ISOMORPHIC LIMIT ULTRAPOWERS FOR INFINITARY LOGIC

BY

SAHARON SHELAH^{*}

Einstein Institute of Mathematics, Edmond J. Safra Campus The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 9190401, Israel

and

Department of Mathematics, Hill Center - Busch Campus Rutgers, The State University of New Jersey 110 Frelinghuysen Road, Piscataway, NJ 08854-8019 USA e-mail: shelah@math.huji.ac.il URL: http://shelah.logic.at

ABSTRACT

The logic \mathbb{L}^1_θ was introduced in [\[She12\]](#page-25-1); it is the maximal logic below $\mathbb{L}_{\theta, \theta}$ in which a well ordering is not definable. We investigate it for θ a compact cardinal. We prove that it satisfies several parallels of classical theorems on first order logic, strengthening the thesis that it is a natural logic. In particular, two models are \mathbb{L}^1_{θ} -equivalent iff for some ω -sequence of θ complete ultrafilters, the iterated ultrapowers by it of those two models are isomorphic.

Also for strong limit $\lambda > \theta$ of cofinality \aleph_0 , every complete \mathbb{L}^1_θ -theory has a so-called special model of cardinality λ , a parallel of saturated. For first order theory T and singular strong limit cardinal λ , T has a so-called special model of cardinality λ . Using "special" in our context is justified by: it is unique (fixing T and λ), all reducts of a special model are special too, so we have another proof of interpolation in this case.

Received March 27, 2017 and in revised form October 18, 2020

[∗] The author would like to thank the Israel Science Foundation for partial support of this research (Grant No. 1053/11). References like [\[She12,](#page-25-1) 2.11=La18] means we cite from [\[She12\]](#page-25-1), Claim 2.11 which has label La18; this helps if [\[She12\]](#page-25-1) will be revised.

This paper was separated from [\[She\]](#page-25-2) which was first typed May 10, 2012; so was IJM 7367. This is the author's paper no. 1101.

0. Introduction

 $0(A)$. BACKGROUND AND RESULTS. In the sixties, ultraproducts were very central in model theory. Recall Keisler [\[Kei61\]](#page-25-3), solving the outstanding problem in model theory of the time, assuming an instance of GCH characterizes elementary equivalence in an algebraic way; that is by proving:

- \boxplus for any two models M_1, M_2 (of vocabulary τ of cardinality $\leq \lambda$ and) of cardinality^{[1](#page-1-0)} $\leq \lambda$, the following are equivalent provided that $2^{\lambda} = \lambda^{+}$.
	- (a) M_1, M_2 are elementarily equivalent;
	- (b) they have isomorphic ultrapowers, that is $M_1^{\lambda}/D_2 \cong M_2^{\lambda}/D_1$ for some ultrafilter D_{ℓ} on a cardinal λ ;
	- (c) $M^{\mu}/D \cong M^{\mu}/D$ for some ultrafilter D on some cardinal μ ;
	- (d) as in (c) for $\mu = \lambda$.

Kochen [\[Koc61\]](#page-25-4) uses iteration on taking ultrapowers (on a well ordered index set) to characterize elementary equivalence. Gaifman [\[Gai74\]](#page-24-0) uses ultrapowers on \aleph_1 -complete ultrafilters iterated along a linear ordered index set. Keisler [\[Kei63\]](#page-25-5) uses general (\aleph_0, \aleph_0) -l.u.p.; see below, Definition [0.13\(](#page-5-0)4) for $\kappa = \aleph_0$. Shelah [\[She71\]](#page-25-6) proves \boxplus in ZFC, but with a price: we have to omit clause (d), and the ultrafilter is on $\mu = 2^{\lambda}$.

Hodges–Shelah [\[HS81\]](#page-25-7) is closer to the present work (see there for earlier works): it dealt with isomorphic ultrapowers (and isomorphic reduced powers) for the θ -complete ultrafilter (and filter) case, but note that having isomorphic ultrapowers by θ -complete ultrafilters is not an equivalence relation. In particular, assume $\theta > \aleph_0$ is a compact cardinal and little more (we can get it by forcing over a universe with a supercompact cardinal and a class of measurable cardinals). Then two models have isomorphic ultrapowers for some θ -complete ultrafilter iff in all relevant games the isomorphism player does not lose. Those relevant games are of length $\zeta < \theta$ and deal with the reducts to a sub-vocabulary of cardinality $\lt \theta$ and usually those games are not determined.

The characterization [\[HS81\]](#page-25-7) of having isomorphic ultrapowers by θ -complete ultra-filters, is necessarily not so "nice" because this relation is not an equivalence relation. Hence having isomorphic ultrapowers is not equivalent to having the same theory in some logic.

¹ In fact " M_{ℓ} is of cardinality $\langle \lambda^{+} \rangle$ " suffices.

Most relevant to the present paper is [\[She12\]](#page-25-1) which we continue here. For notational simplicity let θ be an inaccessible cardinal. An old problem from the seventies was:

 \Box is there a logic between $\mathbb{L}_{\theta,\aleph_0}$ and $\mathbb{L}_{\lambda,\theta}$ which satisfies interpolation?

Generally, interpolation had posed a hard problem in soft model theory. Another, not so precise problem was to find generalizations of the Lindstrom theo-rem; see [V11]. Now [\[She12\]](#page-25-1) solves the first problem and suggests a solution to the second problem, by putting forward the logic \mathbb{L}^1_θ introduced there. It was proved that it satisfies \Box and give a characterization: e.g., it is a maximal logic in the interval mentioned in \Box which satisfies non-definability of well order in a suitable sense (see [\[She12,](#page-25-1) 3.4=La28]).

Another line of research was investigating infinitary logics for θ a compact cardinal; see [\[She\]](#page-25-2) and history there. We continue those two lines, investigating \mathbb{L}^1_{θ} for θ a compact cardinal. We prove that it is an interesting logic: it shares with first order logic several classical theorems.

We may wonder: do we have a characterization of models being \mathbb{L}^1_{θ} -equivalent?

In §1 we characterize \mathbb{L}^1_θ -equivalence of models by having isomorphic iterated ultrapowers of length ω . Then in §2 we prove some further generalizations of classical model theoretic theorems, like the existence and uniqueness of special models in λ when $\lambda > \theta + |T|$ is strong limit of cofinality \aleph_0 . All this seems to strengthen the thesis of [\[She12\]](#page-25-1) that \mathbb{L}_{θ}^{1} is a natural logic.

Of course, success drives us to consider further problems. For another approach see [\[She15\]](#page-25-9).

Question 0.1: Assume θ is a strong limit singular cardinal of cofinality \aleph_0 .

- (1) Does the logic $\mathbb{L}_{\theta^+,\theta}$ restricted to models of cardinality θ have interpolation?
- (2) Is there a logic $\mathscr L$ with interpolation such that: $\mathbb{L}_{\theta^+,\theta} \leq \mathscr L \leq \mathbb{L}_{\theta^k,\theta^+}$.

Question 0.2: Let θ be a compact cardinal and $\lambda > \theta$ be a strong limit of cofinality \aleph_0 .

- (1) Does the logic $\mathbb{L}_{\theta,\theta}$ restricted to model of cardinality λ has interpolation?
- (2) Can we characterize when a theory $T \subseteq \mathbb{L}^1_\theta$ of cardinality $\lt \theta$ is cate-
noninglating \mathcal{C}^2 . gorical in λ ?
- (2A) Can we then conclude that it is categorical in other such λ -s?
	- (3) Like parts (2), (2A) for $T \subseteq \mathbb{L}_{\theta,\theta}$?

0(B). Preliminaries.

Hypothesis 0.3: θ is in §1, §2 a compact uncountable cardinal (of course, we use only restricted versions of this).

- *Notation 0.4:* (1) Let $\varphi(\bar{x})$ mean: φ is a formula of $\mathbb{L}_{\theta,\theta,\bar{x}}$ is a sequence of variables with no repetitions including the variables occurring freely in φ and $\ell q(\bar{x}) < \theta$ if not said otherwise. We use φ, ψ, ϑ to denote formulas and for a statement st let φ^{st} or $\varphi^{[st]}$ or $\varphi^{if(st)}$ mean φ if st is true or 1 and $\neg \varphi$ if st is false or 0.
	- (2) For a set u, usually of ordinals, let

$$
\bar{x}_{[u]} = \langle x_{\varepsilon} : \varepsilon \in u \rangle;
$$

now u may be an ordinal but, e.g., if $u = [\alpha, \beta)$ we may write $\bar{x}_{[\alpha,\beta)}$; similarly for $\bar{y}_{[u]}, \bar{z}_{[u]};$ let $\ell g(\bar{x}_{[u]}) = u$.

- (3) τ denotes a vocabulary, i.e., a set of predicates and function symbols each with a finite number of places, in other words the arity $arity(\tau) = \aleph_0$; see 0.5 on this.
- (4) T denotes a theory in $\mathbb{L}_{\theta,\theta}$ or \mathbb{L}_{θ}^1 (see below), usually complete in the vocabulary τ_T and with a model of cardinality $\geq \theta$ if not said otherwise.
- (5) Let $\text{Mod}_{\mathcal{T}}$ be the class of models of T.
- (6) For a model M let its vocabulary be τ_M .
- *Remark 0.5:* (1) What is the problem with predicates (and function symbols) with infinite arity? If $\langle M_{\alpha} : \alpha \leq \delta \rangle$, δ a limit ordinal is increasing, even if the universe of M_{δ} is the union of the universes of M_{α} , $\alpha < \delta$, this does not determine M_{δ} .
	- (2) We can still define $\bigcup \{M_\alpha : \alpha < \delta\}$ by deciding

$$
P^{M_{\delta}} = \cup \{ M_{\alpha} : \alpha < \delta \}
$$

for any predicate P and treating function similarly (so the function symbols are interpreted as partial functions) or better, deciding to use predicates only.

Now with care we can use arity(τ) $\leq \theta$ and we sometimes remark on this.

Notation 0.6: Let ε, ζ, ξ denote ordinals $\lt \theta$.

- *Definition 0.7:* (1) Let $\text{uf}_{\theta}(I)$ be the set of θ -complete ultrafilters on I, nonprincipal if not said otherwise. Let $\text{fil}_{\theta}(I)$ be the set of θ -complete filters on I; mainly we use (θ, θ) -regular ones (see below).
	- (2) $D \in \text{fil}_{\theta}(I)$ is called (λ, θ) -regular when there is a witness

$$
\bar{w} = \langle w_t : t \in I \rangle
$$

which means: $w_t \in [\lambda]^{<\theta}$ for $t \in I$ and $\alpha < \lambda \Rightarrow \{t : \alpha \in w_t\} \in D$.

(3) Let $\text{ruf}_{\lambda,\theta}(I)$ be the set of (λ,θ) -regular $D \in \text{uf}_{\theta}(I)$; let $\text{rfil}_{\lambda,\theta}(I)$ be the set of (λ, θ) -regular $D \in \text{fil}_{\theta}(I)$; when $\lambda = |I|$ we may omit λ .

Definition 0.8: (1) $\mathbb{L}_{\theta,\theta}(\tau)$ is the set of formulas of $\mathbb{L}_{\theta,\theta}$ in the vocabulary τ .

(2) For τ -models M, N let $M \prec_{\mathbb{L}_{\theta,\theta}} N$ mean: if $\varphi(\bar{x}) \in \mathbb{L}_{\theta,\theta}(\tau_M)$ and $\bar{a} \in {}^{\ell g(\bar{x})}M$ then

$$
M \models \varphi[\bar{a}] \Leftrightarrow N \models \varphi[\bar{a}].
$$

And, of course

Fact 0.9: For a complete $T \subseteq \mathbb{L}_{\theta,\theta}(\tau)$: (Mod_T, $\prec_{\mathbb{L}_{\theta,\theta}}$) has amalgamation and the joint embedding property (JEP), that is:

- (a) amalgamation: if $M_0 \prec_{\mathbb{L}_{\theta,\theta}} M_\ell$ for $\ell = 1, 2$, then there are M_3 , f_1 , f_2 , M'_1 , M'_2 such that
	- $M_0 \prec_{\mathbb{L}_{\theta,\theta}} M_3$
	- for $\ell = 1, 2, f_{\ell}$ is a $\prec_{\mathbb{L}_{\theta,\theta}}$ -embedding of M_{ℓ} into M_3 over M_0 , that is, for some τ_T -models M'_ℓ for $\ell = 1, 2$ we have $M'_\ell \prec_{\mathbb{L}_{\theta,\theta}} M_3$ and f_ℓ is an isomorphism from M_{ℓ} onto M'_{ℓ} over M_0 ;
if M , M_{ℓ} are \mathbb{I}_{ℓ} continuates we also the set
- (b) JEP: if M_1, M_2 are $\mathbb{L}_{\theta, \theta}$ -equivalent τ -models then there is a τ -model M_3 and $\prec_{\mathbb{L}_{\theta,\theta}}$ -embedding f_{ℓ} of M_{ℓ} into M_3 for $\ell = 1, 2$.

The well known generalization of the Los theorem is:

THEOREM 0.10: (1) If $\varphi(\bar{x}_{\lbrack \zeta \rbrack}) \in \mathbb{L}_{\theta,\theta}(\tau), D \in \mathrm{uf}_{\theta}(I)$ and M_s is a τ -model $f \circ f$ $s \in I$ and $f_{\varepsilon} \in \prod_{s \in I} M_s$ for $\varepsilon < \zeta$ then $M \models \varphi[... , f_{\varepsilon}/D,...]_{\varepsilon < \zeta}$ iff *the set*

 $\{s \in I : M_s \models \varphi[\dots, f_{\varepsilon}(s), \dots]_{\varepsilon < \zeta} \}$

belongs to D*.*

(2) *Similarly* $M \prec_{\mathbb{L}_{\theta,\theta}} M^I/D$.

26 S. SHELAH Isr. J. Math.

- *Definition 0.11:* (0) We say X respects E when for some set I, E is an equivalence relation^{[2](#page-5-1)} on I and $X \subseteq I$ and $sEt \Rightarrow (s \in X \Leftrightarrow t \in X)$.
	- (1) We say $\mathbf{x} = (I, D, \mathcal{E})$ is a (κ, σ) -l.u.f.t.(limit-ultra-filter-iteration triple) when:
		- (a) D is a filter on the set I ,
		- (b) $\mathscr E$ is a family of equivalence relations on I ,
		- (c) (\mathscr{E}, \supseteq) is σ -directed, i.e., if $\alpha(*) < \sigma$ and $E_i \in \mathscr{E}$ for $i < \alpha(*)$, then there is $E \in \mathscr{E}$ refining E_i for every $i < \alpha(*)$
		- (d) if $E \in \mathscr{E}$, then D/E is a κ -complete ultrafilter on I/E where $D/E := \{X/E : X \in D \text{ and } X \text{ respects } E\}.$
	- (1A) Let **x** be a (κ, θ) -l.f.t.mean that above we weaken (d) to (d)' if $E \in \mathscr{E}$ then D/E is a κ -complete filter.
		- (2) Omitting " (κ, σ) " means (θ, \aleph_0) , recalling θ is our fixed compact cardinal.
		- (3) Let $(I_1, D_1, \mathscr{E}_1) \leq^1_h (I_2, D_2, \mathscr{E}_2)$ mean that:
			- (a) h is a function from I_2 onto I_1 ,
			- (b) if $E \in \mathscr{E}_1$ then $h^{-1} \circ E \in \mathscr{E}_2$ where

$$
h^{-1} \circ E = \{ (s, t) : s, t \in I_2 \text{ and } h(s)Eh(t) \},
$$

(c) if $E_1 \in \mathscr{E}_1$ and $E_2 = h^{-1} \circ E_1$ then $D_1/E_1 = h''(D_2/E_2)$.

Remark 0.12: Note that in Definition 0.11(3), if $h = id_{I_2}$ then $I_1 = I_2$.

Definition 0.13: Assume $\mathbf{x} = (I, D, \mathcal{E})$ is a (κ, σ) -l.u.f.t.

- (1) For a function f let $eq(f) = \{(s_1, s_2) : f(s_1) = f(s_2)\}\$. If $\bar{f} = \langle f_i : i < i_*\rangle$ and $i < i_* \Rightarrow \text{dom}(f_i) = I$ then $eq(\bar{f}) = \bigcap \{eq(f_i) : i < i_*\}.$
- (2) For a set U let $U^I | \mathscr{E} = \{ f \in {}^I U : \text{eq}(f) \text{ is refined by some } E \in \mathscr{E} \}.$
- (3) For a model M let

 $l.r.p._{\bf x}(M) = M_D^I | \mathscr{E} = (M^I/D) \setminus \{f/D : f \in M \text{ and } eq(f) \text{ is refined by some } E \in \mathscr{E}\},\$

pedantically (as $\text{arity}(\tau_M)$ may be $> \aleph_0$), $M_D^I|\mathscr{E} = \bigcup \{M_D^I|E : E \in \mathscr{E}\};$ l.r.p. stands for limit reduced power.

(4) If **x** is l.u.f.t. we may in part (3) write l.u.p. $\mathbf{x}(M)$.

We now give the generalization of Keisler [\[Kei63\]](#page-25-5); Hodges–Shelah [\[HS81,](#page-25-7) Lemma 1, p. 80] in the case $\kappa = \sigma$.

² Here, in the interesting cases, the number of equivalence classes of E is infinite, and even $\geq \theta$, pedantically not bounded by any $\theta_* < \theta$.

Vol. 246, 2021 ISOMORPHIC LIMIT ULTRAPOWERS 27

THEOREM 0.14: (1) If $\sigma \leq \kappa$ and (I, D, \mathscr{E}) is (κ, σ) -l.u.f.t.,

$$
\varphi = \varphi(\bar{x}_{[\zeta]}) \in \mathbb{L}_{\kappa,\sigma}(\tau)
$$

so ζ < σ, fε [∈] ^M^I [|]*^E for* ε<ζ*, then* ^M^I D|*^E* [|]⁼ ^ϕ[...,fε/D, . . .] *iff* $\{s \in I : M \models \varphi[...,\underline{f}_{\varepsilon}(s),...]_{\varepsilon < \zeta}\} \in D.$

- (2) Moreover $M \prec_{\mathbb{L}_{\kappa,\sigma}} M_D^I/\mathscr{E}$, pedantically $\mathbf{j} = \mathbf{j}_{M,\mathbf{x}}$ is a $\prec_{\mathbb{L}_{\kappa,\sigma}}$ -elementary *embedding of M into* M_D^1/\mathscr{E} where $\mathbf{j}(a) = \langle a : s \in I \rangle / D$.
We define $(\mathbf{H} \cup M)^1 \mid \mathscr{E} \cup M$ by $\mathcal{E} \cup M$ and $\mathcal{E} \cup M$
- (3) We define $(\prod_{s \in I} M_s)_{D}^{I} | \mathscr{E}$ similarly when eq($\langle M_s : s \in I \rangle$) is refined by *some* $E \in \mathcal{E}$; we may use this more at the end of the proof of Claim [1.2.](#page-10-0)

Convention 0.15: *Abusing a notation;*

- (1) in $\prod_{s \in I} M_s/D$ we allow f/D for $f \in \prod_{s \in S} M_s$ when $S \in D$.
(2) $\lim_{s \to S} \frac{1}{s} C \gamma(\prod_{s \in I} M_s/D)$ we see find $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$
- (2) For $\bar{c} \in \gamma(\prod_{s \in I} M_s/D)$ we can find $\langle \bar{c}_s : s \in I \rangle$ such that $\bar{c}_s \in \gamma(M_s)$ *and* $\bar{c} = \langle \bar{c}_s : s \in I \rangle / D$ *, which means: if* $i < \ell g(\bar{c})$ *then* $c_{s,i} \in M_s$ *and* $c_i = \langle c_{s,i} : s \in I \rangle / D.$

Remark 0.16: (1) Why the "pedantically" in Definition [0.13\(](#page-5-0)3)? Otherwise if **x** is a (θ, σ) – l.u.f.t., $(\mathscr{E}_{\mathbf{x}}, \supseteq)$ is not κ^+ -directed, $\kappa < \text{arity}(\tau)$, then defining l.u.p._{**x**}(*M*), we have freedom: if $R \in \tau$, arity_{τ}(*R*) $\geq \kappa$, i.e., on

$$
R^N \upharpoonright \{ \bar{a} : \bar{a} \in \text{arity}(P)N \text{ and no } E \in \mathscr{E} \text{ refines eq}(\bar{a}) \}
$$

so we have no restrictions.

(2) So, e.g., for categoricity we better restrict ourselves to vocabularies τ such that $\text{arity}(\tau) = \aleph_0$.

Definition 0.17: We say M is a θ -complete model when for every $\varepsilon < \theta$, $R_* \subseteq {}^{\varepsilon}M$ and $F_* : {}^{\varepsilon}M \to M$ there are $R, F \in \tau_M$ such that $R^M = R_* \wedge F^M = F_*$.

- OBSERVATION 0.18: (1) If M is a τ -model of cardinality λ then there is *a* θ -complete expansion M^+ of M so $\tau(M^+) \supseteq \tau(M)$ and $\tau(M^+)$ has *cardinality* $|\tau_M| + 2^{(\|M\|^{<\theta})}$.
	- (2) For models $M \prec_{\mathbb{L}_{\theta,\theta}} N$ and M^+ as above the following conditions are *equivalent:*
		- (a) $N = \text{l.u.p.}_{\mathbf{x}}(M)$ *identifying* $a \in M$ *with* $\mathbf{j}_{\mathbf{x}}(a) \in N$ *, for some* (θ, θ) l.u.f.t.**x**
		- (b) there is N^+ such that $M^+ \prec_{\mathbb{L}_{\theta,\theta}} N^+$ and $N^+ \uparrow \tau_M$ is isomorphic *to* N over M, in fact we can add $N^+ \upharpoonright \tau_M = N$.

(3) $[\theta$ is a compact cardinal] For a model M, if (P^M, \leq^M) is a θ -directed *partial order and* $\chi = cf(\chi) \geq \theta$ *and* $\lambda = \lambda^{\|M\|} + \chi$ *then for some* (θ, θ) l.u.f.t.**x***, the model* $N := l.u.p._{\bf x}(M)$ *satisfies* $(P^N, \langle N \rangle)$ *has a cofinal increasing sequence of length* χ *and* $|P^N| = \lambda$ *.*

Proof. Easy, for example:

(3) Let M^+ be as in part (1). Note that M^+ has Skolem functions and let T' be the following set of formulas:

$$
\begin{aligned} \operatorname{Th}_{\mathbb{L}_{\theta,\theta}}(M^+) \cup \{ P(x_{\varepsilon}) : \varepsilon < \lambda \cdot \chi \} \\ \cup \{ P(\sigma(x_{\varepsilon_0}, \dots, x_{\varepsilon_i}, \dots)_{i < i(*)}) \to \sigma(x_{\varepsilon_0}, \dots, x_{\varepsilon_i}, \dots)_{i < i(*)} < x_{\varepsilon} : \\ \sigma \text{ is a } \tau(M^+) \text{-term so } i(*) < \theta \text{ and } i < i(*) \Rightarrow \varepsilon_i < \varepsilon < \lambda \cdot \chi \}. \end{aligned}
$$

Clearly

(*) T' is $(θ)-satisfiable in M^+ .$

[Why? Because if $T'' \subseteq T'$ has cardinality $\lt \theta$ then the set

 $u = \{ \varepsilon < \lambda \cdot \chi : x_{\varepsilon} \text{ appears in } T'' \}$

has cardinality $\langle \theta \rangle$ and let $i(*) = \text{otp}(u)$; clearly for each $\varepsilon \in u$ the set

$$
\Gamma_{\varepsilon} = T' \cap \{ P(\sigma(x_{\varepsilon_0}, \ldots)) \to \sigma(x_{\varepsilon_0}, \ldots, x_{\varepsilon_i}, \ldots)_{i < i(*)} < x_{\varepsilon} : i(*) < \theta \text{ and } \varepsilon_i < \varepsilon
$$
\nfor $i < i(*) \}$

has cardinality $\lt \theta$. Now we choose $c_{\varepsilon} \in M$ by induction on $\varepsilon \in u$ such that the assignment

$$
x_\zeta \mapsto c_\zeta
$$

for $\zeta \in \varepsilon \cap u$ in M^+ satisfies Γ_{ε} , possible because $|\Gamma_{\varepsilon}| < \theta$, $|u_{\varepsilon}| < \theta$ and $(P^M, <^M)$ is θ -directed. So the M^+ with the assignment $x_{\varepsilon} \mapsto c_{\varepsilon}$ for $\varepsilon \in u$ is a model of T'' , so T' is $(θ)-satisfiable indeed.$

Recalling that $|M| = \{c^{M^+}: c \in \tau(M^+)$ an individual constant}, T' is realized in some $\prec_{\mathbb{L}_{\theta,\theta}}$ -elementary extension N^+ of M^+ by the assignment

$$
x_{\varepsilon} \mapsto a_{\varepsilon}(\varepsilon < \lambda \cdot \chi).
$$

Without loss of generality N^+ is the Skolem hull of $\{a_\varepsilon : \varepsilon < \lambda \cdot \chi\}$, so $N := N^+ \upharpoonright \tau(M)$ is as required by the choice of T'. Now **x** is as required and exists by part (2) of the claim. $\blacksquare_{0.18}$

OBSERVATION 0.19: (1) If **x** is a non-trivial (θ, θ) -l.u.f.t.and $\chi = cf(l.u.p.(\theta <))$ *then* $\chi = \chi^{<\theta}$ *.*

(2) Also $\mu = \mu^{<\theta}$ when μ is the cardinality of l.u.p.(θ , <).

Proof. (1) By the choice of **x** clearly $\chi \geq \theta$. As χ is regular $\geq \theta$ by a theorem of Solovay [\[Sol74\]](#page-25-10) we have $\chi^{<\theta} = \chi$.

(2) See the proof of [\[She,](#page-25-2) 2.20(3)=La27(3)]. \blacksquare

We now quote [\[She12,](#page-25-1) Def.2.1+La8]

Definition 0.20: For a vocabulary τ , τ -models M_1, M_2 , a set Γ of formulas in the vocabulary τ in any logic (each with finitely many free variables if not said otherwise; see [\[She,](#page-25-2) 2.9=La10(4)]), cardinal θ and ordinal α , we define a game $\hat{\omega} = \partial_{\Gamma,\theta,\alpha}[M_1,M_2]$ as follows, and using $(M_1,\bar{b}_1),(M_2,\bar{b}_2)$ with their natural meaning when $Dom(\bar{b}_1) = Dom(\bar{b}_2)$:

- (A) The moves are indexed by $n < \omega$ (but every actual play is finite), just before the *n*-th move we have a state $\mathbf{s}_n = (A_n^1, A_n^2, h_n^1, h_n^2, g_n, \beta_n, n),$
- (B) **s** = $(A^1, A^2, h^1, h^2, g, \beta, n) = (A^1_s, A^2_s, h^1_s, h^2_s, g_s, \beta_s, n_s)$ is a state (or *n*-state or (θ, n) -state or $(\theta, < \omega)$ -state) when:
	- (a) $A^{\ell} \in [M_{\ell}]^{\leq \theta}$ for $\ell = 1, 2$,
	- (b) $\beta \leq \alpha$ is an ordinal,
	- (c) h^{ℓ} is a function from A^{ℓ} into ω ,
	- (d) g is a partial one-to-one function from M_1 to M_2 and let

$$
g_s^1 = g^1 = g_s = g
$$
 and $g_s^2 = g^2 = (g_s^1)^{-1}$,

- (e) Dom $(q^{\ell}) \subseteq A^{\ell}$ for $\ell = 1, 2$,
- (f) q preserves satisfaction of the formulas in Γ and their negations, i.e., for $\varphi(\bar{x}) \in \Gamma$ and $\bar{a} \in {}^{\ell g(\bar{x})}$ Dom (g) we have

$$
M_1 \models \varphi[\bar{a}] \Leftrightarrow M_2 \models \varphi[g(\bar{a})],
$$

(g) if $a \in \text{Dom}(g^{\ell})$ then $h^{\ell}(a) < n$,

- (C) we define the state $\mathbf{s} = \mathbf{s}_0 = \mathbf{s}_\alpha^0$ by letting $n_\mathbf{s} = 0$, $A_\mathbf{s}^1 = \emptyset = A_\mathbf{s}^2$, $\beta_\mathbf{s} = \alpha$, $h_{\bf s}^1 = \emptyset = h_{\bf s}^2$, $g_{\bf s} = \emptyset$; so really **s** depends only on α (but in general, this may not be a state for our game as possibly for some sentence $\psi \in \Gamma$ we have $M_1 \models \psi \Leftrightarrow M_2 \models \neg \psi$,
- (D) we say that a state **t** extends a state **s** when $A_{\bf s}^{\ell} \subseteq A_{\bf t}^{\ell}, h_{\bf s}^{\ell} \subseteq h_{\bf t}^{\ell}$ for $\ell = 1, 2$ and $g_s \subseteq g_t, \beta_s > \beta_t, n_s < n_t$; we say **t** is a successor of **s** if, in addition, $n_t = n_s + 1$,

- (E) in the n-th move the anti-isomorphism player (AIS) chooses the triple $(\beta_{n+1}, \iota_n, A'_n)$ such that:
	- $\iota_n \in \{1,2\}, \beta_{n+1} < \beta_n \text{ and } A_n^{\iota_n} \subseteq A_n' \in [M_{\iota_n}]^{\leq \theta},$

the isomorphism player (ISO) chooses a state \mathbf{s}_{n+1} such that:

- s_{n+1} is a successor of s_n ,
-
- $A_{\mathbf{s}_{n+1}}^{t_n} = A'_n,$
• $A_{\mathbf{s}_{n+1}}^{3-t_n} = A_{\mathbf{s}_n}^{3-t_n} \cup \text{Dom}(g_{\mathbf{s}_{n+1}}^{3-t_n}),$
- if $a \in A_n' \backslash A_{\mathbf{s}_n}^{\iota_n}$ then $h_{\mathbf{s}_{n+1}}^{\iota_n}(a) \geq n+1$,
- Dom $(g_{\mathbf{s}_{n+1}}^{\iota_n}) = \{a \in A_{\mathbf{s}_n}^{\iota_n} : h_{\mathbf{s}_n}^{\iota_n}(a) < n+1\}$ so it includes $\text{Dom}(g_{\mathbf{s}_n}^{\iota_n}),$ \bullet $\beta_{\mathbf{s}_{n+1}} = \beta_{n+1}$.
- (F) the play ends when one of the players has no legal moves (always occurs as $\beta_n < \beta_{n-1}$) and then this player loses; this may occur for $n = 0$,
	- for $\alpha = 0$ we stipulate that ISO wins iff \mathbf{s}_{α}^0 is a state.
- *Definition 0.21:* (1) Let $\mathscr{E}_{P,\theta,\alpha}^{0,\tau}$ be the class $\{(M_1, M_2) : M_1, M_2 \text{ are } \tau$ models and in the game $\partial_{\Gamma,\theta,\alpha}[M_1,M_2]$ the ISO player has a winning strategy} where Γ is a set of formulas in the vocabulary τ , each with finitely many free variables.
	- (2) $\mathscr{E}_{\Gamma,\theta,\alpha}^{1,\tau}$ is the closure of $\mathscr{E}_{\Gamma,\theta,\alpha}^{0,\tau}$ to an equivalence relation (on the class of τ -models).
	- (3) Above, we may replace Γ by $qf(\tau)$, which means $\Gamma =$ the set $at(\tau)$ of atomic formulas or $bs(\tau)$ of basic formulas in the vocabulary τ .
	- (4) Above, if we omit τ we mean $\tau = \tau_{\Gamma}$ and if we omit Γ we mean bs(τ). Abusing notation we may say M_1, M_2 are $\mathscr{E}_{\Gamma,\theta,\alpha}^{0,\tau}$ -equivalent.

The following Definition 0.22 is closely related to the beginning of §1; it quotes [\[She12,](#page-25-1) Def. 2.5=La13] .

- *Definition 0.22:* (1) For a vocabulary τ , the τ -models M_1, M_2 are $\mathbb{L}^1_{\leq \theta}$ equivalent iff for every $\mu < \theta$ and $\alpha < \mu^+$ and $\tau_1 \subseteq \tau$ of cardinality $\leq \mu$, letting $\Gamma =$ the quantifier free formulas in $\mathbb{L}(\tau)$, the models M_1, M_2 $\text{are }\mathscr{E}_{\Gamma,\mu,\alpha}^{1,\tau_1}.$
	- (2) The logic $\mathbb{L}_{\lambda,\kappa}$ is defined like first order logic but we allow conjunctions on sets of $\langle \lambda \rangle$ formulas and we allow quantification of the form $\forall \bar{x}$ for sequences \bar{x} of length $\lt \kappa$; however each formula has to have $\lt \kappa$ free

variables, and disjunctions and existential quantifications are defined naturally.

- (2A) We define $\mathbb{L}_{\leq \lambda, \leq \kappa}$ as $\cup \{\mathbb{L}_{\lambda_1,\kappa_1}: \lambda_1 < \lambda, \kappa_1 < \kappa\}$; we may replace $\lt \lambda^+$ by λ and $\lt \kappa^+$ by κ .
	- (3) The logic $\mathbb{L}^1_{\leq \theta}$ is defined as follows: a sentence $\psi \in \mathbb{L}_{\leq \theta}(\tau)$ iff the sentence is defined using (or by) a triple $(qf(\tau_1), \theta, \alpha)$ which means: τ_1 is a sub-vocabulary of τ of cardinality $\leq \theta$ and $\alpha < \theta^+$, and for some sequence $\langle M_\beta : \beta < \beta(*) \rangle$ of τ_1 -models of length $\beta(*) \leq \beth_{\alpha+1}(\theta)$ we have: $M \models \psi$ iff M is $\mathcal{E}^1_{\{(\tau_1),\theta,\alpha\}}$ -equivalent to M_α for some $\beta < \beta(*)$. (4) Let $\mathbb{L}^1_{\kappa} = \bigcup \{ \mathbb{L}^1_{\leq \theta} : \theta < \kappa \}$ so $\mathbb{L}^1_{\theta^+} = \mathbb{L}^1_{\leq \theta}$.

ACKNOWLEDGMENT. The author thanks Alice Leonhardt for the beautiful typing. We thank the referee for many helpful comments.

1. Characterizing equivalence by ω**-limit ultrapowers**

In [\[She12\]](#page-25-1), a logic $\mathbb{L}^1_{\leq\kappa} = \bigcup_{\mu<\kappa} \mathbb{L}^1_{\leq\mu}$ is introduced (here we consider κ is strongly inaccessible for transparency), and is proved to be stronger than $\mathbb{L}_{\kappa,\aleph_0}$ but weaker than $\mathbb{L}_{\kappa,\kappa}$, has interpolation and a characterization, well ordering not definable in it and has an addition theorem. Also it is the maximal logic with some such properties.

For $\kappa = \theta$, we give a characterization of when two models are $\mathbb{L}^1_{\leq \theta}$ -equivalent giving additional evidence for the logic's naturality.

CONVENTION 1.1: *In this section every vocabulary* τ *has* arity $(\tau) = \aleph_0$ *.*

Recall [\[She12,](#page-25-1) 2.11=La18] which says (we expand it):

CLAIM 1.2: (1) We have $M_n \equiv_{\mathbb{L}^1_{\leq \theta}} M_{\omega}$ for $n < \omega$ when clauses (b), (c) below *hold and moreover* $M_n \models \psi[\bar{a}] \Leftrightarrow M_\omega \models \psi[\bar{a}]$ *when clauses (a)–(e) below hold, where:*

- (a) $\psi(\bar{z}) \in \mathbb{L}^1_{\leq \theta}(\tau)$ a formula,
- (b) $M_n \prec_{\mathbb{L}_{\geq \theta} \theta^+} M_{n+1}$ where $\partial = \mathbb{L}_{\theta^+}$, recalling Definition 0.22(2A),
- (c) $M_{\omega} := \bigcup_{n < \omega} M_n,$
(d) $\overline{z} \in \ell^{q(\overline{z})} (M)$
- (d) $\bar{a} \in {}^{\ell g(\bar{z})}(M_0),$
- (e) $\tau = \tau(M_n)$ for $n < \omega$.

(2) Assume $|\tau| \leq \mu$, M_n is a τ -model and $M_n \prec_{\mathbb{L}_{\mu^+, \mu^+}} M_{n+1}$ for $n < \omega$ and $M_{\omega} = \bigcup \{M_n : n < \omega\}$. Then M_0, M_{ω} are $\mathbb{L}^1_{\leq \mu}$ -equivalent.

We need two definitions before stating and proving the theorem below. The first definition generalizes common concepts.

Definition 1.3: We say that a pair of models (M_1, M_2) has isomorphic θ -complete $ω$ -iterated ultrapowers iff one can find $D_n ∈ \mathrm{uf}_θ(I_n)$ for every $n ∈ ω$ such that $M^1_\omega \cong M^2_\omega$, when

$$
M_{\omega}^{\ell} = \bigcup \{ M_{k}^{\ell} : k \in \omega \}, \quad M_{0}^{\ell} = M_{\ell}
$$

and

$$
M_n^{\ell} \prec_{\mathbb{L}_{\theta,\theta}} (M_n^{\ell})^{I_n} / D_n = M_{n+1}^{\ell}
$$

for $\ell = 1, 2$ and $n < \omega$.

For the second definition, let **x** be a l.u.f.t. and in Definition [1.4](#page-11-0) below we define "niceness witness". How do we arrive at this definition? If we try to analyze how to prove that two \mathbb{L}^1_θ -equivalent models have isomorphic θ -complete ω -iterated ultrapowers by a sequence of length ω of approximations, it is natural to carry the induction step. The reader may return to this after reading the proof of $(a) \rightarrow (e)$ of Theorem [1.5.](#page-11-1)

To understand this (and the proof of Theorem [1.5\)](#page-11-1) the reader may consider the case $\theta = \aleph_0$, which naturally is simpler and tells us that for each coordinate $s \in I$ we play a game of an Ehrenfuecht–Fraïssé game. Note also that Claim [1.2](#page-10-0) clarifies why having $\text{arity}(\tau) = \aleph_0$ helps.

Definition 1.4: If $\mathbf{x} = (I, D, \overline{E})$ is an l.u.f.t. and $\overline{E} = \langle E_n : n \in \omega \rangle$ then \overline{w} is a niceness witness for (I, D, \overline{E}) when:

- (a) $\bar{w} = \langle w_{s,n}, \gamma_{s,n} : s \in I, n < \omega \rangle$
- (b) $w_{s,n} \nsubseteq \lambda_n$ and $|w_{s,n}| < \theta$ and $|w_{s,n}| \geq |w_{s,n+1}|$,
- (c) $\gamma_{s,n} < \theta$ and $(\gamma_{s,n} > \gamma_{s,n+1}) \vee (\gamma_{s,n+1} = 0),$
- (d) $\gamma_{s,n} = 0 \Rightarrow w_{s,n} = \emptyset$ but $w_{s,0} \neq \emptyset$ and for simplicity $w_{s,0}$ is infinite for every $s \in I$,
- (e) if $n < \omega, u \in [\lambda_n]^{<\theta}$ then $\{s \in I : u \subseteq w_{s,n}\} \in D$,
- (f) $w_{s,n} = w_{t,n}$ and $\gamma_{s,n} = \gamma_{t,n}$ when $sE_n t$.

THEOREM 1.5: Let θ be a compact cardinal and M_1, M_2 be two τ -models (and $\mathrm{arity}(\tau) = \aleph_0$).

The following conditions are equivalent:

- (a) M_1, M_2 are \mathbb{L}^1_θ -equivalent,
- (b) there are (θ, θ) -l.u.f.t.**x**_n = (I, D, \mathcal{E}_n) and $\mathcal{E}_n \subseteq \mathcal{E}_{n+1}$ for $n < \omega$ and we Let $\mathscr{E} = \bigcup \{ \mathscr{E}_n : n < \omega \}$ such that $(M_1)_D^I | \mathscr{E}$ is isomorphic to $(M_2)_D^I | \mathscr{E}$,

- (c) (M1, M2) *have isomorphic* θ*-complete* ω*-iterated ultrapowers (see Definition [1.3\)](#page-11-2),*
- (d) $\text{if } D_n \in \text{ruf}_{\lambda_n, \theta}(I_n) \text{ so } |I_n| \geq \lambda_n \text{ and } \lambda_{n+1} \geq 2^{|I_n|}, \lambda_n > ||M_1|| + ||M_2|| + |\tau|$ *for every n* then the sequence $\langle (I_n, D_n) : n \langle \omega \rangle$ *is as required in clause (c),*
- (e) *if* $\mathbf{x} = (I, D, \mathcal{E})$ *is a l.u.f.t.* (see Definition 0.11(1)), $\mathcal{E} = \{E_n : n < \omega\}$, *for* $n < \omega$ *we have* E_{n+1} *refines* $E_n, 2^{|I/E_n|} \leq \lambda_{n+1}, D/E_n$ *is a* (λ_n, θ) *regular* θ -complete ultrafilter, $\lambda_0 \ge ||M_1|| + ||M_2|| + |\tau|$, \bar{w} *is a niceness witness (see Definition [1.4\)](#page-11-0), then* l.u.p._{**x**}(M_1) \cong l.u.p._{**x**}(M_2) *(see Definition [0.13\(](#page-5-0)3)).*

Proof. Clause (b)⇒Clause (a):

So let $I, D, \mathscr{E}_n(n < \omega)$ be as in clause (b) and $\mathscr{E} = \bigcup \{\mathscr{E}_n : n < \omega\}$. By the transitivity of being $\mathbb{L}^1_{\leq \theta}$ -equivalent, clearly clause (a) follows from:

 \boxplus_1 for every model N the models $N, N_D^I | \mathscr{E}$ are \mathbb{L}^1_{θ} -equivalent.

[Why does \mathbb{H}_1 hold? Let $N_n = N_D^I | \mathscr{E}_n$ for $n < \omega$ and $N_\omega = \bigcup \{N_n : n < \omega\}.$ So by Theorem 0.14 we have $N \equiv_{\mathbb{L}_{\theta,\theta}} N_0$ and moreover $N_n \prec_{\mathbb{L}_{\theta,\theta}} N_{n+1}$. Hence by Claim [1.2,](#page-10-0) that is the "Crucial Claim" [1.2](#page-10-0) quoting [\[She12,](#page-25-1) 2.11=a18], we have $N_n \equiv_{\mathbb{L}^1_{\leq \theta}} N_{\omega}$ hence $N \equiv_{\mathbb{L}^1_{\leq \theta}} N_{\omega}$.

Clause $(c) \Rightarrow$ Clause (b) :

Let

$$
I = \prod_{n < \omega} I_n,
$$
\n
$$
E_n = \{ (\eta, \nu) : \eta, \nu \in I \text{ and } \eta \mid n = \nu \mid n \}
$$

and

$$
D = \left\{ X \subseteq I : \text{for some } n, (\forall^{D_n} i_n \in I_n) (\forall^{D_{n-1}} i_{n-1} \in I_{n-1}) \cdots (\forall^{D_0} i_0 \in I_0) (\forall \eta) \right\}
$$

$$
\left[\eta \in I \land \bigwedge_{\ell \le n} \eta(\ell) = i_\ell \to \eta \in X \right] \right\}.
$$

Now let $M^{\ell}_{\omega} \equiv (M_{\ell})^I_D |\{E_n : n < \omega\}.$

Now it should be clear that $(M_{\ell})^I_D | \{E_n : n < \omega\}$ is isomorphic to M_{ω}^{ℓ} for $\ell = 1, 2$, so recalling $M^1_{\omega} \cong M^2_{\omega}$ by the present assumption, the models (M) of Γ $(M_{\ell})_D^I[\{E_n : n < \omega\} \text{ for } \ell = 1, 2 \text{ are isomorphic, so letting } \mathscr{E}_n = \{E_0, \ldots, E_n\}$ we easily see that $(I, D, \mathscr{E}_n)_{n<\omega}$ are as required in clause (b).

Clause (d)⇒Clause (c):

Clause (d) is obviously stronger, but we must point out that there are such I_n, D_n ; anyhow we shall elaborate. We can choose

$$
\lambda_0 = (\|M_1\| + \|M_2\| + |\tau| + \theta)^{<\theta},
$$

$$
\lambda_{n+1} = 2^{\lambda_n} \text{ for } n < \omega;
$$

then letting $I_n = \lambda_n$ there is $D_n \in \text{ruf}_{\lambda_n,\theta}(I_n)$ recalling θ is a compact cardinal, noting $\lambda_n = \lambda_n^{<\theta}$. Now $\langle I_n, D_n : n < \omega \rangle$ is as required in the assumption of clause (d), so as we are now assuming clause (d), also its conclusion holds. Now $\langle (I_n, D_n) : n < \omega \rangle$ are as required in clause (c), in particular the isomorphism holds by the conclusion of clause (d) which, as mentioned in the previous sentence, holds.

Clause (e)⇒Clause (d):

Let $\langle (I_n, D_n, \lambda_n) : n \langle \omega \rangle$ be as in the assumption of clause (d).

We define $I = \prod_n I_n$, $E_n = \{(\eta, \nu) : \eta, \nu \in I, \eta \mid (n+1) = \nu \mid (n+1)\}\)$ and define D as in the proof of (c)⇒(b) above and we choose $\bar{w} = \langle w_{n,n} : \eta \in I, n < \omega \rangle$ as follows.

First, choose $\bar{u}_n = \langle u_s^n : s \in I_n \rangle$ which witness D_n is (λ_n, θ) -regular, i.e., $u_s^n \in [\lambda_n]^{< \theta}$ and $(\forall \alpha < \lambda_n)[\{s \in I_n : \alpha \in u_s^n\} \in D_n]$. For $\eta \in I$ and $n < \omega$ let $w_{\eta,n}$ be $u_{\eta(n)}^n$ if $\langle \text{otp}(u_{\eta(\ell)}): \ell \leq n \rangle$ is decreasing and Ø otherwise. Let $\gamma_{\eta,n}$ be $otp(w_{n,n})$. Now we can check that the assumptions of clause (e) hold (because of the choice of D); we shall elaborate two points. First the ultrafilter D/E_n is (λ, θ) -regular because $\langle u_{\eta(n0)}^n / E_n : \eta \in I \rangle$ witnesses it.
Second the main point is to masses that \bar{x}

Second, the main point is to prove that $\bar{w} = \langle (w_{\eta,n}, \gamma_{\eta,n} : \eta \in I, n < \omega \rangle$ is indeed a niceness witness for (I, D, E) . For this, most clauses of Definition [1.4](#page-11-0) are easy, but we better elaborate on clause (e) there. For every n :

- $(*)_n$ for some X_n ∈ D_n , for every s_n ∈ X_n , for some X_{n-1} ∈ D_{n-1}, \ldots , for some $X_0 \in D_0$ for every $s_0 \in X_0$, if $\langle s_0, \ldots, s_n \rangle \subseteq \eta \in I$, then
	- (a) $|w_{\eta,0}| > |w_{\eta,1}| > \ldots > |w_{\eta,0}|$
	- (b) $|u_{s_{\ell}}^{\ell}| > |u_{s_{\ell+1}}^{\ell+1}|$ for $\ell < n$.

Why does $(*)_n$ hold? Clause (a) holds by clause (b) and the choice of $w_{\eta,n}$ as $u_{\eta(n)}^n$. Clause (b) holds because $u_{s_{\ell+1}}^{\ell+1}$ is of cardinality $\lt \theta$ and

$$
\{s \in I_{\ell}: |u^{\ell+1}_{s_{\ell+1}}|^+ \subseteq u_s^{\ell}\} \in D_{\ell}.
$$

Hence the conclusion of clause (e) holds and we are done as in the proof of $(c) \Rightarrow (b)$.

Clause (a)⇒Clause (e):

So assume that clause (a) holds, that is M_1, M_2 are \mathbb{L}^1_{θ} -equivalent and assume $I, D, \mathscr{E}, \langle E_n : n \langle \omega \rangle$ and \bar{w} are as in the assumption of clause (e); and we should prove that its conclusion holds, that is,

$$
l.u.p._{\mathbf{x}}(M_1) \cong l.u.p._{\mathbf{x}}(M_2).
$$

For every $\tau_* \subseteq \tau$ of cardinality $\lt \theta$ and $\mu \lt \theta$, by Definition 0.22 we know that $M_1\uparrow_{\pi}$, $M_2\uparrow_{\pi}$ are $\mathbb{L}^1_{\leq \mu}$ -equivalent, hence for every $\alpha < \mu^+$ there is a finite sequence $\langle N_{\tau_*,\mu,\alpha,k} : k \leq \mathbf{k}(\tau_*,\mu,\alpha) \rangle$ such that:

$$
(*)_1 \quad \text{(a)} \ \ N_{\tau_*,\mu,\alpha,0} = M_1 \restriction \tau_*,
$$

- (b) $N_{\tau_*,\mu,\alpha,\mathbf{k}(\tau_*,\mu,\alpha)} = M_2\uparrow \tau_*,$
- (c) in the game $\partial_{\tau_*,\mu,\alpha}[N_{\tau_*,\mu,\alpha,k},N_{\tau_*,\mu,\alpha,k+1}]$ the ISO player has a winning strategy for each $k < \mathbf{k}(\tau_*, \mu, \alpha)$, but we stipulate a play to have ω moves, by deciding they continue to choose the moves even when one side already wins using the same state except changing $n_{\rm s}$.

[Why? By Definition [0.20](#page-8-1) which quotes [\[She12,](#page-25-1) 2.1=La8]]

- (*)₂ without loss of generality $||N_{\tau_*,\mu,\alpha,k}||$ ≤ λ_0 for $k \in \{1,\ldots,k(\tau_*,\mu,\alpha)-1\}$ $(even < \theta)$.
- [Why? By (a degenerated case of) Claim [1.2.](#page-10-0)]

We can (without loss of generality) assume:

 $(*)_3$ (a) above $\mathbf{k}(\tau_*, \mu, \alpha) = \mathbf{k}$, (b) τ has only predicates.

[Why? Clause (a) by monotonicity in τ^*, μ and in α of $M_1 \mathscr{E}_{\text{qf}(\tau_*),\mu,\alpha}^{\mathfrak{q},\mathfrak{f},\tau^*} M_2$. Clause (b) is easy too.]

We denote:

(*)₄ (a) $\langle P_\alpha : \alpha < |\tau| \rangle$ list the predicates of τ , recall that $|\tau| \leq \lambda_0$, (b) for $t \in I$ let $\tau_t = \{P_\alpha : \alpha \in w_{t,0} \cap |\tau|\}.$

 $(*)_5$ Let $N_{s,k} := N_{\tau_s, |w_{s,0}|, \gamma_{s,0}+1,k}$ for $s \in I$ and $k \leq k$.

For $k \leq \mathbf{k}$, let $\bar{f}_{k,n} = \langle f_{k,n,\alpha} : \alpha < 2^{\lambda_n} \rangle$ list the members f of $\prod_{s \in I} N_{s,k}$ such that E_n refines eq(f), so

$$
f_{k,n,\alpha} = \langle f_{k,n,\alpha}(\eta) : \eta \in I \rangle
$$

but

$$
\eta \in I \wedge \nu \in I \wedge \eta E_n \nu \Rightarrow f_{k,n,\alpha}(\eta) = f_{k,n,\alpha}(\nu).
$$

Now

- (*)₆ (a) for $t \in I$ and $k < \mathbf{k}$ let $\partial_{t,k}$ be the game $\partial_{\tau_{t},|w_{t,0}|,\gamma_{t,0}+1}[N_{t,k},N_{t,k+1}],$ (b) let $\mathbf{st}_{t,k}$ be a winning strategy for the ISO player in $\partial_{t,k}$,
	- (c) if $t_1E_0t_2$ then $\langle N_{t_1,k} : k \leq \mathbf{k} \rangle$ are the same for $\iota = 1, 2$, moreover, $(\bigcirc_{t_1,k} = \bigcirc_{t_2,k}$ and) **st**_{t₁,*k* = **st**_{t₂,*k*} for *k* < **k**.}

[Why clause (c)? Because by $(*)_5$, $N_{s,k}$, $N_{\tau_s,w_{s,0},\gamma_{s,0}+1,k}$ are determined by $(w_{s,0}, k)$ and τ_s depends on $w_{s,0}$ only, hence (by clause (e) of Theorem [1.5](#page-11-1) and clause (f) from Definition [1.4\)](#page-11-0), $N_{s,k}$ depends just on $(s/E_0, k)$.]

Now for each k by induction on n we choose $\langle s_{t,k,n} : t \in I \rangle$ such that:

- $(*)_7$ (a) $\mathbf{s}_{t,k,n}$ is a state of the game $\partial_{t,k}$, (b) $\langle \mathbf{s}_{t,k,m} : m \leq n \rangle$ is an initial segment of a play of $\partial_{t,k}$ in which the ISO player uses the strategy $\mathbf{st}_{t,k}$,
	- (c) if $t_1E_nt_2$ then $\mathbf{s}_{t_1,k,n} = \mathbf{s}_{t_2,k,n}$,
	- (d) $\beta_{\mathbf{s}_{t,k,n}} = \gamma_{t,n}$, see Definition [0.20,](#page-8-1)
	- (e) if $t \in I$, $n = \iota \mod 2$ and $\iota \in \{0,1\}$ then

$$
A_{\mathbf{s}_{t,k,n}}^{\iota} \supseteq \{f_{k+\iota,m,\alpha}(t) : m < n \text{ and } \alpha \in w_{t,m}\},
$$

see Definition [0.20\(](#page-8-1)E).

 $(*)_8$ We can carry the induction on n.

[Why? Straightforward.]

(∗)⁹ For each k < **^k**, n < ω, t [∈] ^I we define ^hs,k,n, a partial function from $N_{s,k}$ to $N_{s,k+1}$ by $h_{s,k,n}(a_1) = a_2$ iff for some $m \leq n, w_{s,m} \neq \emptyset$ and $g_{\mathbf{s}_{t,k,m}}(a_1) = a_2$, see Definition [0.20\(](#page-8-1)E).

Now clearly:

 H_1 For each $t \in I, k < \mathbf{k}$ and $n < \omega, h_{s,k,n}$ is a partial one-to-one function and even a partial isomorphism from $N_{s,k}$ to $N_{s,k+1}$, non-empty when $n > 0$ and increasing with n.

[Why? By the choice of $\mathbf{st}_{t,k}$ and $(*)_7(a)$.]

 \boxplus_2 Let

$$
Y_{k,n} = \left\{ (f_1, f_2) : f_\ell \in \prod_{s \in I} \text{Dom}(h_{s,k,n}) \text{ for } \ell = 1, 2
$$

and
$$
s \in I \Rightarrow f_2(s) = h_{s,k,n}(f_1(s)) \right\}.
$$

 \boxplus_3 **f**_{k,n} = {(f₁/D, f₂/D) : (f₁, f₂) \in Y_{k,n}} is a partial isomorphism from

$$
M_1^I \mid \left\{ f/D : f \in \prod_s N_{s,k} \text{ and } f \text{ respects } E_n \right\}
$$

to

$$
M_2^I \left\lceil \left\{ f/D : f \in \prod_s N_{s,k+1} \text{ and } f \text{ respects } E_n \right\} \right\rceil.
$$

 \boxplus_4 $\mathbf{f}_{k,n} \subseteq \mathbf{f}_{k,n+1}.$

- Ξ_5 (a) If $f_1 \in \prod_s N_{s,k}$ and $eq(f_1)$ is refined by E_n then for some $n_1 > n$ and $f_2 \in \prod_s N_{s,k+1}$ the pair $(f_1/D, f_2/D)$ belongs to \mathbf{f}_{k,n_1} .
	- (b) If $f_2 \in \prod_s N_{s,k+1}$ and $eq(f_2)$ is refined by E_n then for some $n_1 > n$ and $f_1 \in \prod_s N_{s,k}$ the pair $(f_1/D, f_2/D)$ belongs to \mathbf{f}_{k,n_1} .

[Why? By symmetry it suffices to deal with clause (a). For some α , $f_1 = f_{k,n,\alpha}$, hence for every $t \in \text{Dom}(f_1), f_1(t) \in A^1_{\mathbf{s}_{t,k,n}}$. We use the "delaying function", $h_{\mathbf{s}_{t,k,n}}(f_1(t)) < \omega$, so for some m the set $\{t \in I : h_{\mathbf{s}_{t,k,n}}(f_1(t)) \leq m\}$ which respects E_n belongs to D. In particular $\{s : \gamma_{s,k,n} > m\} \in D$; the rest should be clear recalling the regularity of each D/E_m .

Letting $\mathscr{E} = \{E_n : n < \omega\}$, putting together

 $(*)$ ₁₀ $\mathbf{f}_k = \bigcup_n \mathbf{f}_{k,n}$ is an isomorphism from $(\prod_s N_{k,s})_D | \mathscr{E}$ onto $(\prod_s N_{k+1,s})_D | \mathscr{E}$. Hence

 $(*)$ ₁₁ $\mathbf{f}_{\mathbf{k}-1} \circ \cdots \circ \mathbf{f}_0$ is an isomorphism from $(M_1)'_D | \mathscr{E}$ onto $(M_2)'_D | \mathscr{E}$.

So we are done. \blacksquare _{[1.5](#page-11-1)}

Discussion 1.6: (1) So for our θ , we get another characterization of \mathbb{L}^1_{θ} .

(2) We may deal with universal homogeneous (θ, σ) -l.u.p.**x**, at least for $\sigma = \aleph_0$, using Definition 0.11.

CLAIM 1.7: In Theorem [1.5,](#page-11-1) if $\kappa = \kappa^{<\theta} \ge ||M_1|| + ||M_2||$ we can add:

 (b) ⁺ *like clause* (b) *of* [1.5](#page-11-1) *but* $|I| < 2^{\kappa}$.

Remark 1.8: Note that we do not restrict $\tau = \tau(M_{\ell})$. See proof of $(*)_{9}$ below.

Proof. Clearly $(b)^+ \Rightarrow (b)$, so it is enough to prove $(b) \Rightarrow (b)^+$; we shall assume $M_1, M_2, \kappa, \mathbf{x}_n, D, \mathscr{E}_n, \mathscr{E}$ are as in (b) and let g be an isomorphism from $(M_1)_D^I/\mathscr{E}$ onto $(M_2)_D^I/\mathscr{E}$.

Let

 $(*)_1$ (a) $\mathscr{E}'_n = \{E : E \text{ is an equivalence relation on } I\}$

with $\leq \kappa$ equivalence classes

such that some $E' \in \mathscr{E}_n$ refines E ,

(b) let
$$
\mathscr{E}' = \bigcup \{\mathscr{E}'_n : n \in \mathbb{N}\}.
$$

Clearly

$$
(*)_2 \ (M_{\ell})_D^I | \mathscr{E} = (M_{\ell})_D^I | \mathscr{E}' \text{ for } \ell = 1, 2.
$$

Let χ be large enough such that $M_1, M_2, \kappa, D, I, \mathscr{E}, \overline{\mathscr{E}}' = \langle \mathscr{E}'_n : n \in \mathbb{N} \rangle, g$ and $(M, I | \mathscr{E}, \mathscr{E}) = \mathscr{E}'(1, I | \mathscr{E})$ $(M_{\ell})_D^{\ell} | \mathscr{E}$ for $\ell = 1, 2$ belong to $\mathscr{H}(\chi)$. We can choose $\mathfrak{B} \prec_{\mathbb{L}_{\kappa^+, \kappa^+}} (\mathscr{H}(\chi), \in)$ of cardinality 2^{κ} to which all the members of $\mathcal{H}(\chi)$ mentioned above belong and such that $2^k + 1 \subseteq \mathfrak{B}$. So as $\tau = \tau(M_1) \in \mathfrak{B}$ and without loss of generality $|\tau| \leq 2^{\|M_1\| + \|M_2\|} \leq 2^{\kappa}$; necessarily $\tau \subseteq \mathfrak{B}$ (alternatively see the end of the proof).

$$
(*)_3
$$
 Let

(a)
$$
I^* = I \cap \mathfrak{B}
$$
,

(b)
$$
\mathscr{E}_n^* = \{E \mid I^* : E \in \mathscr{E}_n' \cap \mathfrak{B} \},\
$$

(c)
$$
\mathcal{E}^* = \bigcup \{ \mathcal{E}^*_n : n \in \mathbb{N} \}
$$

(c) $\mathscr{E}^* = \bigcup \{\mathscr{E}_n^* : n \in \mathbb{N}\},$
(d) let D^* be any ultrafilter on I^* which includes $\{I \cap I^* : I \in D \cap \mathfrak{B}\}.$

It is enough to check the following points:

 $(*)_4 \mathbf{x}_n^* := (I^*, D^*, \mathscr{E}_n^*)$ is a (θ, θ) -l.u.f.t.for every $n \in \omega$.

Why? For example, note that if $E \in \mathscr{E}_n^*$, then for some $E' \in \mathscr{E}_n' \cap \mathfrak{B}$ we have $E'|I^* = E$, hence E has $\leq \kappa$ equivalence classes. Now for any such E', as E' has $\leq \kappa$ -equivalence classes and belongs to \mathfrak{B} , clearly every E'-equivalence class is not disjoint to I^* and every $A \subseteq I^*$ respecting E is $A' \cap I^*$ for some $A' \in \mathfrak{B}$ respecting E'. So $D/E'_n, D^*/E$ are essentially equal, etc., that is, let $\pi_n : \mathscr{E}_n^* \to \mathscr{E}_n'$ be such that $E \in \mathscr{E}_n^* \Rightarrow \pi_n(E) \mid I^* = E$ and let $\pi_{n,E}$: { $A : A \subseteq I^*$ respects E } \rightarrow { $A \subseteq I : A$ respects $\pi_n(E)$ } be such that $\pi_{n,E}(A) = B \Rightarrow B \cap I^* = A$; in fact, those functions are uniquely determined.

So clearly $(*)_4$ follows by

$$
(*)_5 \quad \text{(a) } \pi_n \text{ is a one-to-one function from } \mathscr{E}_n^* \text{ onto } \mathscr{E}_n' \cap \mathfrak{B},
$$
\n
$$
(*)_5 \quad \text{(b) } \pi_n \text{ is a one-to-one function from } \mathscr{E}_n^* \cap \mathfrak{B},
$$

- (b) π_n preserves " E^1 refines E^{2n} and its negation,
	- (c) \mathscr{E}_n^* is $(θ)-directed,$
- (d) if $n = m + 1$ then $\mathscr{E}_m^* \subseteq \mathscr{E}_n^*$ and $\pi_m \subseteq \pi_n$.

Moreover

- (*)₆ (a) if $E \in \mathscr{E}_n^*$, then $\text{Dom}(\pi_{n,E}) \subseteq \mathfrak{B}$ (because $2^{\kappa} \subseteq \mathfrak{B}$ is assumed),
	- (b) $\pi_{n,E}$ is an isomorphism from the Boolean Algebra Dom $(\pi_{n,E})$ onto ${A \subseteq I : A \text{ respects } \pi_n(E)}$ which is canonically isomorphic to the Boolean Algebra $\mathscr{P}(I/\pi_n(E))$ and also to $\mathscr{P}(I^*/E)$,
	- (c) D^* ∩ Dom $(\pi_{n,E})$ is an ultrafilter which $\pi_{n,E}$ maps onto $D \cap \text{Rang}(\pi_{n,E})$ which is an ultrafilter; those ultrafilters are θ complete,
- $(*)$ ⁷ has cardinality $\leq 2^{\kappa}$.
- [Why? Because \mathfrak{B} has cardinality $\leq 2^{\kappa}$.]
	- $(*)_8$ (*M*_ℓ)^{*I*^{*}}_{*D*}^{*}^{*E*^{*} is isomorphic to ((*M*_ℓ)^{*I*}_{*D*}^{|β}′)|²**3** for $\ell = 1, 2$.}

[Why? Let \varkappa be the following function:

 $(*)_{8,1}$ (a) $Dom(\varkappa)=(M_1)^{I_*} | \mathscr{E}^*$,

(b) if $f_1 \in (M_1)^{I_*}$ and $E \in \mathscr{E}^*$ refines eq(f_1), then $f_2 := \varkappa(f_1)$ is the unique function with domain I such that $(\bigcup_n \pi_n)(E) \in \mathscr{E}'$ refines eq(f_2) and f_2 | $I^* = f_1$.

Now easily κ induces an isomorphism as promised in $(*)_{8}$.

 $(*)$ ₉ ((M₁)¹_D| \mathscr{E}')|ᡃ**B** is isomorphic to (M₂)¹_D| \mathscr{E}')|¹**B**.

[Why? By $(*)_2$ and the choices of g (in the beginning) and of \mathfrak{B} after $(*)_2$, this is obvious when $\tau = \tau(M_1)$ is included in **B**, which is equivalent to $|\tau| \leq 2^{\kappa}$. By recalling that arity(τ) $\leq \aleph_0$, i.e., every predicate and function symbol of τ has finitely many places (see Theorem [1.5\)](#page-11-1), without loss of generality this holds. That is, let $\tau' \subseteq \tau$ be such that for every predicate $P \in \tau$ there is one and only one $P' \in \tau'$ such that

$$
\ell \in \{1, 2\} \Rightarrow P^{M_{\ell}} = (P')^{M_{\ell}}
$$

and similarly for every function symbol; clearly it suffices to deal with $M_1\uparrow \tau', M_2\uparrow \tau'$ and $|\tau'| \leq 2^{\|M_1\|} \leq 2^{\kappa}$.

Together we are done. \blacksquare _{[1.7](#page-16-0)}

Note that the proof of Claim [1.7](#page-16-0) really uses $\kappa = \kappa^{\lt \theta}$, as otherwise \mathscr{E}'_n is not ($\epsilon \in \theta$)-directed. How much is the assumption $\kappa = \kappa^{\epsilon \theta}$ needed in Claim [1.7?](#page-16-0) We can say something in Claim [1.9.](#page-19-0)

40 S. SHELAH Isr. J. Math.

CLAIM 1.9: Assume that $\kappa \geq 2^{\theta}$ but $\kappa^{<\theta} > \kappa$, hence for some regular $\sigma < \theta$ we *have* $\kappa^{\langle \sigma \rangle} = \kappa \langle \kappa^{\sigma} \rangle$ *and* cf(κ) = σ *and, by* [\[Sol74\]](#page-25-10)*,* we have $(\forall \mu \langle \kappa \rangle)(\mu^{\theta} \langle \kappa \rangle)$; *recall* arity $(\tau) = \aleph_0$ *.*

(1) *If* $\langle \mathfrak{B}_i : i \leq \sigma \rangle$ *is a* \subseteq *-increasing continuous sequence of* τ *-models and* **x** *is a* (θ, θ) -l.u.f.t.*then* l.u.p._{**x**}(\mathfrak{B}_{σ}) = \bigcup {l.u.p._{**x**}(\mathfrak{B}_{i}) : *i* < σ } *and*

$$
i < j \Rightarrow \text{l.u.p.}_{\mathbf{x}}(\mathfrak{B}_i) \subseteq \text{l.u.p.}_{\mathbf{x}}(\mathfrak{B}_j).
$$

(2) If *J* is a directed partial order of cardinality $\leq \sigma \, \left(\leq \theta \right)$ and $\mathbf{x}_s = (I, D, \mathscr{E}_s)$ *is a* (θ, θ) -l.u.f.t.*for* $s \in J$ *such that* $s \leq J$ $t \Rightarrow \mathscr{E}_s \subseteq \mathscr{E}_t$ *and* M *is a* τ *model then* l.u.p._{**x**}(\mathfrak{B}) = \bigcup {l.u.p._{**x**_s}(\mathfrak{B}) : $s \in J$ } *and*

$$
s <_J t \Rightarrow l.u.f.t._{\bf{x}}({\bf{B}}) \subseteq l.u.p._{\bf{x}}({\bf{B}})
$$

under the natural identification.

(3) In Claim [1.7,](#page-16-0) $|I^*| \le \Sigma \{2^{\partial} : \partial \lt \kappa\}$ is enough.

Proof. Straightforward. \blacksquare _{[1.9](#page-19-0)}

2. Special models

Note that in Definition [2.1](#page-19-1) below, $M_n \prec_{\mathbb{L}_{\theta,\theta}} M$ is not required. The reader may in a first reading ignore the special• case.

Definition 2.1: (1) Assume $\lambda > \theta$ is strong limit of cofinality \aleph_0 .

We say a model M is λ -special when there are $\overline{\lambda}$, \overline{M} such that (we also may say \overline{M} is a λ -special sequence):

(a) M is a model of cardinality λ with $|\tau(M)| < \lambda$,

\n- (b) (α)
$$
\bar{\lambda} = \langle \lambda_n : n \in \mathbb{N} \rangle
$$
, $(\beta) \lambda_n \leq \lambda_{n+1}$, $(\gamma) \theta \leq \lambda_n < \lambda_{n+1} < \lambda = \sum_k \lambda_k$ and stipulate $\lambda_{-1} = \theta$,
\n- (c) (α) $\bar{M} = \langle M_n : n < \omega \rangle$, $(\beta) M_n \prec_{\mathbb{L}_{\theta,\theta}} M_{n+1}$, $(\gamma) M = \bigcup_n M_n$,
\n- (δ) $\lambda_n \geq \|M_n\| \geq \lambda_{n-1}$ recalling $\lambda_{-1} = \theta$,
\n- (d) (α) $\bar{D} = \langle D_n : n \in \mathbb{N} \rangle$ and $\|M_n\| \leq \lambda_n$,
\n- (β) $D_n \in \text{ruf}_{\lambda_{n+1},\theta}(\lambda_{n+1})$, $(\gamma) M_n^{\lambda_n} / D_n \prec_{\mathbb{L}_{\theta,\theta}} M_{n+1}$ under the canonical identification (so hence $2^{\lambda_n} \leq \lambda_{n+1}$).
\n

(2) We say that the model M is λ -special[•] when clauses (a),(b),(c) above hold but instead of clause (d) we have

(d)' if Γ is an \mathbb{L}_{θ} etype on M_n of cardinality $\leq \lambda_n$ with $\leq \lambda_n$ free variables, then Γ is realized in M_{n+1} .

CLAIM 2.2: (1) If for every $n < \omega$ we have D_n is a (λ_n, θ) -regular θ -complete *ultra-filter on* I_n , $|I_n| \leq \lambda_{n+1}$, $M_{n+1} = (M_n)^{I_n}/D_n$ *identifying* M_n *with its image under the canonical embedding into* M_{n+1} *so* $M_n \prec_{\mathbb{L}_{\theta,\theta}} M_{n+1}$ *and* $\lambda_n \geq ||M_n||$ *,* $\lambda = \sum_n \lambda_n \ge \theta$ (equivalently $> \theta$) then $\langle M_n : n \in \mathbb{N} \rangle$ is a λ -special sequence, $so M = \bigcup_n M_n$ *is a* λ -special model and *M is a model of* $\text{Th}_{\mathbb{L}^1_p}(M_1)$.

(2) Assume $\lambda > \theta$, cf(λ) = \aleph_0 . In Definition [2.1,](#page-19-1) clause (d) indeed implies *clause* (d) *; so every* λ*-special model/sequence is a* λ*-special*• *model/sequence.*

(3) In Definition [2.1,](#page-19-1) M is a model of $\text{Th}_{\mathbb{L}^1_\theta}(M)$, in fact this follows by Defi*nition* $2.1(1)(d)(\alpha)$, (β) , (γ) *.*

(4) Assume $\lambda > \theta$ *is a strong limit cardinal of cofinality* \aleph_0 *. If* M *is a model of cardinality* $\geq \theta$ *but* $< \lambda$ *then:*

- (A) (a) There is a λ -special sequence \overline{M} with $M_0 = M$,
	- (b) there is a λ -special model N which is a $\prec_{\mathbb{L}^1_{\theta}}$ -extension of M,
	- (c) $\text{Th}_{\mathbb{L}^1_{\theta}(M)}$ has a λ -special model.
- (B) If M is a model of cardinality λ then for some $N, \overline{M}, \overline{N}$ we have:
	- (a) $\overline{M} = \langle M_n : n \langle \omega \rangle$ *satisfies clauses (a), (b), (c) of [2.1.](#page-19-1)* with union M,
	- (b) $\bar{N} = \langle N_n : n < \omega \rangle$ is a λ -special[•] sequence with union N,
	- (c) $M_n \prec_{\mathbb{L}_{\theta,\theta}} N_n$.
- (C) If M is a λ -special model and $\tau \subseteq \tau_M$ then $M\uparrow\tau$ is also a λ -special *model.*

(5) Assume $\lambda > \theta > \aleph_0 = \text{cf}(\lambda)$ *.* If M is a λ -special[•] model and $\tau \subseteq \tau_M$ *then* $M \upharpoonright \tau$ *is also a* λ -special[•] *model*

(6) If λ is strong limit $\geq \theta$ of cofinality \aleph_0 , a model M is λ -special iff it is λ*-special*•*.*

Proof. (1) If we assume clause (d) in Definition [2.1,](#page-19-1) then just by the definition. If we assume clause $(d)'$ in Definition [2.1,](#page-19-1) then use part (2) .

- (2) It follows by the (λ_n, θ) -regularity of D_n .
- (3) Check the definition.

 (4) Clause (A) :

We can choose an increasing sequence $\langle \lambda_n : n < \omega \rangle$ with limit λ such that $\lambda_0 = ||M||^{\theta}$ and $2^{\lambda_n} < \lambda_{n+1} = \lambda_{n+1}^{\theta}$. For each n we can choose a (λ, θ) -regular θ-complete ultrafilter D_n on λ_n , and define M_n as in part (1). Now use the conclusion of part (1).

Clause (B):

Without loss of generality the universe of M is λ . Choose $\langle \lambda_n : n < \omega \rangle$ as above (except $\lambda_0 \geq ||M||$ of course), and by induction on n choose $M_n \prec_{\mathbb{L}^1_{\theta}} M$ of cardinality λ_n which includes $\cup \{M_k : k < n\} \cup \lambda_n$. We now choose

$$
\langle M_k^*, M_{k,n}^*: n < \omega \rangle
$$

by induction on k such that:

- (a) for $k = 0$ we let $M_k^* = M$ and $M_{k,n}^* = M_n$,
- (b) for $k = \ell + 1$ let $M_k^* = (M_\ell^*)^{\lambda_k}/D_k$ and $M_{k,n}^* = (M_{\ell,n}^*)^{\lambda_k}/D_k$.

There is no problem to carry the induction and we let $N = \bigcup \{M_{k,k}^* : k < \omega\}$ and $N_k = M_{k,k}^*$; now check.

Clause (C):

Just read the definition.

(5) Again just read the definition.

(6) Easy too. \blacksquare _{[2.2](#page-20-0)}

Remark 2.3: (1) In Claim [2.4](#page-21-0) below we do not require that the λ_n -s are the same and, of course, we do not require that the D_n are the same. Part (3) clarifies this.

(2) In Definition [2.1](#page-19-1) clause (c)(δ), it is enough to demand $\lambda_n \geq ||M_n|| \geq \theta$.

CLAIM 2.4: (1) *If* $\langle M_n^{\ell} : n \in \mathbb{N} \rangle$ *is a* λ -special sequence (or just a λ -special[•] *sequence*) with union M_{ℓ} for $\ell = 1, 2$ and $\text{Th}_{\mathbb{L}_{\theta,\theta}}(M_0^1) = \text{Th}_{\mathbb{L}_{\theta,\theta}}(M_0^2)$ then M1, M² *are isomorphic.*

(2) Moreover, if $n < \omega$ and f is a partial function from M_n^1 into M_n^2 which is $(M_n^1, M_n^2, \mathbb{L}_{\theta, \theta})$ -elementary, that is,

$$
\bar{a} \in {}^{\theta}{}(Dom(f)) \Rightarrow f(\mathrm{tp}_{\mathbb{L}_{\theta,\theta}}(\bar{a},\emptyset,M_n^1)) = \mathrm{tp}_{\mathbb{L}_{\theta,\theta}}(f(\bar{a}),\emptyset,M_n^2),
$$

then f can be extended to an isomorphism from M_1 onto M_2 .

(3) If we weaken clause $(d)'$ of Definition [2.1](#page-19-1) by weakening the conclusion to: *for some* $k > n$, *Γ is realized in* M_k , then we get an equivalent definition.

Proof. (1) By the hence and forth argument; but we elaborate. Let \mathscr{F}_n be the set of f such that:

- (a) f is a one-to-one function,
- (b) the domain of f is included in M_n^1 ,
- (c) the range of f is included in M_n^2 ,
- (d) if $\zeta < \theta$ and $\bar{a} \in {}^{\zeta}(M_n^1)$ and $\bar{b} = f(\bar{a}) \in {}^{\zeta}(M_n^2)$ and $\varphi(\bar{x}_{[\zeta]} \in \mathbb{L}_{\theta,\theta}(\tau(M_\ell)))$ then $M_n^1 \models \varphi[\bar{a}]$ iff $M_n^2 \models \varphi[\bar{b}].$

Easily

 $(*)_1$ the set \mathscr{F}_n is not empty.

[Why? Because the empty function belongs to \mathscr{F}_n .]

- (*)₂ If $f \in \mathscr{F}_n$, then some $g \in \mathscr{F}_{n+1}$ extends f and $M_n^1 \subseteq \text{Dom}(g)$.
- [Why? By clause (d)' of Definition [2.1\(](#page-19-1)2)]

(*)₃ If $f \in \mathscr{F}_n$, then some $g \in \mathscr{F}_{n+1}$ extends f and $M_n^1 \subseteq \text{Rang}(g)$.

[Why? Similarly.]

Together clearly we are done.

- (2) Same proof.
- (3) Use suitable sub-sequences (using monotonicity). $\blacksquare_{2,4}$

Note that comparing Definition [2.1](#page-19-1) with the first order parallel, in Claim [2.4\(](#page-21-0)1), a priori it is not given that $\text{Th}_{\mathbb{L}_{\theta,\theta}}(M_1) = \text{Th}_{\mathbb{L}_{\theta,\theta}}(M_2)$ suffices. Also Claim [2.4](#page-21-0) does not say that $\mathrm{Th}_{\mathbb{L}^1_\theta}(M)$ and λ determines M up to isomorphism because we demand that M_0^1, M_0^2 are \mathbb{L}^1_{θ} -equivalent. However:

CLAIM 2.5: Assume $\lambda > \theta$ is of cofinality \aleph_0 and T is a complete theory $\inf_{\theta} \mathbb{L}^1_{\theta}(\tau_T), |T| < \lambda$, equivalently $|\tau_T| < \lambda$.

- (1) *If* λ *is strong limit then* T *has exactly one* λ*-special model (up to isomorphism).*
- (2) T has at most one λ -special[•] model of cardinality λ up to isomorphism.

Proof. (1) Assume N_1, N_2 are special models of T of cardinality λ . By Defini-tion [2.1](#page-19-1) for $\ell = 1, 2$ there is a triple $(\bar{\lambda}_{\ell}, \bar{M}_{\ell}, \bar{D}_{\ell})$ witnessing N_{ℓ} is λ -special as there.

As $M_{\ell,0} \prec_{\mathbb{L}_{\theta,\theta}} M_{\ell,n} \prec_{\mathbb{L}_{\theta,\theta}} M_{\ell,n+1} \prec_{\mathbb{L}_{\theta}^1} \bigcup_m M_{\ell,m} = N_{\ell}$ for $n \in \mathbb{N}$, by Theo-rem 0.10 and Claim [1.2,](#page-10-0) we know that $M_{\ell,0} \equiv_{\mathbb{L}^1_{\kappa}} N_{\ell}$, so we can conclude that $M_{1,0} \equiv_{\mathbb{L}^1_{\kappa}} M_{2,0}$ and both are models of T.

By Theorem [1.5](#page-11-1) there is a sequence $\langle (\lambda_n, D_n) : n \in \mathbb{N} \rangle$ with $\Sigma_{n \leq \omega} \lambda_n > \lambda$, $2^{\lambda_n} \leq \lambda_{n+1}$ and D_n a (λ_n, θ) -regular ultrafilter on λ_n such that $M'_1 \cong M'_2$ when:

(*) $M'_{\ell,0} = M_{\ell,0}, M'_{\ell,n+1} = (M'_{\ell,n})^{\lambda_n}/D_n$ and $M'_{\ell} = \bigcup_n M'_{\ell,n}$.

Let $\langle \mu_n : n < \omega \rangle$ be such that: $2^{\mu_n} < \mu_{n+1} < \lambda = \Sigma \{ \mu_k : k < \omega \}$ for $n < \omega$.

Next let $M_{\ell,n}^{\prime\prime}$ for $\ell = 1, 2$ and $n < \omega$ be such that $M_{\ell,n}^{\prime\prime} \prec_{\mathbb{L}_{\mu_n^+, \mu_n^+}} M_{\ell,n}^{\prime}$ and $M_{\ell,n}^{\prime\prime}$ has cardinality 2^{μ_n} and $M''_{\ell,n} \prec_{\mathbb{L}_{\mu_{n}^+,\mu_{n}^+}} M'_{\ell,n+1}$ and f maps $M''_{1,n}$ onto $M''_{2,n}$.

Now let $M_{\ell}'' = \bigcup \{ M_{\ell,n}'' : n < \omega \}$ for $\ell = 1, 2$.

Easily $\langle M''_{\ell,n} : n \langle \omega \rangle$ witness that M''_{ℓ} is λ -special[•] and f witness that $M'' \sim M''$ $M_1'' \cong M_2''$.

Also, $M_{\ell,n}''$, $M_{\ell,0}$, are $\mathbb{L}_{\theta,\theta}$ -equivalent, hence $N_1 \cong M_1''$ by [2.4\(](#page-21-0)1) and $N_2 \cong M''_2$ similarly. Together $N_1 \cong N_2$ is promised.

(2) The proof is similar to part of the proof of Theorem [1.5](#page-11-1) clause (a) implies clause (e), i.e., by the hence and forth argument. \blacksquare _{[2.5](#page-22-0)}

Now we can generalize the Robinson lemma, hence (see, e.g., [\[Mak85\]](#page-25-11)) giving an alternative proof of the interpolation theorem (recall though that in [\[She12\]](#page-25-1) we do not assume the cardinal θ is compact).

- CLAIM 2.6: (1) Assume $\tau_1 \cap \tau_2 = \tau_0$, T_{ℓ} is a complete theory in $\mathbb{L}^1_{\theta}(\tau_{\ell})$ for $\ell = 1, 2$ *and* $T_0 = T_1 \cap T_2$ *. Then* $T_1 \cup T_1$ *has a model.*
	- (2) *We can allow in (1) the vocabularies to have more than one sort.*
	- (3) The logic \mathbb{L}^1_{θ} satisfies the interpolation theorem.
(4) \mathbb{L}^1 best distributed and parameters is a if M_{ϕ} of \mathbb{L}^1
	- (4) \mathbb{L}^1_{θ} has disjoint amalgamation, i.e., if $M_0 \prec_{\mathbb{L}^1_{\theta}} M_{\ell}$ for $\ell = 1, 2$, that is, $(M_0, c)_{c \in M_0}, (M_\ell, c)_{c \in M_0}$ has the same \mathbb{L}^1_θ -theory and $|M_1| \cap |M_2| = |M_0|$,
then there is M_n such that M_0 is M_0 for $\theta = 0, 1, 2$ (hence soliting *then there is* M_3 *such that* $M_\ell \prec_{\mathbb{L}^1_\theta} M_3$ *for* $\ell = 0, 1, 2$ *(hence orbital*) *types are well defined).*
	- (5) \mathbb{L}_{θ}^1 has the JEP.^{[3](#page-23-0)}

Proof. (1) Let $\lambda > |\tau_1| + |\tau_2| + \theta$ be a strong limit cardinal of cofinality \aleph_0 . For $\ell = 1, 2$ there is a λ -special model M_{ℓ} of T_{ℓ} by Claim [2.2\(](#page-20-0)3). Now $N_{\ell} = M_{\ell} \mid \tau_0$ is a λ -special model of T.

By Claim [2.5\(](#page-22-0)1), $N_1 \cong N_2$ so without loss of generality $N_1 = N_2$, and let M be the expansion of $N_1 = N_2$ by the predicates and functions of M_1 and of M_2 . Clearly M is a model of $T_1 \cup T_2$.

(2) Similarly.

³ But the disjoint version may fail, e.g., if we have individual constants.

(3) Follows, as \mathbb{L}_{θ}^1 being $\subseteq \mathbb{L}_{\theta,\theta}$ satisfies θ -compactness and part (1).

(4) Follows by (1), that is, let **x** be as in Theorem [1.5\(](#page-11-1)c) for M_1, M_2 . So for every $C \subseteq M_0$ of cardinality $\langle \theta, \theta \rangle$ letting $M_{C,\ell} = (M_\ell, c)_{c \in C}$ we have $N_{C,1} \cong N_{C,2} \cong N_{C,0}$ where $N_{C,\ell} = 1$.u.p._x($M_{C,\ell}$). Hence $N_{C,0} \prec_{\mathbb{L}_{\theta,\theta}} N_{C,\ell}$ for $\ell = 1, 2$ and we use "L_{θ,θ} has disjoint amalgamation".

(5) Follows by Theorem 1.5. $\blacksquare_{2.6}$

 (5) Follows by Theorem [1.5.](#page-11-1)

Remark 2.7: This proof implies the generalization of preservation theorems; see [\[CK73\]](#page-24-1).

Recall that the aim of Ehrenefucht–Mostowski [\[EM56\]](#page-24-2) was: every first order theory T with infinite models has models with many automorphisms. This fails for $\mathbb{L}_{\theta,\theta}$ and even $\mathbb{L}_{\aleph_1,\aleph_1}$ as we can express " \lt is a well ordering". What about \mathbb{L}^1_{θ} ?

Claim 2.8: *Assume (*λ, T *are as above in Claim [2.5](#page-22-0) and)* M *is a special model of* T *of cardinality* λ *. Then M has* 2^{λ} *automorphisms.*

Proof. Let $\langle M_n : n \langle \omega \rangle$ witness M is special. The result follows by the proof of [2.4\(](#page-21-0)2) noting that

- (*) if f_n is an $(M_n, M_n, \mathbb{L}_{\theta,\theta}(\tau_M))$ -elementary mapping then there are $a \in M_{n+1}$ $a_2 \in \lambda(M_{n+1})$ and $f_\alpha, a_{2,\alpha} \in (M_{n+1})$ for $\alpha < \lambda_n$ such that (a) $a_{2,\alpha} \neq a_{2,\beta}$ for $\alpha < \beta < \lambda_n$,
	- (a) f_{α} is an $(M_{n+1}^1, M_{n+1}^2, \mathbb{L}_{\theta, \theta}(\tau_M))$ -elementary mapping,
	- (b) $f_{\alpha} \supseteq f$ and maps a to a_{α} .

Why is this possible? Choose $a' \in M_{n+2} \setminus M_{n+1}$ and choose $a_{\alpha} \in M_{n+1} \setminus \{a_{\beta} : \beta < \alpha\}$ by induction on $\alpha < \lambda_n$ realizing $tp_{\mathbb{L}_{\theta,\theta}(\tau_T)}(a', M_n, M_{n+2})$.

Lastly, let $f_{\alpha} = f \cup \{(a_0, g(a_{\alpha}))\}.$

Why is this enough? It should be clear. \blacksquare _{[2.8](#page-24-3)}

References

- [CK73] C. C. Chang and H. J. Keisler, *Model Theory*, Studies in Logic and the Foundation of Mathematics, Vol. 73, North–Holland, Amsterdam, 1973.
- [EM56] A. Ehrenfeucht and A. Mostowski, *Models of axiomatic theories admitting automorphisms*, Fundamenta Mathematicae **43** (1956), 50–68.
- [Gai74] H. Gaifman, *Elementary embeddings of models of set-theory and certain subtheories*, in *Axiomatic Set Theory, Part II*, Proceedings of Symposia in Pure Mathematics, Vol. 13, American Mathematical Society, Providence, RI, 1974, pp. 33–101.

- [HS81] W. Hodges and S. Shelah, *Infinite games and reduced products*, Annals of Mathematical Logic **20** (1981), 77–108.
- [Kei61] H. J. Keisler, *Ultraproducts and elementary classes*, Indagationes Mathematicae **64** (1961), 477–495.
- [Kei63] H. J. Keisler, *Limit ultrapowers*, Transactions of the American Mathematical Society **107** (1963), 382–408.
- [Koc61] S. Kochen, *Ultraproducts in the theory of models*, Annals of Mathematics **74** (1961), 221–261.
- [Mak85] J. A. Makowsky, *Compactness, embeddings and definability*, in *Model-Theoretic Logics*, Perspectives in Mathematical Logic, Springer, New York, 1985, pp. 645–716.
- [She] S. Shelah, *Model theory for a compact cardinal*, <https://arxiv.org/abs/1303.5247>.
- [She71] S. Shelah, *Every two elementarily equivalent models have isomorphic ultrapowers*, Israel Journal of Mathematics **10** (1971), 224–233.
- [She12] S. Shelah, *Nice infinitary logics*, Journal of the American Mathematical Society **25** (2012), 395–427.
- [She15] S. Shelah, *A.E.C. with not too many models*, in *Logic Without Borders*, Ontos Mathematical Logic, Vol. 5, de Gruyter, Berlin–Boston, MA, 2015, pp. 367–402.
- [Sol74] R. M. Solovay, *Strongly compact cardinals and the gch*, in *Proceedings of the Tarski Symposium, Berkeley 1971*, Proceedings of Symposia in Pure Mathematics, Vol. 25, American Mathematical Society, Providence, RI, 1974, pp. 365–372.
- [VÏ1] J. Väänänen, *Models and Games*, Cambridge Studies in Advanced Mathematics, Vol. 132, Cambridge University Press, Cambridge, 2011.