OPPOSITE ALGEBRAS OF GROUPOID C*-ALGEBRAS

 $_{\rm BY}$

Alcides Buss*

Departamento de Matemática, Universidade Federal de Santa Catarina 88.040-900 Florianópolis-SC, Brazil e-mail: alcides@mtm.ufsc.br

AND

AIDAN SIMS**

School of Mathematics and Applied Statistics The University of Wollongong NSW 2522, Australia e-mail: asims@uow.edu.au

ABSTRACT

We show that every groupoid C^* -algebra is isomorphic to its opposite, and deduce that there exist C^* -algebras that are not stably isomorphic to groupoid C^* -algebras, though many of them are stably isomorphic to twisted groupoid C^* -algebras. We also prove that the opposite algebra of a section algebra of a Fell bundle over a groupoid is isomorphic to the section algebra of a natural opposite bundle.

1. Introduction

Groupoids are among the most widely used models for operator algebras. It is therefore a basic question whether a given C^* -algebra A can be realised as $C^*(G)$ or $C^*_{\mathbf{r}}(G)$ for some locally compact topological groupoid G. Many classes of C^* -algebras have groupoid models: for example, graph C^* -algebras

Received August 11, 2017 and in revised form August 4, 2020

^{*} The first author is supported by CNPq (Brazil).

^{**} The second author was supported by the Australian Research Council grant DP150101598.

Isr. J. Math.

and higher-rank graph C^* -algebras, C^* -algebras of actions of inverse semigroups, and C^* -algebras associated to foliations. Moreover, it follows from the main results in [5] that every UCT Kirchberg C^* -algebra (that is, every separable, simple, nuclear, purely infinite, UCT C^* -algebra) has an étale groupoid model.

We show in this paper that not every C^* -algebra has a groupoid model. We achieve this by showing that all groupoid C^* -algebras are self-opposite in the sense that they are isomorphic to their opposite C^* -algebras. Similar results for L^p -algebras of ample étale groupoids appear in [7, Corollary 6.10 and Remarks 6.8 and 6.13].

Several examples of non-self-opposite C^* -algebras are already known. The first, produced by Connes [2], is a non-self-opposite von Neumann factor. Later, examples of non-self-opposite separable C^* -algebras were found by Phillips in [11]. All of Phillips' examples are continuous-trace C^* -algebras, hence nuclear. Simple and separable non-self-opposite C^* -algebras are constructed in [13, 12]; these examples are non-nuclear, though the one in [13] is exact. It remains open whether there exists a simple, separable and nuclear non-selfopposite C^* -algebra [3]. This is related to Elliott's conjecture (see [17]) because the Elliott invariant (essentially K-groups) used in the conjecture cannot distinguish a C^* -algebra A from its opposite A^{op} .

Although our result implies the existence of C^* -algebras with no groupoid model, it is still possible that such C^* -algebras can be realised as twisted groupoid C^* -algebras. That is, they could be isomorphic to $C^*(G, \Sigma)$ or $C^*_r(G, \Sigma)$, for some twist Σ over a groupoid G. A twist over G is essentially the same thing as a Fell line bundle L over G, and $C^*(G, \Sigma)$ and $C^*_r(G, \Sigma)$ are then the corresponding full and reduced cross-sectional C^* -algebras $C^*(G, L)$ and $C^*_r(G, L)$. Renault proves in [16] that every C^* -algebra A admitting a Cartan subalgebra $C_0(X) \subseteq A$ is isomorphic to $C^*_r(G, \Sigma)$ for some (second countable, locally compact Hausdorff) étale essentially principal groupoid G with $G^0 = X$ and some twist Σ on G; furthermore, the pair (G, Σ) is uniquely determined by the Cartan pair $(A, C_0(X))$.

Kumjian, an Huef and Sims proved in [8] that every Fell C^* -algebra (in particular, every continuous-trace C^* -algebra) is Morita equivalent to one with a diagonal subalgebra in the sense of Kumjian [9]. These diagonal subalgebras are exactly the Cartan subalgebras (in the sense of Renault) with the **unique** extension property: every pure state of the Cartan subalgebra $C_0(X)$ extends

uniquely to A. The corresponding twist (G, Σ) that describes $(A, C_0(X))$ is over a principal, not just essentially principal, groupoid G. After stabilisation, these results imply that all continuous-trace C^* -algebras have a twisted groupoid model—including the examples of Phillips in [11] that do not admit untwisted groupoid models. The point is that the opposite algebra of $C^*(G, \Sigma)$ arises as the C^* -algebra $C^*(G, \overline{\Sigma})$ of the conjugate twist, and this corresponds to taking the negative of the associated Dixmier–Douady invariant.

We elucidate the above phenomenon by describing the opposite C^* -algebras $C^*(G, \mathcal{A})^{\mathrm{op}}$ and $C^*_{\mathrm{r}}(G, \mathcal{A})^{\mathrm{op}}$ of the cross-sectional algebras of arbitrary Fell bundles \mathcal{A} over locally compact groupoids. Specifically, given a Fell bundle \mathcal{A} over G, we construct an appropriate opposite bundle \mathcal{A}^{o} over G, and prove that

$$C^*(G, \mathcal{A})^{\mathrm{op}} \cong C^*(G, \mathcal{A}^{\mathrm{o}}).$$

This can also be described in terms of the conjugate Fell bundle $\hat{\mathcal{A}}$. In the special case of a Fell line bundle L (that is, a twist over G), this corresponds to the conjugate line bundle. When L is the trivial line bundle, $\bar{L} = L$, and $C_r^*(G; L)$ and $C^*(G; L)$ coincide with $C_r^*(G)$ and $C^*(G)$, so we recover our earlier result as a special case.

For a Fell bundle associated to an action α of a locally compact group Gon a C^* -algebra A, our result is equivalent to the statement that the opposite C^* -algebras of the full and reduced crossed products $A \rtimes_{\alpha} G$ and $A \rtimes_{\alpha,r} G$ are isomorphic to $A^{\text{op}} \rtimes_{\alpha^{\text{op}}} G$ and $A^{\text{op}} \rtimes_{\alpha^{\text{op}},r} G$ (where α^{op} is the action of G on A^{op} determined by α upon identifying A and A^{op} as linear spaces); this was proved for full crossed products in [3].

ACKNOWLEDGEMENT. We would like to thank Chris Phillips and Ilijas Farah for helpful discussions and references to examples of non-self-opposite C^* -algebras.

2. Groupoid C^* -algebras and their opposites

For background on groupoids and their C^* -algebras, we refer the reader to [15].

In this section we show that the full and reduced C^* -algebras of a locally compact, locally Hausdorff groupoid with Haar system are self-opposite. We first briefly recall how these C^* -algebras are defined.

Let G be a locally compact and locally Hausdorff groupoid with Hausdorff unit space G^0 and a (continuous) left invariant Haar system $\lambda = \{\lambda^x\}_{x \in G^0}$. Let $\mathfrak{C}_c(G, \lambda)$ be the *-algebra of compactly supported, quasi-continuous sections, that is, the linear span of continuous functions with compact support $f: U \to \mathbb{C}$ on open Hausdorff subsets $U \subseteq G$. These functions are extended by zero off Uand hence viewed as functions $G \to \mathbb{C}$. The continuity of λ means that every such function is mapped to a continuous function $\lambda(f): G^0 \to \mathbb{C}$ via

$$\lambda(f)(x) := \int_G f(g) \, \mathrm{d}\lambda^x(g).$$

By definition, λ^x is a Radon measure on G with support $G^x := r^{-1}(x)$ for all $x \in G^0$.

Throughout the paper we follow the convention established by Renault that for $g \in G$ and $f_1, f_2 \in C_c(G)$, we abuse notation a little and write

$$\int_G f_1(h) f_2(h^{-1}g) \,\mathrm{d}\lambda^{r(g)}(h)$$

rather than $\int_{G^{r(g)}} f_1(h) f_2(h^{-1}g) d\lambda^{r(g)}(h)$ —strictly speaking, the integrand makes no sense for $h \notin G^{r(g)}$, but since the set of such h has measure zero under $\lambda^{r(g)}$ it is clear what the integral means. Recall that the product and involution on $\mathfrak{C}_c(G, \lambda)$ are defined by

$$(f_1 * f_2)(g) := \int_G f_1(h) f_2(h^{-1}g) \, \mathrm{d}\lambda^{r(g)}(h) \quad \text{and} \quad f^*(g) := \overline{f(g^{-1})}.$$

Under these operations and the inductive-limit topology, $\mathfrak{C}_c(G,\lambda)$ is a topological *-algebra. The *I*-norm on $\mathfrak{C}_c(G,\lambda)$ is defined by

$$||f||_I := \max\{||\lambda(|f|)||_{\infty}, ||\lambda(|f^*|)||_{\infty}\}.$$

The L^1 -Banach *-algebra of G is the completion of $\mathfrak{C}_c(G,\lambda)$ with respect to $\|\cdot\|_I$; we denote it by $L^1_I(G,\lambda)$. The full C^* -algebra of G is the universal enveloping C^* -algebra of $L^1_I(G,\lambda)$; in other words, it is the C^* -completion of $\mathfrak{C}_c(G,\lambda)$ with respect to the maximum $\|\cdot\|_I$ -bounded C^* -norm:

 $||f||_{\mathbf{u}} := \sup\{||\pi(f)|| : \pi \text{ is an } I\text{-norm decreasing *-representation of } \mathfrak{C}_c(G,\lambda)\}.$

The **regular representations** of (G, λ) are the representations

$$\pi_x \colon \mathfrak{C}_c(G,\lambda) \to \mathbb{B}(L^2(G_x,\lambda_x)), \quad x \in G^{(0)}$$

given by $\pi_x(f)\xi(g) := (f * \xi)(g) = \int_G f(gh)\xi(h^{-1}) d\lambda^x(h)$. Here λ_x is the image of λ^x under the inversion map $G \to G$, $g \mapsto g^{-1}$; so it is a measure with support $G_x = s^{-1}(x)$. The system of measures $(\lambda_x)_{x \in G^0}$ is a right invariant Haar system on G. The regular representations of G give rise to a $\|\cdot\|_{I}$ -bounded C^{*}-norm called the **reduced** C^{*}-norm:

$$||f||_{\mathbf{r}} := \sup_{x \in G^0} ||\pi_x(f)||.$$

The **reduced** C^* -algebra of G is the completion of $\mathfrak{C}_c(G,\lambda)$ with respect to $\|\cdot\|_r$. It is denoted by $C^*_r(G,\lambda)$.

Given a groupoid G, we write G^{op} for the opposite groupoid, equal to G as a topological space, but with

$$(G^{\mathrm{op}})^{(2)} = \{(h,g) : (g,h) \in G^{(2)}\}\$$

and composition given by $h \cdot_{\text{op}} g = gh$. We write λ^{op} for the Haar system on G^{op} defined as the image of λ under the inversion map regarded as a homeomorphism of G onto G^{op} .

THEOREM 2.1: Let (G, λ) be a locally compact, locally Hausdorff groupoid with Haar system. The inversion map $g \mapsto g^{-1}$ defines an isomorphism

$$(G,\lambda) \cong (G^{\mathrm{op}},\lambda^{\mathrm{op}})$$

of topological groupoids with Haar systems. Given $f \in \mathfrak{C}_c(G,\lambda)$, define $f^{\mathrm{op}}: G \to \mathbb{C}$ by

$$f^{\mathrm{op}}(g) := f(g^{-1}).$$

Then $f \mapsto f^{\operatorname{op}}$ is an isomorphism $\mathfrak{C}_c(G, \lambda) \xrightarrow{\sim} \mathfrak{C}_c(G, \lambda)^{\operatorname{op}}$ of topological *-algebras. This isomorphism extends to a Banach *-algebra isomorphism

$$L^1_I(G,\lambda) \xrightarrow{\sim} L^1_I(G,\lambda)^{\mathrm{op}}$$

and to C^* -algebra isomorphisms

$$C^*(G,\lambda) \xrightarrow{\sim} C^*(G,\lambda)^{\operatorname{op}}$$
 and $C^*_{\operatorname{r}}(G,\lambda) \xrightarrow{\sim} C^*_{\operatorname{r}}(G,\lambda)^{\operatorname{op}}$.

Proof. The map $g \mapsto g^{-1}$ is a homeomorphism $G \to G^{\text{op}}$ and satisfies

$$g^{-1} \cdot_{\text{op}} h^{-1} = h^{-1}g^{-1} = (gh)^{-1},$$

so it is an isomorphism $G \xrightarrow{\sim} G^{\text{op}}$ of topological groupoids. The range (resp. source) map of G^{op} is the source (resp. range) map of G, and the inversion map sends the left invariant Haar system $\lambda = (\lambda^x)_{x \in G^0}$ on G to the right invariant Haar system $(\lambda_x)_{x \in G^0}$, which is precisely λ^{op} . This yields the isomorphism $(G, \lambda) \cong (G^{\text{op}}, \lambda^{\text{op}})$. The map

$$f \mapsto f^{\mathrm{op}}$$

is a linear involution (in particular, a bijection) which is clearly a homeomorphism with respect to the inductive-limit topology. It is also clearly isometric for the $\|\cdot\|_I$ -norms on $\mathfrak{C}_c(G,\lambda)$ and $\mathfrak{C}_c(G^{\mathrm{op}},\lambda^{\mathrm{op}})$. So to prove that it is topological *-algebra isomorphism $\mathfrak{C}_c(G,\lambda) \cong \mathfrak{C}_c(G,\lambda)^{\mathrm{op}}$ and extends to isomorphisms $L^1_I(G,\lambda) \cong L^1_I(G,\lambda)^{\mathrm{op}}$ and $C^*(G,\lambda) \cong C^*(G,\lambda)^{\mathrm{op}}$, it suffices to show that $f \mapsto f^{\mathrm{op}}$ is a *-homomorphism. For $f \in \mathfrak{C}_c(G,\lambda)$,

$$(f^{\mathrm{op}})^*(g) = \overline{f^{\mathrm{op}}(g^{-1})} = \overline{f(g)} = f^*(g^{-1}) = (f^*)^{\mathrm{op}}(g).$$

So $f \mapsto f^{\text{op}}$ preserves involution. If $f_1, f_2 \in \mathfrak{C}_c(G, \lambda)$, then

(2.2)
$$(f_1 * f_2)^{\text{op}}(g) = (f_1 * f_2)(g^{-1}) = \int_G f_1(h) f_2(h^{-1}g^{-1}) \,\mathrm{d}\lambda^{s(g)}(h),$$

while

(2.3)
$$(f_2^{\text{op}} * f_1^{\text{op}})(g) = \int_G f_2^{\text{op}}(h) f_1^{\text{op}}(h^{-1}g) \, \mathrm{d}\lambda^{r(g)}(h) \\ = \int_G f_1(g^{-1}h) f_2(h^{-1}) \, \mathrm{d}\lambda^{r(g)}(h).$$

Making the change of variables $h \mapsto gh$ and applying left invariance of λ shows that (2.2) and (2.3) are equal.

To prove that $C_r^*(G, \lambda) \cong C_r^*(G, \lambda)^{\text{op}}$, observe that the map $f \mapsto f^{\text{op}}$ gives an isomorphism $L^2(G_x, \lambda_x) \cong L^2(G^x, \lambda^x) = L^2(G_x^{\text{op}}, \lambda_x^{\text{op}})$ which induces a unitary equivalence between the regular representations

$$\pi_x \colon \mathfrak{C}_c(G,\lambda) \to \mathbb{B}(L^2(G_x,\lambda_x) \text{ and } \pi_x^{\mathrm{op}} \colon \mathfrak{C}_c(G^{\mathrm{op}},\lambda^{\mathrm{op}}) \to \mathbb{B}(L^2(G_x^{\mathrm{op}},\lambda_x^{\mathrm{op}}).$$

This yields the equality

$$||f||_{\rm r} = ||f^{\rm op}||_{\rm r}$$

which shows that $f \mapsto f^{\text{op}}$ extends to an isomorphism $C^*_r(G, \lambda) \cong C^*_r(G^{\text{op}}, \lambda^{\text{op}})$.

Remark 2.4: Similar arguments to those above show that the identity map on G, regarded as an anti-multiplicative homeomorphism from G to G^{op} , induces (by composition) an anti-multiplicative linear isomorphism $\mathfrak{C}_c(G,\lambda) \cong \mathfrak{C}_c(G^{\text{op}},\lambda^{\text{op}})$, and therefore a topological *-algebra isomorphism $\mathfrak{C}_c(G,\lambda)^{\text{op}} \cong \mathfrak{C}_c(G^{\text{op}},\lambda^{\text{op}})$. This latter extends to isomorphisms

$$L^{1}_{I}(G,\lambda)^{\mathrm{op}} \cong L^{1}_{I}(G^{\mathrm{op}},\lambda^{\mathrm{op}}), \quad C^{*}(G,\lambda)^{\mathrm{op}} \cong C^{*}(G^{\mathrm{op}},\lambda^{\mathrm{op}})$$

and $C^{*}_{\mathrm{r}}(G,\lambda)^{\mathrm{op}} \cong C^{*}_{\mathrm{r}}(G^{\mathrm{op}},\lambda^{\mathrm{op}}).$

Another way to prove Theorem 2.1 is to work with conjugate algebras. If A is a *-algebra, its **conjugate** *-algebra \overline{A} is the conjugate vector space of A

endowed with the same algebraic operations as A. Involution, $a \mapsto a^*$ is then a linear anti-multiplicative isomorphism $A \to \overline{A}$ and therefore an isomorphism $A^{\mathrm{op}} \cong \overline{A}$. We have $\mathfrak{C}_c(G,\lambda) \cong \overline{\mathfrak{C}_c(G,\lambda)}$ via $\xi \mapsto \overline{\xi}$ and this extends to isomorphisms $L^1_I(G,\lambda) \cong \overline{L^1_I(G,\lambda)}, C^*(G,\lambda) \cong \overline{C^*(G,\lambda)}$ and $C^*_r(G,\lambda) \cong \overline{C^*_r(G,\lambda)}$.

COROLLARY 2.5: There are (nuclear, separable) C^* -algebras that are not isomorphic to either $C^*(G, \lambda)$ or $C^*_r(G, \lambda)$ for any locally compact, locally Hausdorff groupoid with Haar system.

Proof. It is known that there are examples of nuclear and separable C^* -algebras that are not self-opposite [11, 3].

Let us say that a *-algebra A is **self-opposite** if $A \cong A^{\text{op}}$. Our main result says that given a topological groupoid with Haar system (G, λ) , the *-algebras $\mathfrak{C}_c(G, \lambda)$, $L^1_I(G, \lambda)$, $C^*(G, \lambda)$ and $C^*_r(G, \lambda)$ are all self-opposite. Both the minimal and the maximal tensor product of self-opposite C^* -algebras are again self-opposite because $(A \otimes B)^{\text{op}} \cong A^{\text{op}} \otimes B^{\text{op}}$.

Let \mathbb{K} denote the C^* -algebra of compact operators on a separable, infinite dimensional Hilbert space; writing \mathcal{R} for the equivalence relation $\mathbb{N} \times \mathbb{N}$ regarded as a discrete principal groupoid, we have $\mathbb{K} \cong C^*(\mathcal{R}) = C^*_r(\mathcal{R})$. Hence the preceding paragraph shows that every self-opposite C^* -algebra is also stably self-opposite. The converse fails in general: Phillips constructs in [11] examples of (separable, continuous-trace) non-self-opposite C^* -algebras which are stably self-opposite. But Phillips also constructs examples of (separable, continuoustrace) C^* -algebras that are not stably self-opposite. This yields the following:

COROLLARY 2.6: There are separable continuous-trace C^* -algebras that are not stably isomorphic to any groupoid C^* -algebra.

Remark 2.7: By the Brown–Green–Rieffel theorem [1], Corollary 2.6 implies that there exist separable C^* -algebras that are not Morita equivalent to a separable (or even σ -unital) groupoid C^* -algebra. However, it is unclear whether these examples could be Morita equivalent to a non- σ -unital groupoid C^* -algebra.

In [6], in the framework of ZFC enriched with Jensen's diamond principle (a strengthening of the continuum hypothesis), Farah and Hirshberg construct examples of non-separable approximately matricial algebras (uncountable direct limits of the CAR algebra) that are non-self-opposite, so we can also state: COROLLARY 2.8: It is consistent with ZFC that there are non-separable approximately matricial (so simple, nuclear) C^* -algebras that are not isomorphic to a groupoid C^* -algebra.

Recall that the ordinary separable AF-algebras admit groupoid models: it is even known that they are always crossed products for a partial action of the integers, see [4].

By [8, Theorem 6.6(1)], every separable continuous-trace C^* -algebra (indeed, every Fell algebra) is Morita equivalent to a separable C^* -algebra with a diagonal subalgebra in the sense of Kumjian [9]. Kumjian shows in [9] that C^* -algebras containing diagonals are, up to isomorphism, the C^* -algebras obtained from twists on étale principal groupoids. More precisely, writing \mathbb{T} for the circle group, this means a locally compact Hausdorff central groupoid extension

$$\mathbb{T} \times G^0 \hookrightarrow \Sigma \twoheadrightarrow G,$$

of a (second countable) locally compact Hausdorff groupoid G by the (trivial) group bundle $\mathbb{T} \times G^0$. To a twisted groupoid (G, Σ) one can assign a full C^* -algebra $C^*(G, \Sigma)$ and a reduced C^* -algebra $C^*_r(G, \Sigma)$, and then every separable C^* -algebra containing a diagonal subalgebra has the form $C^*_r(G, \Sigma)$ for some twist Σ over a principal groupoid G. Moreover, the pair (G, Σ) is unique, up to isomorphism of twisted groupoids. This follows from the more general result, proved by Renault in [16], that isomorphism classes of Cartan subalgebras correspond bijectively to isomorphism classes of twisted essentially principal étale groupoids (meaning twisted groupoids where G is not necessarily principal, but only essentially principal; see [16] for details). Using these results, we arrive at the following consequence:

COROLLARY 2.9: There are separable stable continuous-trace C^* -algebras that are not isomorphic to any groupoid C^* -algebra but which are isomorphic to the reduced C^* -algebra of a twisted principal étale groupoid.

Proof. Let A be a separable continuous-trace C^* -algebra which is not stably isomorphic to any groupoid C^* -algebra as in Corollary 2.6. Let

$$B := A \otimes \mathbb{K}$$

be the stabilisation of A. Then B is a separable stable continuous-trace C^* -algebra which is not isomorphic to any groupoid C^* -algebra. By [8, Theorem 6.(1)]

A is Morita equivalent to $C^*_{\mathbf{r}}(G, \Sigma)$, for some twisted principal étale groupoid (G, Σ) . It follows from the Brown–Green–Rieffel theorem that

$$B \cong C^*_{\mathbf{r}}(G, \Sigma) \otimes \mathbb{K}$$

To finish the proof we observe that, again writing \mathcal{R} for the discrete equivalence relation $\mathbb{N} \times \mathbb{N}$, we have $C^*_{\mathbf{r}}(G, \Sigma) \otimes \mathbb{K} \cong C^*_{\mathbf{r}}(G \times \mathcal{R}, \Sigma \times \mathcal{R})$.

3. Section C^* -algebras of Fell bundles and their opposites

Let G be a locally compact and locally Hausdorff groupoid endowed with a continuous Haar system λ , which we fix throughout the rest of the section. In this section we generalise our previous result and describe the opposite C^* -algebras of the section C^* -algebras of Fell bundles over G. Our result generalises the observation in [3] that $(A \rtimes_{\alpha} G)^{\text{op}} \cong A^{\text{op}} \rtimes_{\alpha^{\text{op}}} G$ for any action α of a locally compact group G on a C^* -algebra A.

Fell bundles over topological groupoids are defined in [10]. Only Hausdorff groupoids are considered there, but the same definition makes sense for locally Hausdorff groupoids. A Fell bundle over G consists of an upper semicontinuous Banach bundle \mathcal{A} over G endowed with **multiplications** $\mathcal{A}_g \times \mathcal{A}_h \to \mathcal{A}_{gh}$, $(a, b) \mapsto a \cdot b$, for every composable pair $(g, h) \in G^2$ and **involutions** $\mathcal{A}_g \to \mathcal{A}_{g^{-1}}$, $a \mapsto a^*$, for every $g \in G$. These operations are required to be continuous (with respect to the given topology on \mathcal{A}) and satisfy algebraic conditions similar to those in the definition of a C^* -algebra.

We next recall, briefly, how to define the full and reduced C^* -algebras of a Fell bundle. Consider the space $\mathfrak{C}_c(G, \mathcal{A})$ of compactly supported continuous sections $\xi \colon U \to \mathcal{A}$ defined on open Hausdorff subspaces $U \subseteq G$ and extended by zero outside U and hence viewed as sections $\xi \colon G \to \mathcal{A}$. The continuity of the algebraic operations on \mathcal{A} implies that for $\xi, \eta \in \mathfrak{C}_c(G, \mathcal{A})$, the formulas

$$(\xi * \eta)(g) := \int_G \xi(h) \cdot \eta(h^{-1}g) \, \mathrm{d}\lambda^{r(g)}(h) \quad \text{and} \quad \xi^*(g) := \xi(g^{-1})^*$$

define elements $\xi * \eta, \xi^* \in \mathfrak{C}_c(G, \mathcal{A})$ and so determine a convolution product * and an involution * on $\mathfrak{C}_c(G, \mathcal{A})$. Under these operations, $\mathfrak{C}_c(G, \mathcal{A})$ is a *-algebra; and indeed, a topological *-algebra in the inductive-limit topology. Since the norm function on \mathcal{A} is upper semicontinuous, the function $g \mapsto ||\xi(g)||$ from G to $[0, \infty)$ is upper semicontinuous and hence measurable. So we can define the *I*-norm on $\mathfrak{C}_c(G, \mathcal{A})$ by

$$\|\xi\|_{I} := \sup_{x \in G^{(0)}} \max\left\{ \int_{G^{x}} |\xi(g)| \, \mathrm{d}\lambda^{x}(g), \int_{G^{x}} |\xi^{*}(g)| \, \mathrm{d}\lambda^{x}(g) \right\}.$$

The L^1 -Banach algebra of \mathcal{A} , denoted $L^1_I(G, \mathcal{A})$, is defined as the completion of $\mathfrak{C}_c(G, \mathcal{A})$ with respect to $\|\cdot\|_I$. The full C^* -algebra $C^*(G, \mathcal{A})$ of \mathcal{A} is defined as the universal enveloping C^* -algebra of $L^1_I(G, \mathcal{A})$: the completion of $\mathfrak{C}_c(G, \mathcal{A})$ with respect to the C^* -norm

 $\|\xi\|_{\mathbf{u}} := \sup\{\|\pi(\xi)\| : \pi \text{ is an } I\text{-norm decreasing *-representation of } \mathfrak{C}_c(G, \mathcal{A})\}.$

That this is indeed a norm on $\mathfrak{C}_c(G, \mathcal{A})$, and not just a seminorm, follows from the existence of the following regular representations.

For each $x \in G^{(0)}$, let $L^2(G_x, \mathcal{A})$ be the right Hilbert \mathcal{A}_x -module completion of the space $\mathfrak{C}_c(G_x, \mathcal{A})$ of quasi-continuous sections $G_x \to \mathcal{A}$ with respect to the norm induced by the \mathcal{A}_x -valued inner product

$$\langle \xi | \eta \rangle_{\mathcal{A}_x} := \int_G \xi(h)^* \eta(h) \, \mathrm{d}\lambda_x(h) = \int_G \xi(h^{-1})^* \eta(h^{-1}) \, \mathrm{d}\lambda^x(h).$$

Then for each $x \in G^{(0)}$, the regular representation $\pi_x : \mathfrak{C}_c(G, \mathcal{A}) \to \mathbb{B}(L^2(G_x, \mathcal{A}))$ is defined by

$$\left(\pi_x(\xi)\eta\right)(g) := \int_G \xi(gh)\eta(h^{-1}) \,\mathrm{d}\lambda^x(h) = \int_G \xi(gh^{-1})\eta(h) \,\mathrm{d}\lambda_x(h),$$

for all $\xi \in \mathfrak{C}_c(G, \mathcal{A}), \eta \in \mathfrak{C}_c(G_x, \mathcal{A})$ and $g \in G_x$. The reduced C^* -norm on $\mathfrak{C}_c(G, \mathcal{A})$ is defined by

$$\|\xi\|_{\mathbf{r}} := \sup_{x \in G^0} \|\pi_x(\xi)\|.$$

This is, indeed, a norm: if $\pi_x(\xi) = 0$ then $(\xi * \eta)(g) = 0$ for all $\eta \in \mathfrak{C}_c(G_x, \mathcal{A})$ and $g \in G_x$; so

$$\xi * \xi^*(x) = \int_G \xi(h)\xi(h)^* \,\mathrm{d}\lambda^x(h) = 0 \quad \text{for all } x \in G^{(0)},$$

forcing $\xi|_{G^x} = 0$ for all x. A standard computation shows that $\|\xi\|_r \leq \|\xi\|_I$. Therefore $\|\cdot\|_u$ is also a C^* -norm and $\|\cdot\|_r \leq \|\cdot\|_u$. The completion of $\mathfrak{C}_c(G, \mathcal{A})$ with respect to $\|\cdot\|_r$ is the **reduced section** C^* -algebra of \mathcal{A} , and is denoted by $C^*_r(G, \mathcal{A})$. Our goal is to describe the opposite C^* -algebras $C^*(G, \mathcal{A})^{\mathrm{op}}$ and $C^*_{\mathrm{r}}(G, \mathcal{A})^{\mathrm{op}}$. We show that $C^*(G, \mathcal{A})^{\mathrm{op}} \cong C^*(G, \mathcal{A}^{\mathrm{o}})$, for an appropriate opposite Fell bundle \mathcal{A}^{o} over G associated to \mathcal{A} . It is more natural to first define an opposite Fell bundle $\mathcal{A}^{\mathrm{op}}$ over the opposite groupoid G^{op} and then later use the canonical anti-isomorphism $G \cong G^{\mathrm{op}}$ induced by the inversion map to obtain the desired Fell bundle \mathcal{A}^{o} over G.

The opposite Fell bundle \mathcal{A}^{op} over G^{op} is defined as follows. As a Banach bundle, \mathcal{A}^{op} does not differ from \mathcal{A} . In particular, the fibres are equal, $\mathcal{A}_g^{\text{op}} = \mathcal{A}_g$ for all $g \in G$, and also the topology on \mathcal{A}^{op} is equal to that on \mathcal{A} . Moreover, \mathcal{A}^{op} is also endowed with the same involution as \mathcal{A} , which makes sense because Gand G^{op} carry the same inversion map. The only thing that changes in \mathcal{A}^{op} is the multiplication: given $g, h \in G^{\text{op}}$ the condition $s^{\text{op}}(g) = r^{\text{op}}(h)$ means r(g) = s(h), so we can use the multiplication map $\mu_{h,g} \colon \mathcal{A}_h \times \mathcal{A}_g \to \mathcal{A}_{hg}$ and define the multiplication maps

$$\mu^{\mathrm{op}} \colon \mathcal{A}_g^{\mathrm{op}} \times \mathcal{A}_h^{\mathrm{op}} = \mathcal{A}_g \times \mathcal{A}_h \to \mathcal{A}_{g \cdot \mathrm{op}}^{\mathrm{op}} = \mathcal{A}_{hg} \quad \text{by } \mu^{\mathrm{op}}(a, b) := \mu(b, a).$$

In other words, $a \cdot_{\mathrm{op}} b := b \cdot a$ if we use \cdot and \cdot_{op} to denote the multiplications on \mathcal{A} and $\mathcal{A}^{\mathrm{op}}$, respectively. It is straightforward to see that $\mathcal{A}^{\mathrm{op}}$ is indeed a Fell bundle over G^{op} . Now we use the anti-isomorphism $G^{\mathrm{op}} \cong G$ induced by the inversion map $g \mapsto g^{-1}$ to form the pullback Fell bundle of $\mathcal{A}^{\mathrm{op}}$. In other words, \mathcal{A}^{o} is a Fell bundle over G with fibres $\mathcal{A}_{g}^{\mathrm{o}} = \mathcal{A}_{g^{-1}}$ and the topology induced by the sections $\xi^{\mathrm{o}}(g) := \xi(g^{-1})$ for $\xi \colon U \to \mathcal{A}$ a continuous section defined on a Hausdorff open subset $U \subseteq G$. The involution map $\mathcal{A}_{g}^{\mathrm{o}} \to \mathcal{A}_{g^{-1}}^{\mathrm{o}}$ is the involution map $\mathcal{A}_{g^{-1}} \to \mathcal{A}_{g}$ from \mathcal{A} and the multiplication map $\mathcal{A}_{g}^{\mathrm{o}} \times \mathcal{A}_{h}^{\mathrm{o}} \to \mathcal{A}_{gh}^{\mathrm{o}}$ is given by $(a, b) \mapsto b \cdot a$ for all $b \in \mathcal{A}_{g}^{\mathrm{o}} = \mathcal{A}_{g^{-1}}$, $b \in \mathcal{A}_{h}^{\mathrm{o}} = \mathcal{A}_{h^{-1}}$ and $g, h \in G$ with s(g) = r(h).

THEOREM 3.1: Let \mathcal{A} be a Fell bundle over a locally compact, locally Hausdorff groupoid with Haar system (G, λ) , and consider the Fell bundle \mathcal{A}° over (G, λ) described above. The map $\xi \mapsto \xi^{\circ}$ defined by

$$\xi^{\mathbf{o}}(g) := \xi(g^{-1})$$

gives an isomorphism of topological *-algebras $\mathfrak{C}_c(G,\mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} \mathfrak{C}_c(G,\mathcal{A}^{\mathrm{o}})$. Moreover, this isomorphism extends to an isomorphism of Banach *-algebras $L^1_I(G,\mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} L^1_I(G,\mathcal{A}^{\mathrm{o}})$ and C^* -algebras $C^*(G,\mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} C^*(G,\mathcal{A}^{\mathrm{o}})$ and $C^*_r(G,\mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} C^*_r(G,\mathcal{A}^{\mathrm{o}})$.

Isr. J. Math.

Proof. We prove the equivalent assertion that $\mathfrak{C}_c(G, \mathcal{A})^{\mathrm{op}} \cong \mathfrak{C}_c(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$ via the canonical linear isomorphism $\mathfrak{C}_c(G, \mathcal{A}) \ni \xi \mapsto \xi^{\mathrm{op}} := \xi \in \mathfrak{C}_c(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$, and that this isomorphism extends to isomorphisms

$$\begin{split} L^1_I(G,\mathcal{A})^{\mathrm{op}} &\xrightarrow{\sim} L^1_I(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}}), \quad C^*(G,\mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} C^*(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}}), \quad \text{and} \\ C^*_\mathrm{r}(G,\mathcal{A})^{\mathrm{op}} &\xrightarrow{\sim} C^*_\mathrm{r}(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}}). \end{split}$$

Since the topologies on \mathcal{A} and $\mathcal{A}^{\mathrm{op}}$ are the same, the map $\xi \mapsto \xi^{\mathrm{op}}$ is clearly a linear bijection $\mathfrak{C}_c(G,\mathcal{A}) \to \mathfrak{C}_c(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}})$ which is a homeomorphism with respect to the inductive-limit topologies. Also, this map preserves the involution; that is, $(\xi^{\mathrm{op}})^* = \xi^*$ on $\mathfrak{C}_c(G,\mathcal{A})$ (which is the same as the involution on $\mathfrak{C}_c(G,\mathcal{A})^{\mathrm{op}}$), and on $\mathfrak{C}_c(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}})$ because the involutions on \mathcal{A} and on $\mathcal{A}^{\mathrm{op}}$ are the same. It remains to check that the map is a homomorphism $\mathfrak{C}_c(G,\mathcal{A})^{\mathrm{op}} \to \mathfrak{C}_c(G^{\mathrm{op}},\mathcal{A}^{\mathrm{op}})$. But, remembering that the left Haar system λ^{op} on G^{op} is the right Haar system $(\lambda_x)_{x\in G^0}$ on G, we get

$$\begin{split} \xi^{\mathrm{op}} * \eta^{\mathrm{op}}(g) &= \int_{G^{\mathrm{op}}} \xi(h) \cdot_{\mathrm{op}} \eta(h^{-1}g) \,\mathrm{d}(\lambda^{\mathrm{op}})^{r^{\mathrm{op}}(g)}(h) \\ &= \int_{G} \eta(gh^{-1})\xi(h) \,\mathrm{d}\lambda_{s(g)}(h) \\ &= \int_{G} \eta(gh)\xi(h^{-1}) \,\mathrm{d}\lambda^{s(g)}(h) = (\eta * \xi)(g) \end{split}$$

for all $\xi, \eta \in \mathfrak{C}_c(G, \mathcal{A})$ and $g \in G$. This shows that the identity map is an anti-homomorphism $\mathfrak{C}_c(G, \mathcal{A}) \to \mathfrak{C}_c(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$, that is, a homomorphism $\mathfrak{C}_c(G, \mathcal{A})^{\mathrm{op}} \to \mathfrak{C}_c(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$, as desired. A similar computation shows that $\|\xi^{\mathrm{op}}\|_I = \|\xi\|_I$ and that therefore the identity map extends to an isomorphism $L^1_I(G, \mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} L^1_I(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$ and hence also to the corresponding universal enveloping C^* -algebras $C^*(G, \mathcal{A})^{\mathrm{op}} \xrightarrow{\sim} C^*(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$.

Finally, to check that $C_{\mathbf{r}}^*(G, \mathcal{A})^{\mathrm{op}} \cong C_{\mathbf{r}}^*(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$, fix $x \in G^0$. The regular representation π_x^{op} defines a representation of $C^*(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$ by adjointable operators on the right-Hilbert $\mathcal{A}^{\mathrm{op}}$ -module $L^2(G_x^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$. Recall that a left-Hilbert module over a C^* -algebra C is a left C-module \mathcal{E} with an inner product $_C\langle \cdot| \cdot \rangle$ in which $_C\langle c \cdot \xi | \eta \rangle = c_C\langle \xi | \eta \rangle$ for $c \in C$ and $\xi, \eta \in \mathcal{E}$. Any right Hilbert module \mathcal{E} over the opposite B^{op} of a C^* -algebra B determines a left Hilbert B-module \mathcal{E} with left B-action $b \cdot \xi := \xi \cdot b$ and left B-valued inner product $_B\langle \xi | \eta \rangle := \langle \eta | \xi \rangle_{B^{\mathrm{op}}}$. This process preserves the C^* -algebras of adjointable operators, meaning that the identity map on \mathcal{E} yields an isomorphism $\mathbb{B}(\mathcal{E}_{B^{\mathrm{op}}}) \cong \mathbb{B}(_B\mathcal{E})$. Applying this to the right Hilbert $\mathcal{A}_x^{\text{op}}$ -module $L^2(G_x^{\text{op}}, \mathcal{A}^{\text{op}})$ we get a left Hilbert \mathcal{A}_x module with left \mathcal{A}_x -action given by $a \cdot \xi = \xi \cdot_{\text{op}} a$ for all $\xi \in L^2(G_x^{\text{op}}, \mathcal{A}^{\text{op}})$; the right hand side denotes the right $\mathcal{A}_x^{\text{op}}$ -action on $L^2(G_x^{\text{op}}, \mathcal{A}^{\text{op}})$, so it is given by $(a \cdot_{\text{op}} \xi)(g) = \xi(g) \cdot_{\text{op}} a(s^{\text{op}}(g)) = a(r(g)) \cdot \xi(g)$. The left \mathcal{A}_x -valued inner product on $L^2(G^{\text{op}}, \mathcal{A}^{\text{op}})$ is given by

$$_{\mathcal{A}_x}\langle\xi|\eta\rangle = \langle\eta|\xi\rangle_{\mathcal{A}_x^{\mathrm{op}}} = \int_{G^{\mathrm{op}}} \eta(h)^* \cdot_{\mathrm{op}} \xi(h) \,\mathrm{d}\lambda_x^{\mathrm{op}}(h) = \int_G \xi(h)\eta(h)^* \,\mathrm{d}\lambda^x(h)$$

for all $\xi, \eta \in \mathfrak{C}_c(G_x^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}}) = \mathfrak{C}_c(G^x, \mathcal{A})$. Therefore the left Hilbert \mathcal{A}_x -module obtained from the right Hilbert $\mathcal{A}_x^{\mathrm{op}}$ -module $L^2(G_x^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$ in this way equals the left Hilbert \mathcal{A}_x -module $L^2(G^x, \mathcal{A})$ defined as the completion of $\mathfrak{C}_c(G^x, \mathcal{A})$ with respect to the norm associated to the left \mathcal{A}_x -valued inner product given by the above formula and the left \mathcal{A}_x -action also defined above. Therefore we may view π_x^{op} as a representation of $C^*(G^{\mathrm{op}}, \mathcal{A}^{\mathrm{op}})$ on

$$\mathbb{B}(_{\mathcal{A}_x}L^2(G^x,\mathcal{A})) \cong \mathbb{B}(L^2(G_x^{\mathrm{op}},\mathcal{A}^{\mathrm{op}})_{\mathcal{A}_x^{\mathrm{op}}}).$$

Under the isomorphism $C^*(G^{\text{op}}, \mathcal{A}^{\text{op}}) \cong C^*(G, \mathcal{A})^{\text{op}}$, this corresponds to the canonical representation $\tilde{\pi}_x$ of $C^*(G, \mathcal{A})^{\text{op}}$ on $\mathcal{A}_x L^2(G^x, \mathcal{A})$ via the formula

$$\tilde{\pi}_x(\xi)\eta(g) := (\eta * \xi)(g) = \int_G \eta(h)\xi(h^{-1}g) \,\mathrm{d}\lambda^x(h)$$

for $\xi \in \mathfrak{C}_c(G, \mathcal{A}), \eta \in \mathfrak{C}_c(G^x, \mathcal{A})$ and $g \in G^x$. Straightforward computations show that the above formula defines a representation

$$\tilde{\pi}_x \colon C^*(G, \mathcal{A})^{\mathrm{op}} \to \mathbb{B}(_{\mathcal{A}_x} L^2(G^x, \mathcal{A}))$$

of the opposite C^* -algebra $C^*(G, \mathcal{A})^{\mathrm{op}}$.

Given a left Hilbert *B*-module \mathcal{E} , let $\tilde{\mathcal{E}}$ denote the dual right Hilbert *B*-module of \mathcal{E} : as a vector space $\tilde{\mathcal{E}} = \{\tilde{\xi} : \xi \in \mathcal{E}\}$ is the conjugate of \mathcal{E} and the right *B*-action and right *B*-valued inner product are defined by

$$\tilde{\xi} \cdot b := (b^* \cdot \xi)^{\sim}$$
 and $\langle \xi | \eta \rangle_B :=_B \langle \xi | \eta \rangle.$

Then each representation $\pi: A^{\operatorname{op}} \to \mathbb{B}(B\mathcal{E})$ of an opposite C^* -algebra A^{op} on the C^* -algebra of adjointable operators $\mathbb{B}(B\mathcal{E})$ of a left Hilbert *B*-module \mathcal{E} induces a representation

$$\pi^{\mathrm{op}} \colon A \to \mathbb{B}(B\mathcal{E})^{\mathrm{op}} \cong \mathbb{B}(\tilde{\mathcal{E}}_B).$$

The isomorphism $\mathbb{B}(B\mathcal{E})^{\mathrm{op}} \cong \mathbb{B}(\tilde{\mathcal{E}}_B)$ we used above is induced by the involution; that is, it sends an operator $T \in \mathbb{B}(B\mathcal{E})$ to $\tilde{T} \in \mathbb{B}(\tilde{\mathcal{E}}_B)$ defined by

$$\tilde{T}(\tilde{\xi}) := (T^*(\xi))^{\sim}.$$

For $\xi \in \mathfrak{C}_c(G^x, \mathcal{A})$, the formula

$$\xi^*(g) := \xi(g^{-1})^*$$

determines an element $\xi^* \in \mathfrak{C}_c(G_x, \mathcal{A})$. The map $\xi \mapsto \xi^*$ induces an isomorphism $(L^2(G^x, \mathcal{A}))_{\mathcal{A}_x} \cong L^2(G_x, \mathcal{A})_{\mathcal{A}_x}$ from the dual Hilbert \mathcal{A}_x -module of $\mathcal{A}_x L^2(G^x, \mathcal{A})$ to the right Hilbert \mathcal{A}_x -module $L^2(G_x, \mathcal{A})$ that carries the regular representation $\pi_x \colon C^*(G, \mathcal{A}) \to \mathbb{B}(L^2(G_x, \mathcal{A})_{\mathcal{A}_x})$. This isomorphism intertwines the representations

$$\pi_x \colon C^*(G, \mathcal{A}) \to \mathbb{B}(L^2(G_x, \mathcal{A})_{\mathcal{A}_x})$$

and

$$\tilde{\pi}_x^{\mathrm{op}} \colon C^*(G, \mathcal{A}) \to \mathbb{B}(_{\mathcal{A}_x} L^2(G^x, \mathcal{A}))^{\mathrm{op}} \cong \mathbb{B}((L^2(G^x, \mathcal{A}))_{\mathcal{A}_x}^{\sim}).$$

We conclude that

$$\|\pi_x^{\rm op}(\xi)\| = \|\tilde{\pi}_x(\xi^{\rm o})\| = \|\tilde{\pi}_x^{\rm op}(\xi^{\rm o})\| = \|\pi_x(\xi^{\rm o})\|.$$

Since $x \in G^0$ was arbitrary, we get the equality $\|\xi^o\|_r = \|\xi\|_r$ and therefore the desired isomorphism $C_r^*(G^{op}, \mathcal{A}^{op}) \cong C_r^*(G, \mathcal{A})^{op}$.

Remark 3.2: As in the case of groupoid C^* -algebras, we can rephrase the preceding result in terms of conjugate bundles as well. Let \mathcal{A} be a Fell bundle over a groupoid G. For $g \in G$, let $\overline{\mathcal{A}}_g$ be the conjugate vector space of \mathcal{A}_g ; that is, $\overline{\mathcal{A}}_g$ is a copy $\{\overline{a} : a \in \mathcal{A}_g\}$ of \mathcal{A}_g as an abelian group under addition, but with scalar multiplication given by $\lambda \overline{a} = \overline{\lambda a}$. Via the map $a \mapsto \overline{a}$, the operations on the Fell bundle \mathcal{A} induce operations on $\overline{\mathcal{A}} := \bigsqcup_{g \in G} \overline{\mathcal{A}}_g$: $\overline{ab} = \overline{ab}$, and $\overline{a}^* = \overline{a^*}$. Under these operations, $\overline{\mathcal{A}}$ is a Fell bundle over G, called the **conjugate bundle** of \mathcal{A} .

Let \mathcal{A}° be the opposite bundle of \mathcal{A} defined above; so $\mathcal{A}_{g}^{\circ} = \mathcal{A}_{g^{-1}}$, and write \cdot_{\circ} for the multiplication in this bundle. Then the maps $\mathcal{A}_{g}^{\circ} \ni a \mapsto \overline{a^{*}} \in \overline{\mathcal{A}}_{g}$ are linear isometries because the maps $a \mapsto a^{*}$ and $a \mapsto \overline{a}$ are both conjugate linear. We have $\overline{(a \cdot_{\circ} b)^{*}} = \overline{(ba)^{*}} = \overline{a^{*}b^{*}} = \overline{a^{*}b^{*}}$ and $(\overline{a^{*}})^{*} = \overline{a} = \overline{(a^{*})^{*}}$, so $a \mapsto \overline{a^{*}}$ determines an isomorphism $\mathcal{A}^{\circ} \cong \overline{\mathcal{A}}$ of Fell bundles over G. Thus Theorem 3.1 shows that there is a topological-*-algebra isomorphism $\xi \mapsto \overline{\xi}$ from $\mathfrak{C}_{c}(G, \mathcal{A})$ to $\mathfrak{C}_{c}(G, \overline{\mathcal{A}})$ given by $\overline{\xi}(g) := \overline{\xi(g^{-1})^{*}}$ that extends to isomorphisms

$$L^1_I(G, \mathcal{A}^{\mathrm{o}}) \cong L^1_I(G, \overline{\mathcal{A}}), \quad C^*(G, \mathcal{A}^{\mathrm{o}}) \cong C^*(G, \overline{\mathcal{A}}), \quad \text{and} \quad C^*_{\mathrm{r}}(G, \mathcal{A}^{\mathrm{o}}) \cong C^*_{\mathrm{r}}(G, \overline{\mathcal{A}}).$$

Remark 3.3: Remark 3.2 is closely related to the idea behind Phillips' construction in [11] of non-self-opposite continuous-trace C^* -algebras A; the observation underlying his construction is that the Dixmier–Douady class of the opposite

772

algebra A^{op} is the inverse of the Dixmier–Douady class of A. To see how this relates to our results, fix a compact Hausdorff space X, and let S denote the sheaf of germs of continuous T-valued functions on X. The Raeburn–Taylor construction [14] shows that (after identifying $\check{H}^3(X,\mathbb{Z})$ with $H^2(X,S)$) any class $\delta \in H^2(X,S)$ is the Dixmier–Douady invariant of a twisted groupoid C^* -algebra $C^*(G,\sigma)$ associated to a continuous 2-cocycle σ on a principal étale groupoid G with unit space $G^{(0)} = \bigsqcup_{i,j} U_{ij}$ for some precompact open cover $\{U_i\}$ of X. The cocycle σ determines, and is determined up to cohomology by, the Fell line-bundle L_{σ} over G given by $L_{\sigma} = G \times \mathbb{T}$ with twisted multiplication (g, w)(h, z) = (gh, c(g, h)wz) and the obvious involution. Remark 3.2 shows that $C^*(G, \sigma)^{\text{op}}$ is given by the conjugate bundle $\overline{L_{\sigma}}$, so the corresponding class in $H^2(X, S)$ is determined by the pointwise conjugate of the class δ ; that is, $\delta(C^*(G, \sigma)) = \delta(C^*(G, \sigma)^{\text{op}})^{-1}$.

References

- L. G. Brown, P. Green and M. A. Rieffel, Stable isomorphism and strong Morita equivalence of C^{*}-algebras, Pacific Journal of Mathematics 71 (1977), 349–363.
- [2] A. Connes, A factor not anti-isomorphic to itself, Annals Mathematics 101 (1975), 536– 554.
- [3] M. Dadarlat, I. Hirshberg aqnd N. C. Phillips, Simple nuclear C*-algebras not equivariantly isomorphic to their opposites, Journal of Noncommutative Geometry 12 (2018), 1227–1253.
- [4] R. Exel, Approximately finite C*-algebras and partial automorphisms, Mathematica Scandinavica 77 (1995), 281–288.
- [5] R. Exel and E. Pardo Self-similar graphs, a unified treatment of Katsura and Nekrashevych C*-algebras, Advances in Mathematics 306 (2017), 1046–1129.
- [6] I. Farah and I. Hirshberg, Simple nuclear C*-algebras not isomorphic to their opposites, Proceedings of the National Academy of Sciences of the United States of America 114 (2017), 6244–6249.
- [7] E. Gardella and M. Lupini, Representations of étale groupoids in L^p-spaces, Advances in Mathematics318 (2017), 233–278.
- [8] A. an Huef, A. Kumjian and A. Sims, A Dixmier–Douady theorem for Fell algebras, Journal of Functional Analysis 260 (2011), 1543–1581.
- [9] A. Kumjian, On C^{*}-diagonals, Canadian Journal of Mathematics **38** (1986), 969–1008.
- [10] A. Kumjian, Fell bundles over groupoids, Proceedings of the American Mathematical Society 126 (1998), 1115–1125.
- [11] N. C. Phillips, Continuous-trace C*-algebras not isomorphic to their opposite algebras, International Journal of Mathematics 12 (2001), 263–275.
- [12] N. C. Phillips, A simple separable C*-algebra not isomorphic to its opposite algebra, Proceedings of the American Mathematical Society 132 (2004), 2997–3005.

- [13] N. C. Phillips and M. G. Viola, A simple separable exact C*-algebra not anti-isomorphic to itself, Mathematische Annalen 355 (2013), 783–799.
- [14] I. Raeburn and J. L. Taylor, Continuous trace C*-algebras with given Dixmier–Douady class, Journal of the Australian Mathematical Society. Series A 38 (1985), 394–407.
- [15] J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, Vol. 793, Springer, Berlin, 1980.
- [16] J. Renault, Cartan subalgebras in C*-algebras, Irish Mathematical Society Bulletin 61 (2008), 29–63.
- [17] M. Rørdam and E. Størmer, Classification of nuclear, simple C*-algebras, in Classification of Nuclear C*-algebras. Entropy in Operator Algebras, Encyclopaedia of Mathematical Sciences, Vol. 126, Springer, Berlin, 2002, pp. 1–145.