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Departamento de Matemática, Universidade Federal de Santa Catarina

88.040-900 Florianópolis-SC, Brazil
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ABSTRACT

We show that every groupoid C∗-algebra is isomorphic to its opposite,

and deduce that there exist C∗-algebras that are not stably isomorphic

to groupoid C∗-algebras, though many of them are stably isomorphic to

twisted groupoid C∗-algebras. We also prove that the opposite algebra

of a section algebra of a Fell bundle over a groupoid is isomorphic to the

section algebra of a natural opposite bundle.

1. Introduction

Groupoids are among the most widely used models for operator algebras. It

is therefore a basic question whether a given C∗-algebra A can be realised

as C∗(G) or C∗
r (G) for some locally compact topological groupoid G. Many

classes of C∗-algebras have groupoid models: for example, graph C∗-algebras
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and higher-rank graph C∗-algebras, C∗-algebras of actions of inverse semi-

groups, and C∗-algebras associated to foliations. Moreover, it follows from the

main results in [5] that every UCT Kirchberg C∗-algebra (that is, every sepa-

rable, simple, nuclear, purely infinite, UCT C∗-algebra) has an étale groupoid

model.

We show in this paper that not every C∗-algebra has a groupoid model. We

achieve this by showing that all groupoid C∗-algebras are self-opposite in the

sense that they are isomorphic to their opposite C∗-algebras. Similar results

for Lp-algebras of ample étale groupoids appear in [7, Corollary 6.10 and Re-

marks 6.8 and 6.13].

Several examples of non-self-opposite C∗-algebras are already known. The

first, produced by Connes [2], is a non-self-opposite von Neumann factor. Later,

examples of non-self-opposite separable C∗-algebras were found by Phillips

in [11]. All of Phillips’ examples are continuous-trace C∗-algebras, hence nu-

clear. Simple and separable non-self-opposite C∗-algebras are constructed in

[13, 12]; these examples are non-nuclear, though the one in [13] is exact. It

remains open whether there exists a simple, separable and nuclear non-self-

opposite C∗-algebra [3]. This is related to Elliott’s conjecture (see [17]) because

the Elliott invariant (essentially K-groups) used in the conjecture cannot dis-

tinguish a C∗-algebra A from its opposite Aop.

Although our result implies the existence of C∗-algebras with no groupoid

model, it is still possible that such C∗-algebras can be realised as

twisted groupoid C∗-algebras. That is, they could be isomorphic to C∗(G,Σ) or

C∗
r (G,Σ), for some twist Σ over a groupoid G. A twist over G is essentially the

same thing as a Fell line bundle L over G, and C∗(G,Σ) and C∗
r (G,Σ) are then

the corresponding full and reduced cross-sectional C∗-algebras C∗(G,L) and

C∗
r (G,L). Renault proves in [16] that every C∗-algebra A admitting a Cartan

subalgebra C0(X) ⊆ A is isomorphic to C∗
r (G,Σ) for some (second countable,

locally compact Hausdorff) étale essentially principal groupoid G with G0 = X

and some twist Σ on G; furthermore, the pair (G,Σ) is uniquely determined by

the Cartan pair (A,C0(X)).

Kumjian, an Huef and Sims proved in [8] that every Fell C∗-algebra (in

particular, every continuous-trace C∗-algebra) is Morita equivalent to one with

a diagonal subalgebra in the sense of Kumjian [9]. These diagonal subalgebras

are exactly the Cartan subalgebras (in the sense of Renault) with the unique

extension property: every pure state of the Cartan subalgebra C0(X) extends
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uniquely to A. The corresponding twist (G,Σ) that describes (A,C0(X)) is over

a principal, not just essentially principal, groupoid G. After stabilisation, these

results imply that all continuous-trace C∗-algebras have a twisted groupoid

model—including the examples of Phillips in [11] that do not admit untwisted

groupoid models. The point is that the opposite algebra of C∗(G,Σ) arises as

the C∗-algebra C∗(G,Σ) of the conjugate twist, and this corresponds to taking

the negative of the associated Dixmier–Douady invariant.

We elucidate the above phenomenon by describing the opposite C∗-algebras
C∗(G,A)op and C∗

r (G,A)op of the cross-sectional algebras of arbitrary Fell bun-

dles A over locally compact groupoids. Specifically, given a Fell bundle A
over G, we construct an appropriate opposite bundle Ao over G, and prove that

C∗(G,A)op ∼= C∗(G,Ao).

This can also be described in terms of the conjugate Fell bundle Ā. In the special

case of a Fell line bundle L (that is, a twist over G), this corresponds to the

conjugate line bundle. When L is the trivial line bundle, L̄ = L, and C∗
r (G;L)

and C∗(G;L) coincide with C∗
r (G) and C∗(G), so we recover our earlier result

as a special case.

For a Fell bundle associated to an action α of a locally compact group G

on a C∗-algebra A, our result is equivalent to the statement that the opposite

C∗-algebras of the full and reduced crossed products A�α G and A�α,r G are

isomorphic to Aop�αop G and Aop�αop,rG (where αop is the action of G on Aop

determined by α upon identifying A and Aop as linear spaces); this was proved

for full crossed products in [3].

Acknowledgement. We would like to thank Chris Phillips and Ilijas Farah for

helpful discussions and references to examples of non-self-opposite C∗-algebras.

2. Groupoid C∗-algebras and their opposites

For background on groupoids and their C∗-algebras, we refer the reader to [15].

In this section we show that the full and reduced C∗-algebras of a locally

compact, locally Hausdorff groupoid with Haar system are self-opposite. We

first briefly recall how these C∗-algebras are defined.

Let G be a locally compact and locally Hausdorff groupoid with Hausdorff

unit space G0 and a (continuous) left invariant Haar system λ = {λx}x∈G0.

Let Cc(G, λ) be the ∗-algebra of compactly supported, quasi-continuous sections,
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that is, the linear span of continuous functions with compact support f : U → C

on open Hausdorff subsets U ⊆ G. These functions are extended by zero off U

and hence viewed as functions G → C. The continuity of λ means that every

such function is mapped to a continuous function λ(f) : G0 → C via

λ(f)(x) :=

∫
G

f(g) dλx(g).

By definition, λx is a Radon measure on G with support Gx := r−1(x) for

all x ∈ G0.

Throughout the paper we follow the convention established by Renault that

for g ∈ G and f1, f2 ∈ Cc(G), we abuse notation a little and write∫
G

f1(h)f2(h
−1g) dλr(g)(h)

rather than
∫
Gr(g) f1(h)f2(h

−1g) dλr(g)(h)—strictly speaking, the integrand

makes no sense for h �∈ Gr(g), but since the set of such h has measure zero

under λr(g) it is clear what the integral means. Recall that the product and

involution on Cc(G, λ) are defined by

(f1 ∗ f2)(g) :=
∫
G

f1(h)f2(h
−1g) dλr(g)(h) and f∗(g) := f(g−1).

Under these operations and the inductive-limit topology, Cc(G, λ) is a topolog-

ical ∗-algebra. The I-norm on Cc(G, λ) is defined by

‖f‖I := max{‖λ(|f |)‖∞, ‖λ(|f∗|)‖∞}.
The L1-Banach ∗-algebra of G is the completion of Cc(G, λ) with respect to ‖·‖I ;
we denote it by L1

I(G, λ). The full C∗-algebra of G is the universal enveloping

C∗-algebra of L1
I(G, λ); in other words, it is the C∗-completion of Cc(G, λ) with

respect to the maximum ‖ · ‖I -bounded C∗-norm:

‖f‖u := sup{‖π(f)‖ : π is an I-norm decreasing ∗-representation of Cc(G, λ)}.
The regular representations of (G, λ) are the representations

πx : Cc(G, λ) → B(L2(Gx, λx)), x ∈ G(0)

given by πx(f)ξ(g) := (f ∗ξ)(g) = ∫
G f(gh)ξ(h−1) dλx(h). Here λx is the image

of λx under the inversion map G → G, g 	→ g−1; so it is a measure with support

Gx = s−1(x). The system of measures (λx)x∈G0 is a right invariant Haar system

on G.
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The regular representations of G give rise to a ‖ · ‖I-bounded C∗-norm called

the reduced C∗-norm:

‖f‖r := sup
x∈G0

‖πx(f)‖.

The reduced C∗-algebra of G is the completion of Cc(G, λ) with respect

to ‖ · ‖r. It is denoted by C∗
r (G, λ).

Given a groupoid G, we write Gop for the opposite groupoid, equal to G as a

topological space, but with

(Gop)(2) = {(h, g) : (g, h) ∈ G(2)}
and composition given by h·opg = gh. We write λop for the Haar system on Gop

defined as the image of λ under the inversion map regarded as a homeomorphism

of G onto Gop.

Theorem 2.1: Let (G, λ) be a locally compact, locally Hausdorff groupoid

with Haar system. The inversion map g 	→ g−1 defines an isomorphism

(G, λ) ∼= (Gop, λop)

of topological groupoids with Haar systems. Given f ∈ Cc(G, λ), define

fop : G → C by

fop(g) := f(g−1).

Then f 	→fop is an isomorphism Cc(G, λ)
∼−→Cc(G, λ)op of topological ∗-algebras.

This isomorphism extends to a Banach ∗-algebra isomorphism

L1
I(G, λ)

∼−→ L1
I(G, λ)op

and to C∗-algebra isomorphisms

C∗(G, λ)
∼−→ C∗(G, λ)op and C∗

r (G, λ)
∼−→ C∗

r (G, λ)op.

Proof. The map g 	→ g−1 is a homeomorphism G → Gop and satisfies

g−1 ·op h−1 = h−1g−1 = (gh)−1,

so it is an isomorphism G
∼−→ Gop of topological groupoids. The range (resp.

source) map of Gop is the source (resp. range) map of G, and the inversion map

sends the left invariant Haar system λ = (λx)x∈G0 on G to the right invariant

Haar system (λx)x∈G0 , which is precisely λop. This yields the isomorphism

(G, λ) ∼= (Gop, λop). The map

f 	→ fop
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is a linear involution (in particular, a bijection) which is clearly a homeomor-

phism with respect to the inductive-limit topology. It is also clearly isometric

for the ‖ · ‖I -norms on Cc(G, λ) and Cc(G
op, λop). So to prove that it is topo-

logical ∗-algebra isomorphism Cc(G, λ) ∼= Cc(G, λ)op and extends to isomor-

phisms L1
I(G, λ) ∼= L1

I(G, λ)op and C∗(G, λ) ∼= C∗(G, λ)op, it suffices to show

that f 	→ fop is a ∗-homomorphism. For f ∈ Cc(G, λ),

(fop)∗(g) = fop(g−1) = f(g) = f∗(g−1) = (f∗)op(g).

So f 	→ fop preserves involution. If f1, f2 ∈ Cc(G, λ), then

(2.2) (f1 ∗ f2)op(g) = (f1 ∗ f2)(g−1) =

∫
G

f1(h)f2(h
−1g−1) dλs(g)(h),

while

(2.3)

(fop
2 ∗ fop

1 )(g) =

∫
G

fop
2 (h)fop

1 (h−1g) dλr(g)(h)

=

∫
G

f1(g
−1h)f2(h

−1) dλr(g)(h).

Making the change of variables h 	→ gh and applying left invariance of λ shows

that (2.2) and (2.3) are equal.

To prove that C∗
r (G, λ) ∼= C∗

r (G, λ)op, observe that the map f 	→ fop gives an

isomorphism L2(Gx, λx) ∼= L2(Gx, λx) = L2(Gop
x , λop

x ) which induces a unitary

equivalence between the regular representations

πx : Cc(G, λ) → B(L2(Gx, λx) and πop
x : Cc(G

op, λop) → B(L2(Gop
x , λop

x ).

This yields the equality

‖f‖r = ‖fop‖r
which shows that f 	→fop extends to an isomorphism C∗

r (G, λ)∼=C∗
r (G

op, λop).

Remark 2.4: Similar arguments to those above show that the identity map onG,

regarded as an anti-multiplicative homeomorphism from G to Gop, induces (by

composition) an anti-multiplicative linear isomorphism Cc(G, λ) ∼= Cc(G
op, λop),

and therefore a topological ∗-algebra isomorphism Cc(G, λ)op ∼= Cc(G
op, λop).

This latter extends to isomorphisms

L1
I(G, λ)op ∼= L1

I(G
op, λop), C∗(G, λ)op ∼= C∗(Gop, λop)

and C∗
r (G, λ)op ∼= C∗

r (G
op, λop).

Another way to prove Theorem 2.1 is to work with conjugate algebras. If A

is a ∗-algebra, its conjugate ∗-algebra Ā is the conjugate vector space of A
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endowed with the same algebraic operations as A. Involution, a 	→ a∗ is then

a linear anti-multiplicative isomorphism A → Ā and therefore an isomorphism

Aop ∼= Ā. We have Cc(G, λ) ∼= Cc(G, λ) via ξ 	→ ξ̄ and this extends to isomor-

phisms L1
I(G, λ) ∼= L1

I(G, λ), C∗(G, λ) ∼= C∗(G, λ) and C∗
r (G, λ) ∼= C∗

r (G, λ).

Corollary 2.5: There are (nuclear, separable) C∗-algebras that are not iso-

morphic to either C∗(G, λ) or C∗
r (G, λ) for any locally compact, locally Haus-

dorff groupoid with Haar system.

Proof. It is known that there are examples of nuclear and separable C∗-algebras
that are not self-opposite [11, 3].

Let us say that a ∗-algebra A is self-opposite if A ∼= Aop. Our main result

says that given a topological groupoid with Haar system (G, λ), the ∗-algebras
Cc(G, λ), L1

I(G, λ), C∗(G, λ) and C∗
r (G, λ) are all self-opposite. Both the min-

imal and the maximal tensor product of self-opposite C∗-algebras are again

self-opposite because (A⊗B)op ∼= Aop ⊗Bop.

Let K denote the C∗-algebra of compact operators on a separable, infinite

dimensional Hilbert space; writing R for the equivalence relation N×N regarded

as a discrete principal groupoid, we have K ∼= C∗(R) = C∗
r (R). Hence the

preceding paragraph shows that every self-opposite C∗-algebra is also stably

self-opposite. The converse fails in general: Phillips constructs in [11] examples

of (separable, continuous-trace) non-self-opposite C∗-algebras which are stably

self-opposite. But Phillips also constructs examples of (separable, continuous-

trace) C∗-algebras that are not stably self-opposite. This yields the following:

Corollary 2.6: There are separable continuous-trace C∗-algebras that are

not stably isomorphic to any groupoid C∗-algebra.

Remark 2.7: By the Brown–Green–Rieffel theorem [1], Corollary 2.6 implies that

there exist separable C∗-algebras that are not Morita equivalent to a separable

(or even σ-unital) groupoid C∗-algebra. However, it is unclear whether these

examples could be Morita equivalent to a non-σ-unital groupoid C∗-algebra.

In [6], in the framework of ZFC enriched with Jensen’s diamond principle

(a strengthening of the continuum hypothesis), Farah and Hirshberg construct

examples of non-separable approximately matricial algebras (uncountable direct

limits of the CAR algebra) that are non-self-opposite, so we can also state:
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Corollary 2.8: It is consistent with ZFC that there are non-separable ap-

proximately matricial (so simple, nuclear) C∗-algebras that are not isomorphic

to a groupoid C∗-algebra.

Recall that the ordinary separable AF-algebras admit groupoid models: it is

even known that they are always crossed products for a partial action of the

integers, see [4].

By [8, Theorem 6.6(1)], every separable continuous-trace C∗-algebra (indeed,

every Fell algebra) is Morita equivalent to a separable C∗-algebra with a diag-

onal subalgebra in the sense of Kumjian [9]. Kumjian shows in [9] that C∗-al-
gebras containing diagonals are, up to isomorphism, the C∗-algebras obtained
from twists on étale principal groupoids. More precisely, writing T for the circle

group, this means a locally compact Hausdorff central groupoid extension

T×G0 ↪→ Σ � G,

of a (second countable) locally compact Hausdorff groupoid G by the (trivial)

group bundle T×G0. To a twisted groupoid (G,Σ) one can assign a full C∗-al-
gebra C∗(G,Σ) and a reduced C∗-algebra C∗

r (G,Σ), and then every separable

C∗-algebra containing a diagonal subalgebra has the form C∗
r (G,Σ) for some

twist Σ over a principal groupoid G. Moreover, the pair (G,Σ) is unique, up to

isomorphism of twisted groupoids. This follows from the more general result,

proved by Renault in [16], that isomorphism classes of Cartan subalgebras cor-

respond bijectively to isomorphism classes of twisted essentially principal étale

groupoids (meaning twisted groupoids where G is not necessarily principal, but

only essentially principal; see [16] for details). Using these results, we arrive at

the following consequence:

Corollary 2.9: There are separable stable continuous-trace C∗-algebras that
are not isomorphic to any groupoid C∗-algebra but which are isomorphic to the

reduced C∗-algebra of a twisted principal étale groupoid.

Proof. Let A be a separable continuous-trace C∗-algebra which is not stably

isomorphic to any groupoid C∗-algebra as in Corollary 2.6. Let

B := A⊗K

be the stabilisation of A. Then B is a separable stable continuous-trace C∗-alge-
bra which is not isomorphic to any groupoid C∗-algebra. By [8, Theorem 6.(1)]
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A is Morita equivalent to C∗
r (G,Σ), for some twisted principal étale groupoid

(G,Σ). It follows from the Brown–Green–Rieffel theorem that

B ∼= C∗
r (G,Σ)⊗K.

To finish the proof we observe that, again writing R for the discrete equivalence

relation N× N, we have C∗
r (G,Σ)⊗K ∼= C∗

r (G×R,Σ×R).

3. Section C∗-algebras of Fell bundles and their opposites

Let G be a locally compact and locally Hausdorff groupoid endowed with a con-

tinuous Haar system λ, which we fix throughout the rest of the section. In this

section we generalise our previous result and describe the opposite C∗-algebras
of the section C∗-algebras of Fell bundles over G. Our result generalises the

observation in [3] that (A �α G)op ∼= Aop �αop G for any action α of a locally

compact group G on a C∗-algebra A.

Fell bundles over topological groupoids are defined in [10]. Only Hausdorff

groupoids are considered there, but the same definition makes sense for locally

Hausdorff groupoids. A Fell bundle over G consists of an upper semicontinu-

ous Banach bundle A over G endowed with multiplications Ag ×Ah → Agh,

(a, b) 	→ a·b, for every composable pair (g, h) ∈ G2 and involutionsAg → Ag−1 ,

a 	→ a∗, for every g ∈ G. These operations are required to be continuous (with

respect to the given topology on A) and satisfy algebraic conditions similar to

those in the definition of a C∗-algebra.
We next recall, briefly, how to define the full and reduced C∗-algebras of a

Fell bundle. Consider the space Cc(G,A) of compactly supported continuous

sections ξ : U → A defined on open Hausdorff subspaces U ⊆ G and extended

by zero outside U and hence viewed as sections ξ : G → A. The continuity of

the algebraic operations on A implies that for ξ, η ∈ Cc(G,A), the formulas

(ξ ∗ η)(g) :=
∫
G

ξ(h) · η(h−1g) dλr(g)(h) and ξ∗(g) := ξ(g−1)∗

define elements ξ∗η, ξ∗ ∈ Cc(G,A) and so determine a convolution product ∗ and
an involution ∗ on Cc(G,A). Under these operations, Cc(G,A) is a ∗-algebra;
and indeed, a topological ∗-algebra in the inductive-limit topology.
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Since the norm function onA is upper semicontinuous, the function g 	→‖ξ(g)‖
from G to [0,∞) is upper semicontinuous and hence measurable. So we can de-

fine the I-norm on Cc(G,A) by

‖ξ‖I := sup
x∈G(0)

max

{∫
Gx

|ξ(g)| dλx(g),

∫
Gx

|ξ∗(g)| dλx(g)

}
.

The L1-Banach algebra of A, denoted L1
I(G,A), is defined as the completion

of Cc(G,A) with respect to ‖ · ‖I . The full C∗-algebra C∗(G,A) of A is defined

as the universal enveloping C∗-algebra of L1
I(G,A): the completion of Cc(G,A)

with respect to the C∗-norm

‖ξ‖u := sup{‖π(ξ)‖ : π is an I-norm decreasing ∗-representation of Cc(G,A)}.
That this is indeed a norm on Cc(G,A), and not just a seminorm, follows from

the existence of the following regular representations.

For each x ∈ G(0), let L2(Gx,A) be the right Hilbert Ax-module completion

of the space Cc(Gx,A) of quasi-continuous sections Gx → A with respect to the

norm induced by the Ax-valued inner product

〈ξ|η〉Ax
:=

∫
G

ξ(h)∗η(h) dλx(h) =

∫
G

ξ(h−1)∗η(h−1) dλx(h).

Then for each x∈G(0), the regular representation πx :Cc(G,A) → B(L2(Gx,A))

is defined by

(
πx(ξ)η

)
(g) :=

∫
G

ξ(gh)η(h−1) dλx(h) =

∫
G

ξ(gh−1)η(h) dλx(h),

for all ξ ∈ Cc(G,A), η ∈ Cc(Gx,A) and g ∈ Gx. The reduced C∗-norm on

Cc(G,A) is defined by

‖ξ‖r := sup
x∈G0

‖πx(ξ)‖.

This is, indeed, a norm: if πx(ξ) = 0 then (ξ ∗ η)(g) = 0 for all η ∈ Cc(Gx,A)

and g ∈ Gx; so

ξ ∗ ξ∗(x) =
∫
G

ξ(h)ξ(h)∗ dλx(h) = 0 for all x ∈ G(0),

forcing ξ|Gx = 0 for all x. A standard computation shows that ‖ξ‖r ≤ ‖ξ‖I .
Therefore ‖ ·‖u is also a C∗-norm and ‖ ·‖r ≤ ‖·‖u. The completion of Cc(G,A)

with respect to ‖ · ‖r is the reduced section C∗-algebra of A, and is denoted

by C∗
r (G,A).
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Our goal is to describe the opposite C∗-algebras C∗(G,A)op and C∗
r (G,A)op.

We show that C∗(G,A)op ∼= C∗(G,Ao), for an appropriate opposite Fell bun-

dle Ao over G associated to A. It is more natural to first define an opposite Fell

bundle Aop over the opposite groupoid Gop and then later use the canonical

anti-isomorphism G ∼= Gop induced by the inversion map to obtain the desired

Fell bundle Ao over G.

The opposite Fell bundle Aop over Gop is defined as follows. As a Banach

bundle, Aop does not differ fromA. In particular, the fibres are equal, Aop
g = Ag

for all g ∈ G, and also the topology on Aop is equal to that on A. Moreover,Aop

is also endowed with the same involution as A, which makes sense because G

and Gop carry the same inversion map. The only thing that changes in Aop

is the multiplication: given g, h ∈ Gop the condition sop(g) = rop(h) means

r(g) = s(h), so we can use the multiplication map μh,g : Ah × Ag → Ahg and

define the multiplication maps

μop : Aop
g ×Aop

h = Ag ×Ah → Aop
g·oph = Ahg by μop(a, b) := μ(b, a).

In other words, a ·op b := b · a if we use · and ·op to denote the multiplications

on A and Aop, respectively. It is straightforward to see that Aop is indeed a

Fell bundle over Gop. Now we use the anti-isomorphism Gop ∼= G induced by

the inversion map g 	→ g−1 to form the pullback Fell bundle of Aop. In other

words, Ao is a Fell bundle over G with fibres Ao
g = Ag−1 and the topology

induced by the sections ξo(g) := ξ(g−1) for ξ : U → A a continuous section de-

fined on a Hausdorff open subset U ⊆ G. The involution map Ao
g → Ao

g−1 is the

involution map Ag−1 → Ag from A and the multiplication map Ao
g ×Ao

h → Ao
gh

is given by (a, b) 	→ b · a for all b ∈ Ao
g = Ag−1 , b ∈ Ao

h = Ah−1 and g, h ∈ G

with s(g) = r(h).

Theorem 3.1: Let A be a Fell bundle over a locally compact, locally

Hausdorff groupoid with Haar system (G, λ), and consider the Fell bundle Ao

over (G, λ) described above. The map ξ 	→ ξo defined by

ξo(g) := ξ(g−1)

gives an isomorphism of topological ∗-algebras Cc(G,A)op
∼−→ Cc(G,Ao).

Moreover, this isomorphism extends to an isomorphism of Banach ∗-algebras
L1
I(G,A)op

∼−→ L1
I(G,Ao) and C∗-algebras C∗(G,A)op

∼−→ C∗(G,Ao) and

C∗
r (G,A)op

∼−→ C∗
r (G,Ao).
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Proof. We prove the equivalent assertion that Cc(G,A)op ∼= Cc(G
op,Aop) via

the canonical linear isomorphism Cc(G,A) � ξ 	→ ξop := ξ ∈ Cc(G
op,Aop), and

that this isomorphism extends to isomorphisms

L1
I(G,A)op

∼−→ L1
I(G

op,Aop), C∗(G,A)op
∼−→ C∗(Gop,Aop), and

C∗
r (G,A)op

∼−→ C∗
r (G

op,Aop).

Since the topologies on A and Aop are the same, the map ξ 	→ ξop is clearly

a linear bijection Cc(G,A) → Cc(G
op,Aop) which is a homeomorphism with

respect to the inductive-limit topologies. Also, this map preserves the invo-

lution; that is, (ξop)∗ = ξ∗ on Cc(G,A) (which is the same as the involu-

tion on Cc(G,A)op), and on Cc(G
op,Aop) because the involutions on A and

on Aop are the same. It remains to check that the map is a homomorphism

Cc(G,A)op → Cc(G
op,Aop). But, remembering that the left Haar system λop

on Gop is the right Haar system (λx)x∈G0 on G, we get

ξop ∗ ηop(g) =
∫
Gop

ξ(h) ·op η(h−1g) d(λop)r
op(g)(h)

=

∫
G

η(gh−1)ξ(h) dλs(g)(h)

=

∫
G

η(gh)ξ(h−1) dλs(g)(h) = (η ∗ ξ)(g)

for all ξ, η ∈ Cc(G,A) and g ∈ G. This shows that the identity map is

an anti-homomorphism Cc(G,A) → Cc(G
op,Aop), that is, a homomorphism

Cc(G,A)op → Cc(G
op,Aop), as desired. A similar computation shows

that ‖ξop‖I = ‖ξ‖I and that therefore the identity map extends to an iso-

morphism L1
I(G,A)op

∼−→ L1
I(G

op,Aop) and hence also to the corresponding

universal enveloping C∗-algebras C∗(G,A)op
∼−→ C∗(Gop,Aop).

Finally, to check that C∗
r (G,A)op ∼= C∗

r (G
op,Aop), fix x ∈ G0. The regular

representation πop
x defines a representation of C∗(Gop,Aop) by adjointable oper-

ators on the right-Hilbert Aop-module L2(Gop
x ,Aop). Recall that a left-Hilbert

module over a C∗-algebra C is a left C-module E with an inner product C〈·|·〉
in which C〈c ·ξ|η〉 = cC〈ξ|η〉 for c ∈ C and ξ, η ∈ E . Any right Hilbert module E
over the opposite Bop of a C∗-algebra B determines a left Hilbert B-module E
with left B-action b·ξ := ξ ·b and left B-valued inner product B〈ξ|η〉 := 〈η|ξ〉Bop .

This process preserves the C∗-algebras of adjointable operators, meaning that

the identity map on E yields an isomorphism B(EBop) ∼= B(BE). Applying
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this to the right Hilbert Aop
x -module L2(Gop

x ,Aop) we get a left Hilbert Ax-

module with left Ax-action given by a · ξ = ξ ·op a for all ξ ∈ L2(Gop
x ,Aop);

the right hand side denotes the right Aop
x -action on L2(Gop

x ,Aop), so it is given

by (a ·op ξ)(g) = ξ(g) ·op a(sop(g)) = a(r(g)) · ξ(g). The left Ax-valued inner

product on L2(Gop,Aop) is given by

Ax〈ξ|η〉 = 〈η|ξ〉Aop
x

=

∫
Gop

η(h)∗ ·op ξ(h) dλop
x (h) =

∫
G

ξ(h)η(h)∗ dλx(h)

for all ξ, η ∈ Cc(G
op
x ,Aop) = Cc(G

x,A). Therefore the left Hilbert Ax-module

obtained from the right Hilbert Aop
x -module L2(Gop

x ,Aop) in this way equals

the left Hilbert Ax-module L2(Gx,A) defined as the completion of Cc(G
x,A)

with respect to the norm associated to the left Ax-valued inner product given

by the above formula and the left Ax-action also defined above. Therefore we

may view πop
x as a representation of C∗(Gop,Aop) on

B(AxL
2(Gx,A)) ∼= B(L2(Gop

x ,Aop)Aop
x
).

Under the isomorphism C∗(Gop,Aop) ∼= C∗(G,A)op, this corresponds to the

canonical representation π̃x of C∗(G,A)op on AxL
2(Gx,A) via the formula

π̃x(ξ)η(g) := (η ∗ ξ)(g) =
∫
G

η(h)ξ(h−1g) dλx(h)

for ξ ∈ Cc(G,A), η ∈ Cc(G
x,A) and g ∈ Gx. Straightforward computations

show that the above formula defines a representation

π̃x : C
∗(G,A)op → B(AxL

2(Gx,A))

of the opposite C∗-algebra C∗(G,A)op.

Given a left Hilbert B-module E , let Ẽ denote the dual right Hilbert B-

module of E : as a vector space Ẽ = {ξ̃ : ξ ∈ E} is the conjugate of E and the

right B-action and right B-valued inner product are defined by

ξ̃ · b := (b∗ · ξ)∼ and 〈ξ|η〉B :=B 〈ξ|η〉.
Then each representation π : Aop → B(BE) of an opposite C∗-algebra Aop

on the C∗-algebra of adjointable operators B(BE) of a left Hilbert B-module E
induces a representation

πop : A → B(BE)op ∼= B(ẼB).
The isomorphism B(BE)op ∼= B(ẼB) we used above is induced by the involution;

that is, it sends an operator T ∈ B(BE) to T̃ ∈ B(ẼB) defined by

T̃ (ξ̃) := (T ∗(ξ))∼.
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For ξ ∈ Cc(G
x,A), the formula

ξ∗(g) := ξ(g−1)∗

determines an element ξ∗ ∈ Cc(Gx,A). The map ξ 	→ ξ∗ induces an iso-

morphism (L2(Gx,A))∼Ax

∼= L2(Gx,A)Ax from the dual Hilbert Ax-module

of AxL
2(Gx,A) to the right Hilbert Ax-module L2(Gx,A) that carries the reg-

ular representation πx : C
∗(G,A) → B(L2(Gx,A)Ax). This isomorphism inter-

twines the representations

πx : C
∗(G,A) → B(L2(Gx,A)Ax)

and

π̃op
x : C∗(G,A) → B(AxL

2(Gx,A))op ∼= B((L2(Gx,A))∼Ax
).

We conclude that

‖πop
x (ξ)‖ = ‖π̃x(ξ

o)‖ = ‖π̃op
x (ξo)‖ = ‖πx(ξ

o)‖.
Since x ∈ G0 was arbitrary, we get the equality ‖ξo‖r = ‖ξ‖r and therefore the

desired isomorphism C∗
r (G

op,Aop) ∼= C∗
r (G,A)op.

Remark 3.2: As in the case of groupoid C∗-algebras, we can rephrase the pre-

ceding result in terms of conjugate bundles as well. Let A be a Fell bundle over

a groupoid G. For g ∈ G, let Ag be the conjugate vector space of Ag; that is, Ag

is a copy {a : a ∈ Ag} of Ag as an abelian group under addition, but with scalar

multiplication given by λa = λ̄a. Via the map a 	→ ā, the operations on the Fell

bundle A induce operations on A :=
⊔

g∈GAg: ab = ab, and a∗ = a∗. Under

these operations, A is a Fell bundle over G, called the conjugate bundle of A.

Let Ao be the opposite bundle of A defined above; so Ao
g = Ag−1 , and write ·o

for the multiplication in this bundle. Then the maps Ao
g � a 	→ a∗ ∈ Ag are

linear isometries because the maps a 	→ a∗ and a 	→ ā are both conjugate linear.

We have (a ·o b)∗ = (ba)∗ = a∗b∗ = a∗b∗ and (a∗)∗ = a = (a∗)∗, so a 	→ a∗

determines an isomorphism Ao ∼= A of Fell bundles over G. Thus Theorem 3.1

shows that there is a topological-∗-algebra isomorphism ξ 	→ ξ from Cc(G,A)

to Cc(G,A) given by ξ(g) := ξ(g−1)∗ that extends to isomorphisms

L1
I(G,Ao)∼=L1

I(G,A), C∗(G,Ao)∼=C∗(G,A), and C∗
r (G,Ao)∼=C∗

r (G,A).

Remark 3.3: Remark 3.2 is closely related to the idea behind Phillips’ construc-

tion in [11] of non-self-opposite continuous-trace C∗-algebras A; the observation
underlying his construction is that the Dixmier–Douady class of the opposite
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algebra Aop is the inverse of the Dixmier–Douady class of A. To see how this

relates to our results, fix a compact Hausdorff space X , and let S denote the

sheaf of germs of continuous T-valued functions on X . The Raeburn–Taylor

construction [14] shows that (after identifying Ȟ3(X,Z) with H2(X,S)) any

class δ ∈ H2(X,S) is the Dixmier–Douady invariant of a twisted groupoid

C∗-algebra C∗(G, σ) associated to a continuous 2-cocycle σ on a principal

étale groupoid G with unit space G(0) =
⊔

i,j Uij for some precompact open

cover {Ui} of X . The cocycle σ determines, and is determined up to coho-

mology by, the Fell line-bundle Lσ over G given by Lσ = G × T with twisted

multiplication (g, w)(h, z) = (gh, c(g, h)wz) and the obvious involution. Re-

mark 3.2 shows that C∗(G, σ)op is given by the conjugate bundle Lσ, so the

corresponding class in H2(X,S) is determined by the pointwise conjugate of

the class δ; that is, δ(C∗(G, σ)) = δ(C∗(G, σ)op)−1.
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