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ABSTRACT

The area of graph property testing seeks to understand the relation be-

tween the global properties of a graph and its local statistics. In the

classical model, the local statistics of a graph is defined relative to a uni-

form distribution over the graph’s vertex set. A graph property P is said

to be testable if the local statistics of a graph can allow one to distinguish

between graphs satisfying P and those that are far from satisfying it.

Goldreich recently introduced a generalization of this model in which

one endows the vertex set of the input graph with an arbitrary and un-

known distribution, and asked which of the properties that can be tested

in the classical model can also be tested in this more general setting. We

completely resolve this problem by giving a (surprisingly “clean”) charac-

terization of these properties. To this end, we prove a removal lemma for

vertex weighted graphs which is of independent interest.

1. Introduction

1.1. Background and the main result. Property testers are fast random-

ized algorithms whose goal is to distinguish (with high probability, say, 2/3)

between objects satisfying some fixed property P and those that are ε-far from

satisfying it. Here, ε-far means that an ε-fraction of the input object should
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be modified in order to obtain an object satisfying P . The study of such prob-

lems originated in the seminal papers of Rubinfeld and Sudan [27], Blum, Luby

and Rubinfeld [8], and Goldreich, Goldwasser and Ron [19]. Problems of this

nature have been studied in so many areas that it will be impossible to survey

them here. Instead, the reader is referred to the recent monograph [17] for

more background and references. While this area studies questions in theoreti-

cal computer science, it has several strong connections with central problems in

extremal combinatorics, most notably to the regularity method and the removal

lemma; see Subsection 1.2.

The classical property testing model assumes that one can uniformly sample

entries of the input. In distribution-free testing, one assumes that the input is

endowed with some arbitrary and unknown distribution D, which also affects

the way one defines the distance to satisfying a property. As discussed in [18],

one motivation for this model is that it can handle settings in which one cannot

produce uniformly distributed entries from the input. Another motivation is

that the distribution D can assign higher weight/importance to parts of the

input which we want to have higher impact on the distance to satisfying the

given property. Until very recently, problems of this type were studied almost

exclusively in the setting of testing properties of functions; see [9, 10, 14, 16, 23].

Let us mention that distribution-free testing is similar in spirit to the celebrated

PAC learning model of Valiant [30]; see also the discussion in [26].

Our investigation here concerns a distribution-free variant of the adjacency

matrix model, also known as the dense graph model. The adjacency matrix

model was first defined and studied in [19], where the area of property testing

was first introduced. This model has been extensively studied in the past two

decades; see Chapter 8 of [17]. For a selected (but certainly not comprehensive)

list of works on the dense graph model of property testing, see [2, 21, 22].

Instead of defining the adjacency matrix model of [19], let us directly define its

distribution-free variant which was introduced recently by Goldreich [18]. Since

the distribution in this model is over the input’s vertices, it is called the Vertex-

Distribution-Free (VDF) model.1 The input to the algorithm is a graph G and

some arbitrary and unknown distribution D on V (G). We will thus usually

refer to the input as the pair (G,D). For a pair of graphs G1, G2 on the same

1 Goldreich suggested to study variants of this model in other settings (such as bounded

degree graphs [20]) as well. For brevity, we will use the term “VDF model” to refer to

the “VDF variant of the adjacency matrix model”.
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vertex-set V , and for a distribution D on V , the (edit) distance between G1

and G2 with respect to D is defined as
∑

{x,y}∈E(G1)�E(G2)
D(x)D(y). We say

that (G,D) is ε-far from satisfying a graph property2 P if for every G′ ∈ P , the

distance between G and G′ with respect to D is at least ε. A tester for a graph

property P is an algorithm that receives as input a pair (G,D) and a proximity

parameter ε, and distinguishes with high probability (say 2
3 ) between the case

that G satisfies P and the case that (G,D) is ε-far from P . The algorithm has

access to a device that produces random vertices from G distributed according

to D. The only3 other way the algorithm can access G is by performing “edge

queries” of the form “is (u, v) an edge of G?”. We say that property P is

testable in the VDF model if there is a function q(ε) and a tester for P that

always performs a total number of at most q(ε) vertex samples and edge queries

to the input. We stress again that D is unknown to the tester, so (in particular)

that q should be independent of D. The function q is sometimes referred to as

the sample (or query) complexity of the tester. A tester has 1-sided error

if it always accepts an input satisfying P . Otherwise it has 2-sided error.

Suppose we assume that in the VDF model, the distribution D is restricted

to be the uniform distribution; in particular, the distance between n-vertex

graphs G,G′ (on the same vertex-set) is |E(G)�E(G′)|/n2, and G is ε-far

from P if one needs to change at least εn2 edges to turn G into a graph sat-

isfying P . In this paper we will refer to this model as the standard model.

This model is “basically” equivalent to the adjacency matrix model, which was

introduced in [19]. We refer the reader to [18] for a discussion on the subtle

differences between the adjacency matrix model and the above defined standard

model.4

A very elegant result, proved in [18], states that if P is testable in the VDF

model then it is testable in the standard model with one-sided error. A natural

follow-up question, raised by Goldreich in [18], asks whether every property

which is testable with one-sided error in the standard model, is also testable in

the VDF model. A characterization of the properties testable with one-sided

error in the standard model was given in [4], where it was shown that these are

precisely the semi-hereditary properties (see [4] for the definition of this term).

2 A graph property is simply a family of graphs closed under isomorphism.
3 Note that the algorithm does not receive |V (G)| as part of the input.
4 Just as an example, in [19] the tester “knows” |V (G)| while in the VDF model (and thus

also in the standard model) it does not.
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We show (see Proposition 4.2) that if P is testable in the VDF model, then P
is hereditary.5 Since there are properties which are semi-hereditary but not

hereditary, this implies a negative answer to Goldreich’s question. Thus, it is

natural to ask the following revised version of Goldreich’s question:

Problem 1.1: Are all hereditary graph properties testable in the VDF model?

It might be natural to guess6 that every hereditary property is testable in

the VDF model, the justification being that all lemmas that were used in [4]

should also hold for weighted graphs. As it turns out, this is indeed the case.

However, putting all these lemmas together does not seem to work in the VDF

model. As our main result, Theorem 1 below, shows, it is no coincidence that

the proof technique of [4] does not carry over as is to the weighted setting.

We start with an important definition. Let us say that a graph property P is

extendable if for every graph G satisfying P there is a graph G′ on |V (G)|+1

vertices which satisfies P and contains G as an induced subgraph. In other

words, P is extendable if whenever G is a graph satisfying P and v is a “new”

vertex (i.e., v /∈ V (G)), one can connect v to V (G) in such a way that this larger

graph will also satisfy P . Note that if P is extendable, then in fact for every

graph G ∈ P and for every n > |V (G)| there is an n-vertex graph satisfying P
which contains G as an induced subgraph. Our main result in this paper is the

following:

Theorem 1: A graph property is testable in the VDF model if and only if it

is hereditary and extendable.

It is interesting to compare the above (rather) simple characterization of the

properties that are testable in the VDF model, with the (very) complicated

characterization of [2] of the properties that are testable in the standard model.

Let us mention some immediate consequences of Theorem 1. Since a graph

cannot contain both an isolated vertex and a vertex connected to all other

vertices, we infer that for every fixed H the (hereditary) property of being

induced H-free is extendable. We thus infer that:

Corollary 2: The property of being induced H-free is testable in the VDF

model for every fixed H .

5 A graph property is hereditary if it is closed under removal of vertices.
6 This was at least our initial guess.
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It is also clear that the property of being H-free is extendable if and only

if H has no isolated vertices. We thus infer that:

Corollary 3: The property of being H-free is testable in the VDF model if

and only if H has no isolated vertices.

It is easy to see that most (natural) hereditary graph properties are extend-

able, so Theorem 1 immediately implies that they are all testable in the VDF

model. These include the properties of being Perfect, Interval, Chordal and k-

Colorable. In the other direction, Theorem 1 implies that if H has an isolated

vertex then H-freeness is not testable in the VDF model. If one is interested

in a more “natural” non-extendable hereditary property, then it is not hard to

see that another such example is the property P of being induced {A,B}-free,
where A (resp. B) is the graph obtained from the 2-edge path P2 by adding a

new vertex which is adjacent to all 3 vertices of P2 (resp. not adjacent to any

vertex of P2). It is easy to see that C5 satisfies P but is not extendable. It was

proved in [18] that the properties of being Hamiltonian, Eulerian and Connected

are not testable in the VDF model. Those three results follow immediately from

our Theorem 1 since these properties are not hereditary.

1.2. The combinatorial interpretation of Theorem 1. Let us discuss

the combinatorial implications of Theorem 1 and its relation to other results

in the area of extremal combinatorics. The famous triangle removal lemma of

Ruzsa and Szemerédi [28] states that if a graph G is ε-far from being triangle

free (with respect to the uniform distribution), then a (uniform) sample of s(ε)

vertices from G contains a triangle with probability at least 2
3 . We refer the

reader to [12] for more background on this lemma and its variants. The result

of [4], mentioned above, can be thought of as a generalization of this lemma

to arbitrary hereditary properties. It can be stated as saying that for every

hereditary graph property P there is a function sP : (0, 1) → N such that the

following holds for every ε > 0: If a graph G is ε-far from P (with respect to the

uniform distribution), then a (uniform) sample of sP(ε) vertices from G induces

a graph not satisfying P with probability at least 2/3.

To prove (the “if” direction of) Theorem 1, we will actually prove the following

combinatorial statement, which can be thought of as a vertex-weighted version

of the graph removal lemma.
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Theorem 4: For every hereditary and extendable graph property P there is

a function sP : (0, 1) → N such that the following holds for every ε > 0 and

for every vertex-weighted graph (G,D) which is ε-far from P ; Let u1, . . . , us,

s=sP(ε), be a sequence of random vertices ofG, sampled according to D and in-

dependently. ThenG[{u1, . . . , us}] does not satisfy P with probability at least 2
3 .

The following similar-looking result7 was (implicitly) proved by Austin and

Tao [6] and Lovász and Szegedy [25].

Theorem 5 ([6, 25]): For every hereditary graph property P there is a func-

tion sP : (0, 1) → N such that the following holds for every ε > 0 and for every

vertex-weighted graph (G,D) which is ε-far from P : Let u1, . . . , us, s = sP(ε),
be a sequence of random vertices of G, sampled according to D and indepen-

dently. Construct a graph S on [s] by letting {i, j} ∈ E(S) if and only if

{ui, uj} ∈ E(G). Then S does not satisfy P with probability at least 2
3 .

Note that Theorem 5 holds for all hereditary properties, while Theorem 4 only

holds for hereditary properties which are extendable. Observe that the graph S

in Theorem 5 is a blowup of the graph G[U ], where U = {u1, . . . , us}. Thus,

the difference between Theorems 4 and 5 is that Theorem 5 only guarantees

that a blowup of G[U ] does not satisfy P w.h.p., while Theorem 4 guarantees

the stronger assertion that G[U ] itself does not satisfy P w.h.p. This is an

important difference: while Theorem 4 immediately implies the existence of a

VDF-tester for every hereditary and extendable property P (see Subsection 3.3),

we do not know of any way of using Theorem 5 to prove the existence of such

a tester. One natural candidate for a tester derived from Theorem 5 would be

the algorithm which accepts if and only if the graph S (defined in Theorem 5)

does not satisfy P . It turns out, however, that this algorithm often fails to be

a valid tester.8

7 We note that the results of [6] and [25] are more general. The authors of [25] actu-

ally prove that the conclusion of Theorem 5 holds for all graphons. The authors of [6]

prove extensions of Theorem 5 in several directions, including a version for uniform hy-

pergraphs, and a strengthening in which the notion of testability is replaced with the

stronger notion of repairability.
8 For example, if P = C5-freeness, then this tester will reject w.h.p. if the input graph

is a triangle with uniform vertex distribution (as the graph S will typically contain the

2-blowup of a triangle, and thus contain a copy of C5), even though this input graph

clearly satisfies P.



Vol. 245, 2021 TESTING GRAPHS 793

It is worth noting that Theorem 5 can be deduced from the “unweighted”

case, i.e., the result of [4], via a simple argument; see Lemma 5.5 and the

discussion following it. On the other hand, the proof of Theorem 4 requires

several new ideas on top of those used in [4].

1.3. Variants of the VDF model. The proof of the “only if” part of The-

orem 1, showing that if P is either non-extendable or non-hereditary then P
is not testable in the VDF model, relies on allowing the input graph to have

only O(1) vertices (where the constant is independent of ε); on excluding |V (G)|
from the input fed to the tester; and on having distributions D that assign to

some vertices weight Θ(1) and to some vertices weight o(1/|V (G)|). This raises
the natural question of what happens if we only require the tester to work on

sufficiently large graphs; or if the tester receives |V (G)| as part of the input;

or if we forbid D from assigning very low or very high weights (as above). As

the following four theorems show, either one of these variations has a dramatic

effect on the model, since it then allows all hereditary properties to be testable.

We start with the setting in which the input graph is guaranteed to be large

enough. In a revised version of [18], Goldreich asked whether every hereditary

property P is testable (in the VDF model) on graphs of order at leastM = MP ,
for M which is independent of ε. As we show in Proposition 5.2, this turns out

to be false. On the positive side, we show that under the stronger assumption

that the input size is at least MP(ε) (where MP : (0, 1) → N is a function

dependent on P), all hereditary properties are testable.

Theorem 6: Under the promise that |V (G)| � 1, every hereditary property is

testable with one-sided error in the VDF model.

D. Ron (personal communication) asked what happens if we allow testers to

receive |V (G)| (i.e., the number of vertices in the input graph) as part of the

input.9 Our following theorem answers this question.

Theorem 7: If testers can receive |V (G)| as part of the input, then every

hereditary property is testable with one-sided error in the VDF model.

Finally, we consider settings in which restrictions are posed on the weights

that the distribution D can assign.

9 We note that in the VDF model as defined in [18], the number of vertices in the input

graph is not known to the tester.
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Theorem 8: Under the promise that maxv∈V (G)D(v) = o(1), every hereditary

property is testable with one-sided error in the VDF model.

Theorem 9: Under the promise that minv∈V (G) D(v) = Ω(1/|V (G)|), every

hereditary property is testable with one-sided error in the VDF model.

We note that the implied constant in the Ω-notation in Theorem 9 is allowed

to depend on ε. We refer the reader to Section 5 for the precise statements of

Theorems 6–9. Let us mention that the proofs of Theorems 6, 7 and 9 rely on

reductions to our main result in this paper, Theorem 1. The proof of Theorem

8 proceeds by a reduction to the standard model (i.e., to the result of [5]). As

part of this proof, we solve another problem raised in [19].

1.4. Paper overview. The rest of the paper is organized as follows. Section 2

is devoted to proving vertex-weighted analogues of several lemmas that were

used in prior works (most notably regularity and counting lemmas, and corol-

laries thereof). Some more routine parts of these proofs are deferred to the

appendix. In Section 3 we prove the “if” direction of Theorem 1 (i.e., Theo-

rem 4). This is by far the most challenging (and interesting) part of this paper.

The main step towards proving Theorem 1 is establishing Lemma 3.1, which is

the key lemma of this paper. For the reader’s convenience, we give in Subsec-

tion 3.1 an overview of the key ideas of the proof. As the proofs in Section 2

are somewhat routine, we encourage readers who are familiar with the regular-

ity method to skip Section 2 (at least on their first read), and go directly to

Section 3.

The “only if” direction of Theorem 1 is proved in Section 4. In Section 5 we

prove Theorems 6, 7, 8 and 9. We also raise two additional problems related to

the VDF model; one is to what extent can one extend the results of Theorems

6–9 beyond hereditary properties, and the other asks if the sample complex-

ity in the VDF model is the same as in the standard model (for properties

that are testable in the VDF model); see Subsection 5.3. Along the way we

resolve another open problem raised in [18] (see Lemma 5.5). Throughout the

paper, when we say that a function is increasing/decreasing we mean weakly

increasing/decreasing (i.e., non-decreasing/non-increasing).
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2. Preliminary lemmas

In this section we introduce vertex-weighted analogues of some key tools of

the regularity method, most notable Szemerédi’s regularity lemma [29], the

strong regularity lemma [1], and the counting lemma, as well as some standard

corollaries thereof. We also prove some other auxiliary lemmas needed for the

proof of Theorem 1.

We start with two simple lemmas regarding probability distributions10 on a

finite set. Given a distribution D on a set U and a subset W ⊆ U , we use

the notation D(W ) :=
∑

w∈W D(w), and call D(W ) the weight of W . We

denote by DW the distribution D conditioned on W , namely DW (w) = D(w)
D(W )

for every w ∈ W .

Lemma 2.1: For every set U , for every η ∈ (0, 1) and for every distribution D
on U , there is a partition P of U into �1/η� parts such that∑

W∈P

∑
{x,y}∈(W2 )

D(x)D(y) ≤ η.

Proof. Let P be a random partition of U into k := �1/η� parts, where each

element is assigned to one of the parts uniformly at random and independently

of all other elements. Then for every pair of distinct elements x, y ∈ U , the

probability that x and y belong to the same part is exactly 1
k . By linearity of

expectation we have

E

[ ∑
W∈P

∑
{x,y}∈(W2 )

D(x)D(y)

]
=

∑
{x,y}∈(U2)

D(x)D(y) · 1
k
<

1

2
· 1
k
≤ η,

so there is a choice of P with the required property.

Lemma 2.2: Let a > 0 be an integer, let U be a finite set and let D be a

distribution on U such that D(u) ≤ 1
2a for every u ∈ U . Then there is a

partition U = U1 ∪ · · · ∪ Ua such that D(Ui) ≥ 1
2a for every 1 ≤ i ≤ a.

Proof. The proof is by induction on a. The base case a = 1 is trivial, so we

assume from now on that a ≥ 2. Let U1 ⊆ U be a set of minimal size satisfying

D(U1) ≥ 1
2a . Then D(U1) ≤ 1

a , because otherwise we could remove an arbitrary

element of U1 (whose weight by assumption is at most 1
2a ) and thus get a proper

10 Throughout the paper, we will simply write “distribution” to mean “probability

distribution”.



796 L. GISHBOLINER AND A. SHAPIRA Isr. J. Math.

subset of U1 having weight at least 1
2a , in contradiction to the minimality of U1.

Now set U ′ := U \ U1, noting that D(U ′) ≥ 1− 1
a . Then every u ∈ U ′ satisfies

DU ′(u) =
D(u)

D(U ′)
≤

1
2a

1− 1
a

=
1

2(a− 1)
.

So by the induction hypothesis for (U ′,DU ′), there is a partition U ′=U2∪ · · · ∪Ua

such that

D(Ui) = DU ′(Ui) · D(U ′) ≥ 1

2(a− 1)
· D(U ′) ≥ 1

2(a− 1)
·
(
1− 1

a

)
=

1

2a

for every 2 ≤ i ≤ a. This completes the proof.

We consider vertex-weighted graphs, i.e., pairs (G,D) such that G is a graph

and D is a distribution on V (G). For a set X ⊆ V (G), the subgraph of

(G,D) induced by X is defined to be (G[X ],DX), where DX is the distribu-

tion D conditioned on X . The weight of an edge/non-edge {x, y} (with respect

to D) is defined as D(x)D(y). For a pair of disjoint sets X,Y ⊆ V (G) with

D(X),D(Y ) > 0, the density of (X,Y ) is denoted by d(X,Y ) and defined to be

d(X,Y ) =
1

D(X)D(Y )

∑
(x,y)∈E(X,Y )

D(x)D(y),

where E(X,Y ) is the set of edges with one endpoint in X and one endpoint

in Y . If D(X) = 0 or D(Y ) = 0 then define d(X,Y ) = 0. A pair of disjoint

vertex-sets (X,Y ) is called ε-regular if for every X ′ ⊆ X and Y ′ ⊆ Y with

D(X ′) ≥ εD(X) and D(Y ′) ≥ εD(Y ), it holds that

|d(X ′, Y ′)− d(X,Y )| ≤ ε.

The following lemma describes some basic properties of ε-regular pairs.

Lemma 2.3: Let (G,D) be a vertex-weighted graph, and let X,Y ⊆ V (G) be

disjoint vertex-sets such that D(X),D(Y ) > 0, and such that the pair (X,Y ) is

ε-regular with density d. Then the following holds.

(1) For every α ≥ ε and X ′ ⊆ X , Y ′ ⊆ Y with D(X ′) ≥ αD(X) and

D(Y ′) ≥ αD(Y ), the pair (X ′, Y ′) has density at least d − ε and at

most d+ ε, and is ε′-regular with ε′ = max{ε/α, 2ε}.
(2) The set of vertices x ∈ X which satisfy |d(x, Y )− d| > ε has weight less

than 2ε · D(X).
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Proof. Starting with Item (1), let X ′ ⊆ X and Y ′ ⊆ Y be such that

D(X ′) ≥ αD(X) and D(Y ′) ≥ αD(Y ). Since α ≥ ε, the ε-regularity of (X,Y )

implies that d − ε ≤ d(X ′, Y ′) ≤ d + ε. Now let us show that (X ′, Y ′) is ε′-
regular with ε′ = max{ε/α, 2ε}. Let X ′′ ⊆ X ′ and Y ′′ ⊆ Y ′ be such that

D(X ′′) ≥ ε′D(X ′) and D(Y ′′) ≥ ε′D(Y ′). Then D(X ′′) ≥ ε
αD(X ′) ≥ εD(X)

and similarly

D(Y ′′) ≥ εD(Y ).

So by the ε-regularity of (X,Y ) we have |d(X ′′, Y ′′) − d(X,Y )| ≤ ε and hence

|d(X ′′, Y ′′)− d(X ′, Y ′)| ≤ 2ε ≤ ε′, as required.
We now prove Item (2). Let X+ (resp. X−) be the set of all x ∈ X satisfying

d(x, Y ) > d+ ε (resp. d(x, Y ) < d− ε). We have

d(X+, Y ) =
1

D(X+)D(Y )
·
∑

x∈X+

∑
y∈NY (x)

D(x)D(y)

=
1

D(X+)D(Y )
·
∑

x∈X+

D(x) · D(Y ) · d(x, Y )

>
1

D(X+)D(Y )
· D(X+)D(Y ) · (d+ ε) = d+ ε.

So unless D(X+) < εD(X), we get a contradiction to the ε-regularity of (X,Y ).

Similarly, we must have D(X−) < εD(X). The assertion follows.

The following is a vertex-weighted counting lemma.

Lemma 2.4 (Counting lemma for vertex-weighted graphs): For every integer

h ≥ 2 and η ∈ (0, 1) there is δ = δ2.4(h, η) such that the following holds.

Let H be a graph on [h] and let U1, . . . , Uh be pairwise-disjoint vertex-sets in a

vertex-weighted graph (G,D), such that the following holds.

(1) For every 1 ≤ i < j ≤ h, if {i, j} ∈ E(H) then d(Ui, Uj) ≥ η, and if

{i, j} /∈ E(H) then d(Ui, Uj) ≤ 1− η.

(2) For every 1 ≤ i < j ≤ h, the pair (Ui, Uj) is δ-regular.

Let U be the set of all (u1, . . . , uh) ∈ U1 × · · · × Uh such that u1, . . . , uh induce

a copy of H in which ui plays the role of i for every 1 ≤ i ≤ h. Then

∑
(u1,...,uh)∈U

h∏
i=1

D(ui) ≥ δ

h∏
i=1

D(Ui).
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Proof. If D(Ui) = 0 for some 1 ≤ i ≤ h then there is nothing to prove, so

suppose that D(Ui) > 0 for every 1 ≤ i ≤ h. The proof is by induction on h.

The base case h = 2 trivially holds with δ = δ(2, η) = η. So from now on we

assume that h ≥ 3, and set

δ = δ(h, η) = min
{ 1

4(h− 1)
,
η

2
,
1

2
· (η

2
)h−1 · δ(h− 1, η/2)

}
.

For each 2 ≤ i ≤ h, let Wi be the set of all vertices u1 ∈ U1 for which

|d(u1, Ui)− d(U1, Ui)| > δ.

By Item (2) of Lemma 2.3, we have D(Wi) < 2δ · D(U1). Hence, the set

U ′
1 := U1 \

⋃h
i=2 Wi satisfies D(U ′

1) > D(U1) − (h − 1) · 2δ · D(U1) ≥ 1
2D(U1),

where in the last inequality we used our choice of δ. Now fix any u1 ∈ U ′
1.

We define sets U ′
2, . . . , U

′
h as follows: for 2 ≤ i ≤ h, if {1, i} ∈ E(H) then

set U ′
i = NUi(u1), and if {1, i} /∈ E(H) then set U ′

i = Ui \ NUi(u1). By using

Item (1) and the fact that u1 ∈ U ′
1, we get that D(U ′

i) ≥ (η−δ)D(Ui) ≥ η
2 ·D(Ui)

for every 2 ≤ i ≤ h. By Item (1) of Lemma 2.3, and by Conditions 1-2 of the

current lemma, we get that for every 2 ≤ i < j ≤ h, the pair (U ′
i , U

′
j) is

δ′-regular with δ′ = 2δ/η ≤ δ(h − 1, η/2), and that if {i, j} ∈ E(H) then

d(U ′
i , U

′
j) ≥ η− δ ≥ η/2 and if {i, j} /∈ E(H) then d(U ′

i , U
′
j) ≤ 1−η+ δ ≤ 1− η

2 .

We now see that the sets U ′
2, . . . , U

′
h satisfy the requirements of the lemma

with respect to the graph H ′ = H [{2, . . . , h}] and with η
2 in place of η. Let U ′

be the set of all (u2, . . . , uh) ∈ U ′
2 × · · · × U ′

h such that u2, . . . , uh induce a

copy of H ′ with ui playing the role of i for every 2 ≤ i ≤ h. By the induction

hypothesis, we have

∑
(u2,...,uh)∈U ′

h∏
i=2

D(ui) ≥ δ(h− 1, η/2) ·
h∏

i=2

D(U ′
i)

≥ δ(h− 1, η/2) · (η/2)h−1 ·
h∏

i=2

D(Ui)

≥ 2δ

h∏
i=2

D(Ui).

For every (u2, . . . , uh) ∈ U ′, the tuple (u1, . . . , uh) induces a copy of H with ui

playing the role of i for every 1 ≤ i ≤ h. Hence, for every (u2, . . . , uh) ∈ U ′

we have (u1, . . . , uh) ∈ U (where U is defined in the statement of the lemma).
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Since this is true for every u1 ∈ U ′
1, we get that

∑
(u1,...,uh)∈U

h∏
i=1

D(ui) ≥
∑

u1∈U ′
1

D(u1) · 2δ
h∏

i=2

D(Ui)

= D(U ′
1) · 2δ

h∏
i=2

D(Ui) ≥ δ

h∏
i=1

D(Ui),

as required.

A partition P={V1, . . . ,Vr} of the vertex-set of a vertex-weighted graph (G,D)

is called ε-regular if the sum of D(Vi)D(Vj) over all pairs 1 ≤ i < j ≤ r for

which (Vi, Vj) is not ε-regular, is at most ε. We now state vertex-weighted ver-

sions11 of Szemerédi’s regularity lemma [29] and of the strong regularity lemma

[1]. The proofs of these lemmas appear in the appendix.

Lemma 2.5 (Szemerédi’s regularity lemma for vertex-weighted graphs): For

every ε ∈ (0, 1) and m ≥ 0 there is T = T2.5(ε,m) such that for every vertex-

weighted graph (G,D) and for every partition P0 of V (G) of size not larger

than m, there is an ε-regular partition P of V (G) which has at most T parts

and refines P0.

Lemma 2.6 (Strong regularity lemma for vertex-weighted graphs): For every

function E : N → (0, 1) and for every integer m, there is S = S2.6(E ,m) such

that for every vertex-weighted graph (G,D) and for every partition P0 of V (G)

of size at most m, there is a refinement P of P0, and a refinement Q of P , such

that the following holds:

(1) |Q| ≤ S.

(2) The partition Q is E(|P|)-regular.
(3)

∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · |d(Q1, Q2)− d(P1, P2)| ≤ E(0).
Here the outer sum is over all unordered pairs of distinct P1, P2 ∈ P ,

and the inner sum is over all Q1, Q2 ∈ Q such that Qi ⊆ Pi for i = 1, 2.

Our last two lemmas are vertex-weighted analogues of well-known corollaries

to Szemerédi’s regularity lemma and the strong regularity lemma, respectively.

The “unweighted” versions of these corollaries were used in [4] in order to prove

that every hereditary property is testable in the standard model.

11 We note that a weighted version of Szemerédi’s regularity lemma, where both vertex-

weights and edge-weights are allowed, was proved in [13], but only under the assumption

that all vertex-weights are o(1). Hence this lemma is unsuitable in our setting.
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Lemma 2.7: For every integer t ≥ 1 and for every δ>0 there is ζ=ζ2.7(t, δ) > 0,

such that the following holds: Let (G,D) be a vertex-weighted graph such that

all vertices in G have weight less than ζ. Then there are pairwise-disjoint

vertex-sets Q1, . . . , Qt ⊆ V (G) with the following properties:

(1) D(Qi) ≥ ζ for every 1 ≤ i ≤ t.

(2) (Qi, Qj) is δ-regular for every 1 ≤ i < j ≤ t.

(3) Either all pairs (Qi, Qj) have density at least 1
2 , or all pairs (Qi, Qj)

have density less than 1
2 .

Proof. Setting a = 4t and ε = δ
4a4 , we will prove the lemma with

ζ = ζ2.7(t, δ) =
1

4a2 · T2.5(ε, a)
.

Let (G,D) satisfy D(v) < ζ for every v ∈ V (G). Apply Lemma 2.2 with

U = V (G), with the distribution D, and with a as defined above. Lemma 2.2

supplies a partition V (G) = U1 ∪ · · · ∪ Ua such that D(Ui) ≥ 1
2a for every

1 ≤ i ≤ a. Now apply Lemma 2.5 to (G,D) with parameter ε and with the par-

tition P0 := {U1, . . . , Ua}, to obtain an ε-regular partition P which refines P0.

For each 1 ≤ i ≤ a, put

Pi = {P ∈ P : P ⊆ Ui},
and sample Pi ∈ Pi with probability proportional to the weight of the parts,

i.e. Pi = P with probability D(P )/D(Ui) for every P ∈ Pi. We claim that with

positive probability, D(Pi) ≥ ζ for every 1 ≤ i ≤ a, and all pairs (Pi, Pj) are

δ-regular. For every 1 ≤ i ≤ a, the probability that D(Pi) < ζ is less than

ζ · |P|
D(Ui)

≤ ζ · T2.5(ε, a)

1/2a
≤ 1

2a
,

where in the first inequality we used the guarantees of Lemma 2.5. By the union

bound, with probability at least 1
2 we have D(Pi) ≥ ζ for every 1 ≤ i ≤ a. Next,

observe that since P is ε-regular, the probability that (Pi, Pj) is not δ-regular

(for some specific 1 ≤ i < j ≤ a) is at most

ε

D(Ui)D(Uj)
≤ 4a2ε ≤ 1

a2
.

So by taking the union bound over all pairs 1 ≤ i < j ≤ a, we get that with

probability at least 1− (
a
2

) · 1
a2 > 1

2 , all pairs (Pi, Pj) are δ-regular. This proves

our assertion.
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We have thus showed that there is a choice of P1, . . . , Pa such that D(Pi) ≥ ζ

for every 1 ≤ i ≤ a and such that (Pi, Pj) is δ-regular for every 1 ≤ i < j ≤ a.

Now consider an auxiliary graph on [a] in which {i, j} is an edge if d(Pi, Pj) ≥ 1
2

and {i, j} is a non-edge if d(Pi, Pj) < 1
2 . As a = 4t, a well-known bound on

Ramsey numbers implies that this graph contains either a clique or an indepen-

dent set {i1, . . . , it}. Then Q1 = Pi1 , . . . , Qt = Pit satisfy the requirements of

the lemma.

Lemma 2.8: For every function E : N → (0, 1) and for every integer m, there

is S = S2.8(E ,m) > 0 such that for every vertex-weighted graph (G,D) and

for every partition P0 of V (G) having size at most m, there is a partition

P = {P0, P1, . . . , Pr} of V (G) and vertex-sets Qi ⊆ Pi for 1 ≤ i ≤ r, such that

the following holds:

(1) D(P0) < E(0).
(2) For every 1 ≤ i ≤ r, Pi is contained in some part of P0.

(3) D(Qi) ≥ 1/S for every 1 ≤ i ≤ r. In particular, r ≤ S.

(4) For every 1 ≤ i < j ≤ r, the pair (Qi, Qj) is E(r)-regular.
(5)

∑
1≤i<j≤r D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)| ≤ E(0).

Proof. We may and will assume E is monotone decreasing.12 For convenience,

put ε = E(0). Let E ′ : N → (0, 1) be the function

E ′(r) = min
{
E(r), ε2

2r4
,
ε

3

}
.

We will show that one can choose S = S2.8(E ,m) := 3s3

ε , where s := S2.6(E ′,m).

Apply Lemma 2.6 to (G,D) with parameter E ′ and with the given partition P0,

to obtain partitions P ′ and Q such that P ′ refines P0, Q refines P ′, and Items

(1)–(3) in Lemma 2.6 hold. Let P0 be the union of all parts of P ′ of weight less
than ε/|P ′|, and let P1, . . . , Pr be the parts of P ′ of weight at least ε/|P ′|.
Then we have D(P0) < |P ′| · ε/|P ′| = ε, establishing Item (1). Now set

P = {P0, P1, . . . , Pr}. It is evident that Item (2) holds.

For each 1 ≤ i ≤ r, denote Qi = {Q ∈ Q : Q ⊆ Pi}, and sample Qi ∈ Qi

with probability proportional to the weight of the parts; in other words, for

each Q ∈ Qi, the probability that Qi = Q is D(Q)
D(Pi)

. We will show that with

positive probability, Q1, . . . , Qr satisfy Items (3)–(5). For each 1 ≤ i ≤ r, the

12 Indeed, we can replace E with E ′(r) = mins≤r E(s), which is clearly monotone decreasing.
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probability that D(Qi) <
D(Pi)
3r|Q| is less than

|Q| · 1

3r|Q| =
1

3r
.

By the union bound, the probability that there is 1≤ i≤r for whichD(Qi)<
D(Pi)
3r|Q|

is less than 1
3 . So with probability larger than 2

3 , for every 1 ≤ i ≤ r we have

D(Qi) ≥ D(Pi)

3r|Q| ≥ ε

3|P ′|2|Q| ≥
ε

3|Q|3 ≥ ε

3s3
=

1

S
,

where the last inequality is due to our choice of Q via Lemma 2.6.

We now prove that Item (4) holds with probability greater than 2
3 . Fix any

1 ≤ i < j ≤ r. Since Q is ε′-regular with ε′ = E ′(|P|′) ≤ min{E(|P ′|), ε2

2|P′|4 },
and since E(|P ′|) ≤ E(r) (by the monotonicity of E), the probability that the

pair (Qi, Qj) is not E(r)-regular is at most

ε2/(2|P ′|4)
D(Pi)D(Pj)

≤ 1

2
|P ′|−2 ≤ 1

2
r−2,

where the first inequality holds because D(Pi),D(Pj) ≥ ε/|P ′|. By the union

bound over all pairs 1 ≤ i < j ≤ r, the probability that there is 1 ≤ i < j ≤ r

for which (Qi, Qj) is not E(r)-regular is at most(
r

2

)
· 1
2
r−2 <

1

3
.

It remains to show that Item (5) holds with probability at least 2
3 . Observe

that

E

[ ∑
1≤i<j≤r

D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)|
]

=
∑

1≤i<j≤r

∑
Q′

i∈Qi,Q′
j∈Qj

D(Q′
i)D(Q′

j) · |d(Q′
i, Q

′
j)− d(Pi, Pj)|

≤ ε

3
,

where in the inequality we used Item (3) of Lemma 2.6, our choice of E ′, and
the fact that P1, . . . , Pr ∈ P ′. So by Markov’s inequality, the probability that

Item (5) fails is at most 1
3 , as required.
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3. The main proof

In this section we prove the “if” direction of Theorem 1. In Subsection 3.1 we

give a high-level overview of the main obstacle one needs to overcome in proving

Theorem 1, and the main idea behind the way we overcome it. In Subsection 3.2

we state and prove Lemma 3.1, which constitutes the main ingredient in the

proof of Theorem 1. Finally, we prove (the “if” direction of) Theorem 1 in

Subsection 3.3.

3.1. Proof overview.

The main difficulty: Suppose P is an extendable hereditary graph property.

We are given a graph G and a distribution D so that G is ε-far from P with

respect to D. Our goal is to show that a sample of O(1) vertices13 from G finds

with high probability (w.h.p.) an induced subgraph F of G which does not

satisfy P . There are two ways one can try to tackle this problem. First, one

can take a blowup G′ of G, in which a vertex is replaced by a cluster of vertices

whose size is proportional to the vertex’s weight under D, and thus (try to)

“reduce” the problem to the non-weighted case. While this approach can allow

one to handle some properties,14 it seems that the main bottleneck is that a

copy of F in G′ does not correspond necessarily to a copy of F in G, since F

might contain several of the vertices that replaced a vertex of G. Moreover, if

this vertex v has weight Ω(1), then even a sample of size O(1) will very likely

contain several of the vertices of G′ that replaced v.

A second approach would be to just reprove the result of [4], while replacing

the regularity lemmas used there with regularity lemmas for vertex-weighted

graphs. While such lemmas are indeed not hard to prove (see, e.g., Lemmas 2.4–

2.8), the main problem is again vertices of high weight. Now the issue is that

clusters of the regular partition might contain only a single vertex of high weight,

a situation in which one would not be able to embed graphs F that need to use

more than one vertex from the same cluster.

The key new idea: The main idea is then to prove a lemma that allows

one to partition G into three sets X,Y, Z with the following properties: (i) Z

will have total weight at most ε/2, (ii) all vertices in X will have weight at

13 Throughout this subsection, Ω(1) and O(1) mean positive quantities that depend only

on ε and not on n or D.
14 Indeed, this is the approach used in [18].
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least Ω(1), (iii) Y will have a highly regular Szemerédi partition, that is, there

will be a partition of the vertices of Y into sets P1, . . . , Pr so that the bipartite

graphs between all pairs (Pi, Pj) are pseudo-random (or regular in the sense of

the regularity lemma), (iv) each of the clusters Pi will have “enough” vertices,

and (v) for each x ∈ X and set Pi, either x will be connected to all vertices

of Pi or to none of them. We will now see how a partition with properties

(i)–(v) can allow one to test P . Let us note that the actual structure we will

use is much more complicated than is described in the above five properties

(cf. Lemma 3.1), and that in the present discussion we intentionally oversimplify

some technical aspects in order to highlight our main new idea. For example, we

will not actually be able to guarantee that all pairs (Pi, Pj) are pseudo-random;

instead, as is common in such proofs, we will have “representative sets” Qi ⊆ Pi

such that all pairs (Qi, Qj) are pseudo-random and most have roughly the same

density as (Pi, Pj).

We first claim that G[X ∪ Y ] (i.e., the graph induced by X ∪ Y ) is ε/2-far

from satisfying P . Indeed, if this is not the case, then we can first turn the

graph induced by these sets into a graph satisfying P by making changes of

total weight less than ε/2, and then use the fact that P is extendable and the

fact that the total weight of Z is at most ε/2 in order to reconnect the vertices

of Z to X ∪ Y (and amongst themselves) so that the resulting graph will be

in P . The total weight of edges we thus change is less than ε, a contradiction.

We now examine the partition P1, . . . , Pr of Y and perform a “cleaning” pro-

cedure analogous to the one performed in applications of the regularity lemma.

By this we mean that we make (only!) within Y changes of total weight less

than ε/2 so that if after these changes the set Y contains an induced copy of

some (bounded-size) graph F , then in the original graph, a sample of O(1) ver-

tices from Y finds one such copy with high probability (w.h.p.). Here we will

also rely on property (iv) of the partition. The fact that G[X ∪ Y ] is ε/2-far

from satisfying P and that we made changes of total weight less than ε/2 when

cleaning Y , means that G[X ∪ Y ] (after the cleaning) indeed has an induced

copy of a graph F that does not satisfy P . We now claim that a sample of

size O(1) from G (before the cleaning) finds a copy of F w.h.p. First, since

the total weight of Z is small, then sampling from G is (effectively) like sam-

pling from G[X ∪ Y ]. Now let FX (resp. FY ) be the subgraph of F induced

by X (resp. Y ). By the above discussion, a sample of size O(1) finds a copy

of FY w.h.p. Now, and this is the first crucial point, property (v) mentioned
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above guarantees that the vertices of X which form the copy of FX , form a

copy of F with every set of vertices in Y which forms a copy of FY . Now, and

this is the second crucial point, property (ii) above guarantees that a sample

of O(1) vertices finds the15 copy of FX contained in X w.h.p. Altogether, the

algorithm finds an induced copy of F using O(1) queries.

The new regularity lemma: As it turns out, one cannot hope to parti-

tion G as described in the first paragraph above, and instead we will have to

define a partition with a much more complicated set of features. This is stated

in Lemma 3.1 in the next subsection. One of the main difficulties is making

sure that parts Pi of the partition of Y will not contain only few (or even a

single) vertices of high weight (i.e., we want to guarantee property (iv) stated

above). This is done by making sure that the weight of the vertices in Y is

very small compared to the weight of the parts P1, . . . , Pr. This in itself is

challenging, because at the same time we need to have many parts Pi in order

to satisfy property (v) above. The proof of Lemma 3.1 will use some of the

lemmas of Section 2, most notably Lemma 2.8, which we will need to iterate

(at least implicitly) in order to find the sought-after partition in the statement

of Lemma 3.1.

3.2. The key lemma. In this subsection we state and prove Lemma 3.1, which

is the main ingredient in the proof of the “if” direction of Theorem 1.

Lemma 3.1: For every functionΨ : N → N and ε > 0 there is S = S3.1(Ψ, ε) > 0

such that for every vertex-weighted graph (G,D) there is a partition

V (G) = X ∪ Y ∪ Z, a partition P = {P1, . . . , Pr} of Y , vertex-sets Qi ⊆ Pi,

and pairwise-disjoint vertex-sets Qi,1, . . . , Qi,t ⊆ Qi, where t = Ψ(|X | + r),

such that the following holds:

(1) D(Z) < ε.

(2) Every vertex in X has weight at least 1/S.

(3) For every x ∈ X and for every 1 ≤ i ≤ r, either x is adjacent to all

vertices of Pi, or to none of the vertices of Pi.

(4)
∑

1≤i≤r

∑
{x,y}∈(Pi

2 )
D(x)D(y) ≤ ε.

(5)
∑

1≤i<j≤r D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)| ≤ ε.

15 By “the” we mean that X might contain only a single copy of FX , but this copy has to

be of weight Ω(1). This is in sharp contrast to the situation within Y , where each copy

of FY might have very small weight, but the total weight of such copies must be Ω(1).
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(6) For every 1 ≤ i ≤ r, all pairs (Qi,k, Qi,�) are
1

Ψ(|X|+r)-regular, and either

all pairs (Qi,k, Qi,�) have density at least 1
2 , or all pairs (Qi,k, Qi,�) have

density less than 1
2 .

(7) For every 1 ≤ i < j ≤ r and 1 ≤ k, � ≤ t, the pair (Qi,k, Qj,�) is
1

Ψ(|X|+r) -regular and |d(Qi,k, Qj,�)− d(Qi, Qj)| ≤ 1
Ψ(|X|+r) .

(8) For every 1 ≤ i ≤ r and 1 ≤ k ≤ t, D(Qi,k) ≥ 1/S.

Note that Items (2) and (8) in Lemma 3.1 together imply that |X |+ rt ≤ S.

The following lemma constitutes the main part of the proof of Lemma 3.1. After

proving Lemma 3.2, we deduce Lemma 3.1 from Lemmas 3.2 and 2.7.

Lemma 3.2: For every functionΨ : N → N and ε > 0 there is S = S3.2(Ψ, ε) > 0

such that for every vertex-weighted graph (G,D) there is a partition

V (G) = X ∪ Y ∪ Z, a partition P = {P1, . . . , Pr} of Y and vertex-sets Qi ⊆ Pi

(for 1 ≤ i ≤ r) such that Items (1)–(5) in Lemma 3.1 hold (with respect to

S = S3.2(Ψ, ε)), and such that the following two conditions are satisfied:

(a) For every 1 ≤ i < j ≤ r, the pair (Qi, Qj) is
1

Ψ(|X|+r) -regular.

(b) For every 1 ≤ i ≤ r the following holds: D(Qi) ≥ 1/S, and all vertices

in Qi have weight less than 1
Ψ(|X|+r) · D(Qi).

Proof. We may and will assume that the function Ψ is monotone increasing,16

and that the function S2.8(E ,m), whose existence is guaranteed by Lemma 2.8, is

monotone decreasing in E and monotone increasing in m. Here, being monotone

decreasing in E means that if a pair of functions E1, E2 : N → (0, 1) satisfy

E1(r) ≤ E2(r) for every r ∈ N, then S2.8(E1,m) ≥ S2.8(E2,m) for every m. For

each s ∈ N, define the function Es : N → (0, 1) by

Es(r) = min
{ ε

2
,

1

Ψ(s+ r)

}
.

Now define the functions S′, S′′ : N → N by setting

S′(s) = S2.8(Es, 2s · �1/ε�), S′′(s) = max
{
s,

2S′(s)
ε

·Ψ(s+ S′(s))
}
.

Note that S′′(s) ≥ s for every s ∈ N, and that S′ and S′′ are monotone increas-

ing. We define a monotone increasing sequence s1, s2, . . . as follows: s1 = 1,

and for each i ≥ 2, si = S′′(si−1). We will show that the lemma holds with

S = S3.2(Ψ, ε) = s�2/ε�.

16 To guarantee that Ψ is monotone increasing, we can simply replace Ψ with the function

Ψ′(s) := max{Ψ(0), . . . ,Ψ(s)}.
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Let (G,D) be a vertex-weighted graph. We iteratively define a sequence of

pairwise-disjoint vertex-sets X1, X2, . . . ⊆ V (G) as follows: let X1 be the set of

all vertices of G of weight at least 1/s1; for each i ≥ 2, let Xi be the set of all

vertices in V (G)\(X1∪· · ·∪Xi−1) having weight at least 1/si. Since X1, X2, . . .

are pairwise-disjoint, there must be 1 ≤ i ≤ �2/ε� for which D(Xi) ≤ ε/2. We

now set
Z ′ = Xi, X = X1 ∪ · · · ∪Xi−1

and Y ′ = V (G) \ (X ∪ Z ′) = V (G) \ (X1 ∪ · · · ∪Xi).

Note that D(Z ′) ≤ ε/2. Setting s := si−1 ≤ s�2/ε�−1 ≤ S, note that every

vertex in X has weight at least 1
s (so in particular |X | ≤ s), while every vertex

in Y ′ has weight less than 1
si

= 1
S′′(s) .

If D(Y ′) < ε
2 then D(Y ′ ∪ Z ′) < ε, so the assertion of the lemma holds

for Y = ∅ and Z = Z ′ ∪ Y ′, and we are done. So we may and will assume from

now on that D(Y ′) ≥ ε
2 . Let P ′

0 be a partition of Y ′ into �1/ε� parts such that∑
P∈P′

0

∑
{x,y}∈(P2)

D(x)D(y) ≤ ε,

as guaranteed by Lemma 2.1. For every x ∈ X , consider the partition

Px := {NY ′(x), Y ′ \NY ′(x)}
of Y ′. Let P0 be the common refinement of the partitions P ′

0 and (Px)x∈X . Then

for every x ∈ X and P ∈ P0, either x is adjacent to every vertex of P , or x is not

adjacent to any vertex of P . Moreover, we have |P0| ≤ 2|X| · �1/ε� ≤ 2s · �1/ε�.
Now apply Lemma 2.8 to (G[Y ′],DY ′) with parameters Es andm = 2s · �1/ε�,

and with the partition P0 (noting that |P0| ≤ m), to obtain a partition

P = {P0, P1, . . . , Pr} of Y ′ and vertex-sets Qi ⊆ Pi (for 1 ≤ i ≤ r), with

the properties stated in that lemma. Note that in particular we have

(1) r ≤ S2.8(Es, 2s · �1/ε�) = S′(s).

Set Z = Z ′ ∪ P0 and Y = Y ′ \ P0, noting that D(P0) < Es(0) ≤ ε
2 , and hence

D(Z) = D(Z ′) + D(P0) < ε, as required by Item (1) in Lemma 3.1. Items (3)

and (4) in Lemma 3.1 hold because each of the sets P1, . . . , Pr is contained in

some part of P0, and hence also in some part of P ′
0. Item (2) of Lemma 3.1 was

already verified above, and Item (5) of Lemma 3.1 is guaranteed by Lemma 2.8.

Item (a) holds because Lemma 2.8 guarantees that all pairs (Qi, Qj) are Es(r)-
regular, and because Es(r) ≤ 1

Ψ(s+r) ≤ 1
Ψ(|X|+r) (here we used our choice of Es,
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the fact that |X | ≤ s, and the monotonicity of Ψ). It remains to prove Item (b).

For each 1 ≤ i ≤ r, we have

(2)

D(Qi) = DY ′(Qi) · D(Y ′) ≥ DY ′(Qi) · ε
2
≥ ε

2S2.8(Es, 2s · �1/ε�)
=

ε

2S′(s)
≥ 1

S′′(s)
≥ 1

S′′(s�2/ε�−1)
=

1

s�2/ε�
=

1

S
,

where in the second inequality we used the guarantees of Lemma 2.8, and later

we used our choice of S′ and S′′, the monotonicity of S′′, and the fact that

s = si−1 for some i ≤ �2/ε�. Next, fix 1 ≤ i ≤ r and recall that all vertices in

Qi ⊆ Y ⊆ Y ′ have weight less than

1

S′′(s)
≤ 1

Ψ(s+ S′(s))
· ε

2S′(s)

≤ 1

Ψ(s+ r)
· D(Qi) ≤ 1

Ψ(|X |+ r)
· D(Qi),

where in all inequalities we used the monotonicity of Ψ, and in the second

inequality we also used (1) and an intermediate step in (2). This shows that

D(u) < 1
Ψ(|X|+r) · D(Qi) for every 1 ≤ i ≤ r and u ∈ Qi, as required.

Proof of Lemma 3.1. Define the functions

ζ : N → (0, 1), ζ(m) = ζ2.7

(
Ψ(m),

1

Ψ(m)

)
,

and

Ψ′ : N → N, Ψ′(m) =
2Ψ(m)

ζ(m)
.

We may and will assume that the function ζ2.7(t, δ) is monotone decreasing in t

and monotone increasing in δ. This assumption implies that the function ζ

defined above is monotone decreasing. We prove the lemma with

S = S3.1(Ψ, ε) :=
S3.2(Ψ

′, ε)
ζ(S3.2(Ψ′, ε))

≥ S3.2(Ψ
′, ε).

Let (G,D) be a vertex-weighted graph. Apply Lemma 3.2 to (G,D) with

parameters Ψ′ and ε, to obtain a partition V (G) = X ∪ Y ∪ Z, a partition

P = {P1, . . . , Pr} of Y , and subsets Qi ⊆ Pi (for 1 ≤ i ≤ r) such that Items

(1)–(5) of Lemma 3.1 hold (with respect to S3.2(Ψ
′, ε)), and so do Items (a)

and (b) of Lemma 3.2.
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Let us now prove that Items (6)–(8) (in Lemma 3.1) hold. It will be convenient

to put m := |X | + r. By Item (b) in Lemma 3.2 and by our choice of Ψ′, we
have

(3) D(u) <
1

Ψ′(m)
· D(Qi) <

ζ(m)

Ψ(m)
· D(Qi) ≤ ζ(m) · D(Qi)

for every 1 ≤ i ≤ r and u ∈ Qi. Recalling our choice of ζ, we see that Lemma 2.7

is applicable to (G[Qi],DQi) with parameters t = Ψ(m) = Ψ(|X | + r) and

δ = 1
Ψ(m) =

1
Ψ(|X|+r) . Applying Lemma 2.7 with this input, we obtain pairwise-

disjoint vertex-sets Qi,1, . . . , Qi,t ⊆ Qi satisfying the properties stated in that

lemma. The guarantees of Lemma 2.7 immediately establish Item (6), and also

imply that for every 1 ≤ k ≤ t we have

D(Qi,k) ≥ ζ(m) · D(Qi) = ζ(|X |+ r) · D(Qi)

≥ ζ(|X |+ r) · 1

S3.2(Ψ′, ε)
≥ ζ(S3.2(Ψ

′, ε))
S3.2(Ψ′, ε)

=
1

S
,

where in the second and third inequalities we used the fact that |X | + r,
1

D(Qi)
≤ S3.2(Ψ

′, ε), as guaranteed by Item (2) (of Lemma 3.1) and Item (b) (of

Lemma 3.2); in the third inequality we also used the monotonicity of ζ. This

establishes Item (8). It remains to prove Item (7). By Item (a) of Lemma 3.2,

the pair (Qi, Qj) is 1
Ψ′(m) -regular for every 1 ≤ i < j ≤ r. Recalling that

1
Ψ′(m) = ζ(m)

2Ψ(m) , we apply Item (1) of Lemma 2.3 to Qi, Qj , Qi,k, Qj,� (for any

1 ≤ k, � ≤ t), to conclude that

|d(Qi,k, Qj,�)− d(Qi, Qj)| ≤ 1

Ψ(m)
=

1

Ψ(|X |+ r)
,

and that the pair (Qi,k, Qj,�) is
1

Ψ(|X|+r) -regular, as required.

3.3. Proof of the main result. In this subsection we prove (the “if” direc-

tion of) Theorem 1. For a hereditary and extendable graph property P , our

tester for P will work as follows: given an input (G,D) and a proximity parame-

ter ε, the tester samples a sequence of vertices u1, . . . , us ∈ V (G) independently

and with distribution D, where s = sP(ε) is as in Theorem 4; the tester then ac-

cepts if and only if G[{u1, . . . , us}] satisfies P . Since P is hereditary, this tester

accepts with probability 1 if the input graph satisfies P . In the other direction,

Theorem 4 immediately implies that if the input (G,D) is ε-far from P then

the tester rejects with probability at least 2
3 . So we see that the “if” direction

of Theorem 1 follows from Theorem 4.
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From now on our goal is to prove Theorem 4. We start by introducing variants

of some definitions from [4]. An embedding scheme is a complete graph K

with a vertex partition AK ∪BK , such that every vertex in BK is colored black

or white, every edge with an endpoint in AK is colored black or white, and every

edge contained in B is colored black, white or grey. Note that one of Ak, Bk

may be empty; that the vertices of AK are not colored; and that the edges with

at least one endpoint in AK cannot be colored grey. An embedding from a

graph F to an embedding scheme K is a map ϕ : V (F ) → V (K) such that the

following holds:

(1) For every a ∈ AK we have |ϕ−1(a)| ≤ 1.

(2) For every b ∈ BK , if b is colored black then ϕ−1(b) induces a complete

graph, and if b is colored white then ϕ−1(b) induces an empty graph.

(3) For every {x, y} ∈ (
V (K)

2

)
, if {x, y} is colored black then the bipartite

graph between ϕ−1(x) and ϕ−1(y) is complete, and if {x, y} is colored

white then the bipartite graph between ϕ−1(x) and ϕ−1(y) is empty

(note that there are no restrictions in the case that {x, y} is colored

grey).

Note that Condition 3 implies that for every a ∈ AK and x ∈ V (K) \ {a}, the
bipartite graph between ϕ−1(a) and ϕ−1(x) is either complete or empty. We

use the notation F → K to mean that there is an embedding from F to K.

For a graph-family F and an integer m, let Fm be the family of all embedding

schemes K on at most m vertices, such that there is an embedding from some

F ∈ F to K. We now introduce a variant of the function ΨF defined in [4].

Definition 3.3: For a graph-family F and an integer m for which Fm = ∅, define
ΨF (m) = max

K∈Fm

min
F∈F :F→K

|V (F )|.

If Fm = ∅ then define ΨF(m) = 0.

We are now ready to prove Theorem 4 (and thus also the “if” direction of

Theorem 1).

Proof of Theorem 4. Let P be a hereditary and extendable graph property.

Let F = F(P) be the family of graphs which do not satisfy P . Fix ε ∈ (0, 1),

and let Ψ : N → N be the function

Ψ(m) = max
{8

ε
,ΨF(m),

1

δ2.4(ΨF (m), ε
8 )

}
,
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where ΨF is defined in Definition 3.3. We may and will assume that the func-

tion δ2.4(h, η) is monotone decreasing in h and monotone increasing in η. Set

S := S3.1(Ψ, ε
4 ). We prove the theorem with

(4) s = sP(ε) := S · 2SS

δ2.4(S,
ε
8 )

.

Let (G,D) be a vertex-weighted graph which is ε-far from P. Apply Lemma 3.1

to (G,D) with parameter ε
4 and with Ψ as above, to obtain a partition

V (G) = X∪Y ∪Z, a partition {P1, . . . , Pr} of Y , subsetsQi ⊆ Pi (for 1 ≤ i ≤ r),

and pairwise-disjoint subsets Qi,1, . . . , Qi,t ⊆ Qi, such that t = Ψ(|X |+ r) and

Items (1)–(8) in Lemma 3.1 hold.

We claim that G is 3ε
4 -far from any graph G′ on V (G) which satisfies

G′[X ∪ Y ] ∈ P . So suppose by contradiction that there is a graph G′ on V (G)

such that G′[X ∪Y ] satisfies P and such that G′ is 3ε
4 -close to G. Since P is ex-

tendable, there is a graphG′′ on V (G) = V (G′) such that G′′[X∪Y ] = G′[X∪Y ]

and such that G′′ satisfies P . In order to turn G′ into G′′, we only need to

add/delete edges which are incident to vertices of Z. Therefore, the total weight

of edge-changes needed to turn G′ into G′′ is at most D(Z) < ε
4 , as guaranteed

by Item (1) of Lemma 3.1. So we see that G can be turned into G′′, which
satisfies P , by adding/deleting edges whose total weight is less than 3ε

4 + ε
4 = ε,

in contradiction to the assumption that (G,D) is ε-far from P .

We have thus proved that G is 3ε
4 -far from any graph G′ satisfying

G′[X ∪ Y ] ∈ P . Now, let G′ be the graph obtained from G by doing the

following changes:

(1) For every 1 ≤ i ≤ r, if d(Qi,k, Qi,�) ≥ 1
2 for every 1 ≤ k < � ≤ t then

turn Pi into a clique, and if d(Qi,k, Qi,�) <
1
2 for every 1 ≤ k < � ≤ t

then turn Pi into an independent set. By Item (6) in Lemma 3.1, one

of these options has to hold. The total weight of edge-changes needed

in this item is at most ε
4 by Item (4) of Lemma 3.1.

(2) For every 1 ≤ i < j ≤ r, if d(Qi, Qj) > 1− ε
4 then add all edges between

Pi and Pj , and if d(Qi, Qj) <
ε
4 then remove all edges between Pi and

Pj (note that if ε
4 ≤ d(Qi, Qj) ≤ 1− ε

4 then no changes are made in the

bipartite graph between Pi and Pj). The total weight of edge-changes

needed in this item is less than ε
2 by Item (5) of Lemma 3.1.

Note that no edge with an endpoint in X was added/deleted in Items (1)–(2),

so G′ and G agree on all edges that are incident to vertices of X .
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We see that the total weight of edge-changes made in Items (1)–(2) is less

than 3ε
4 . So G′[X ∪ Y ] cannot satisfy P , implying that G′[X ∪ Y ] ∈ F . Note

that by definition (see Items (1)–(2) above), the graph G′ has the following

properties:

(a) For every 1 ≤ i ≤ r, Pi is either a clique or an independent set in

G′. Moreover, if Pi is a clique in G′ then dG(Qi,k, Qi,�) ≥ 1
2 for every

1≤k<�≤ t, and if Pi is an independent set in G′ then dG(Qi,k, Qi,�) <
1
2

for every 1 ≤ k < � ≤ t.

(b) For every pair 1 ≤ i < j ≤ r, if there is an edge in G′ between Pi and

Pj then dG(Qi, Qj) ≥ ε
4 . Then by Item (7) of Lemma 3.1 we have that

dG(Qi,k, Qj,�)≥ ε
4− 1

Ψ(|X|+r) ≥ ε
8 for every 1 ≤ k, � ≤ t. Analogously, if

there is a non-edge in G′ between Pi and Pj then dG(Qi, Qj) ≤ 1− ε
4 ,

which implies (by Item (7) of Lemma 3.1) that

dG(Qi,k, Qj,�) ≤ 1− ε

4
+

1

Ψ(|X |+ r)

≤ 1− ε

8
for every 1 ≤ k, � ≤ t.

Now letK be the following embedding scheme: AK=X andBK ={b1, . . . , br};
for each 1 ≤ i ≤ r, vertex bi is colored black if Pi is a clique in G′ and white

if Pi is an independent set in G′; for each x, x′ ∈ X , edge {x, x′} is colored

black if {x, x′} ∈ E(G) and white otherwise; for each x ∈ X , 1 ≤ i ≤ r, edge

{x, bi} is colored black if the bipartite graph between x and Pi is complete and

white if this bipartite graph is empty (Item (3) in Lemma 3.1 implies that one

of these options must hold); finally, for every 1 ≤ i < j ≤ r, edge {bi, bj} is

colored black if the bipartite graph between Pi and Pj is complete in G′, white
if the bipartite graph between Pi and Pj is empty in G′, and grey otherwise.

Observe that the map ϕ : X ∪ Y → V (K) which maps x to itself (for every

x ∈ X = AK) and Pi to bi (for every 1 ≤ i ≤ r) is an embedding from G′[X∪Y ]

to K. Since

|V (K)| = |X |+ r,

we have K ∈ Fm for m := |X | + r. By the definition of the function ΨF (see

Definition 3.3), there is F ∈ F such that F → K and

|V (F )| ≤ ΨF(m) = ΨF(|X |+ r) ≤ Ψ(|X |+ r) = t.
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Now, fixing an embedding ρ from F to K, write

Wi := ρ−1(bi) = {wi,1, . . . , wi,fi} for 1 ≤ i ≤ r.

PutW =W1∪· · ·∪Wr andH = F [W ]. We claim that the sets (Qi,k)1≤i≤r,1≤k≤fi

satisfy the requirements 1-2 in Lemma 2.4 with respect to h = |V (F )| ≤ ΨF(m),

η = ε
8 and H as above, in the graph G. In other words, we show that one

can apply Lemma 2.4 with the sets U1, . . . , Uh being (Qi,k)1≤i≤r,1≤k≤fi , and

with G as the host graph. We have actually already proved that Item (1) in

Lemma 2.4 holds; indeed, this follows from the fact that F → K, the definition

of the embedding scheme K, and Items (a)–(b) above. Item (2) of Lemma 2.4

follows from Items (6)–(7) of Lemma 3.1, which together imply that for every

1 ≤ i ≤ j ≤ r and 1 ≤ k ≤ fi, 1 ≤ � ≤ fj (with the exception of (i, k) = (j, �)),

the pair (Qi,k, Qj,�) is δ-regular with δ = 1
Ψ(m) ≤ δ2.4(ΨF(m), ε

8 ) ≤ δ2.4(h,
ε
8 ),

as required.

We have thus showed that Lemma 2.4 is applicable to the tuple of sets

(Qi,k)1≤i≤r,1≤k≤fi and the graph H = F [W ] (with the parameters defined

above). Let U be the set of all tuples (ui,k)1≤i≤r,1≤k≤fi , where ui,k ∈ Qi,k,

which induce (in G) a copy of H = F [W ] in which ui,k plays the role of wi,k for

every 1 ≤ i ≤ r and 1 ≤ k ≤ fi. By Lemma 2.4, we have

(5)

∑
(ui,k)i,k∈U

r∏
i=1

fi∏
k=1

D(ui,k) ≥ δ2.4

(
h,

ε

8

)
·

r∏
i=1

fi∏
k=1

D(Ui,k)

≥ δ2.4

(
ΨF(m),

ε

8

)
· S−|W |,

where in the last inequality we used the guarantees of Item (8) in Lemma 3.1

and the monotonicity of the function δ2.4. Observe that for every (ui,k)i,k ∈ U ,
the subgraph of G induced by the vertex-set X ∪ {ui,k : 1 ≤ i ≤ r, 1 ≤ k ≤ fi}
contains an induced copy of F . Indeed, this follows from our choice of F , the

definition of U , and Item (3) in Lemma 3.1. Now sample an (|X |+ |W |)-tuple of
vertices from G according to the distribution D and independently. Note that if

every vertex in X appears in the first |X | vertices of the sample, and if the tuple

of the last |W | vertices of the sample belongs to U , then the subgraph induced

by the sample contains an induced copy of F and hence does not satisfy P . The

probability for this event is at least

δ2.4

(
ΨF(m),

ε

8

)
· S−|X|−|W |.
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Here we used (5) and Item (2) in Lemma 3.1. Next, note that

|X |+ |W | ≤ |X |+ rt ≤ S,

where in the last inequality we used Items (2) and (8) of Lemma 3.1. Similarly,

ΨF(m) ≤ t ≤ S. So we see that a sample of S random vertices induces a graph

which does not satisfy P with probability at least δ2.4(S,
ε
8 ) · S−S . Therefore,

a sample of s = sP(ε) vertices (see (4)) induces a graph not satisfying P with

probability at least

1−
(
1− δ2.4

(
S,

ε

8

)
· S−S

) 2SS

δ2.4(S, ε
8
) ≥ 1− e−2 ≥ 2

3
,

as required. This completes the proof.

It is natural to ask about the dependence on ε of the sample complexity of the

tester supplied by Theorem 1. One answer is that one cannot prove any upper

bound on the sample complexity which holds uniformly for all properties P ,

because it was shown in [5] that no such bound exists even in the standard

model. Suppose then that one is interested only in “simple” properties such as

induced H-freeness (for some fixed H). In this case, it is not too hard to see that

although we are iterating Lemma 2.8, which has wowzer-type (that is, iterated-

tower) bounds17 in this setting even for unweighted graphs (see [11, 24]), we

are still getting “only” a wowzer-type bound. We should also point out that it

might be possible to use the ideas in [11], together with those presented here,

in order to get tower-type bounds on the sample complexity of testing induced

H-freeness in the VDF model.

4. VDF-testable properties are extendable and hereditary

In this section we prove the “only if” direction of Theorem 1. The proof is

divided between Propositions 4.1 and 4.2. As shown in [18], we can (and will)

always assume that a VDF tester only queries the input graph on pairs of

vertices which it has sampled.

17 To be precise, we mean here that the “standard” way of establishing Lemma 2.8 (which

is also the way we prove this lemma in this paper) is via the strong regularity lemma

(see Lemma 2.6), which is known to only give wowzer-type bounds [11, 24]. In [11], (an

unweighted variant of) Lemma 2.8 was proved without the use of the strong regular-

ity lemma, thus giving better, tower-type, bounds. This is alluded to in the following

sentence.
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Proposition 4.1: If a graph property P is not extendable, then P is not

testable in the VDF model.

Proof. Since P is not extendable, there is a graph G1 ∈ P , such that no

(|V (G1)| + 1)-vertex graph satisfying P contains G1 as an induced subgraph.

Let G2 be a graph obtained from G1 by adding a “new” vertex v (and putting

an arbitrary bipartite graph between v and V (G1)), let D1 be the uniform dis-

tribution on V (G1), and let D2 be the distribution on V (G2) which assigns

weight 1
|V (G1)| to each u ∈ V (G1) ⊆ V (G2) and weight18 0 to v.

It is clear that for every integer q, a sample of q vertices from G1 according

to D1 is indistinguishable from a sample of q vertices from G2 according to D2.

Observe that G1 satisfies P while (G2,D2) is
1

|V (G1)|2 -far from P . To see that

the latter statement is true, observe that by our choice of G1, no matter how

we change the bipartite graph between v and V (G1), we will always get a graph

that does not satisfy P . Hence, in order to make G2 satisfy P , one must change

the adjacency relation between a pair of vertices from V (G1), whose weight

(under D2) is 1/|V (G1)|.
Now, the fact that (G1,D1) and (G2,D2) are indistinguishable implies that P

is not testable19 in the VDF model.

Proposition 4.2: If a graph property P is not hereditary, then P is not

testable in the VDF model.

Proof. Since P is not hereditary, there is a graph G1 and an induced sub-

graph G2 of G1, such that G1 satisfies P but G2 does not. Let D2 be the

uniform distribution on V (G2), and let D1 be the distribution on V (G1) which

is supported on V (G2) ⊆ V (G1) and uniform when conditioned on V (G2),

18 Evidently, if one does not wish to allow vertices of weight 0, then one can instead assign

to v a weight tending to 0; or, more accurately, a weight that is small enough with

respect to (the inverse of) the sample complexity of an alleged tester for P (in a proof

by contradiction that such a tester does not exist).
19 We note that if P is non-extendable but hereditary, then one can easily obtain infinitely

many examples showing that P is not testable (rather than just the one example given

in the proof of Proposition 4.1). Indeed, instead of adding just one vertex to G1, one

can add to G1 any number k of vertices (for a large k), and give these new vertices

weight o(1/k), while distributing the remaining weight uniformly among the vertices of

G1 (note that such an assignment is precisely what the setting of Theorem 9 forbids).

The assumption that P is hereditary implies that every graph obtained in this way is
1−o(1)

|V (G1)|2 -far from satisfying P.
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i.e., D1(u) =
1

|V (G2)| if u ∈ V (G2) and D1(u) = 0 if u ∈ V (G1)\V (G2). Clearly,

for every integer q, a sample of q vertices from G1 according to D1 is indis-

tinguishable from a sample of q vertices from G2 according to D2. Also, G1

satisfies P , whereas (G2,D2) is
1

|V (G2)|2 -far from P because G2 /∈ P . Thus, P
is not testable20 in the VDF model.

5. On variations of the VDF model and related problems

In the following two subsections we prove Theorems 6, 7, 8 and 9. We then

consider two additional problems related to the VDF model: one problem asks

if the query complexity in the VDF model is the same as in the standard model

(for P that are testable in the VDF model), and the other asks for a charac-

terization of the properties that are testable in variants of the VDF model (as

in Theorems 6–9). We start by giving the precise definitions of the settings

considered in Theorems 6–9.

The “large inputs” model. In this model, a property P is testable if there

exists a function MP : (0, 1) → N such that for every ε > 0, P is ε-testable with

sample complexity depending only on ε under the promise that inputs (G,D)

always satisfy

|V (G)| ≥ MP(ε).

The “size-aware” model. In this model, testers are allowed to receive, as

part of the input, the number of vertices of the input graph.

The “no heavy-weights” (NHW) model. In this model, a property P is

testable if there exists a function cP : (0, 1) → (0, 1) such that for every ε > 0,

P is ε-testable with sample complexity depending only on ε under the promise

that inputs (G,D) always satisfy

max
v∈V (G)

D(v) ≤ cP(ε).

20 In analogy to Footnote 19, we note that if P is non-hereditary but extendable, then one

can obtain infinitely many examples showing that P is not testable (rather than just the

one given in the proof of Proposition 4.2). Indeed, the extendability of P implies that

there are arbitrarily large graphs which satisfy P and contain G1 (and hence also G2) as

an induced subgraph. Each of these graphs (together with an appropriate distribution,

as in the proof of Proposition 4.2) is a witness to the non-testability of P.
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The “no light-weights” (NLW) model. In this model, a property P is

testable if for all ε, δ > 0, P is ε-testable with sample complexity depending

only on ε and δ under the promise that inputs (G,D) always satisfy

min
v∈V (G)

D(v) ≥ δ/|V (G)|.

Theorem 6 (resp. 7, 8, 9) then states that every hereditary property is testable

in the “large inputs” (resp. “size-aware”, NHW, NLW) model.21

5.1. Proof of Theorems 6, 7 and 9. In this subsection we prove Theo-

rems 6, 7 and 9, i.e., we show that every hereditary property is testable (with

one-sided error) in the “large inputs”, “size-aware” and NLWmodels. Let us in-

troduce some definitions that we will use throughout this subsection. Let P be a

hereditary graph property. A graph F is called P-good if for every r ≥ |V (F )|
there is an r-vertex graph which satisfies P and contains F as an induced sub-

graph; this in particular implies that F itself satisfies P . If F is not P-good

then it is called P-bad, and we denote by rP(F ) the minimal r ≥ |V (F )|
such that there is no r-vertex graph which satisfies P and contains F as an

induced subgraph. In particular, if F does not satisfy P then it is P-bad and

rP (F ) = |V (F )|. Note that since P is hereditary, if F is P-bad then there is no

graph on r vertices for any r ≥ rP(F ) which satisfies P and contains F as an

induced subgraph. Now let H = H(P) be the property of being P-good. Then

H ⊆ P and H is hereditary, which follows from the definition of P-goodness

and the fact that P is hereditary. Observe moreover that H is extendable (in

fact, if P itself is extendable then H = P). For an integer s ≥ 1, let RP(s) be
the maximum of rP (F ) over all P-bad graphs F with at most s vertices; if no

such graphs exist, we set RP(s) = 0 (this will not matter later on). We are now

ready to prove Theorem 6, which we rephrase as follows.

21 Note that if P is testable in the “large inputs” model then it is also testable in the NHW

model, because by setting cP (ε) := 1/MP (ε) we can make sure that the input graph

has at least MP (ε) vertices. Still, we decided to include a separate proof for Theorem 8

(instead of deducing it from Theorem 6) for two reasons: one is that in the course of the

proof we resolve another open question raised in [18]; and the other is that our proof of

Theorem 8 shows that P is testable (in the NHW model) by a tester that accepts if and

only if the subgraph induced by the sample satisfies P, whereas the tester given by the

proof of Theorem 6 is not always of this form.
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Proposition 5.1: For every hereditary property P there are functions

MP , sP : (0, 1) → N such that for every ε > 0, the property P is ε-testable

with one-sided error and sample complexity sP(ε) under the promise that in-

puts (G,D) always satisfy

|V (G)| ≥ MP(ε).

Proof. Consider the (extendable and hereditary) property H = H(P) defined

above. By Theorem 4, there is a function sH : (0, 1) → N such that for

very ε > 0 and for every vertex-weighted graph (G,D) which is ε-far from H, a

sample of s vertices from G (taken from D) induces a subgraph which does not

satisfy H with probability at least 2
3 .

Our (“large inputs”-model) tester for P samples sH(ε) vertices, and accepts

if and only if the subgraph induced by the sample satisfies H. We prove the

proposition with

M = MP(ε) := RP(sH(ε)).

Let (G,D) be a vertex-weighted graph with |V (G)| ≥ M . Suppose first

that G satisfies P . Our goal is to show that the subgraph induced by a sample

of sH(ε) vertices, taken fromD and independently, satisfiesH with probability 1.

So suppose by contradiction that G contains an induced subgraph F on at

most sH(ε) vertices which does not satisfy H. In other words, F is P-bad. By

the definition of rP (F ), there is no graph on rP(F ) vertices which satisfies P
and contains F as an induced subgraph. As

|V (G)| ≥ M = RP(sH(ε)) ≥ rP(F ),

and as P is hereditary, we get that G does not satisfy P , a contradiction.

Suppose now that (G,D) is ε-far from P . Then (G,D) is also ε-far from H, as

H ⊆ P . By our choice of sH(ε), a sample of sH(ε) vertices of G, taken from D
and independently, does not satisfy H with probability at least 2

3 . So our tester

rejects (G,D) with probability at least 2
3 , as required.

It is natural to ask whether we can replace the function MP(ε) in Lemma 5.1

by a constant depending only on P (and not on ε). As is shown in the following

proposition, we cannot.

Proposition 5.2: There is a hereditary property P such that for everyM > 0,

there is no tester for P in the VDF model even if we are guaranteed that the

input graph has at least M vertices.
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Proof. For each k ≥ 3, let C∗
k be the graph obtained from the k-cycle Ck by

adding an isolated vertex. Consider the property P = {C∗
k : k ≥ 3}-freeness.

Let M > 0. Set G = CM and G′ = C∗
M . Let D be the uniform distribution

on V (G), and let D′ be the distribution on V (G′) which assigns weight 0 to

the isolated vertex in G′, and is uniform on the rest of the vertices of G′.
Then G ∈ P and (G′,D′) is 1

M2 -far from P , but a sample (of any number

of vertices) from (G,D) is indistinguishable from a sample of the same size

from (G′,D′). This shows that P is not testable even if we require input graphs

to have at least M vertices.

We now move on to prove Theorem 7.

Proof of Theorem 7. Let P be a hereditary graph property. Our goal is to

design (and prove the correctness of) a one-sided-error tester for P in the

VDF model, provided that the tester receives |V (G)| as part of the input. Let

MP : (0, 1) → N be as in Lemma 5.1. On input ε ∈ (0, 1), G and D (where G is

a graph and D is a distribution on V (G)), our tester works as follows:

(1) If |V (G)| ≥ MP(ε), then invoke the tester whose existence is guaranteed

by Lemma 5.1, and accept if and only if this tester accepts.

(2) Otherwise, i.e., if |V (G)| < MP(ε), then do the following: setting

M := MP(ε) and t := M log(3M)/ε, sample vertices u1, . . . , ut ∈ V (G)

according to D and independently, and put U := {u1, . . . , ut}. Accept

if and only if there exists a graph on |V (G)| vertices which satisfies P
and contains G[U ] as an induced subgraph (in the notation introduced

at the beginning of this subsection, this is the same as saying that

rP (G[U ]) > |V (G)|).

Let us prove the correctness of our tester. First, Lemma 5.1 guarantees that

if |V (G)| ≥ MP(ε) then the tester works correctly; namely, it accepts with

probability 1 if G ∈ P , and rejects with probability at least 2
3 if (G,D) is ε-far

from P .

So from now on we may assume that |V (G)| < MP(ε). Suppose first that

G ∈ P . Evidently, for every U ⊆ V (G) there is a graph on |V (G)| vertices
which satisfies P and contains G[U ] as an induced subgraph (indeed, G is such

a graph). Hence, the tester accepts G with probability 1 (see Item (2)).
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Now suppose that (G,D) is ε-far from P . Observe that for each v ∈ V (G),

the probability that v /∈ U is

(1−D(v))t ≤ e−D(v)·t =
( 1

3M

)−D(v)·M/ε

.

By taking the union bound over all v ∈ V (G) which satisfy D(v) ≥ ε/M , we

see that the probability that there is v ∈ V (G) \ U with D(v) ≥ ε/M , is at

most 1
3 . Suppose that every v ∈ V (G) \ U satisfies D(v) < ε/M (this happens

with probability at least 2
3 ). Then

D(V (G) \ U) < |V (G)| · ε/M < ε

(where in the last inequality we used our assumption that |V (G)| < M). Now,

if (by contradiction) there is a graph G′ on |V (G)| vertices which satisfies P
and contains G[U ] as an induced subgraph, then one can turn G into G′ by
only adding/deleting edges which are incident to vertices in V (G) \ U . Since

D(V (G) \ U) < ε, this stands in contradiction to the assumption that (G,D)

is ε-far from P . We conclude that there is no such graph G′. This implies that

(G,D) is rejected with probability at least 2
3 , as required.

Finally, we prove Theorem 9, i.e., that every hereditary property is testable

in the NLW model. We restate this theorem as follows.

Proposition 5.3: For every hereditary property P there is a function

tP : (0, 1)2 → N such that for all ε, δ > 0, the property P is ε-testable with

one-sided error and sample complexity tP(ε, δ) under the promise that inputs

(G,D) always satisfy

min
v∈V (G)

D(v) ≥ δ/|V (G)|.

Proof. We start by specifying the function tP(ε, δ). Consider the (extendable

and hereditary) property H = H(P) defined above. By Theorem 4, there is

a function sH : (0, 1) → N such that for every ε > 0 and for every vertex-

weighted graph (G,D) which is ε-far from H, a sample of sH(ε) vertices of G

(taken from D) induces a subgraph which does not satisfy H with probability22

at least 5
6 . Now set R := RP(sH(ε)) and

t = tP(ε, δ) := max{sH(ε), 2R log(6R)/δ}.
22 The statement of Theorem 4 only guarantees a success probability of 2

3
, but this can

clearly be amplified to 5
6
by repeating the experiment O(1) times.
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Our tester for P in the NLW model simply samples a sequence of tP(ε, δ)
vertices of the input and accepts if and only if the subgraph induced by the

sample satisfies P . Evidently, this tester accepts with probability 1 if the input

satisfies P . So to establish the correctness of our tester, it suffices to show that

it rejects with probability at least 2
3 if the input (G,D) is ε-far from P .

Let ε > 0 and let (G,D) be a vertex-weighted graph on n vertices which is

ε-far from P , and in which all vertices have weight at least δ/n. Let u1, . . . , ut

be a sequence of t = tP (ε, δ) random vertices of G, taken according to D and

independently, and set U = {u1, . . . , ut}. We need to show that with probability

at least 2
3 , G[U ] does not satisfy P . Suppose first that n < 2R. We claim that in

this case we have U = V (G) with probability at least 2
3 (this is clearly sufficient

because G itself does not satisfy P). For a vertex v ∈ V (G), the probability

that ui = v for every 1 ≤ i ≤ t is

(1−D(v))t ≤
(
1− δ

n

)t

<
(
1− δ

2R

)t

≤ e−
δt
2R ≤ 1

6R
.

So by the union bound over all n < 2R vertices ofG, we see that with probability

at least 2
3 , U = V (G), as required.

Suppose now that n ≥ 2R. Our choice of s = sH(ε) guarantees that with

probability at least 5
6 , the graph F := G[{u1, . . . , us}] does not satisfy H, mean-

ing that it is P-bad. We will now show that with probability at least 5
6 , we

have |U | ≥ R. This will imply that with probability at least 2
3 , G[U ] contains

as an induced subgraph a P-bad graph F on at most sH(ε) vertices, and also

|U | ≥ R = RP(sH(ε)) ≥ rP(F ). By the definition of rP(F ), this would imply

that G[U ] does not satisfy P , as required.

So from now on, our goal is to show that |U | ≥ R with probability at least 5
6 .

Fix a partition of V (G) into R sets V1, . . . , VR, each of size at least � n
R� ≥ n

2R .

For each 1 ≤ i ≤ R, let Ai be the event that U ∩ Vi = ∅. Note that if Ai occurs

for every 1 ≤ i ≤ R, then |U | ≥ R. Since

D(Vi) ≥ |Vi| · δ
n
≥ n

2R
· δ
n
=

δ

2R
,

the probability that Ai does not occur is at most

(1−D(Vi))
t ≤

(
1− δ

2R

)t

≤ e−
δt
2R ≤ 1

6R
.

By the union bound, the probability that there is 1 ≤ i ≤ R for which Ai does

not occur, is at most 1
6 , as required. This completes the proof.
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5.2. Proof of Theorem 8. In this subsection we prove Theorem 8, i.e., we

show that every hereditary property is testable in the NHW model. Again, we

rephrase as follows.

Proposition 5.4: For every hereditary property P there are functions

tP : (0, 1) → N and cP : (0, 1) → (0, 1) such that for every ε > 0, the prop-

erty P is ε-testable with one-sided error and sample complexity tP(ε) under the
promise that inputs (G,D) always satisfy maxv∈V (G)D(v) ≤ cP(ε).

The key idea in the proof of Proposition 5.4, which appeared in [18], is to

“blow up” the vertex-weighted graph (G,D) by replacing each vertex v with a

vertex-set whose size is proportional to D(v), and thus obtain an (unweighted)

graph G′, to which one can apply known testability results in the standard

model.

Let us introduce some definitions. For a graphG, say on V (G) = {v1, . . . , vn},
and for integers b1, . . . , bn ≥ 0, a (b1, . . . , bn)-blowup of G is any graph admit-

ting a vertex-partition V1 ∪ · · · ∪ Vn such that |Vi| = bi for every 1 ≤ i ≤ n, and

such that the bipartite graph between Vi and Vj is complete if {vi, vj} ∈ E(G)

and empty if {vi, vj} /∈ E(G). The sets V1, . . . , Vn are called the blowup-sets.

Note that we do not pose any restrictions on the graphs induced by the sets

V1, . . . , Vn; these graphs may be arbitrary. For simplicity of presentation, we

assume henceforth that all vertex-weights are rational23. Now let D be a dis-

tribution on V (G) = {v1, . . . , vn}, and let N ∈ N be such that D(vi) · N is an

integer for every 1 ≤ i ≤ n; such an N is called suitable. A (D, N)-blowup

of G is a (b1, . . . , bn)-blowup of G with bi = D(vi) ·N for every 1 ≤ i ≤ n. Note

that a blowup is always treated as “unweighted” (in other words, the distribu-

tion on its vertices is uniform). Goldreich [18] proved that for every graph F

and ε ∈ (0, 1), if a vertex-weighted graph (G,D) is ε-far from being F -free, then

for every suitable N , any (D, N)-blowup of G is ε

(|V (F )|
2 )

-far from being F -free.

23 If one allows general (i.e., possibly irrational) weights, then it is necessary to change the

definition of a (D, N)-blowup by rounding D(vi) ·N to the closest integer. This results in

an additive error of n
N

in the conclusion of Lemma 5.5, due to rounding. Consequently,

in (the proofs of) Propositions 5.4 and 5.7 we need to consider (D, N)-blowups with

N → ∞ in order to have this error term go to 0. We also need to replace ε in several

places with (say) ε
2
(or any other number smaller than ε). For example, the conclusion

of Proposition 5.7 should be that P is testable in the VDF model by a tester having

one-sided error and sample complexity qP(ε/2).
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Goldreich further asked whether the
(|V (F )|

2

)−1
-factor can be avoided. In the

following lemma we show that this is indeed the case, and moreover that an

analogous statement holds for every hereditary property. This lemma is also

the key ingredient in the proof of Proposition 5.4.

Lemma 5.5: Let P be a hereditary graph property and let (G,D) be a vertex-

weighted graph which is ε-far from P . Then for every suitable N , any (D, N)-

blowup of G is ε-far from P .

Proof. Fix any suitable N and let G′ be a (D, N)-blowup of G. As above, we

use v1, . . . , vn to denote the vertices of G, and V1, . . . , Vn to denote the cor-

responding blowup sets. Suppose by contradiction that there is a graph H ′

on V (G′) that satisfies P and is ε-close to G′. Let H be the random graph

defined as follows: the vertex-set of H is V (H) = V (G) = {v1, . . . , vn}. To

define the edge-set of H , sample for each 1 ≤ i ≤ n a vertex ui ∈ Vi uni-

formly at random, and make {vi, vj} an edge in H if and only if {ui, uj} is

an edge in H ′ (for 1 ≤ i < j ≤ n). Then H satisfies P (with probability 1)

because H is isomorphic to an induced subgraph of H ′ and P is hereditary. Let

us compute the expected distance between H and G (here the distance is with

respect to the distribution D). For each 1 ≤ i < j ≤ n, the probability that

{vi, vj} ∈ E(G)�E(H) is precisely

|EG′(Vi, Vj)�EH′(Vi, Vj)|
|Vi||Vj | =

|EG′(Vi, Vj)�EH′ (Vi, Vj)|
D(vi)D(vj)N2

.

Hence, the expected distance between H and G is∑
1≤i<j≤n

D(vi)D(vj)· |EG′(Vi, Vj)�EH′(Vi, Vj)|
D(vi)D(vj)N2

=
1

N2

∑
1≤i<j≤n

|EG′(Vi, Vj)�EH′ (Vi, Vj)| ≤ ε,

where the last inequality uses the assumption that G′ is ε-close to H ′. So G is

ε-close to a graph H which satisfies P , a contradiction.

By combining Lemma 5.5 with the result of [4] (that all hereditary properties

are testable with one-sided error in the standard model), we obtain the following:

for every hereditary property P , for every vertex-weighted graph (G,D) which

is ε-far from P , for every suitable N and for every (D, N)-blowup G′ of G, it

holds that G′ is ε-far from P with respect to the uniform distribution, and hence
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a sample of some s = sP(ε) vertices of G′, taken uniformly and independently,

induces a graph which w.h.p. does not satisfy P . Observe that this induced

subgraph of G′ has (essentially) the same distribution as the graph S on [s]

obtained by sampling vertices u1, . . . , us ∈ V (G) from D independently, and

letting {i, j} ∈ E(S) if and only if {ui, uj} ∈ E(S) (this is precisely the graph

defined in Theorem 5). We have thus established Theorem 5, as promised in

Subsection 1.2.

As noted in Subsection 1.2, the graph S defined above is a blowup of an

induced subgraph of G, but is not necessarily a subgraph of G in itself. This

is because the sequence u1, . . . , us might contain repeated vertices. In other

words, it may be the case that G′ contains “forbidden subgraphs” which use

several vertices from one of the blowup-sets, and thus do not correspond to

“forbidden subgraphs” in G. This creates an obstacle for proving Proposition

5.4, because in order to prove this proposition we need to know that a (suitably

chosen) random induced subgraph of G (and not just the blowup thereof) does

not satisfy P w.h.p. To avoid this obstacle, we use the assumption that all

vertices in G have relatively small weight, which guarantees that it is unlikely

to sample more than once from some blowup-set (or in other words, that S is

isomorphic to G[{u1, . . . , us}]). We note that a different way of dealing with

this obstacle is to restrict ourselves to properties for which we can guarantee,

by appropriately choosing the graphs inside the blowup-sets, that there would

not be any minimal forbidden subgraph which uses several vertices from one of

the blowup-sets; see Subsection 5.3.

Proof of Proposition 5.4. We start by specifying the functions tP and cP . By

the main result of [4], there is a function qP : (0, 1) → N such that for every ε > 0

and for every (unweighted) graph G which is ε-far from P , a sample of qP(ε)
vertices from G, taken uniformly at random and independently, induces a graph

which does not satisfy P with probability at least 5
6 . Now set tP(ε) := qP(ε)

and

cP(ε) :=
1

3q2P(ε)
.

Our tester for P in the NHW model simply samples a sequence of t = tP(ε)
vertices of the input and accepts if and only if the subgraph induced by the

sample satisfies P . Evidently, this tester accepts with probability 1 if the input

satisfies P . So to establish the correctness of our tester, it suffices to show that

it rejects with probability at least 2
3 if the input (G,D) is ε-far from P .
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Let ε > 0 and let (G,D) be a vertex-weighted graph on n vertices which is

ε-far from P , and in which all vertices have weight at most c, where c = cP(ε).
Write V (G) = {v1, . . . , vn} and fix a positive integer N such that D(vi) · N is

an integer for every 1 ≤ i ≤ n. Let G′ be an arbitrary (D, N)-blowup of G, and

denote the blowup-sets by V1, . . . , Vn. By Lemma 5.5, G′ is ε-far from P . This

implies that a random sequence u1, . . . , uq of q = qP(ε) vertices of G′, sampled

uniformly and independently, induces a graph which does not satisfy P with

probability at least 5
6 .

Let ϕ :V (G′)→V (G) be the map which maps all elements of Vi to vi (for every

1 ≤ i ≤ n). Observe that for u ∈ V (G′) sampled uniformly, the random vertex

ϕ(u) ∈ V (G) has the distribution D (because |Vi|=D(vi)·N=D(vi)·|V (G′)|).
Furthermore, if a set U ⊆ V (G′) satisfies |Vi ∩ U | ≤ 1 for every 1 ≤ i ≤ n,

then G[ϕ(U)] is isomorphic to G′[U ]. Let u1, . . . , uq be a random sequence of

vertices of G′, sampled uniformly and independently, and set U := {u1, . . . , uq}.
Recall that G′[U ] does not satisfy P with probability at least 5

6 . Furthermore,

the probability that |Vi ∩ U | ≥ 2 for some 1 ≤ i ≤ n is at most

n∑
i=1

(
q

2

)
· D2(vi) ≤ q2

2
· c ·

n∑
i=1

D(vi) =
q2

2
· c = 1

6
.

We conclude that with probability at least 2
3 , G′[U ] does not satisfy P and

|Vi ∩ U | ≤ 1 for every 1 ≤ i ≤ n, implying that G[ϕ(U)] does not satisfy P
either. This completes the proof.

It is natural to ask whether the function cP(ε) from Proposition 5.4 needs to

depend on ε, namely whether the statement of Proposition 5.4 holds even if cP
is a constant function (depending only on P). It follows from Proposition 5.2,

however, that this is not the case. In other words, allowing cP(ε) to depend

on ε is unavoidable.

5.3. Testing in the VDF model vs. testing in the standard model. It

is natural to ask about the relation between the sample complexity for testing

a property in the VDF model and the sample complexity for testing it in the

standard model. More specifically, it will be interesting to resolve the following:

Problem 5.6: Is it true that every extendable hereditary property P can be

tested in the VDF model with the same (or close to the same) sample complexity

as in the (standard) dense graph model?
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While at present we cannot answer this question, we can show that many

natural properties P can be tested in the VDF model with (exactly) the same

sample complexity as that of the (optimal) tester for P in the standard model,

which works by sampling a certain number of vertices and accepting if and only

if they induce a graph which satisfies P . This is explained in the following

paragraph.

As mentioned in Subsection 5.2, the assumption made in Proposition 5.4

regarding the non-existence of high-weight vertices is needed in order to handle

the possibility of having copies of some (forbidden) graph F in G′ which do not

correspond to copies of F in G. For some graph properties, however, such an

assumption is not required, as we can make sure that every copy of a minimal

forbidden graph in G′ will correspond to such a copy in G. To make this

precise, we need the following definition. A family of graphs F is said to be

blowup-avoidable if for every graph G, say on {v1, . . . , vn}, and for every

n-tuple of integers b1, . . . , bn ≥ 0, there is a (b1, . . . , bn)-blowup G′ of G with

blowup-sets V1, . . . , Vn, such that there is no induced copy of any F ∈ F in G′

which intersects some Vi in at least 2 vertices; in other words, for every F ∈ F ,

every induced copy of F in G′ corresponds to an induced copy of F in G.

We say that a hereditary property P is blowup-avoidable if the family of

minimal forbidden induced subgraphs for P is blowup-avoidable. We now prove

the following proposition, which partially resolves Problem 5.6. The proof is

similar to that of Proposition 5.4.

Proposition 5.7: Let P be a hereditary graph property which is blowup-

avoidable, and suppose that P admits a tester in the standard model, which

works by sampling qP(ε) vertices uniformly at random and independently, and

accepting if and only if the subgraph induced by the sample satisfies P . Then P
is testable in the VDF model by a tester having one-sided error and sample

complexity24 qP(ε).

Proof. Given an input (G,D), the required VDF tester for P samples (fromD) a

sequence of qP(ε) vertices, and accepts if and only if the subgraph induced by the

sample satisfies P . Since P is hereditary, this tester accepts with probability 1

if the input graph satisfies P . So it remains to show that if the input (G,D)

24 Provided that the input distributions are only allowed to assign rational weights. If

irrational weights are allowed, then the sample complexity (of the VDF tester for P)

should be slightly increased to (say) qP (ε/2); see Footnote 23.
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is ε-far from P , then with probability at least 2
3 , a sequence of qP(ε) vertices

of G, sampled according to D and independently, induces a graph which does

not satisfy P .

Let F = F(P) be the family of minimal forbidden induced subgraphs for P .

Let (G,D) be a vertex-weighted graph on n vertices, which is ε-far from P .

Write V (G) = {v1, . . . , vn} and fix a positive integer N such that D(vi) · N is

an integer for every 1 ≤ i ≤ n. As P is blowup-avoidable, there is a (D, N)-

blowup G′ of G with blowup-sets V1, . . . , Vn, such that there is no induced

copy of any F ∈ F in G′ which intersects some Vi in at least 2 vertices. By

Lemma 5.5, G′ is ε-far from P . So by our choice of qP(ε), with probability at

least 2
3 it holds that a sequence of qP(ε) vertices of G′, sampled uniformly and

independently, induces a graph which does not satisfy P , and hence contains

an induced copy of some F ∈ F .

Let ϕ : V (G′) → V (G) be the map which maps all elements of Vi to vi (for

every 1 ≤ i ≤ n). Observe that for u ∈ V (G′) sampled uniformly, the random

vertex ϕ(u) ∈ V (G) has the distribution D. Note that by our choice of G′, if
u1, . . . , ur ∈ V (G′) span an induced copy of some F ∈ F (in the graph G′),
then ϕ|{u1,...,ur} is injective (and hence an isomorphism), which implies that

ϕ(u1), . . . , ϕ(ur) span an induced copy of F in G. It is now easy to see that a

sequence of qP (ε) vertices of G, sampled from D and independently, does not

satisfy P with probability at least 2
3 , as required.

To demonstrate the usefulness of Proposition 5.7, observe that induced F -

freeness is blowup-avoidable for every F ∈ {P2, P3, C4} (here Pk is the path

with k edges). Indeed, this is established by taking the blowup-sets (in the defi-

nition of blowup-avoidability) to be cliques. By combining Proposition 5.7 with

known results for the standard model [4, 3, 15], we immediately get that induced

F -freeness is testable in the VDF model with sample complexity poly(1/ε) if

F ∈ {P2, P3}, and with sample complexity at most 2poly(1/ε) if F = C4.

We now describe another corollary of Proposition 5.7. We say that a graph

property P is closed under blowups if for every graph G satisfying P , every

blowup of G in which the blowup-sets are independent sets also satisfies P . We

claim that if a hereditary property P is closed under blowups then it is also

blowup-avoidable. To see this, let F be the set of minimal forbidden induced

subgraphs for P , let G be an n-vertex graph, let b1, . . . , bn ≥ 0 be integers and

let G′ be the (b1, . . . , bn)-blowup of G in which the blowup-sets, V1, . . . , Vn, are
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independent. Let F ∈ F and suppose that G′ contains an induced copy of F . If,

by contradiction, this copy intersects some Vi in more than one vertex, then F

is a blowup of some graph F ′ with |V (F ′)| < |V (F )|, where the blowup-sets are
independent sets. Since P is closed under blowups and F /∈ P , we must have

F ′ /∈ P ; but this contradicts the fact that F is a minimal forbidden induced

subgraph for P .

So we see that the conclusion of Proposition 5.7 applies to hereditary proper-

ties which are closed under blowups. Some examples of such properties include

Kt-freeness; the property of having a homomorphism into a fixed graph H (and

in particular the property of being k-colorable); and the property of being the

blowup of a fixed graph H (cf. [7]).

On the negative side, there are many natural hereditary properties which are

extendable but not blowup-avoidable, such as the property of being H-free for

a graph H which is neither a clique nor contains isolated vertices. It would be

interesting to resolve Problem 5.6 for these properties.

5.4. Which properties are testable in the variations of the VDF

model? It may be interesting to characterize the graph properties which are

testable in each of the variations of the VDF model (defined at the beginning

of Section 5).

Problem 5.8: Which graph properties are testable in the “large inputs”/“size-

aware”/NHW/NLW model?

While at the moment we are unable to resolve Problem 5.8, we can rule out

some initial guesses. A first guess might be that only hereditary properties are

testable in these models. This, however, turns out to be false; for example,

connectivity and hamiltonicity are testable in each of these models, as implied

by the following proposition.

Proposition 5.9: Let P be a property such that for every ε > 0 there is M(ε)

so that every vertex-weighted graph on at least M(ε) vertices is ε-close to P .

Then P is testable in all four variations of the VDF model.

Proof. The fact that P is testable in the “large inputs” (resp. NHW) model is

trivial; indeed, by choosing MP(ε) := M(ε) (resp. cP(ε) := 1/M(ε)) we can

make sure that every input graph will be ε-close to P , so a tester that simply

accepts without making any queries is a valid tester for P .
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Let us now consider the NLWmodel. Given ε, δ > 0 and an input graph (G,D)

with all vertex-weights at least δ
|V (G)| , our tester for P works as follows: setting

M := M(ε), the tester samples O(M log(M)/δ) vertices according to D and

independently; if the number of distinct vertices in the sample is at least M

then the tester accepts (without making any queries), and otherwise the tester

accepts if and only if the subgraph induced by the sample satisfies P . To see

that this is a valid tester, observe that if G has less than M vertices then w.h.p.,

the tester samples all the vertices, and if G has at least M vertices then w.h.p.,

there are at least M distinct vertices in the sample. This can be argued sim-

ilarly as in the proof of Proposition 5.3, using that all vertices have weight at

least δ
|V (G)| ; we omit the details.

Finally, let us prove that P is testable in the “size-aware” model. On input

ε > 0 and (G,D), our tester for P (in the “size-aware” model) does the fol-

lowing: if |V (G)| ≥M(ε) then the tester accepts without making any queries,

and if |V (G)|<M(ε) then the tester samples t :=M(ε) log(3M(ε))/ε vertices

u1, . . . , ut∈V (G) according to the distributionD and independently, and accepts

if and only if there is a graph on |V (G)| vertices which satisfies P and contains

G[{u1, . . . , ut}] as an induced subgraph. The proof of correctness for this tester

is similar to the proof of Theorem 7, and we leave the details to the reader.

In order to apply Proposition 5.9 to the properties of connectivity and hamil-

tonicity, we observe that any vertex-weighted graph (G,D) with |V (G)| ≥ 1/ε is

ε-close to being hamiltonian (and hence also connected). To see that this holds,

take a random (cyclic) ordering v1, . . . , vn of the vertices of G, and observe that

for every pair of distinct u,w ∈ V (G), the probability that there is 1 ≤ i ≤ n

such that {u,w} = {vi, vi+1} is n/
(
n
2

)
= 2

n−1 . This implies that the expected

value of
∑n

i=1 D(vi)D(vi+1) is

2

n− 1
·

∑
u,w∈V (G)

D(u)D(w) =
2

n− 1
·1
2
·
(
1−

∑
v∈V (G)

D(v)2
)

≤ 1

n− 1
·
(
1− 1

n

)
=

1

n
,

where the last inequality follows from Cauchy-Schwarz (and the first sum is over

unordered pairs {u,w}). Let us also note that for connectivity there is a simpler

argument: if (G,D) is a vertex-weighted graph with |V (G)| ≥ 1/ε, then there

is v ∈ V (G) with D(v) ≤ ε, and we can make G connected by connecting v

to all other vertices. These examples show that the restricted models allow

for properties which are testable with 2-sided error but not with 1-sided error

(unlike the “unrestricted” VDF model, see [18, Theorem 2.3]).



830 L. GISHBOLINER AND A. SHAPIRA Isr. J. Math.

Another natural guess regarding the answer to Problem 5.8 would be that

every property which is testable in the standard model is also testable in the

restricted models (see [2] for a characterization of the properties testable in the

standard model). This guess is ruled out by the following proposition, which

describes a property which is testable in the standard model but not in the

restricted models.

Proposition 5.10: The property P of having edge-density25 at most 1
4 is not

testable in either of the four variants of the VDF model.

Proof. Let G1 be the n-vertex graph consisting of a clique of size n
2 and n

2

isolated vertices, and let D1 be the uniform distribution on V (G1). Let G2 be

the n-vertex graph consisting of a cliqueX of size 3n
4 and n

4 isolated vertices, and

let D2 be the distribution on V (G2) that assigns weight
2
3n to every vertex of X ,

and weight 2
n to every vertex of V (G2)\X . Note that (G1,D1) and (G2,D2) are

valid inputs in each of the variants of the VDF model (provided that n is large

enough), and that G1 satisfies P while (G2,D2) is Ω(1)-far from P . On the

other hand, we now show that for every q, a sample of q vertices from (G1,D1)

is indistinguishable from a sample of q vertices from (G2,D2) (provided that n

is large enough with respect to q). To this end, let Ui be a set of q random

vertices of Gi sampled according to Di and independently (for i = 1, 2). Then

for both i = 1, 2, the graph Gi[Ui] consists of a clique and some isolated vertices.

Letting Xi be the clique in Gi[Ui], we have

P[|X1| = k] = o(1) +

(
q

k

)
·
k−1∏
i=0

(
n

2
− i

)
·
q−k−1∏
i=0

(
n

2
− i

)
·
(
1

n

)q

= (1 + o(1))

(
q

k

)
·
(
1

2

)q

and

P[|X2| = k] = o(1) +

(
q

k

)
·
k−1∏
i=0

(
3n

4
− i

)
·
q−k−1∏
i=0

(
n

4
− i

)
·
(

2

3n

)k

·
(
2

n

)q−k

= (1 + o(1))

(
q

k

)
·
(
1

2

)q

,

25 The edge-density of a (possibly vertex-weighted) graph G is defined as 2e(G)/|V (G)|2;
in other words, the density is defined with respect to the uniform distribution on V (G),

and not with respect to the given distribution D.
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where in both cases, the additive term o(1) accounts for the event that some

vertex has been sampled more than once. So we see that

|P[|X1| = k]− P[|X2| = k]| = o(1).

This implies that the total variation distance between the distribution of G1[U1]

and the distribution of G2[U2] is o(1). It follows that P is not testable in any

of the four variants of the VDF model (note that knowing n does not help to

distinguish between (G1,D1) and (G2,D2), since these graphs have the same

number of vertices).

Finally, we note that the proof of Proposition 5.10 can be adapted to show

that other properties are also not testable in either of the variants of the VDF

model. These properties include the property of having a cut with at least αn2

edges (for 0 < α < 1
4 ) and the property of containing a clique with at least αn

vertices (for 0 < α < 1).

Appendix A. Proof of Lemmas 2.5 and 2.6

Here we prove Lemmas 2.5 and 2.6. We start by extending some basic results

about regular partitions to the vertex-weighted setting.

Lemma A.1: LetX,Y be disjoint vertex-sets in a vertex-weighted graph (G,D),

and let PX ,PY be partitions of X,Y , respectively. Then

∑
X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · d(X ′, Y ′) = D(X)D(Y ) · d(X,Y ),

and

∑
X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · d2(X ′, Y ′)

=D(X)D(Y ) · d2(X,Y )

+
∑

X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · (d(X ′, Y ′)− d(X,Y ))2.
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Proof. We start with the first part of the lemma.∑
X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · d(X ′, Y ′) =
∑

X′∈PX ,Y ′∈PY

∑
(x,y)∈E(X′,Y ′)

D(x)D(y)

=
∑

(x,y)∈E(X,Y )

D(x)D(y)

= D(X)D(Y ) · d(X,Y ).

To prove the second part, we set ε(X ′, Y ′) = d(X ′, Y ′) − d(X,Y ) for each

X ′ ∈ PX , Y ′ ∈ PY . Now,∑
X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · d2(X ′, Y ′)

=
∑

X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · (d(X,Y ) + ε(X ′, Y ′))2

=
∑

X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · (d2(X,Y )+2d(X,Y )ε(X ′, Y ′)+ε2(X ′, Y ′))

= D(X)D(Y )d2(X,Y ) +
∑

X′∈PX ,Y ′∈PY

D(X ′)D(Y ′) · ε2(X ′, Y ′),

where in the last equality we used the first part of the lemma.

Let (G,D) be a vertex-weighted graph, and let P = {P1, . . . , Pr} be a parti-

tion of V (G). The index of P , denoted q(P), is defined as

q(P) =
∑

1≤i<j≤r

D(Pi)D(Pj) · d2(Pi, Pj).

Lemma A.2: For every vertex-partition P of a vertex-weighted graph (G,D),

and for every refinement P ′ of P , we have q(P ′) ≥ q(P).

Proof. Write P={P1, . . . , Pr}, and for each 1≤ i≤r put P ′
i={P ′∈P ′ :P ′⊆Pi}.

Then

q(P ′) ≥
∑

1≤i<j≤r

∑
P ′

i∈P′
i,P

′
j∈P′

j

D(P ′
i )D(P ′

j) · d2(P ′
i , P

′
j)

≥
∑

1≤i<j≤r

D(Pi)D(Pj) · d2(Pi, Pj) = q(P),

where in the second inequality we used the second part of Lemma A.1.
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Lemma A.3: Let (G,D) be a vertex-weighted graph and let P = {P1, . . . , Pr}
be a non-ε-regular partition of V (G). Then there is a refinement P ′ of P such

that |P ′| ≤ |P| · 2|P| and q(P ′) ≥ q(P) + ε5.

Proof. For each 1 ≤ i < j ≤ r for which (Pi, Pj) is not ε-regular, let Pi,j ⊆ Pi,

Pj,i ⊆ Pj be such that

D(Pi,j) ≥ εD(Pi), D(Pj,i) ≥ εD(Pj),

and

|d(Pi,j , Pj,i)− d(Pi, Pj)| > ε.

For each 1 ≤ i ≤ r, let Pi be the partition of Pi, formed by taking the common

refinement of the partitions {Pi,j , Pi \ Pi,j}, where j runs over all indices for

which (Pi, Pj) is not ε-regular. Let P ′ =
⋃r

i=1 Pi be the resulting refinement of

P . Then clearly |P ′| ≤ |P| · 2|P|. We now show that q(P ′) ≥ q(P) + ε5. First,

observe that by Lemma A.1, for every 1 ≤ i < j ≤ r we have∑
X′∈Pi,Y ′∈Pj

D(X ′)D(Y ′) · d2(X ′, Y ′) ≥ D(Pi)D(Pj) · d2(Pi, Pj).

Next, fix any pair 1 ≤ i < j ≤ r for which (Pi, Pj) is not ε-regular. By

Lemma A.1 we have∑
X′∈Pi,Y ′∈Pj

D(X ′)D(Y ′) · d2(X ′, Y ′)

= D(Pi)D(Pj) · d2(Pi, Pj) +
∑

X′∈Pi,Y ′∈Pj

D(X ′)D(Y ′)·(d(X ′, Y ′)−d(Pi, Pj))
2

≥ D(Pi)D(Pj) · d2(Pi, Pj)

+
∑

X′⊆Pi,j ,Y ′⊆Pj,i

D(X ′)D(Y ′) · (d(X ′, Y ′)− d(Pi, Pj))
2

= D(Pi)D(Pj) · d2(Pi, Pj)

+
∑

X′⊆Pi,j ,Y ′⊆Pj,i

D(X ′)D(Y ′)

× [(d(X ′, Y ′)− d(Pi,j , Pj,i)) + (d(Pi,j , Pj,i)− d(Pi, Pj))]
2

≥ D(Pi)D(Pj) · d2(Pi, Pj) +D(Pi,j)D(Pj,i) · (d(Pi,j , Pj,i)− d(Pi, Pj))
2

≥ D(Pi)D(Pj) · (d2(Pi, Pj) + ε4),
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where in the penultimate inequality we used the first part of Lemma A.1 to

infer that ∑
X′⊆Pi,j ,Y ′⊆Pj,i

D(X ′)D(Y ′) · (d(X ′, Y ′)− d(Pi,j , Pj,i)) = 0.

Denoting by N the set of pairs 1 ≤ i < j ≤ r for which (Pi, Pj) is not ε-regular,

we see that

q(P ′) ≥
∑

1≤i<j≤r

∑
X′∈Pi,Y ′∈Pj

D(X ′)D(Y ′) · d2(X ′, Y ′)

≥
∑

1≤i<j≤r

D(Pi)D(Pj) · d2(Pi, Pj) +
∑

(i,j)∈N
D(Pi)D(Pj) · ε4

= q(P) + ε4 ·
∑

(i,j)∈N
D(Pi)D(Pj) ≥ q(P) + ε5,

where in the last inequality we used the assumption that P is not ε-regular.

Proof of Lemma 2.5. For i ≥ 0, if Pi is not ε-regular then we apply Lemma A.3

to obtain a partition Pi+1 which refines Pi and satisfies |Pi+1| ≤ |Pi| · 2|Pi|

and q(Pi+1) ≥ q(Pi) + ε5. Since the index of any partition is at most 1, this

process must end after at most ε−5 steps. When the process ends, we have an

ε-regular partition. Since the number of steps depends only on ε, the size of

the resulting final partition can be upper-bounded by a function of ε and |P0|,
as required.

Proof of Lemma 2.6. We may assume, without loss of generality, that E is

monotone decreasing. Let P1 be the partition obtained by applying Lemma 2.5

with parameter ε = E(0) and with the partition P0. Next, for each i ≥ 1,

apply Lemma 2.5 with parameter E(|Pi|) and with the partition Pi to obtain a

partition Pi+1 which is E(|Pi|)-regular and refines Pi. In light of Lemma A.2,

and as the index of any partition is at most 1, there must be some 1 ≤ i ≤ 1
E2(0)

for which q(Pi+1) ≤ q(Pi) + E2(0). For such an i, set P = Pi and Q = Pi+1.

Since |P0| ≤ m and the number of steps in the process is at most E2(0), and

since the size of the partition guaranteed by Lemma 2.5 can be bounded from

above by a function of the parameters of this lemma (which in our case depend

only on E and m), we see that |Q| too can be bounded from above by a function

of E and m. This proves Item (1).
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Item (2) is immediate from our choice of Q. It remains to prove Item (3). By

the definition of the index and by our choice of P and Q, we have

q(P) + E2(0) ≥q(Q) ≥
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · d2(Q1, Q2)

=
∑

P1,P2∈P
D(P1)D(P2) · d2(P1, P2)

+
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2

=q(P)+
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2)·(d(Q1, Q2)−d(P1, P2))
2,

where in the first equality we used the second part of Lemma A.1. The above

implies that∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2 ≤ E2(0),

and hence∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · |d(Q1, Q2)− d(P1, P2)|

≤
√ ∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))2 ≤ E(0),

where the first inequality follows from Cauchy-Schwarz. This completes the

proof.
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