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ABSTRACT

The logic L1
θ was introduced in [She12]; it is the maximal logic below Lθ,θ

in which a well ordering is not definable. We investigate it for θ a compact

cardinal. We prove that it satisfies several parallels of classical theorems

on first order logic, strengthening the thesis that it is a natural logic.

In particular, two models are L1
θ-equivalent iff for some ω-sequence of θ-

complete ultrafilters, the iterated ultrapowers by it of those two models

are isomorphic.

Also for strong limit λ > θ of cofinality ℵ0, every complete L1
θ-theory

has a so-called special model of cardinality λ, a parallel of saturated. For

first order theory T and singular strong limit cardinal λ, T has a so-called

special model of cardinality λ. Using “special” in our context is justified

by: it is unique (fixing T and λ), all reducts of a special model are special

too, so we have another proof of interpolation in this case.
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0. Introduction

0(A). Background and results. In the sixties, ultraproducts were very cen-

tral in model theory. Recall Keisler [Kei61], solving the outstanding problem in

model theory of the time, assuming an instance of GCH characterizes elemen-

tary equivalence in an algebraic way; that is by proving:

� for any two models M1,M2 (of vocabulary τ of cardinality ≤ λ and) of

cardinality1 ≤ λ, the following are equivalent provided that 2λ = λ+:

(a) M1,M2 are elementarily equivalent;

(b) they have isomorphic ultrapowers, that is Mλ
1 /D2

∼= Mλ
2 /D1 for

some ultrafilter D� on a cardinal λ;

(c) Mμ/D ∼= Mμ/D for some ultrafilter D on some cardinal μ;

(d) as in (c) for μ = λ.

Kochen [Koc61] uses iteration on taking ultrapowers (on a well ordered index

set) to characterize elementary equivalence. Gaifman [Gai74] uses ultrapowers

on ℵ1-complete ultrafilters iterated along a linear ordered index set. Keisler

[Kei63] uses general (ℵ0,ℵ0)-l.u.p.; see below, Definition 0.13(4) for κ = ℵ0.

Shelah [She71] proves � in ZFC, but with a price: we have to omit clause (d),

and the ultrafilter is on μ = 2λ.

Hodges–Shelah [HS81] is closer to the present work (see there for earlier

works): it dealt with isomorphic ultrapowers (and isomorphic reduced powers)

for the θ-complete ultrafilter (and filter) case, but note that having isomorphic

ultrapowers by θ-complete ultrafilters is not an equivalence relation. In partic-

ular, assume θ > ℵ0 is a compact cardinal and little more (we can get it by

forcing over a universe with a supercompact cardinal and a class of measurable

cardinals). Then two models have isomorphic ultrapowers for some θ-complete

ultrafilter iff in all relevant games the isomorphism player does not lose. Those

relevant games are of length ζ < θ and deal with the reducts to a sub-vocabulary

of cardinality < θ and usually those games are not determined.

The characterization [HS81] of having isomorphic ultrapowers by θ-complete

ultra-filters, is necessarily not so “nice” because this relation is not an equiva-

lence relation. Hence having isomorphic ultrapowers is not equivalent to having

the same theory in some logic.

1 In fact “M� is of cardinality ≤ λ+” suffices.
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Most relevant to the present paper is [She12] which we continue here. For

notational simplicity let θ be an inaccessible cardinal. An old problem from the

seventies was:

� is there a logic between Lθ,ℵ0 and Lλ,θ which satisfies interpolation?

Generally, interpolation had posed a hard problem in soft model theory. An-

other, not so precise problem was to find generalizations of the Lindstrom theo-

rem; see [V1̈1]. Now [She12] solves the first problem and suggests a solution to

the second problem, by putting forward the logic L1
θ introduced there. It was

proved that it satisfies � and give a characterization: e.g., it is a maximal logic

in the interval mentioned in � which satisfies non-definability of well order in

a suitable sense (see [She12, 3.4=La28]).

Another line of research was investigating infinitary logics for θ a compact

cardinal; see [She] and history there. We continue those two lines, investigating

L1
θ for θ a compact cardinal. We prove that it is an interesting logic: it shares

with first order logic several classical theorems.

We may wonder: do we have a characterization of models being L1
θ-equivalent?

In §1 we characterize L1
θ-equivalence of models by having isomorphic iterated

ultrapowers of length ω. Then in §2 we prove some further generalizations of

classical model theoretic theorems, like the existence and uniqueness of special

models in λ when λ > θ + |T | is strong limit of cofinality ℵ0. All this seems to

strengthen the thesis of [She12] that L1
θ is a natural logic.

Of course, success drives us to consider further problems. For another ap-

proach see [She15].

Question 0.1: Assume θ is a strong limit singular cardinal of cofinality ℵ0.

(1) Does the logic Lθ+,θ restricted to models of cardinality θ have interpo-

lation?

(2) Is there a logic L with interpolation such that: Lθ+,θ ≤ L ≤ Lθk,θ+ .

Question 0.2: Let θ be a compact cardinal and λ > θ be a strong limit of

cofinality ℵ0.

(1) Does the logic Lθ,θ restricted to model of cardinality λ has interpolation?

(2) Can we characterize when a theory T ⊆ L1
θ of cardinality < θ is cate-

gorical in λ?

(2A) Can we then conclude that it is categorical in other such λ-s?

(3) Like parts (2), (2A) for T ⊆ Lθ,θ?
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0(B). Preliminaries.

Hypothesis 0.3: θ is in §1, §2 a compact uncountable cardinal (of course, we use

only restricted versions of this).

Notation 0.4: (1) Let ϕ(x̄) mean: ϕ is a formula of Lθ,θ, x̄ is a sequence

of variables with no repetitions including the variables occurring freely

in ϕ and 	g(x̄) < θ if not said otherwise. We use ϕ, ψ, ϑ to denote

formulas and for a statement st let ϕst or ϕ[st] or ϕif(st) mean ϕ if st is

true or 1 and ¬ϕ if st is false or 0.

(2) For a set u, usually of ordinals, let

x̄[u] = 〈xε : ε ∈ u〉;

now u may be an ordinal but, e.g., if u = [α, β) we may write x̄[α,β);

similarly for ȳ[u], z̄[u]; let 	g(x̄[u]) = u.

(3) τ denotes a vocabulary, i.e., a set of predicates and function sym-

bols each with a finite number of places, in other words the arity

arity(τ) = ℵ0; see 0.5 on this.

(4) T denotes a theory in Lθ,θ or L1
θ (see below), usually complete in the

vocabulary τT and with a model of cardinality ≥ θ if not said otherwise.

(5) Let ModT be the class of models of T .

(6) For a model M let its vocabulary be τM .

Remark 0.5: (1) What is the problem with predicates (and function

symbols) with infinite arity? If 〈Mα : α ≤ δ〉, δ a limit ordinal is

increasing, even if the universe of Mδ is the union of the universes of

Mα, α < δ, this does not determine Mδ.

(2) We can still define ∪{Mα : α < δ} by deciding

PMδ = ∪{Mα : α < δ}

for any predicate P and treating function similarly (so the function

symbols are interpreted as partial functions) or better, deciding to use

predicates only.

Now with care we can use arity(τ) ≤ θ and we sometimes remark on this.

Notation 0.6: Let ε, ζ, ξ denote ordinals < θ.
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Definition 0.7: (1) Let ufθ(I) be the set of θ-complete ultrafilters on I, non-

principal if not said otherwise. Let filθ(I) be the set of θ-complete filters

on I; mainly we use (θ, θ)-regular ones (see below).

(2) D ∈ filθ(I) is called (λ, θ)-regular when there is a witness

w̄ = 〈wt : t ∈ I〉

which means: wt ∈ [λ]<θ for t ∈ I and α < λ⇒ {t : α ∈ wt} ∈ D.

(3) Let rufλ,θ(I) be the set of (λ, θ)-regular D ∈ ufθ(I); let rfilλ,θ(I) be the

set of (λ, θ)-regular D ∈ filθ(I); when λ = |I| we may omit λ.

Definition 0.8: (1) Lθ,θ(τ) is the set of formulas of Lθ,θ in the vocabulary τ .

(2) For τ -models M,N let M ≺Lθ,θ
N mean: if ϕ(x̄) ∈ Lθ,θ(τM ) and

ā ∈ �g(x̄)M then

M |= ϕ[ā] ⇔ N |= ϕ[ā].

And, of course

Fact 0.9: For a complete T ⊆ Lθ,θ(τ): (ModT ,≺Lθ,θ
) has amalgamation and

the joint embedding property (JEP), that is:

(a) amalgamation: if M0 ≺Lθ,θ
M� for 	 = 1, 2, then there are M3, f1, f2,

M ′
1, M ′

2 such that

• M0 ≺Lθ,θ
M3,

• for 	 = 1, 2, f� is a ≺Lθ,θ
-embedding of M� into M3 over M0, that

is, for some τT -models M ′
� for 	 = 1, 2 we have M ′

� ≺Lθ,θ
M3 and f�

is an isomorphism from M� onto M ′
� over M0;

(b) JEP: if M1,M2 are Lθ,θ-equivalent τ -models then there is a τ -model M3

and ≺Lθ,θ
-embedding f� of M� into M3 for 	 = 1, 2.

The well known generalization of the �Los theorem is:

Theorem 0.10: (1) If ϕ(x̄[ζ]) ∈ Lθ,θ(τ), D ∈ ufθ(I) and Ms is a τ -model

for s ∈ I and fε ∈
∏

s∈I Ms for ε < ζ then M |= ϕ[. . . , fε/D, . . .]ε<ζ iff

the set

{s ∈ I : Ms |= ϕ[. . . , fε(s), . . .]ε<ζ}
belongs to D.

(2) Similarly M ≺Lθ,θ
M I/D.
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Definition 0.11: (0) We say X respects E when for some set I, E is an

equivalence relation2 on I and X ⊆ I and sEt⇒ (s ∈ X ⇔ t ∈ X).

(1) We say x = (I,D, E ) is a (κ, σ)-l.u.f.t.(limit-ultra-filter-iteration triple)

when:

(a) D is a filter on the set I,

(b) E is a family of equivalence relations on I,

(c) (E ,⊇) is σ-directed, i.e., if α(∗) < σ and Ei ∈ E for i < α(∗), then

there is E ∈ E refining Ei for every i < α(∗)

(d) if E ∈ E , then D/E is a κ-complete ultrafilter on I/E where

D/E := {X/E : X ∈ D and X respects E}.

(1A) Let x be a (κ, θ)-l.f.t.mean that above we weaken (d) to

(d)’ if E ∈ E then D/E is a κ-complete filter.

(2) Omitting “(κ, σ)”means (θ,ℵ0), recalling θ is our fixed compact cardinal.

(3) Let (I1, D1, E1) ≤1
h (I2, D2, E2) mean that:

(a) h is a function from I2 onto I1,

(b) if E ∈ E1 then h−1 ◦ E ∈ E2 where

h−1 ◦ E = {(s, t) : s, t ∈ I2 and h(s)Eh(t)},
(c) if E1 ∈ E1 and E2 = h−1 ◦ E1 then D1/E1 = h′′(D2/E2).

Remark 0.12: Note that in Definition 0.11(3), if h = idI2 then I1 = I2.

Definition 0.13: Assume x = (I,D, E ) is a (κ, σ)-l.u.f.t.

(1) For a function f let eq(f) = {(s1, s2) :f(s1) = f(s2)}. If f̄ = 〈fi : i < i∗〉
and i < i∗ ⇒ dom(fi) = I then eq(f̄) = ∩{eq(fi) : i < i∗}.

(2) For a set U let U I |E = {f ∈ IU : eq(f) is refined by some E ∈ E }.

(3) For a model M let

l.r.p.x(M)=M I
D|E=(M I/D)�{f/D:f∈IM and eq(f) is refined by some E∈E },

pedantically (as arity(τM ) may be > ℵ0), M I
D|E =

⋃{M I
D�E : E ∈ E };

l.r.p. stands for limit reduced power.

(4) If x is l.u.f.t. we may in part (3) write l.u.p.x(M).

We now give the generalization of Keisler [Kei63]; Hodges–Shelah [HS81,

Lemma 1, p. 80] in the case κ = σ.

2 Here, in the interesting cases, the number of equivalence classes of E is infinite, and even

≥ θ, pedantically not bounded by any θ∗ < θ.
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Theorem 0.14: (1) If σ ≤ κ and (I,D, E ) is (κ, σ)-l.u.f.t.,

ϕ = ϕ(x̄[ζ]) ∈ Lκ,σ(τ)

so ζ < σ, fε ∈ M I |E for ε < ζ, then M I
D|E |= ϕ[. . . , fε/D, . . .] iff

{s ∈ I : M |= ϕ[. . . , fε(s), . . .]ε<ζ} ∈ D.

(2) Moreover M ≺Lκ,σ M
I
D/E , pedantically j = jM,x is a ≺Lκ,σ -elementary

embedding of M into M I
D/E where j(a) = 〈a : s ∈ I〉/D.

(3) We define (
∏

s∈I Ms)
I
D|E similarly when eq(〈Ms : s ∈ I〉) is refined by

some E ∈ E ; we may use this more at the end of the proof of Claim 1.2.

Convention 0.15: Abusing a notation;

(1) in
∏

s∈I Ms/D we allow f/D for f ∈ ∏
s∈S Ms when S ∈ D.

(2) For c̄ ∈ γ(
∏

s∈I Ms/D) we can find 〈c̄s : s ∈ I〉 such that c̄s ∈ γ(Ms)

and c̄ = 〈c̄s : s ∈ I〉/D, which means: if i < 	g(c̄) then cs,i ∈ Ms and

ci = 〈cs,i : s ∈ I〉/D.

Remark 0.16: (1) Why the “pedantically” in Definition 0.13(3)? Otherwise

if x is a (θ, σ) − l.u.f.t., (Ex,⊇) is not κ+-directed, κ < arity(τ), then defining

l.u.p.x(M), we have freedom: if R ∈ τ, arityτ (R) ≥ κ, i.e., on

RN�{ā : ā ∈ arity(P )N and no E ∈ E refines eq(ā)}

so we have no restrictions.

(2) So, e.g., for categoricity we better restrict ourselves to vocabularies τ such

that arity(τ) = ℵ0.

Definition 0.17: We say M is a θ-complete model when for every ε < θ,

R∗ ⊆ εM and F∗ : εM →M there areR,F ∈ τM such thatRM =R∗ ∧ FM =F∗.

Observation 0.18: (1) If M is a τ -model of cardinality λ then there is

a θ-complete expansion M+ of M so τ(M+) ⊇ τ(M) and τ(M+) has

cardinality |τM | + 2(‖M‖<θ).

(2) For models M ≺Lθ,θ
N and M+ as above the following conditions are

equivalent:

(a) N = l.u.p.x(M) identifying a ∈M with jx(a) ∈ N , for some (θ, θ)-

l.u.f.t.x

(b) there is N+ such that M+ ≺Lθ,θ
N+ and N+�τM is isomorphic

to N over M , in fact we can add N+�τM = N .
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(3) [θ is a compact cardinal] For a model M , if (PM,<M ) is a θ-directed

partial order and χ=cf(χ)≥θ and λ= λ‖M‖ + χ then for some (θ, θ)-

l.u.f.t.x, the model N:=l.u.p.x(M) satisfies (PN , <N) has a cofinal in-

creasing sequence of length χ and |PN | = λ.

Proof. Easy, for example:

(3) Let M+ be as in part (1). Note that M+ has Skolem functions and let

T ′ be the following set of formulas:

ThLθ,θ
(M+) ∪ {P (xε) : ε < λ · χ}

∪ {P (σ(xε0 , . . . , xεi , . . .)i<i(∗)) → σ(xε0 , . . . , xεi , . . .)i<i(∗) < xε :

σ is a τ(M+)-term so i(∗) < θ and i < i(∗) ⇒ εi < ε < λ · χ}.
Clearly

(∗) T ′ is (< θ)-satisfiable in M+.

[Why? Because if T ′′ ⊆ T ′ has cardinality < θ then the set

u = {ε < λ · χ : xε appears in T ′′}

has cardinality < θ and let i(∗) = otp(u); clearly for each ε ∈ u the set

Γε = T ′ ∩ {P (σ(xε0 , . . .)) → σ(xε0 , . . . , xεi , . . .)i<i(∗) < xε : i(∗) < θ and εi < ε

for i < i(∗)}
has cardinality < θ. Now we choose cε ∈ M by induction on ε ∈ u such that

the assignment

xζ �→ cζ

for ζ∈ε∩u in M+ satisfies Γε, possible because |Γε|<θ, |uε|<θ and (PM , <M )

is θ-directed. So the M+ with the assignment xε �→ cε for ε ∈ u is a model of

T ′′, so T ′ is (< θ)-satisfiable indeed.]

Recalling that |M | = {cM+

: c ∈ τ(M+) an individual constant}, T ′ is

realized in some ≺Lθ,θ
-elementary extension N+ of M+ by the assignment

xε �→ aε(ε < λ · χ).

Without loss of generality N+ is the Skolem hull of {aε : ε < λ · χ}, so

N := N+�τ(M) is as required by the choice of T ′. Now x is as required and

exists by part (2) of the claim. 0.18
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Observation 0.19: (1) If x is a non-trivial (θ, θ)-l.u.f.t.and χ = cf(l.u.p.(θ <))

then χ = χ<θ.

(2) Also μ = μ<θ when μ is the cardinality of l.u.p.(θ,<).

Proof. (1) By the choice of x clearly χ ≥ θ. As χ is regular ≥ θ by a theorem

of Solovay [Sol74] we have χ<θ = χ.

(2) See the proof of [She, 2.20(3)=La27(3)]. 0.19

We now quote [She12, Def.2.1+La8]

Definition 0.20: For a vocabulary τ , τ -models M1,M2, a set Γ of formulas in

the vocabulary τ in any logic (each with finitely many free variables if not said

otherwise; see [She, 2.9=La10(4)]), cardinal θ and ordinal α, we define a game

� = �Γ,θ,α[M1,M2] as follows, and using (M1, b̄1), (M2, b̄2) with their natural

meaning when Dom(b̄1) = Dom(b̄2):

(A) The moves are indexed by n < ω (but every actual play is finite), just

before the n-th move we have a state sn = (A1
n, A

2
n, h

1
n, h

2
n, gn, βn, n),

(B) s = (A1, A2, h1, h2, g, β, n) = (A1
s , A

2
s , h

1
s , h

2
s , gs, βs, ns) is a state (or

n-state or (θ, n)-state or (θ,< ω)-state) when:

(a) A� ∈ [M�]
≤θ for 	 = 1, 2,

(b) β ≤ α is an ordinal,

(c) h� is a function from A� into ω,

(d) g is a partial one-to-one function from M1 to M2 and let

g1s = g1 = gs = g and g2s = g2 = (g1s )−1,

(e) Dom(g�) ⊆ A� for 	 = 1, 2,

(f) g preserves satisfaction of the formulas in Γ and their negations,

i.e., for ϕ(x̄) ∈ Γ and ā ∈ �g(x̄)Dom(g) we have

M1 |= ϕ[ā] ⇔M2 |= ϕ[g(ā)],

(g) if a ∈ Dom(g�) then h�(a) < n,

(C) we define the state s = s0 = s0α by letting ns = 0, A1
s = ∅ = A2

s , βs = α,

h1s = ∅ = h2s , gs = ∅; so really s depends only on α (but in general, this

may not be a state for our game as possibly for some sentence ψ ∈ Γ

we have M1 |= ψ ⇔M2 |= ¬ψ),

(D) we say that a state t extends a state s when A�
s ⊆ A�

t, h
�
s ⊆ h�t for

	 = 1, 2 and gs ⊆ gt, βs > βt, ns < nt; we say t is a successor of s if, in

addition, nt = ns + 1,
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(E) in the n-th move the anti-isomorphism player (AIS) chooses the triple

(βn+1, ιn, A
′
n) such that:

• ιn ∈ {1, 2}, βn+1 < βn and Aιn
n ⊆ A′

n ∈ [Mιn ]≤θ,

the isomorphism player (ISO) chooses a state sn+1 such that:

• sn+1 is a successor of sn,

• Aιn
sn+1

= A′
n,

• A3−ιn
sn+1

= A3−ιn
sn ∪ Dom(g3−ιn

sn+1
),

• if a ∈ A′
n\Aιn

sn then hιnsn+1
(a) ≥ n+ 1,

• Dom(gιnsn+1
) = {a ∈ Aιn

sn : hιnsn(a) < n+ 1} so it includes Dom(gιnsn),

• βsn+1 = βn+1.,

(F) • the play ends when one of the players has no legal moves (always

occurs as βn < βn−1) and then this player loses; this may occur

for n = 0,

• for α = 0 we stipulate that ISO wins iff s0α is a state.

Definition 0.21: (1) Let E 0,τ
Γ,θ,α be the class {(M1,M2) : M1,M2 are τ -

models and in the game �Γ,θ,α[M1,M2] the ISO player has a winning

strategy} where Γ is a set of formulas in the vocabulary τ , each with

finitely many free variables.

(2) E 1,τ
Γ,θ,α is the closure of E 0,τ

Γ,θ,α to an equivalence relation (on the class of

τ -models).

(3) Above, we may replace Γ by qf(τ), which means Γ = the set at(τ) of

atomic formulas or bs(τ) of basic formulas in the vocabulary τ .

(4) Above, if we omit τ we mean τ = τΓ and if we omit Γ we mean bs(τ).

Abusing notation we may say M1,M2 are E 0,τ
Γ,θ,α-equivalent.

The following Definition 0.22 is closely related to the beginning of §1; it quotes

[She12, Def. 2.5=La13] .

Definition 0.22: (1) For a vocabulary τ , the τ -models M1,M2 are L1
<θ-

equivalent iff for every μ < θ and α < μ+ and τ1 ⊆ τ of cardinality

≤ μ, letting Γ = the quantifier free formulas in L(τ), the models M1,M2

are E 1,τ1
Γ,μ,α.

(2) The logic Lλ,κ is defined like first order logic but we allow conjunctions

on sets of < λ formulas and we allow quantification of the form ∀x̄ for

sequences x̄ of length < κ; however each formula has to have < κ free
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variables, and disjunctions and existential quantifications are defined

naturally.

(2A) We define L<λ,<κ as ∪{Lλ1,κ1 : λ1 < λ, κ1 < κ} ; we may replace < λ+

by λ and < κ+ by κ.

(3) The logic L1
≤θ is defined as follows: a sentence ψ ∈ L≤θ(τ) iff the

sentence is defined using (or by) a triple (qf(τ1), θ, α) which means: τ1

is a sub-vocabulary of τ of cardinality ≤ θ and α < θ+, and for some

sequence 〈Mβ : β < β(∗)〉 of τ1-models of length β(∗) ≤ �α+1(θ) we

have: M |= ψ iff M is E 1
qf(τ1),θ,α

-equivalent to Mα for some β < β(∗).

(4) Let L1
κ =

⋃{L1
≤θ : θ < κ} so L1

θ+ = L1
≤θ.

Acknowledgment. The author thanks Alice Leonhardt for the beautiful typ-

ing. We thank the referee for many helpful comments.

1. Characterizing equivalence by ω-limit ultrapowers

In [She12], a logic L1
<κ =

⋃
μ<κ L

1
≤μ is introduced (here we consider κ is strongly

inaccessible for transparency), and is proved to be stronger than Lκ,ℵ0 but

weaker than Lκ,κ, has interpolation and a characterization, well ordering not

definable in it and has an addition theorem. Also it is the maximal logic with

some such properties.

For κ = θ, we give a characterization of when two models are L1
<θ-equivalent

giving additional evidence for the logic’s naturality.

Convention 1.1: In this section every vocabulary τ has arity(τ) = ℵ0.

Recall [She12, 2.11=La18] which says (we expand it):

Claim 1.2: (1) We have Mn ≡L
1
≤θ

Mω for n < ω when clauses (b), (c) below

hold and moreover Mn |= ψ[ā] ⇔ Mω |= ψ[ā] when clauses (a)–(e) below hold,

where:

(a) ψ(z̄) ∈ L1
≤θ(τ) a formula,

(b) Mn ≺L<∂,θ+
Mn+1 where ∂ = �θ+ , recalling Definition 0.22(2A),

(c) Mω :=
⋃

n<ωMn,

(d) ā ∈ �g(z̄)(M0),

(e) τ = τ(Mn) for n < ω.

(2) Assume |τ | ≤ μ,Mn is a τ -model and Mn ≺Lμ+,μ+ Mn+1 for n < ω and

Mω =
⋃{Mn : n < ω}. Then M0,Mω are L1

≤μ-equivalent.
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We need two definitions before stating and proving the theorem below. The

first definition generalizes common concepts.

Definition 1.3: We say that a pair of models (M1,M2) has isomorphic θ-complete

ω-iterated ultrapowers iff one can find Dn ∈ ufθ(In) for every n ∈ ω such that

M1
ω
∼= M2

ω, when
M �

ω =
⋃

{M �
k : k ∈ ω}, M �

0 = M�

and
M �

n ≺Lθ,θ
(M �

n)In/Dn = M �
n+1

for 	 = 1, 2 and n < ω.

For the second definition, let x be a l.u.f.t. and in Definition 1.4 below we

define “niceness witness”. How do we arrive at this definition? If we try to

analyze how to prove that two L1
θ-equivalent models have isomorphic θ-complete

ω-iterated ultrapowers by a sequence of length ω of approximations, it is natural

to carry the induction step. The reader may return to this after reading the

proof of (a)→(e) of Theorem 1.5.

To understand this (and the proof of Theorem 1.5) the reader may consider

the case θ = ℵ0, which naturally is simpler and tells us that for each coordinate

s ∈ I we play a game of an Ehrenfuecht–Fräıssé game. Note also that Claim

1.2 clarifies why having arity(τ) = ℵ0 helps.

Definition 1.4: If x = (I,D, Ē) is an l.u.f.t. and Ē = 〈En : n ∈ ω〉 then w̄ is a

niceness witness for (I,D, Ē) when:

(a) w̄ = 〈ws,n, γs,n : s ∈ I, n < ω〉,
(b) ws,n ⊆ λn and |ws,n| < θ and |ws,n| ≥ |ws,n+1|,
(c) γs,n < θ and (γs,n > γs,n+1) ∨ (γs,n+1 = 0),

(d) γs,n = 0 ⇒ ws,n = ∅ but ws,0 �= ∅ and for simplicity ws,0 is infinite for

every s ∈ I,

(e) if n < ω, u ∈ [λn]<θ then {s ∈ I : u ⊆ ws,n} ∈ D,

(f) ws,n = wt,n and γs,n = γt,n when sEnt.

Theorem 1.5: Let θ be a compact cardinal andM1,M2 be two τ -models (and

arity(τ) = ℵ0).

The following conditions are equivalent:

(a) M1,M2 are L1
θ-equivalent,

(b) there are (θ, θ)-l.u.f.t.xn = (I,D, En) and En ⊆ En+1 for n < ω and we

let E =
⋃{En : n < ω} such that (M1)ID|E is isomorphic to (M2)ID|E ,
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(c) (M1,M2) have isomorphic θ-complete ω-iterated ultrapowers (see Def-

inition 1.3),

(d) ifDn∈rufλn,θ(In) so |In| ≥ λn and λn+1 ≥ 2|In|, λn>‖M1‖+‖M2‖+|τ |
for every n then the sequence 〈(In, Dn) : n < ω〉 is as required in

clause (c),

(e) if x = (I,D, E ) is a l.u.f.t.(see Definition 0.11(1)), E = {En : n < ω},
for n < ω we have En+1 refines En, 2

|I/En| ≤ λn+1, D/En is a (λn, θ)-

regular θ-complete ultrafilter, λ0 ≥ ‖M1‖ + ‖M2‖ + |τ |, w̄ is a niceness

witness (see Definition 1.4), then l.u.p.x(M1) ∼= l.u.p.x(M2) (see Defi-

nition 0.13(3)).

Proof. Clause (b)⇒Clause (a):

So let I,D, En(n < ω) be as in clause (b) and E =
⋃{En : n < ω}. By the

transitivity of being L1
<θ-equivalent, clearly clause (a) follows from:

�1 for every model N the models N,N I
D|E are L1

θ-equivalent.

[Why does �1 hold? Let Nn = N I
D|En for n < ω and Nω =

⋃{Nn : n < ω}.

So by Theorem 0.14 we have N ≡Lθ,θ
N0 and moreover Nn ≺Lθ,θ

Nn+1. Hence

by Claim 1.2, that is the “Crucial Claim” 1.2 quoting [She12, 2.11=a18], we

have Nn ≡L
1
<θ
Nω hence N ≡L

1
<θ
Nω.]

Clause (c)⇒Clause (b):

Let

I =
∏
n<ω

In,

En = {(η, ν) : η, ν ∈ I and η�n = ν�n}
and

D =

{
X ⊆ I :for some n, (∀Dnin ∈ In)(∀Dn−1 in−1 ∈ In−1) · · · (∀D0 i0 ∈ I0)(∀η)

[
η ∈ I ∧

∧
�≤n

η(	) = i� → η ∈ X

]}
.

Now let M �
ω ≡ (M�)

I
D|{En : n < ω}.

Now it should be clear that (M�)
I
D|{En : n < ω} is isomorphic to M �

ω

for 	 = 1, 2, so recalling M1
ω

∼= M2
ω by the present assumption, the models

(M�)
I
D|{En : n < ω} for 	 = 1, 2 are isomorphic, so letting En = {E0, . . . , En}

we easily see that (I,D, En)n<ω are as required in clause (b).
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Clause (d)⇒Clause (c):

Clause (d) is obviously stronger, but we must point out that there are

such In, Dn; anyhow we shall elaborate. We can choose

λ0 = (‖M1‖ + ‖M2‖ + |τ | + θ)<θ,

λn+1 = 2λn for n < ω;

then letting In = λn there is Dn ∈ rufλn,θ(In) recalling θ is a compact cardi-

nal, noting λn = λ<θ
n . Now 〈In, Dn : n < ω〉 is as required in the assumption

of clause (d), so as we are now assuming clause (d), also its conclusion holds.

Now 〈(In, Dn) : n < ω〉 are as required in clause (c), in particular the isomor-

phism holds by the conclusion of clause (d) which, as mentioned in the previous

sentence, holds.

Clause (e)⇒Clause (d):

Let 〈(In, Dn, λn) : n < ω〉 be as in the assumption of clause (d).

We define I =
∏

n In, En = {(η, ν) : η, ν ∈ I, η�(n+ 1) = ν�(n+ 1)} and de-

fine D as in the proof of (c)⇒(b) above and we choose w̄ = 〈wη,n : η ∈ I, n < ω〉
as follows.

First, choose ūn = 〈uns : s ∈ In〉 which witness Dn is (λn, θ)-regular,

i.e., uns ∈ [λn]<θ and (∀α < λn)[{s ∈ In : α ∈ uns } ∈ Dn]. For η ∈ I and n < ω

let wη,n be unη(n) if 〈otp(uη(�)) : 	 ≤ n〉 is decreasing and ∅ otherwise. Let γη,n be

otp(wη,n). Now we can check that the assumptions of clause (e) hold (because

of the choice of D); we shall elaborate two points. First the ultrafilter D/En is

(λ, θ)-regular because 〈unη(n0)/En : η ∈ I〉 witnesses it.

Second, the main point is to prove that w̄ = 〈(wη,n, γη,n : η ∈ I, n < ω〉 is

indeed a niceness witness for (I,D, Ē). For this, most clauses of Definition 1.4

are easy, but we better elaborate on clause (e) there. For every n:

(∗)n for some Xn ∈ Dn, for every sn ∈ Xn, for some Xn−1 ∈ Dn−1,. . . , for

some X0 ∈ D0 for every s0 ∈ X0, if 〈s0, . . . , sn〉 � η ∈ I, then

(a) |wη,0| > |wη,1| > . . . > |wη,0|
(b) |u�s� | > |u�+1

s�+1
| for 	 < n.

Why does (∗)n hold? Clause (a) holds by clause (b) and the choice of wη,n as

unη(n). Clause (b) holds because u�+1
s�+1

is of cardinality < θ and

{s ∈ I� : |u�+1
s�+1

|+ ⊆ u�s} ∈ D�.

Hence the conclusion of clause (e) holds and we are done as in the proof of

(c)⇒(b).
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Clause (a)⇒Clause (e):

So assume that clause (a) holds, that is M1,M2 are L1
θ-equivalent and assume

I,D, E , 〈En : n < ω〉 and w̄ are as in the assumption of clause (e); and we should

prove that its conclusion holds, that is,

l.u.p.x(M1) ∼= l.u.p.x(M2).

For every τ∗ ⊆ τ of cardinality < θ and μ < θ, by Definition 0.22 we know

that M1�τ∗,M2�τ∗ are L1
≤μ-equivalent, hence for every α < μ+ there is a finite

sequence 〈Nτ∗,μ,α,k : k ≤ k(τ∗, μ, α)〉 such that:

(∗)1 (a) Nτ∗,μ,α,0 = M1�τ∗,

(b) Nτ∗,μ,α,k(τ∗,μ,α) = M2�τ∗,

(c) in the game �τ∗,μ,α[Nτ∗,μ,α,k, Nτ∗,μ,α,k+1] the ISO player has a win-

ning strategy for each k<k(τ∗, μ, α), but we stipulate a play to have

ω moves, by deciding they continue to choose the moves even when

one side already wins using the same state except changing ns.

[Why? By Definition 0.20 which quotes [She12, 2.1=La8]]

(∗)2 without loss of generality ‖Nτ∗,μ,α,k‖ ≤ λ0 for k∈{1, . . . ,k(τ∗, μ, α)−1}
(even < θ).

[Why? By (a degenerated case of) Claim 1.2.]

We can (without loss of generality) assume:

(∗)3 (a) above k(τ∗, μ, α) = k,

(b) τ has only predicates.

[Why? Clause (a) by monotonicity in τ∗, μ and in α of M1E
1,τ∗

qf(τ∗),μ,αM2.

Clause (b) is easy too.]

We denote:

(∗)4 (a) 〈Pα : α < |τ |〉 list the predicates of τ , recall that |τ | ≤ λ0,

(b) for t ∈ I let τt = {Pα : α ∈ wt,0 ∩ |τ |}.

(∗)5 Let Ns,k := Nτs,|ws,0|,γs,0+1,k for s ∈ I and k ≤ k.

For k ≤ k, let f̄k,n = 〈fk,n,α : α < 2λn〉 list the members f of
∏

s∈I Ns,k such

that En refines eq(f), so

fk,n,α = 〈fk,n,α(η) : η ∈ I〉
but

η ∈ I ∧ ν ∈ I ∧ ηEnν ⇒ fk,n,α(η) = fk,n,α(ν).
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Now

(∗)6 (a) for t∈I and k < k let �t,k be the game �τt,|wt,0|,γt,0+1[Nt,k, Nt,k+1],

(b) let stt,k be a winning strategy for the ISO player in �t,k,

(c) if t1E0t2 then 〈Ntι,k : k ≤ k〉 are the same for ι = 1, 2, moreover,

(�t1,k = �t2,k and) stt1,k = stt2,k for k < k.

[Why clause (c)? Because by (∗)5, Ns,k, Nτs,|ws,0|,γs,0+1,k are determined by

(ws,0, k) and τs depends on ws,0 only, hence (by clause (e) of Theorem 1.5 and

clause (f) from Definition 1.4), Ns,k depends just on (s/E0, k).]

Now for each k by induction on n we choose 〈st,k,n : t ∈ I〉 such that:

(∗)7 (a) st,k,n is a state of the game �t,k,

(b) 〈st,k,m : m ≤ n〉 is an initial segment of a play of �t,k in which the

ISO player uses the strategy stt,k,

(c) if t1Ent2 then st1,k,n = st2,k,n,

(d) βst,k,n
= γt,n, see Definition 0.20,

(e) if t ∈ I, n = ι mod 2 and ι ∈ {0, 1} then

Aι
st,k,n

⊇ {fk+ι,m,α(t) : m < n and α ∈ wt,m},

see Definition 0.20(E).

(∗)8 We can carry the induction on n.

[Why? Straightforward.]

(∗)9 For each k < k, n < ω, t ∈ I we define hs,k,n, a partial function

from Ns,k to Ns,k+1 by hs,k,n(a1) = a2 iff for some m ≤ n,ws,m �= ∅
and gst,k,m

(a1) = a2, see Definition 0.20(E).

Now clearly:

�1 For each t ∈ I, k < k and n < ω, hs,k,n is a partial one-to-one func-

tion and even a partial isomorphism from Ns,k to Ns,k+1, non-empty

when n > 0 and increasing with n.

[Why? By the choice of stt,k and (∗)7(a).]

�2 Let

Yk,n =

{
(f1, f2) :f� ∈

∏
s∈I

Dom(hs,k,n) for 	 = 1, 2

and s ∈ I ⇒ f2(s) = hs,k,n(f1(s))

}
.
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�3 fk,n = {(f1/D, f2/D) : (f1, f2) ∈ Yk,n} is a partial isomorphism from

M I
1 �
{
f/D : f ∈

∏
s

Ns,k and f respects En

}

to

M I
2 �
{
f/D : f ∈

∏
s

Ns,k+1 and f respects En

}
.

�4 fk,n ⊆ fk,n+1.

�5 (a) If f1 ∈ ∏
sNs,k and eq(f1) is refined by En then for some n1 > n

and f2 ∈ ∏
sNs,k+1 the pair (f1/D, f2/D) belongs to fk,n1 .

(b) If f2 ∈ ∏
sNs,k+1 and eq(f2) is refined by En then for some n1 > n

and f1 ∈ ∏
sNs,k the pair (f1/D, f2/D) belongs to fk,n1 .

[Why? By symmetry it suffices to deal with clause (a). For some α, f1 = fk,n,α,

hence for every t ∈ Dom(f1), f1(t) ∈ A1
st,k,n

. We use the “delaying function”,

hst,k,n
(f1(t)) < ω, so for some m the set {t ∈ I : hst,k,n

(f1(t)) ≤ m} which

respects En belongs to D. In particular {s : γs,k,n > m} ∈ D; the rest should

be clear recalling the regularity of each D/Em.]

Letting E = {En : n < ω}, putting together

(∗)10 fk =
⋃

n fk,n is an isomorphism from (
∏

sNk,s)D|E onto (
∏

sNk+1,s)D|E .

Hence

(∗)11 fk−1 ◦ · · · ◦ f0 is an isomorphism from (M1)ID|E onto (M2)ID|E .

So we are done. 1.5

Discussion 1.6: (1) So for our θ, we get another characterization of L1
θ.

(2) We may deal with universal homogeneous (θ, σ)-l.u.p.x, at least for σ=ℵ0,

using Definition 0.11.

Claim 1.7: In Theorem 1.5, if κ = κ<θ ≥ ‖M1‖ + ‖M2‖ we can add:

(b)+ like clause (b) of 1.5 but |I| ≤ 2κ.

Remark 1.8: Note that we do not restrict τ = τ(M�). See proof of (∗)9 below.

Proof. Clearly (b)+ ⇒(b), so it is enough to prove (b)⇒(b)+; we shall assume

M1,M2, κ,xn, D, En, E are as in (b) and let g be an isomorphism from (M1)ID/E

onto (M2)ID/E .
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Let

(∗)1 (a) E ′
n = {E :E is an equivalence relation on I

with ≤ κ equivalence classes

such that some E′ ∈ En refines E},
(b) let E ′ =

⋃{E ′
n : n ∈ N}.

Clearly

(∗)2 (M�)
I
D|E = (M�)

I
D|E ′ for 	 = 1, 2.

Let χ be large enough such that M1,M2, κ,D, I, E , Ē
′ = 〈E ′

n : n ∈ N〉, g and

(M�)
I
D|E for 	 = 1, 2 belong to H (χ). We can choose B ≺Lκ+,κ+ (H (χ),∈) of

cardinality 2κ to which all the members of H (χ) mentioned above belong and

such that 2κ + 1 ⊆ B. So as τ = τ(M1) ∈ B and without loss of generality

|τ | ≤ 2‖M1‖+‖M2‖ ≤ 2κ; necessarily τ ⊆ B (alternatively see the end of the

proof).

(∗)3 Let

(a) I∗ = I ∩B,

(b) E ∗
n = {E�I∗ : E ∈ E ′

n ∩B},

(c) E ∗ =
⋃{E ∗

n : n ∈ N},

(d) let D∗ be any ultrafilter on I∗ which includes {I∩I∗ : I ∈ D∩B}.

It is enough to check the following points:

(∗)4 x∗
n := (I∗, D∗, E ∗

n ) is a (θ, θ)-l.u.f.t.for every n ∈ ω.

Why? For example, note that if E ∈ E ∗
n , then for some E′ ∈ E ′

n ∩ B we

have E′�I∗ = E, hence E has ≤ κ equivalence classes. Now for any

such E′, as E′ has ≤ κ-equivalence classes and belongs to B, clearly every

E′-equivalence class is not disjoint to I∗ and every A ⊆ I∗ respecting E is

A′ ∩ I∗ for some A′ ∈ B respecting E′. So D/E′
n, D

∗/E are essentially equal,

etc., that is, let πn : E ∗
n → E ′

n be such that E ∈ E ∗
n ⇒ πn(E)�I∗ = E and

let πn,E : {A : A ⊆ I∗ respects E} → {A ⊆ I : A respects πn(E)} be such that

πn,E(A) = B ⇒ B ∩ I∗ = A; in fact, those functions are uniquely determined.

So clearly (∗)4 follows by

(∗)5 (a) πn is a one-to-one function from E ∗
n onto E ′

n ∩B,

(b) πn preserves “E1 refines E2” and its negation,

(c) E ∗
n is (< θ)-directed,

(d) if n = m+ 1 then E ∗
m ⊆ E ∗

n and πm ⊆ πn.
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Moreover

(∗)6 (a) if E ∈ E ∗
n , then Dom(πn,E) ⊆ B (because 2κ ⊆ B is assumed),

(b) πn,E is an isomorphism from the Boolean Algebra Dom(πn,E) onto

{A ⊆ I : A respects πn(E)} which is canonically isomorphic to the

Boolean Algebra P(I/πn(E)) and also to P(I∗/E),

(c) D∗ ∩ Dom(πn,E) is an ultrafilter which πn,E maps onto

D ∩ Rang(πn,E) which is an ultrafilter; those ultrafilters are θ-

complete,

(∗)7 I∗ has cardinality ≤ 2κ.

[Why? Because B has cardinality ≤ 2κ.]

(∗)8 (M�)
I∗
D∗ |E ∗ is isomorphic to ((M�)

I
D|E ′)�B for 	 = 1, 2.

[Why? Let κ be the following function:

(∗)8.1 (a) Dom(κ) = (M1)I∗ |E ∗,

(b) if f1 ∈ (M1)I∗ and E ∈ E ∗ refines eq(f1), then f2 := κ(f1) is the

unique function with domain I such that (
⋃

n πn)(E) ∈ E ′ refines

eq(f2) and f2�I∗ = f1.

Now easily κ induces an isomorphism as promised in (∗)8.]

(∗)9 ((M1)ID|E ′)�B is isomorphic to (M2)ID|E ′)�B.

[Why? By (∗)2 and the choices of g (in the beginning) and of B after (∗)2, this

is obvious when τ = τ(M1) is included in B, which is equivalent to |τ | ≤ 2κ. By

recalling that arity(τ) ≤ ℵ0, i.e., every predicate and function symbol of τ has

finitely many places (see Theorem 1.5), without loss of generality this holds.

That is, let τ ′ ⊆ τ be such that for every predicate P ∈ τ there is one and only

one P ′ ∈ τ ′ such that

	 ∈ {1, 2} ⇒ PM� = (P ′)M�

and similarly for every function symbol; clearly it suffices to deal with

M1�τ ′,M2�τ ′ and |τ ′| ≤ 2‖M1‖ ≤ 2κ.]

Together we are done. 1.7

Note that the proof of Claim 1.7 really uses κ = κ<θ, as otherwise E ′
n is not

(< θ)-directed. How much is the assumption κ = κ<θ needed in Claim 1.7? We

can say something in Claim 1.9.
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Claim 1.9: Assume that κ ≥ 2θ but κ<θ > κ, hence for some regular σ < θ we

have κ<σ = κ < κσ and cf(κ) = σ and, by [Sol74], we have (∀μ < κ)(μθ < κ);

recall arity(τ) = ℵ0.

(1) If 〈Bi : i ≤ σ〉 is a ⊆-increasing continuous sequence of τ -models and x

is a (θ, θ)-l.u.f.t.then l.u.p.x(Bσ) =
⋃{l.u.p.x(Bi) : i < σ} and

i < j ⇒ l.u.p.x(Bi) ⊆ l.u.p.x(Bj).

(2) If J is a directed partial order of cardinality≤σ (<θ) and xs =(I,D, Es)

is a (θ, θ)-l.u.f.t.for s ∈ J such that s <J t ⇒ Es ⊆ Et and M is a τ -

model then l.u.p.x(B) =
⋃{l.u.p.xs

(B) : s ∈ J} and

s <J t⇒ l.u.f.t.xs(B) ⊆ l.u.p.xt
(B)

under the natural identification.

(3) In Claim 1.7, |I∗| ≤ Σ{2∂ : ∂ < κ} is enough.

Proof. Straightforward. 1.9

2. Special models

Note that in Definition 2.1 below, Mn ≺Lθ,θ
M is not required. The reader may

in a first reading ignore the special• case.

Definition 2.1: (1) Assume λ > θ is strong limit of cofinality ℵ0.

We say a model M is λ-special when there are λ̄, M̄ such that (we also may

say M̄ is a λ-special sequence):

(a) M is a model of cardinality λ with |τ(M)| < λ,

(b) (α) λ̄ = 〈λn : n ∈ N〉,
(β) λn ≤ λn+1,

(γ) θ ≤ λn < λn+1 < λ =
∑

k λk and stipulate λ−1 = θ,

(c) (α) M̄ = 〈Mn : n < ω〉,
(β) Mn ≺Lθ,θ

Mn+1,

(γ) M =
⋃

nMn,

(δ) λn ≥ ‖Mn‖ ≥ λn−1 recalling λ−1 = θ,

(d) (α) D̄ = 〈Dn : n ∈ N〉 and ‖Mn‖ ≤ λn,

(β) Dn ∈ rufλn+1,θ(λn+1),

(γ) Mλn
n /Dn ≺Lθ,θ

Mn+1 under the canonical identification (so hence

2λn ≤ λn+1).
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(2) We say that the model M is λ-special• when clauses (a),(b),(c) above

hold but instead of clause (d) we have

(d)′ if Γ is an Lθ,θ-type on Mn of cardinality ≤ λn with ≤ λn free variables,

then Γ is realized in Mn+1.

Claim 2.2: (1) If for every n < ω we have Dn is a (λn, θ)-regular θ-complete

ultra-filter on In, |In| ≤ λn+1, Mn+1 = (Mn)In/Dn identifying Mn with its im-

age under the canonical embedding intoMn+1 soMn≺Lθ,θ
Mn+1 and λn≥‖Mn‖,

λ =
∑

n λn ≥ θ (equivalently > θ) then 〈Mn : n ∈ N〉 is a λ-special sequence,

so M =
⋃

nMn is a λ-special model and M is a model of ThL
1
θ
(M1) .

(2) Assume λ > θ, cf(λ) = ℵ0. In Definition 2.1, clause (d) indeed implies

clause (d)′; so every λ-special model/sequence is a λ-special• model/sequence.

(3) In Definition 2.1, M is a model of ThL
1
θ
(M), in fact this follows by Defi-

nition 2.1(1)(d)(α), (β), (γ).

(4) Assume λ > θ is a strong limit cardinal of cofinality ℵ0. If M is a model

of cardinality ≥ θ but < λ then:

(A) (a) There is a λ-special sequence M̄ with M0 = M ,

(b) there is a λ-special model N which is a ≺L
1
θ
-extension of M ,

(c) ThL
1
θ(M) has a λ-special model.

(B) If M is a model of cardinality λ then for some N, M̄, N̄ we have:

(a) M̄=〈Mn : n<ω〉 satisfies clauses (a), (b), (c) of 2.1. with unionM ,

(b) N̄ = 〈Nn : n < ω〉 is a λ-special• sequence with union N ,

(c) Mn ≺Lθ,θ
Nn.

(C) If M is a λ-special model and τ ⊆ τM then M�τ is also a λ-special

model.

(5) Assume λ > θ > ℵ0 = cf(λ). If M is a λ-special• model and τ ⊆ τM

then M�τ is also a λ-special• model

(6) If λ is strong limit > θ of cofinality ℵ0, a model M is λ-special iff it is

λ-special•.

Proof. (1) If we assume clause (d) in Definition 2.1, then just by the definition.

If we assume clause (d)′ in Definition 2.1, then use part (2).

(2) It follows by the (λn, θ)-regularity of Dn.

(3) Check the definition.
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(4) Clause (A):

We can choose an increasing sequence 〈λn : n < ω〉 with limit λ such that

λ0 = ‖M‖θ and 2λn < λn+1 = λθn+1. For each n we can choose a (λ, θ)-regular

θ-complete ultrafilter Dn on λn, and define Mn as in part (1). Now use the

conclusion of part (1).

Clause (B):

Without loss of generality the universe of M is λ. Choose 〈λn : n < ω〉 as

above (except λ0 ≥ ‖M‖ of course), and by induction on n choose Mn ≺L
1
θ
M

of cardinality λn which includes ∪{Mk : k < n} ∪ λn. We now choose

〈M∗
k ,M

∗
k,n : n < ω〉

by induction on k such that:

(a) for k = 0 we let M∗
k = M and M∗

k,n = Mn,

(b) for k = 	+ 1 let M∗
k = (M∗

� )λk/Dk and M∗
k,n = (M∗

�,n)λk/Dk.

There is no problem to carry the induction and we let N = ∪{M∗
k,k : k < ω}

and Nk = M∗
k,k; now check.

Clause (C):

Just read the definition.

(5) Again just read the definition.

(6) Easy too. 2.2

Remark 2.3: (1) In Claim 2.4 below we do not require that the λn-s are the

same and, of course, we do not require that the Dn are the same. Part (3)

clarifies this.

(2) In Definition 2.1 clause (c)(δ), it is enough to demand λn ≥ ‖Mn‖ ≥ θ.

Claim 2.4: (1) If 〈M �
n : n ∈ N〉 is a λ-special sequence (or just a λ-special•

sequence) with union M� for 	 = 1, 2 and ThLθ,θ
(M1

0 ) = ThLθ,θ
(M2

0 ) then

M1,M2 are isomorphic.

(2) Moreover, if n < ω and f is a partial function from M1
n into M2

n which is

(M1
n,M

2
n,Lθ,θ)-elementary, that is,

ā ∈ θ>(Dom(f)) ⇒ f(tp
Lθ,θ

(ā, ∅,M1
n)) = tp

Lθ,θ
(f(ā), ∅,M2

n),

then f can be extended to an isomorphism from M1 onto M2.

(3) If we weaken clause (d)′ of Definition 2.1 by weakening the conclusion to:

for some k > n,Γ is realized in Mk, then we get an equivalent definition.
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Proof. (1) By the hence and forth argument; but we elaborate. Let Fn be the

set of f such that:

(a) f is a one-to-one function,

(b) the domain of f is included in M1
n,

(c) the range of f is included in M2
n,

(d) if ζ < θ and ā ∈ ζ(M1
n) and b̄ = f(ā) ∈ ζ(M2

n) and ϕ(x̄[ζ] ∈ Lθ,θ(τ(M�))

then M1
n |= ϕ[ā] iff M2

n |= ϕ[b̄].

Easily

(∗)1 the set Fn is not empty.

[Why? Because the empty function belongs to Fn.]

(∗)2 If f ∈ Fn, then some g ∈ Fn+1 extends f and M1
n ⊆ Dom(g).

[Why? By clause (d)’ of Definition 2.1(2)]

(∗)3 If f ∈ Fn, then some g ∈ Fn+1 extends f and M1
n ⊆ Rang(g).

[Why? Similarly.]

Together clearly we are done.

(2) Same proof.

(3) Use suitable sub-sequences (using monotonicity). 2.4

Note that comparing Definition 2.1 with the first order parallel, in Claim

2.4(1), a priori it is not given that ThLθ,θ
(M1) = ThLθ,θ

(M2) suffices. Also

Claim 2.4 does not say that ThL
1
θ
(M) and λ determines M up to isomorphism

because we demand that M1
0 ,M

2
0 are L1

θ-equivalent. However:

Claim 2.5: Assume λ > θ is of cofinality ℵ0 and T is a complete theory

in L1
θ(τT ), |T | < λ, equivalently |τT | < λ.

(1) If λ is strong limit then T has exactly one λ-special model (up to

isomorphism).

(2) T has at most one λ-special• model of cardinality λ up to isomorphism.

Proof. (1) Assume N1, N2 are special models of T of cardinality λ. By Defini-

tion 2.1 for 	 = 1, 2 there is a triple (λ̄�, M̄�, D̄�) witnessing N� is λ-special as

there.

As M�,0 ≺Lθ,θ
M�,n ≺Lθ,θ

M�,n+1 ≺L
1
θ

⋃
mM�,m = N� for n ∈ N, by Theo-

rem 0.10 and Claim 1.2, we know that M�,0 ≡L1
κ
N�, so we can conclude that

M1,0 ≡L1
κ
M2,0 and both are models of T .
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By Theorem 1.5 there is a sequence 〈(λn, Dn) : n ∈ N〉 with Σn<ωλn > λ,

2λn ≤ λn+1 and Dn a (λn, θ)-regular ultrafilter on λn such that M ′
1
∼= M ′

2 when:

(∗) M ′
�,0 = M�,0,M

′
�,n+1 = (M ′

�,n)λn/Dn and M ′
� =

⋃
nM

′
�,n.

Let 〈μn : n < ω〉 be such that: 2μn < μn+1 < λ = Σ{μk : k < ω} for n < ω.

Next letM ′′
�,n for 	 = 1, 2 and n < ω be such thatM ′′

�,n ≺L
μ
+
n ,μ

+
n

M ′
�,n andM ′′

�,n

has cardinality 2μn and M ′′
�,n ≺L

μ
+
n ,μ

+
n

M ′
�,n+1 and f maps M ′′

1,n onto M ′′
2,n.

Now let M ′′
� =

⋃{M ′′
�,n : n < ω} for 	 = 1, 2.

Easily 〈M ′′
�,n : n < ω〉 witness that M ′′

� is λ-special• and f witness that

M ′′
1
∼= M ′′

2 .

Also, M ′′
�,n,M

′
�,n,M�,0 are Lθ,θ-equivalent, hence N1

∼= M ′′
1 by 2.4(1) and

N2
∼= M ′′

2 similarly. Together N1
∼= N2 is promised.

(2) The proof is similar to part of the proof of Theorem 1.5 clause (a) implies

clause (e), i.e., by the hence and forth argument. 2.5

Now we can generalize the Robinson lemma, hence (see, e.g., [Mak85]) giving

an alternative proof of the interpolation theorem (recall though that in [She12]

we do not assume the cardinal θ is compact).

Claim 2.6: (1) Assume τ1 ∩ τ2 = τ0, T� is a complete theory in L1
θ(τ�) for

	 = 1, 2 and T0 = T1 ∩ T2. Then T1 ∪ T1 has a model.

(2) We can allow in (1) the vocabularies to have more than one sort.

(3) The logic L1
θ satisfies the interpolation theorem.

(4) L1
θ has disjoint amalgamation, i.e., if M0 ≺L

1
θ
M� for 	 = 1, 2, that is,

(M0, c)c∈M0 , (M�, c)c∈M0 has the same L1
θ-theory and |M1|∩|M2|= |M0|,

then there is M3 such that M� ≺L
1
θ
M3 for 	 = 0, 1, 2 (hence orbital

types are well defined).

(5) L1
θ has the JEP.3

Proof. (1) Let λ > |τ1|+ |τ2|+ θ be a strong limit cardinal of cofinality ℵ0. For

	 = 1, 2 there is a λ-special model M� of T� by Claim 2.2(3). Now N� = M��τ0
is a λ-special model of T .

By Claim 2.5(1), N1
∼= N2 so without loss of generality N1 = N2, and let M

be the expansion of N1 = N2 by the predicates and functions of M1 and of M2.

Clearly M is a model of T1 ∪ T2.

(2) Similarly.

3 But the disjoint version may fail, e.g., if we have individual constants.
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(3) Follows, as L1
θ being ⊆ Lθ,θ satisfies θ-compactness and part (1).

(4) Follows by (1), that is, let x be as in Theorem 1.5(c) for M1,M2. So

for every C ⊆ M0 of cardinality < θ, letting MC,� = (M�, c)c∈C we have

NC,1
∼= NC,2

∼= NC,0 where NC,� = l.u.p.x(MC,�). Hence NC,0 ≺Lθ,θ
NC,� for

	 = 1, 2 and we use “Lθ,θ has disjoint amalgamation”.

(5) Follows by Theorem 1.5. 2.6

Remark 2.7: This proof implies the generalization of preservation theorems;

see [CK73].

Recall that the aim of Ehrenefucht–Mostowski [EM56] was: every first order

theory T with infinite models has models with many automorphisms. This

fails for Lθ,θ and even Lℵ1,ℵ1 as we can express “< is a well ordering”. What

about L1
θ?

Claim 2.8: Assume (λ, T are as above in Claim 2.5 and) M is a special model

of T of cardinality λ. Then M has 2λ automorphisms.

Proof. Let 〈Mn : n < ω〉 witness M is special. The result follows by the proof

of 2.4(2) noting that

(∗) if fn is an (Mn,Mn,Lθ,θ(τM ))-elementary mapping then there are

a ∈Mn+1,a2 ∈ λ(Mn+1) and fα, a2,α ∈ (Mn+1) for α < λn such that

(a) a2,α �= a2,β for α < β < λn,

(a) fα is an (M1
n+1,M

2
n+1,Lθ,θ(τM ))-elementary mapping,

(b) fα ⊇ f and maps a to aα.

Why is this possible? Choose a′∈Mn+2\Mn+1 and choose aα∈Mn+1\{aβ :β<α}
by induction on α < λn realizing tp

Lθ,θ(τT )(a
′,Mn,Mn+2).

Lastly, let fα = f ∪ {(a0, g(aα))}.

Why is this enough? It should be clear. 2.8
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