists ε0 > 0 such that if (x, y) belongs to B
Sp(G)
∞,ε0 (x0, y0), then both points

(x0, y0) and (x, y) lie on the same leaf of FSp(G) (in particular x0 = x), which

is sent by the semi-conjugation HG into a stable leaf. On the other hand, if

Pern(Sp(G)) ∩BSp(G)
∞,ε (x0, y0) 
= ∅,

then x0 is periodic and so, by Proposition 7.6, gnx0
is Anosov or a Derived from

Anosov. In the former case,

BSp(G)
∞,ε (x0, y0) ⊂ BSp(G)n

∞,ε (x0, y0) = {(x0, y0)}.

In the latter case, the intersection cannot have more than three periodic points:

otherwise, if we assume the existence of at least four elements of Pern(Sp(G))

in B
Sp(G)
∞,ε (x0, y0), then we may find two hyperbolic point (x0, y1) and (x0, y2)

in Pern(Sp(G)) ∩BSp(G)
∞,ε (x0, y0) such that

HG(x0, y1) 
= HG(x0, y2)

are both in Pern(Φ × L) and belong to the same stable leaf of Φ × L. This

contradicts the known dynamics within stable leaves.

To end the proof of Theorem B we just make a straightforward application of

the Main Theorem of [17], which we have quoted at the end of Subsection 3.5.
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10. Proof of Theorem C

Firstly, we note that, by [25], every C2 diffeomorphism G ∈ V has at least

one SRB measure on T2 × T2, which is a partially hyperbolic global attractor

for G, with splitting Ec
G = Ess

G ⊕ Ec
G and Eu

G = Eu
G ⊕ Euu

G . Besides, under

the additional assumption that Φ is a linear hyperbolic automorphism of the

2-torus, one has:

Lemma 10.1: If Φ is a linear hyperbolic automorphism of the 2-torus, then

every skew-product F ∈ V, satisfying the properties (S1)-(S3) in Subsection 4.1,

is mostly contracting along the central direction with respect to the splitting

Ec
F = Ess

F ⊕ Ec
F and Eu

F = Eu
F ⊕ Euu

F .

Proof. If Φ is a linear hyperbolic automorphism, then the measure νmax with

maximal entropy of Φ × L is the Lebesgue measure on T2 × T2; we denote it

by Leb. Thus, for this special type of Φ, the property (M1) and the equa-

tion (4.6) for F ∈ V (see Subsection 4.2.2) inform that

Leb(B × T2) = Leb(E) = 1.

Besides, by [43], the Lebesgue measure on T2 (which is the measure with maxi-

mal entropy of Φ and its SRB measure, and we denote by m) disintegrates into

marginal measures (mx)x∈T2 that are absolutely continuous with respect to the

Lebesgue measures (LebWu
Φ (x))x∈T2 restricted to the Φ-invariant unstable man-

ifolds (Wu
Φ(x))x∈T2 , and are supported on the sets of a partition subordinated

to the unstable foliation Wu
Φ (that is, the atom of such a partition containing x

is a subset of Wu
Φ(x) at m almost every point x). Moreover, for every Borel

set D of T2, the map

x ∈ T2 	→ mx(D)

is m-measurable and

m(D) =

∫
mx(D)dm(x).

Let Bδ(p) be a small ball centered at the point p with radius δ (which we

may take as the product of small local Φ-invariant manifolds at p). Then, as

m(B) = 1,

0 < m(Bδ(p)) = m(Bδ(p) ∩B) =

∫
mx(Bδ(p) ∩B)dm(x).
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Therefore, there exists x0 ∈ Bδ(p) such that mx0(Bδ(p) ∩B) > 0. Thus,

mx0(Bδ(p) ∩Wu
Φ,δ(x0)) > 0,

which implies, due to the absolute continuity, that

LebWu
Φ (x0)(B ∩Wu

Φ,δ(x0)) > 0.

This way, we ensure that the u-dimensional disk Du :=Wu
Φ,δ(x0)×Wu(θ0) has

a subset with positive volume where the central exponent is negative. So, by

Proposition 5.2 and (cf. [6]), F is mostly contracting.

To complete the proof of the first part of Theorem C we observe that, as the

strong unstable foliation of FS is robustly minimal and G is C1-close to FS ,

then the strong unstable foliation of G is also minimal. On the other hand,

as FS is mostly contracting and this property is C2-robust (cf. [3]), then G ∈ U

is mostly contracting as well. Therefore, we may apply [6, Theorem B] to G,

and this way conclude that it has a unique ergodic SRB measure whose basin

has full Lebesgue measure (hence, it is G’s unique physical measure).

Now we move on to the items (a) and (b) of Theorem C. Suppose that Φ is a

linear hyperbolic automorphism of T2 and considerG ∈ U. Let νSRB be the SRB

measure and νmax be the probability measure with maximal entropy of Φ× L.

Under the assumption that both Φ and L are linear automorphisms of T2, the

measures νSRB and νmax are the same, and coincide with the Lebesgue measure

in T2 × T2 (cf. [59, Theorem 8.15]), which we abbreviate into Leb. Denote

by μSRB and μmax the SRB measure and the measure with maximal entropy of

Sp(G), respectively.

10.1. The SRB measure of Sp(G). Given G ∈ U and (x, y) ∈ T2 × T2,

let J̃u
Sp(G)(x, y) be the Jacobian of D(x,y) Sp(G) restricted to the unstable bun-

dle Eu(x, y) ⊕ Euu(x, y) of Sp(G). Analogously, define J̃u
Φ×L(x, y). Note that

J̃u
Φ×L(x, y) coincides with J

u
Φ×L(x, y), where J

u
Φ×L = Ju is as in Subsection 3.7.

By the ergodicity of μSRB, the corresponding Oseledets’ splitting coincides with

the partially hyperbolic splitting (6.1) of Sp(G) at μSRB almost every point in

T2 × T2 (cf. the proof of Proposition 6.2). Thus,

J̃u
Sp(G)(x, y) = Ju

Sp(G)(x, y)

for μSRB almost every point (x, y) in T2 × T2.
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Proposition 10.2: Assume that at μSRB almost every (x, y) in T2 × T2 we

have

(10.1) |Ju
Φ×L ◦HG(x, y)| � |Ju

Sp(G)(x, y)|.
Then (HG)∗(μSRB) is the SRB measure of Φ× L.

Proof. Set ν = (HG)∗(μSRB). After Margulis–Ruelle inequality (3.5), we are

left to verify that ∫
log |Ju

Φ×L|dν � hν(Φ× L).

Firstly, we note that

hμSRB(Sp(G)) = hν(Φ× L).

Indeed, property (H2) on Subsection 4.2.1 and Ledrappier–Walters’ formula

[42, (1.2)] yield

hμSRB(Sp(G)) � hν(Φ× L)

which, together with the existence of the semi-conjugation HG and the well-

known fact [59, Theorem 4.11] that hμSRB(Sp(G)) � hν(Φ × L), implies the

equality. Thus, using (10.1) one gets∫
log |Ju

Φ×L|dν =

∫
log |Ju

Φ×L ◦HG|dμSRB

�
∫

log |Ju
Sp(G)|dμSRB

= hμSRB(Sp(G)) = hν(Φ× L).

Let β1 > 1 and β2 > 1 be the expanding eigenvalues of Φ and L, respectively,

with β1 � β2. By Pesin’s formula, the topological entropy of Φ× L is given by

htop(Φ× L) = log β1 + log β2.

Indeed, on the corresponding regular sets, the positive Lyapunov exponents

λuu > λu > 0 of Leb are given by (cf. [55])

λuu(Leb) = log β1 and λu(Leb) = log β2

and, as the mapping (x, y) 	→ Ju
Φ×L(x, y) is constant and equal to β1β2,

hLeb(Φ× L) =

∫
log Ju

Φ×LdLeb = log β1 + log β2 = htop(Φ× L).



Vol. 245, 2021 PERIODIC POINTS AND MEASURES 497

To complete the proof of Theorem C (a), we summon the fact that, by con-

struction of the Shub’s examples, for every (x, y) ∈ T2 × T2 one has

Ju
Sp(G)(x, y) � β1β2

(see property (S3) on Subsection 4.1). So, Ju
Sp(G) and J

u
Φ×L satisfy the assump-

tion (10.1) of Proposition 10.2. Therefore, (HG)∗(μSRB) = Leb.

To show Theorem C (b), we use the previous item (a), the property (P1)

and (8.3) to deduce that

hμSRB(Sp(G)) = h(HG)∗(μSRB)(Φ×L) = hLeb(Φ×L) = htop(Φ×L) = htop(Sp(G))

and thereby conclude that hμSRB(Sp(G)) = htop(Sp(G)), as claimed.

Remark 10.3: Under the assumption that Φ is a linear hyperbolic automor-

phism of T2, we have concluded that G also has a unique ergodic SRB measure,

which is its unique physical measure. In addition, if mmax denotes the measure

with maximal entropy of G, then clearly (hG)∗(mmax) = (HG)∗(μmax) = Leb,

where hG is the semi-conjugation between G and Φ × L defined in (P3). Yet,

we do not know if the SRB measure of G coincides with mmax. Anyway, Theo-

rem C indicates that the change from G to the conjugate skew-product Sp(G)

triggers the synchronization of the canonical measures (see [50] for a related

topic).
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