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ABSTRACT

This paper deals with lattice congruences of the weak order on the sym-

metric group, and initiates the investigation of the cover graphs of the

corresponding lattice quotients. These graphs also arise as the skeleta of

the so-called quotientopes, a family of polytopes recently introduced by

Pilaud and Santos [Bull. Lond. Math. Soc., 51:406–420, 2019], which gen-

eralize permutahedra, associahedra, hypercubes and several other poly-

topes. We prove that all of these graphs have a Hamilton path, which

can be computed by a simple greedy algorithm. This is an application of

our framework for exhaustively generating various classes of combinatorial

objects by encoding them as permutations. We also characterize which of

these graphs are vertex-transitive or regular via their arc diagrams, give

corresponding precise and asymptotic counting results, and we determine

their minimum and maximum degrees.

1. Introduction

We let Sn denote the set of all permutations on the set {1, . . . , n}. The

inversion set of a permutation π ∈ Sn is the set of all decreasing pairs of

values of π = a1 · · · an, formally

inv(π) := {(ai, aj) | 1 ≤ i < j ≤ n and ai > aj}.

We consider the classical weak order on Sn, the poset obtained by ordering all

permutations from Sn by containment of their inversion sets, i.e., π < ρ for any

two permutations π, ρ in the weak order if and only if inv(π) ⊆ inv(ρ); see the

left-hand side of Figure 1. Equivalently, the weak order on Sn can be obtained

as the poset of regions of the braid arrangement of hyperplanes. Also, its Hasse

diagram is the graph of the permutahedron.

It is well-known that the weak order forms a lattice, i.e., joins π ∨ ρ and

meets π ∧ ρ are well-defined. A lattice congruence is an equivalence rela-

tion ≡ on Sn that is compatible with taking joins and meets. Formally, if π ≡ π′

and ρ ≡ ρ′ then we also have π ∨ ρ ≡ π′ ∨ ρ′ and π ∧ ρ ≡ π′ ∧ ρ′. The lattice

quotient Sn/≡ is obtained by taking the equivalence classes as elements, and

ordering them by X < Y if and only if there is a representative π ∈ X and

a representative ρ ∈ Y such that π < ρ in the weak order; see the right-hand

side of Figure 1. The study of lattice congruences of the weak order has been

developed considerably in recent years, in particular thanks to Reading’s works,



Vol. 244, 2021 COMBINATORIAL GENERATION II 361

summarized in [Rea12, Rea16a, Rea16b]. All of these results have beautiful ram-

ifications into posets, polytopes, geometry, and combinatorics. In fact, many of

these results even hold in the more general setting of arbitrary Coxeter groups

and for the poset of regions of general hyperplane arrangements.

It is not hard to see that there are double-exponentially (in n) many distinct

lattice congruences of the weak order on Sn, and many important lattices arise

as quotients of suitable lattice congruences: the Boolean lattice, the Tamari

lattice [Tam62] (shown in Figure 1), type A Cambrian lattices [Rea06, CP17],

permutree lattices [PP18], the increasing flip lattice on acyclic twists [Pil18],

and the rotation lattice on diagonal rectangulations [LR12, Gir12, CSS18].

Figure 1. Hasse diagrams of the weak order on S4 (left) with a

lattice congruence ≡ (bold edges), and of the resulting lattice

quotient S4/≡ (right), which is the well-known Tamari lattice

(with corresponding binary trees).

In a recent paper, Pilaud and Santos [PS19] showed how to realize the cover

graph of any lattice quotient Sn/≡ as the graph of an (n − 1)-dimensional

polytope, and they called these polytopes quotientopes. Their results gen-

eralize many earlier constructions of polytopes for the aforementioned special

lattices [Lod04, HL07, LP18, PP18, PS12, LR12]. In particular, quotientopes

generalize permutahedra, associahedra, and hypercubes. Interestingly, quotien-

topes are defined by a set of gliding hyperplanes that is consistent with refining
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the corresponding lattice congruences, i.e., moving the hyperplanes outwards

corresponds to refining the equivalence classes. In particular, the permuta-

hedron contains all other quotientopes, and the hypercube is contained in all

(full-dimensional) quotientopes. Figure 7 shows all quotientopes for n = 4 or-

dered by refinement of the corresponding congruences, with permutahedron,

associahedron, and 3-cube highlighted.

There are several long-standing open problems revolving around Hamilton

paths and cycles in graphs of polytopes and other highly symmetric graphs,

most prominently Barnette’s conjecture and Lovász’ conjecture. Barnette’s

conjecture [Bar69] asserts that the graph of every simple three-dimensional

polytope with an even number of edges on each face has a Hamilton cycle.

Another variant of the conjecture states that the graphs of all simple three-

dimensional polytopes with face sizes at most 6, in particular all fullerenes,

have a Hamilton cycle [ABHM00]. Barnette also conjectured that the graph

of every simple 4-dimensional polytope has a Hamilton cycle [Grü70, p. 1145].

Note that the simplicity of these polytopes means that their graphs are 3-

regular or 4-regular, respectively. Lovász’ conjecture [Lov70] asserts that every

vertex-transitive graph has a Hamilton path. A stronger form of his conjecture

asserts that such graphs even have a Hamilton cycle, with five well-understood

exceptions, among them the Petersen graph and the Coxeter graph.

1.1. Our results. In this paper we initiate the investigation of the cover

graphs of lattice quotients of the weak order on the symmetric group Sn, or

equivalently, of the graphs of the quotientopes introduced by Pilaud and San-

tos. Our first main result is that for every lattice congruence≡ of the weak order

on Sn, the cover graph of the lattice quotient Sn/≡ has a Hamilton path (Theo-

rem 13). As a consequence, the graph of every quotientope has a Hamilton path

(Corollary 14); see Figure 7 in Section 3.4. These Hamilton paths are computed

by a simple greedy algorithm, which we devised in [HHMW19, HHMW20] within

a general framework for exhaustively generating various classes of combinatorial

objects by encoding them as permutations. For the permutahedron, associa-

hedron, and hypercube, algorithmic constructions of such Hamilton paths were

already known by the Steinhaus–Johnson–Trotter algorithm [Tro62, Joh63], by

the Lucas–van Baronaigien–Ruskey tree rotation algorithm [LvBR93] (see also

[Luc87, HN99]), and by the binary reflected Gray code [Gra53], respectively.

Our results thus unify and generalize all these classical algorithms. Motivated
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by our Hamiltonicity results and by Barnette’s and Lovász’ conjectures, we also

characterize which lattice congruences of the weak order on Sn yield regular

or vertex-transitive quotientopes. This characterization uses arc diagrams in-

troduced by Reading [Rea15], and allows us to derive corresponding precise

and asymptotic counting results. We also determine the minimum and maxi-

mum degrees of quotientopes. All of these results are summarized in Table 1

in Section 4 (theorems are referenced in the table). In those results, Catalan

numbers, integer compositions and partitions, and the Erdős–Szekeres theorem

make their appearance.

1.2. Outline of this paper. This is part II in our paper series on exhaus-

tively generating various classes of combinatorial objects by encoding them as

permutations. In part I [HHMW19], we developed the fundamentals of this

framework, including a simple greedy algorithm for exhaustive generation, and

we applied the framework to generate many different classes of pattern-avoiding

permutations. In Section 2 of the present paper, we briefly recap the necessary

background from this first paper. In Section 3, we apply our framework to

generating lattice congruences of the weak order on Sn, proving that all quo-

tientopes have a Hamilton path. In Section 4, we characterize and count regular

and vertex-transitive quotientopes, and we determine their minimum and max-

imum degree. We conclude with some interesting open problems in Section 5.

2. Recap: Zigzag languages and Algorithm J

2.1. Preliminaries. For any two integers a and b with a ≤ b we define

[a, b] := {a, a+ 1, . . . , b} and ]a, b[ := [a, b] \ {a, b}, and we introduce the abbre-

viation [n] := [1, n]. We use idn = 12 · · ·n to denote the identity permutation,

and ε ∈ S0 to denote the empty permutation. For any π ∈ Sn−1 and any

1 ≤ i ≤ n, we write ci(π) ∈ Sn for the permutation obtained from π by in-

serting the new largest value n at position i of π, i.e., if π = a1 · · · an−1 then

ci(π) = a1 · · · ai−1 n ai · · ·an−1. Moreover, for π ∈ Sn, we write p(π) ∈ Sn−1 for

the permutation obtained from π by removing the largest entry n.
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Given a permutation π = a1 · · ·an with a substring ai · · · aj with

ai > ai+1, . . . , aj, a right jump of the value ai by j − i steps is a cyclic

left rotation of this substring by one position to ai+1 · · · ajai. Similarly, given

a substring ai · · ·aj with aj > ai, . . . , aj−1, a left jump of the value aj

by j − i steps is a cyclic right rotation of this substring to ajai · · · aj−1.

2.2. The basic algorithm. The following simple greedy algorithm was pro-

posed in [HHMW19] to generate a set of permutations Ln ⊆ Sn. We say that a

jump is minimal (w.r.t. Ln), if a jump of the same value in the same direction

by fewer steps creates a permutation that is not in Ln. Note that each entry of

the permutation admits at most one minimal left jump and at most one minimal

right jump.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily

generate a set of permutations Ln ⊆ Sn using minimal jumps starting from

an initial permutation π0 ∈ Ln.

J1. [Initialize] Visit the initial permutation π0.

J2. [Jump] Generate an unvisited permutation from Ln by performing a

minimal jump of the largest possible value in the most recently visited

permutation. If no such jump exists, or the jump direction is ambigu-

ous, then terminate. Otherwise visit this permutation and repeat J2.

Put differently, in step J2 we consider the entries n, n−1, . . . , 2 of the current

permutation in decreasing order, and for each of them we check whether it allows

a minimal left or right jump that creates a previously unvisited permutation,

and we perform the first such jump we find, unless the same entry also allows

a jump in the opposite direction, in which case we terminate. If no minimal

jump creates an unvisited permutation, we also terminate the algorithm. For

example, consider L4 = {1243, 1423, 4123, 4213, 2134}. Starting with π0 = 1243,

the algorithm generates π1 = 1423 (obtained from π0 by a left jump of the

value 4 by 1 step), then π2 = 4123, then π3 = 4213 (in π2, 4 cannot jump, as π0

and π1 have been visited before; 3 cannot jump either to create any permutation

from L4, so 2 jumps left by 1 step), then π4 = 2134, successfully generating L4.

If instead we initialize with π0 = 4213, then the algorithm generates π1 = 2134,

and then stops, as no further jump is possible. If we choose π0 = 1423, then we

may jump 4 to the left or right (by 1 step), but as the direction is ambiguous,

the algorithm stops immediately. As mentioned before, the algorithm may stop
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before having visited the entire set Ln either because no minimal jump leading

to a new permutation from Ln is possible, or because the direction of jump is

ambiguous in some step. By the definition of step J2, the algorithm will never

visit any permutation twice.

2.3. Zigzag languages. The following theorem, proved in [HHMW19], pro-

vides a sufficient condition on the set Ln to guarantee that Algorithm J is

successful. This condition is captured by the following closure property of the

set Ln. A set of permutations Ln ⊆ Sn is called a zigzag language, if ei-

ther n = 0 and L0 = {ε}, or if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag

language satisfying either one of the following conditions:

(z1) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.

(z2) We have Ln = {cn(π) | π ∈ Ln−1}.
The definition of zigzag language given in [HHMW19] did not include condi-

tion (z2), but only condition (z1). However, all results from our earlier paper

carry over straightforwardly. Essentially, condition (z2) is a technicality we

include here to be able to handle lattice congruences in full generality. Condi-

tion (z2) expresses that Ln is obtained from Ln−1 simply by inserting the new

largest value n at the rightmost position of all permutations, i.e., the value n

only ever appears to the right of 1, . . . , n − 1. In this case we will have in

particular |Ln| = |Ln−1|.
Theorem 1 ([HHMW19]): Given any zigzag language of permutations Ln and

initial permutation π0 = idn, Algorithm J visits every permutation from Ln

exactly once.

For proving Theorem 1, we showed that the permutations in Ln are generated

by Algorithm J exactly in the order of a particular sequence J(Ln), and we now

recapitulate the definition of this sequence. For any π ∈ Ln−1 we let #„c (π)

be the sequence of all ci(π) ∈ Ln for i = 1, 2, . . . , n, starting with c1(π) and

ending with cn(π), and we let #„c (π) denote the reverse sequence, i.e., it starts

with cn(π) and ends with c1(π). In words, those sequences are obtained by

inserting into π the new largest value n from left to right, or from right to left,

respectively, in all possible positions that yield a permutation from Ln, skipping

the positions that yield a permution that is not in Ln. The sequence J(Ln) is

defined recursively as follows: If n = 0 then J(L0) := ε, and if n ≥ 1 then we
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consider the sequence J(Ln−1) =: π1, π2, . . . and define

(1a) J(Ln) =
#„c (π1),

#„c (π2),
#„c (π3),

#„c (π4), . . .

if condition (z1) holds, and we define

(1b) J(Ln) = cn(π1), cn(π2), cn(π3), cn(π4), . . .

if condition (z2) holds.

3. Generating lattice congruences of the weak order

In this section we show how Algorithm J can be used to generate any lattice

congruence of the weak order on Sn. The main results of this section are

summarized in Theorem 13 and Corollary 14 below.

3.1. Preliminaries. We begin to recall a few basic definitions for a poset (P,<).

An antichain in P is a set of pairwise incomparable elements. A subset U ⊆ P

is an upset if x ∈ U and x < y implies that y ∈ U . Similarly, D ⊆ P is a

downset if x ∈ D and y < x implies that y ∈ D. Clearly, the complement of

an upset is a downset and vice versa. Moreover, the minimal elements of an

upset and the maximal elements of a downset form an antichain. The upset of

an element x ∈ P is the upset containing exactly all y with x < y. Similarly,

the downset of x is the downset containing exactly all y with y < x. An

interval X = [x, y] in P is the intersection of the upset of x with the downset

of y, and we write x = min(X) and y = max(X).

A cover relation is a pair x, y ∈ P with x < y for which there is no z ∈ P

with x < z < y. In this case we say that y covers x and we write x � y. We

also refer to x as a down-neighbor of y, and to y as an up-neighbor of x.

Clearly, the cover relations form an acyclic directed graph with vertex set P ,

and this graph is referred to as the cover graph of P , and its edges as cover

edges. A drawing of the cover graph with all cover edges x�y leading upwards

is called a Hasse diagram. A poset (P,<) is called a bf lattice, if for any

two x, y ∈ P there is a unique smallest element z, called the join x ∨ y of x

and y, such that z > x and z > y, and if there is a unique largest element z,

called the meet x ∧ y of x and y, satisfying z < x and z < y. A lattice

congruence is an equivalence relation ≡ on P such that x ≡ x′ and y ≡ y′

implies that x∨ y ≡ x′ ∨ y′ and x∧ y ≡ x′ ∧ y′. Given any lattice congruence ≡,

we obtain the lattice quotient P/≡ (which is itself a lattice) by taking the
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equivalence classes as elements, and ordering them by X < Y if and only if

there is an x ∈ X and a y ∈ Y such that x < y in P . Observe that the cover

graph of P/≡ is obtained from the cover graph of P by contracting all cover

edges x � y with x ≡ y. For any x ∈ P , we let XP (x) = X(x) denote the

equivalence class in P/≡ containing x.

We will need the following two lemmas.

Lemma 2: For any lattice congruence of a finite lattice, every equivalence class

is an interval.

Lemma 3: Given a finite lattice (P,<) and any lattice congruence ≡, the lattice

quotient P/≡ is isomorphic to the induced subposet of P whose elements are

either the minima of the equivalence classes or the maxima.

Lemma 2 follows immediately from the definition of lattice congruence.

Lemma 3 is also well-known. It can be proved by showing that given two

equivalence classes X and Y of ≡ and two elements x ∈ X , y ∈ Y with x � y,

then we have min(X) < min(Y ) and max(X) < max(Y ).

Recall that the weak order on Sn is the order given by inclusion of inversion

sets. Note that the cover relations in this poset are exactly adjacent transpo-

sitions, i.e., swaps of two entries at neighboring positions in the permutation.

Observe also that the inversion set of the join π∨ρ of two permutations π and ρ

is given by the transitive closure of inv(π)∪ inv(ρ), and the inversion set of the

meet can be computed similarly by considering the reverse permutations (which

have the complementary inversion set). In the weak order on Sn, if two permu-

tations π and ρ differ by transposing a and b, then we refer to the corresponding

cover edge as an (a, b)-edge, and if π ≡ ρ then we refer to it as an (a, b)-bar.

Bars are drawn with bold edges in all our figures. The cover edges involving a

fixed permutation π = a1 · · · an can be described more precisely by considering

all ascents of π, i.e., all pairs (ai, ai+1) with ai < ai+1 and all descents of π,

i.e., all pairs (ai, ai+1) with ai > ai+1. Specifically, for fixed π, all cover edges

π � ρ are given by transposing the ascents of π, and all cover edges π � ρ are

given by transposing the descents of π. We let asc(π) and desc(π) denote the

number of ascents and descents of π, respectively.

3.2. Combinatorics of lattice congruences of the weak order. In

the following discussion of lattice congruences of the weak order, we borrow

some of the terminology and notation introduced by Reading [Rea03, Rea15];

see also his surveys [Rea12, Rea16a, Rea16b].
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It is clear from the definition of lattice congruence, that if certain permuta-

tions are equivalent, this also forces other permutations to be equivalent. These

relations on the cover edges are expressed by forcing constraints. The two forc-

ing constraints that are relevant for us are shown in Figure 2. We refer to them

as type i and type ii constraints, shown on the left and right of the figure, re-

spectively. A type i constraint involves four permutations π, ρ, π′, ρ′ satisfying
π�ρ�ρ′ and π�π′

�ρ′ that differ in adjacent transpositions of two values a, b

or two values c, d with a < b and c < d, as shown in the figure. This constraint

expresses that π ≡ ρ if and only if π′ ≡ ρ′, i.e., either both (a, b)-edges (π, ρ)

and (π′, ρ′) are bars or both are non-bars. A type ii constraint involves six

permutations π, ρ, π′, ρ′, σ, τ satisfying π � ρ � τ � ρ′ and π � σ � π′
� ρ′ that

differ in three adjacent values a, b, c with a < b < c, as shown in the figure.

This constraint expresses that π ≡ ρ if and only if π′ ≡ ρ′, and moreover these

conditions imply σ ≡ π′ and τ ≡ ρ (but not the converse), i.e., the first two

(a, b)-edges are both either bars or non-bars, and in the first case they also

force the latter two (a, c)-edges to be bars. Note that both constraints follow

immediately from the definition of lattice congruence, and that they are meant

to capture also the symmetric situation obtained by reversing all permutations

involved in Figure 2.

π = ab cd

π′ = ab dc

ρ′ = ba dc

ρ = ba cd

π = abc

σ = acb

τ = bca

ρ = bac

π′ = cab

ρ′ = cba

a < b and c < d a < b < c

type i type ii

Figure 2. Forcing constraints in a lattice congruence of the

weak order. Bold edges indicate bars, i.e., pairs of permu-

tations that differ in an adjacent transposition and that belong

to the same equivalence class.
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We now consider maximal sets of cover edges that are either all bars or all non-

bars in any lattice congruence. Given an (a, b)-bar, then type i constraints allow

us to reorder the values to the left or right of a and b in the corresponding permu-

tations arbitrarily. Moreover, given an (a, b)-bar, then type ii constraints allow

us to move any value that is larger or smaller than a and b to the left or right of

them. Consequently, a maximal set of mutually forcing bars is characterized by

the pair (a, b), and by the values that are strictly between a and b and to the left

of them. This motivates the following definition: Given a triple (a, b, L) with

1 ≤ a < b ≤ n and L ⊆ ]a, b[, the fence f(a, b, L) is the set of all (a, b)-edges,

where the values in L are to the left of a and b in the corresponding permuta-

tions, the values in ]a, b[ \ L are to the right of a and b, and the position of the

remaining values [n] \ [a, b] is arbitrary. Note that the edges of any fence form

a matching in the cover graph. For instance, for n = 4 the fence f(2, 4, {3})
contains the (2, 4)-edges (3241, 3421), (1324, 1342), and (3124, 3142) that are

mutually forcing bars; see Figure 3. In the figure, we visualize fences by an

arc diagram, which consists of a vertical sequence of n points labeled 1, . . . , n

from bottom to top, and for every fence f(a, b, L) there is an arc joining the ath

and bth point, with the points in L left of the arc, and the points in ]a, b[ \ L
right of the arc. We let

Fn := {f(a, b, L) | 1 ≤ a < b ≤ n and L ⊆ ]a, b[}

denote the set of all fences.

The (non-mutual) forcing constraints between fences induced by type ii con-

straints yield a partial order on Fn, called the forcing order. Specifically,

two fences f(a, b, L) and f(c, d,M) satisfy f(a, b, L) ≺ f(c, d,M) in the forcing

order, if a ≤ c < d ≤ b, (a, b) �= (c, d), and M = L ∩ ]c, d[. Note that two such

fences form a cover relation in the forcing order if and only if (c, d) = (a+1, b) or

(c, d) = (a, b − 1). Consequently, every non-maximal fence f(a, b, L) is covered

by two other fences, and every non-minimal fence f(a, b, L) covers two fences

if either a = 0 or b = n, and four fences if 0 < a < b < n. The interpre-

tation is that if f(a, b, L) ≺ f(c, d,M), then the bars of the fence f(c, d,M)

force the bars of the fence f(a, b, L), i.e., forcing goes downward in the forc-

ing order. For example, we have f(1, 4, {2, 3}) ≺ f(2, 4, {3}), i.e., the three

bars (3241, 3421), (1324, 1342), and (3124, 3142) from before force the two

bars (2314, 2341) and (3214, 3241).



370 H. P. HOANG AND T. MÜTZE Isr. J. Math.

1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 2341 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

312

321

231

132213

123

f(1, 2, ∅) f(2, 3, ∅)

f(1, 3, {2}) f(1, 3, ∅)

f(1, 2, ∅) f(2, 3, ∅) f(3, 4, ∅)

f(1, 3, {2}) f(1, 3, ∅) f(2, 4, ∅)

f(1, 4, {2, 3}) f(1, 4, {2}) f(1, 4, ∅)

f(2, 4, {3})

f(1, 4, {3})

Figure 3. Illustration of fences and the forcing order for n = 3

(left) and n = 4 (right). Cover edges of the same fence are

drawn in the same color. The highlighted region shows a

downset in the forcing order, corresponding to the lattice quo-

tient in Figure 1.

Theorem 4 ([Rea16a, Section 10-5]): For every lattice congruence ≡ of the

weak order on Sn, there is a subset of fences F≡ ⊆ Fn such that in each

equivalence class of ≡, all cover edges are a bar from a fence in F≡, and all

other cover edges are not in any fence from F≡. Moreover, F≡ is a downset of

the forcing order ≺ and the map ≡ �→ F≡ is a bijection between the lattice

congruences of the weak order on Sn and the downsets of the forcing order ≺.

From now on we use F≡ as the set of fences corresponding to a lattice con-

gruence ≡ given by Theorem 4. The downset F≡ describes exactly all the cover

edges that are contracted to obtain the lattice quotient Sn/≡. Equivalently, the

upset Fn \F≡ describes all cover edges that are not contracted in the quotient.
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In the dual setting of hyperplane arrangements considered in [Rea03, PS19],

the dual of a fence is called a shard. Moreover, these authors represent a lattice

congruence ≡ not by the set of fences F≡ that contains all cover edges that are

contracted to obtain the lattice quotient Sn/≡, but by the set Fn \F≡ of cover

edges that are not contracted in the quotient. The latter representation allows

describing each equivalence class by a non-crossing arc diagram that contains

only arcs corresponding to fences from Fn \ F≡ [Rea15]. On the other hand,

our representation makes the characterization of congruences with regular and

vertex-transitive quotient graphs in Section 4 somewhat more natural.

We may order all downsets of the forcing order by inclusion, yielding another

lattice; see Figure 4. By Theorem 4, this corresponds to ordering all lattice

congruences of the weak order on Sn by refinement. The finest lattice con-

gruence ≡ does not use any fences F≡ = ∅, and corresponds to the set of all

permutations Sn, and the coarsest lattice congruence ≡ uses all fences F≡ = Fn,

and corresponds to contracting all permutations into a single equivalence class.

3.3. Restrictions, rails, ladders, and projections. Given a lattice con-

gruence ≡ of the weak order on Sn, the restriction of ≡, denoted ≡∗, is the

relation on Sn−1 induced by all permutations that have the largest value n at

the last position, i.e., it is the set of all pairs (π, ρ) with π, ρ ∈ Sn−1 for which

cn(π) ≡ cn(ρ).

Lemma 5: For every lattice congruence ≡ of the weak order on Sn, the restric-

tion ≡∗ is a lattice congruence on Sn−1.

Proof. Clearly, for any two permutations π, ρ ∈ Sn−1 we have

(2) cn(π) ∨ cn(ρ) = cn(π ∨ ρ) and cn(π) ∧ cn(ρ) = cn(π ∧ ρ).

Now consider four permutations π, π′, ρ, ρ′ ∈ Sn−1 satisfying π ≡∗ π′ and ρ≡∗ ρ′.
From the definition of restriction, we have cn(π) ≡ cn(π

′) and cn(ρ) ≡ cn(ρ
′).

Applying the definition of lattice congruence to ≡, we obtain that

cn(π) ∨ cn(ρ) ≡ cn(π
′) ∨ cn(ρ

′) and cn(π) ∧ cn(ρ) ≡ cn(π
′) ∧ cn(ρ

′).

Applying (2) to these relations yields

cn(π ∨ ρ) ≡ cn(π
′ ∨ ρ′) and cn(π ∧ ρ) ≡ cn(π

′ ∧ ρ′),

from which we obtain π ∨ ρ ≡∗ π′ ∨ ρ′ and π ∧ ρ ≡∗ π′ ∧ ρ′ with the definition

of restriction. This proves the lemma.
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Figure 4. Lattice of congruences of the weak order on Sn

for n = 4, represented by downsets of the forcing order. Each

downset of fences is represented by an arc diagram contain-

ing all the corresponding arcs, where the arcs correspond-

ing to maximal fences of the downset are highlighted. The

figure shows only downsets not containing any non-essential

fences f(a, a+1, ∅), a ∈ [n− 1], as otherwise the congruence is

equivalent to a lower-dimensional one (see Lemma 17 below).
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I2 = [13254, 35412]

I3 = [13245, 34512]

I1 = [15324, 53412]

Figure 5. Illustration of rails, ladders, and projections. The

figure shows only a subset of permutations from S5. The equiv-

alence classes on the right are shown as intervals.

The following definitions are illustrated in Figure 5. Recall that for any per-

mutation π ∈ Sn−1 and for any 1 ≤ i ≤ n, the permutation ci(n) is obtained

from π by inserting the largest value n at position i. Given any permuta-

tion π ∈ Sn−1, we refer to the cover edges

cn(π) � cn−1(π)� · · ·� c1(π)

in Sn as the rail r(π). Given two permutations π, ρ ∈ Sn−1 with π�ρ, we refer

to the cover edges of the weak order induced by the permutations on the rails

of π and ρ as the ladder �(π, ρ). Let k and k + 1 be the positions in which π

and ρ differ. Note that the ladder �(π, ρ) has exactly all cover edges of the rails,

plus the cover edges ci(π) � ci(ρ) for all 1 ≤ i ≤ n except for i = k + 1, which

are referred to as the stairs of the ladder. We see that the cover graph of the

weak order on Sn has the following recursive structure: It is the union of all

ladders �(π, ρ) obtained from all cover edges π � ρ with π, ρ ∈ Sn−1.
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Lemma 6: For every lattice congruence≡ of the weak order on Sn, the following

three statements are equivalent:

(i) idn ≡ cn−1(idn−1), i.e., the identity permutation and the one obtained

from it by transposing the last two entries form a bar.

(ii) There is a permutation π ∈ Sn−1 such that for all 1 ≤ i < n we have

ci(π) ≡ ci+1(π), i.e., the rail r(π) consists entirely of bars.

(iii) For all permutations π ∈ Sn−1 and all 1 ≤ i < n we have ci(π) ≡ ci+1(π),

i.e., all rails r(π) consist entirely of bars.

Proof. Clearly, (iii) implies (ii) and (iii) implies (i), so it suffices to prove that

(ii) implies (iii) and that (i) implies (iii). We prove this by showing that if

there is an (n − 1, n)-bar in Sn, then (iii) follows. If there is an (n− 1, n)-bar,

this means that the fence f(n− 1, n, ∅) is in F≡. However, as F≡ is a downset

in the forcing order (recall Theorem 4), it follows that all fences f(a, n, L)

with 1 ≤ a ≤ n − 1 and an arbitrary subset L ⊆ ]a, n[ are also in F≡. For

any π = a1 · · · an−1 ∈ Sn−1, the ith edge along the rail

r(π) = cn(π)� cn−1(π) � · · ·� c1(π)

is an (an−i, n)-edge, so it is a bar regardless of the values of a1 · · ·an−i.

Combining Lemmas 2 and 6 yields the following lemma.

Lemma 7: Let ≡ be an equivalence relation of the weak order on Sn with

idn �≡ cn−1(idn−1). Then for every rail r(π), π ∈ Sn−1, and every equivalence

class X ∈ Sn/≡ we have that X ∩ r(π) is an interval of r(π). Moreover,

there are two distinct equivalence classes X and Y containing the first and last

permutation of the rail, i.e., cn(π) ∈ X and c1(π) ∈ Y .

Recall that for π ∈ Sn, the permutation p(π) ∈ Sn−1 is obtained by removing

the largest value n from π. Given a set of permutations X ⊆ Sn, we refer

to p(X) := {p(π) | π ∈ X} as the projection of X . This definition and the

following crucial lemma are illustrated in Figure 5.

Lemma 8: For every lattice congruence ≡ of the weak order on Sn and every

equivalence class X of ≡, we have that the projection p(X) is an equivalence

class of the restriction ≡∗. In particular, any two equivalence classes X,Y

of Sn/≡ either have the same projection p(X) = p(Y ) or disjoint projections

p(X) ∩ p(Y ) = ∅.
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The proof of this lemma essentially proceeds by repeatedly applying the forc-

ing constraints shown in Figure 2 along ladders. However, we do not apply

these constraints directly, but using the fences captured by Theorem 4.

Proof. For any n ≥ 1 and any permutation π ∈ Sn, we let N(π) denote the

set of all permutations that differ from π in an adjacent transposition, i.e., all

neighbors in the cover graph of Sn. Now consider a fixed lattice congruence ≡
on Sn, fix an equivalence class X of ≡ and some permutation π ∈ X , and

consider its projection π′ := p(π) ∈ Sn−1. The lemma is a consequence of the

following two statements:

(i) For every ρ ∈ N(π) ⊆ Sn with π ≡ ρ we have that p(π) ≡∗ p(ρ).

(ii) For every ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′ there is a ρ ∈ N(π) with π ≡ ρ

and p(ρ) = ρ′, or there is a σ ∈ N(π) and a ρ ∈ N(σ) with π ≡ σ ≡ ρ

and p(π) = p(σ) = π′ and p(ρ) = ρ′.

In words, (i) asserts that the projection of any bar incident to π is a bar incident

to π′ in the restriction, and (ii) asserts that for any bar incident to π′ in the

restriction, there are one or two consecutive bars starting at π whose projection

is this bar.

We begin proving (i). Let ρ ∈ N(π) ⊆ Sn with π ≡ ρ. If π and ρ are endpoints

of an (a, n)-bar for some a < n (i.e., this bar is part of the rail r(π′)), then we

have p(π) = p(ρ), so trivially p(π) ≡∗ p(ρ). Otherwise π and ρ are endpoints

of some (a, b)-bar for a < b < n (i.e., this bar is a stair of some ladder), so the

fence f(a, b, L) is in F≡, where L is the set of all values from ]a, b[ left of a and b

in π and ρ. By the definition of a fence, it follows that cn(p(π)) ≡ cn(p(ρ)), i.e.,

the permutations obtained from π and ρ by moving the largest value n to the

rightmost position are equivalent. By the definition of restriction, we obtain

that p(π) ≡∗ p(ρ), as claimed.

We now prove (ii). Let ρ′ ∈ N(π′) ⊆ Sn−1 with π′ ≡∗ ρ′. Clearly, π′ and ρ′

are endpoints of some (a, b)-bar in ≡∗ for a < b ≤ n − 1. By the definition of

restriction, it follows that cn(π
′) ≡ cn(ρ

′), so f(a, b, L) is a fence in F≡, where L
is the set of all values from ]a, b[ left of a and b in π′ and ρ′. In the following

we assume that π′
� ρ′, i.e., π′ contains the ascent (a, b), and ρ′ contains the

descent (b, a). Let i be such that π = ci(π
′), and let k be the position of b

in π′. We now distinguish two cases. If i �= k, then π = ci(π
′) � ci(ρ

′) is a

cover edge in Sn (it is a stair of the ladder �(π′, ρ′)), and since it is contained in

the fence f(a, b, L), we have π = ci(π
′) ≡ ci(ρ

′), i.e., this cover edge is indeed
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a bar. This means we can take ρ := ci(ρ
′) ∈ N(π), which satisfies p(ρ) = ρ′

by definition. On the other hand, if i = k, then ci(π
′) and ci(ρ

′) are not

endpoints of a cover edge (this is the missing stair in the ladder �(π′, ρ′)).
However, we may take σ := ci−1(π

′) ∈ N(π) and ρ := ci−1(ρ
′) ∈ N(σ) (note

that i = k ≥ 2), and then π � σ is an (a, n)-edge, and σ � ρ is an (a, b)-edge.

As f(a, b, L) is a fence in F≡, the forcing order implies that f(a, n, L′) is also

a fence, where L′ is defined as the set of all values from ]a, n[ left of a and n

in π and σ. Consequently, we have π ≡ σ ≡ ρ, and moreover p(π) = p(σ) = π′

and p(ρ) = ρ′ by the definition of σ and ρ, i.e., these two cover edges are indeed

bars. In the remaining subcase π′
� ρ′ we can take ρ := ci(ρ

′) ∈ N(π) if i �= k,

and σ := ci+1(π
′) and ρ := ci+1(ρ

′) if i = k, and argue similarly to before.

This proves the lemma.

We state the following two lemmas for further reference. The first lemma is an

immediate consequence of Lemma 8. For any lattice congruence ≡ of the weak

order on Sn and any fence f(a, b, L) in F≡ with b < n, we let f∗(a, b, L) denote
the fence formed by the union of all (a, b)-edges in the weak order on Sn−1

obtained by removing the largest value n from all permutations of f(a, b, L).

Lemma 9: For every lattice congruence ≡ of the weak order on Sn, its restric-

tion ≡∗ satisfies F≡∗ = {f∗(a, b, L) | f(a, b, L) ∈ F≡ and b < n}.
Rephrased in terms of arc diagrams, Lemma 9 asserts that the arc diagram

of the restriction ≡∗ is obtained from the arc diagram of ≡ simply by removing

the highest point labeled n, and by deleting all arcs incident to it.

Lemma 10: For every lattice congruence ≡ of the weak order on Sn and any

equivalence class X ∈ Sn/≡, consider its minimum π := min(X) and maximum

ρ := max(X). Then their projections p(π) and p(ρ) are the minimum and

maximum of the equivalence class p(X) of the restriction ≡∗.

Proof. Suppose for the sake of contradiction that the maximum of p(X) is

not p(ρ), but another permutation σ ∈ Sn−1. As σ ∈ p(X), we obtain from

Lemma 8 that ci(σ) ∈ X for some 1 ≤ i ≤ n. As σ is the unique maximum

of p(X) (recall Lemma 2), there exist two entries a, b with a < b that are

inverted in σ, i.e., b appears before a in σ, but not in p(ρ). As inserting n into

a permutation does not change the relative order of a and b, the entries a, b are

also inverted in ci(σ), but not in ρ. However, by the definition of the weak order

on Sn, this means that ci(σ) �< ρ, contradicting the fact that ρ is the maximum

of X . A similar argument shows that p(π) is the minimum of p(X).
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3.4. Jumping through lattice congruences. For any lattice congruence≡
of the weak order on Sn, a set of representatives for the equivalence classes

Sn/≡ is a subset Rn ⊆ Sn such that for every equivalence class X ∈ Sn/≡, ex-

actly one permutation is contained in Rn, i.e., |X ∩Rn| = 1. Recall that X(π),

π ∈ Sn, denotes the equivalence class from Sn/≡ containing π. A meaningful

definition of ‘generating the lattice congruence’ is to generate a set of repre-

sentatives for its equivalence classes. We also require that any two successive

representatives form a cover relation in the lattice quotient Sn/≡. This is what

we achieve with the help of Algorithm J.

We recursively define such a set of representatives Rn as follows; see Figure 6:

If n = 0 then R0 := {ε}, and if n ≥ 1 then we first compute the representa-

tives Rn−1 for the restriction ≡∗ to Sn−1, and we then distinguish two cases:

If idn �≡ cn−1(idn−1), then we consider every representative π ∈ Rn−1, the cor-

responding rail r(π) in Sn, and from every equivalence class X ∈ Sn/≡ with

X ∩ r(π) �= ∅ we pick exactly one permutation from X ∩ r(π). In particular, we

always pick c1(π) and cn(π), which is possible by Lemma 7, yielding a set Rπ.

We then take the union of those permutations,

(3a) Rn :=
⋃

π∈Rn−1

Rπ .

On the other hand, if idn ≡ cn−1(idn−1) we define

(3b) Rn := {cn(π) | π ∈ Rn−1}.
Lemma 11: For every lattice congruence ≡ of the weak order on Sn, the

set Rn ⊆ Sn defined in (3) is indeed a set of representatives for Sn/≡. More-

over, Rn is a zigzag language satisfying condition (z1) if (3a) holds, and condi-

tion (z2) if (3b) holds.

Proof. We argue by induction on n. The statement clearly holds for n = 0.

For the induction step, suppose that Rn−1 is a set of representatives for

the equivalence classes of Sn−1/≡∗, and that Rn−1 is a zigzag language. If

idn �≡ cn−1(idn−1), we obtain from Lemma 8 that for every equivalence class X

of Sn/≡, the projection p(X) is an equivalence class of the restriction ≡∗.
Therefore, we know by induction that Rn−1 contains a unique representa-

tive π ∈ Sn−1 for p(X), so by our choice of Rπ we indeed have |X ∩ Rπ| = 1,

and moreover Rn as defined in (3a) satisfies |X ∩ Rn| = 1. Furthermore, as

we chose Rπ to contain c1(π) and cn(π) for all π ∈ Sn−1, we obtain that Rn

is a zigzag language satisfying condition (z1) in the definition. On the other
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Figure 6. Illustration of the representatives and the jumping

order for the lattice congruence shown in Figure 1. The filled

dots are the permutations in the sets Rn, and the small num-

bers next them indicate the ordering in the sequences J(Rn)

defined in (1).

hand, if idn ≡ cn−1(idn−1), then we obtain from Lemma 6 and Lemma 8 that

every equivalence class X of Sn/≡ satisfies X = {c1(π), . . . , cn(π) | π ∈ p(X)},
showing that Rn as defined in (3b) is indeed a set of representatives for Sn/≡.

Moreover, in this case Rn is a zigzag language satisfying condition (z2) in the

definition. This completes the proof.

Lemma 12: Running Algorithm J with input Ln := Rn, where Rn is the set

of representatives of a lattice congruence ≡ defined in (3), then for any two

permutations π, ρ ∈ Rn that are visited consecutively, X(π) and X(ρ) form a

cover relation in the quotient Sn/≡.

Proof. Let Rn be a set of representatives of a lattice congruence ≡ defined

in (3), and consider the set Ln := Rn, which is a zigzag language by Lemma 11.

If (3a) holds, then by Lemma 11 the set Rn satisfies condition (z1), so the

permutations of Ln = Rn are generated in the sequence J(Ln) defined in (1a).

Observe that all permutations in #„c (πk) or #„c (πk), πk ∈ Rn−1 ⊆ Sn−1, lie on

the rail r(πk). If π, ρ ∈ Rn are visited consecutively and lie on the same rail,

i.e., π = ci(πk) and ρ = cj(πk) with 1 ≤ i < j ≤ n, then there is an integer s

with i ≤ s < j such that

π = ci(πk) ≡ ci+1(πk) ≡ · · · cs(πk) �≡ cs+1(πk) ≡ cs+2(πk) ≡ · · · ≡ cj(πk) = ρ,
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Figure 7. Lattice congruences of the weak order on S4, ordered

by refinement and realized as polytopes, where only the full-

dimensional polytopes are shown. The polytopes are arranged

in the same way as in Figure 4. The figure shows the Hamil-

ton path on each quotientope computed by Algorithm J, with

the start and end vertex indicated by a triangle and diamond,

respectively. Permutahedron (top), associahedron (one of four

isomorphic variants; middle right) and 3-cube (bottom) are

highlighted. The graphs marked with * are regular, and those

marked with ** are vertex-transitive.
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so X(π) and X(ρ) form a cover relation in the quotient Sn/≡. Moreover,

when transitioning from the last permutation of #„c (πk) to the first permuta-

tion of #„c (πk+1), or from the last permutation of #„c (πk+1) to the first per-

mutation of #„c (πk+2), then we move from cn(πk) to cn(πk+1), or from c1(πk+1)

to c1(πk+2), respectively. Consequently, as πk and πk+1, and also πk+1 and πk+2,

form a cover relation in the weak order on Sn−1 by induction, we obtain that

any two consecutive permutations π, ρ in J(Ln) form a cover relation in the

weak order on Sn.

On the other hand, if (3b) holds, then by Lemma 11 the set Rn satisfies condi-

tion (z2), so the permutations of Ln = Rn are generated in the sequence J(Ln)

defined in (1b). In this case, the claim follows immediately by induction.
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Figure 8. Four quotientopes from Figure 7 ordered as a dia-

mond. These are the permutahedron (top), the associahedron

(right), the 3-cube (bottom), and some other polytope (left).

The figure illustrates the consistent choice of representative

permutations for the congruence classes, i.e., permutations for

lower quotientopes are subsets of permutations for the higher

ones.
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Combining Lemmas 11 and 12 yields the following theorem.

Theorem 13: For every lattice congruence ≡ of the weak order on Sn,

let Rn ⊆ Sn be the set of representatives defined in (3). Then Algorithm J

generates a sequence J(Rn) = π1, π2, . . . of all permutations from Rn such that

X(π1), X(π2), . . . is a Hamilton path in the cover graph of the lattice quo-

tient Sn/≡.

For every lattice congruence ≡, Pilaud and Santos [PS19, Corollary 10] de-

fined a polytope, called the quotientope for ≡, whose graph is exactly the

cover graph of the lattice quotient Sn/≡. These polytopes generalize many

known polytopes, such as hypercubes, associahedra, permutahedra etc. The

following result is an immediate corollary of Theorem 13, and it is illustrated

in Figure 7.

Corollary 14: For every lattice congruence ≡ of the weak order on Sn, Al-

gorithm J generates a Hamilton path on the graph of the corresponding quo-

tientope.

Remark 15: Observe that in the definition (3a), whenever we encounter an

equivalence class X ∈ Sn/≡ with

|X ∩ r(π)| ≥ 2 and c1(p(π)), cn(p(π)) /∈ X,

then we have freedom to pick an arbitrary permutation from X ∩ r(π) for the

set of representatives Rπ. By imposing a total order on Sn (e.g., lexicographic

order), we can make these choices unique, and this will make the resulting sets

of representatives consistent across the entire lattice of congruences ordered

by refinement. Specifically, given two equivalence relations ≡ and ≡′ where ≡
is a refinement of ≡′, computing the representatives Rn and R′

n according to

this rule will result in Rn ⊇ R′
n. However, the resulting jump ordering J(Rn)

may not be a subsequence of J(R′
n), as argued in [HHMW19, Remark 3]. This

consistent choice of representative permutations is illustrated in Figure 8.

Remark 16: In [HHMW19, Lemma 4] we showed that if each of the zigzag

languages Rk, 2 ≤ k ≤ n − 1, has even cardinality, then the ordering of per-

mutations J(Rn) defined by Algorithm J is cyclic. Consequently, if for a given

lattice congruence, the number of equivalence classes of each restriction to Sk,

2 ≤ k ≤ n − 1, is even, then Algorithm J generates a Hamilton cycle on the

graph of the corresponding quotientope (the converse does not hold in general,
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but under the additional assumption |R2| < |R3| < · · · < |Rn−1|). This hap-

pens for instance for the permutahedron and for the hypercube, but not for the

associahedron, even though the associahedron is known to admit a Hamilton

cycle [Luc87, HN99]. We are not aware if this condition on the parity of the

number of equivalence classes of a lattice congruence can be characterized more

easily (e.g., via the arc diagram of the congruence). We will come back to the

question about Hamilton cycles in Section 5.

4. Regular and vertex-transitive lattice quotients

In this section we characterize regular and vertex-transitive quotientopes com-

binatorially via their arc diagrams, which in particular allows us to count them.

We may either consider these objects in terms of the equivalence classes of

the lattice congruence, or in terms of the cover graph of the resulting lattice

quotient. As several congruences may give the same cover graph, the latter

distinction is coarser, yielding fewer distinct objects. Overall, we obtain six dif-

ferent classes of objects, and Table 1 summarizes our results for each of them.

The table provides the exact counts for small values of n, various exact and

asymptotic counting formulas, as well as references to the theorems where they

are established. In the table, we encounter various familiar counting sequences,

namely the squared Catalan numbers, and weighted integer compositions and

partitions. We also establish the precise minimum and maximum degrees for

those graph classes, and in the latter result the famous Erdős–Szekeres theorem

makes its appearance.

4.1. Preliminaries. We let Cn denote the set of all lattice congruences of the

weak order on Sn. Throughout this section, we will denote lattice congruences

by capital Latin letters such as R ∈ Sn, and whenever we consider two per-

mutations π, ρ in the same equivalence class of Sn/R, we write π ≡R ρ or

simply π ≡ ρ, if R is clear from the context. Recall from Theorem 4 that

every lattice congruence R ∈ Cn corresponds to a downset FR ⊆ Fn of fences

in the forcing order, and that such a downset can be represented by its arc

diagram, which contains exactly one arc for each fence from FR. The reduced

arc diagram contains only the arcs that correspond to maximal elements in

the downset FR, i.e., to fences that are pairwise incomparable in the forcing
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Table 1. Number of different classes of quotient graphs that

arise from essential lattice congruences and their minimum and

maximum degrees. In this table, Cn denotes the nth Catalan

number, cn,k denotes the number of integer compositions of n

with exactly k many 2s, and tn denotes the number of 2s in all

integer partitions of n. The last column contains references to

the corresponding sequence numbers in the OEIS [oei20].

n = 2 3 4 5 6 7 General formulas/bounds Ref. OEIS

quotient graphs |Qn| 1 4 47 3.322 11.396.000 ? [22
n−2

, 22
n−2n] Thm. 18 A330039

regular |Rn| 1 4 25 196 1.764 17.424 = C2
n−1 = 16n(1+o(1)) Cor. 27 A001246

vertex-transitive |Vn| 1 4 8 22 52 132 =
∑
k≥0

3kcn−1,k = 2.48...n(1+o(1)) Cor. 34 A052528

non-iso. |Q′
n| 1 3 19 748 2.027.309 ? ≥ 2n − 2n+ 1 Thm. 19 A330040

non-iso. regular |R′
n| 1 3 10 51 335 2.909 ? A330042

non-iso. vertex-tr. |V ′
n| 1 3 4 8 11 19 = tn+1 = eπ

√
2n/3(1+o(1)) Cor. 36 A024786

minimum degree 1 2 3 4 5 6 = n− 1 Thm. 25

maximum degree 1 2 4 5 7 8 = 2n− �2√n� Thm. 28 A123663

order. Every fence not of the form f(a, a + 1, ∅), a ∈ [n − 1], is referred to as

essential, and we let F ∗
n ⊆ Fn denote the set of all essential fences. We refer

to any lattice congruence R with FR ⊆ F ∗
n as essential, and we let C∗

n ⊆ Cn
denote the set of all essential lattice congruences. Note that by this definition,

the arc diagrams of essential lattice congruences do not contain any arcs that

connect consecutive points a and a+ 1, a ∈ [n− 1].

Moreover, we refer to the underlying undirected graph of the cover graph of

any lattice quotient Sn/R, R ∈ Cn, as a quotient graph QR, and we define

Qn := {QR | R ∈ C∗
n}.

All 47 essential lattice congruences C∗
n for n = 4 are shown in Figure 4, or-

dered by refinement of the congruences and represented by their arc diagrams,

where the arcs of the reduced diagrams are highlighted. Recall from the pre-

vious section that for every essential lattice congruence R ∈ C∗
n, Pilaud and

Santos [PS19, Corollary 10] defined an (n− 1)-dimensional polytope, called the

quotientope of R, whose graph is exactly the quotient graph QR. These poly-

topes are shown in Figure 7, where the regular and vertex-transitive graphs are

marked with * and **, respectively.
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The following lemma justifies that in our definition of C∗
n, we exclude fences

that are not essential. The reason is that including them results in a dimension

collapse, i.e., the resulting lattice quotient is isomorphic to some quotient of

smaller dimension; see Figure 9.

Given two posets (P,<P ) and (Q,<Q), the Cartesian product is the poset

(P ×Q,<) with (p, q) < (p′, q′) if and only if p <P p′ and q <Q q′. For any set

of fences F ⊆ Fn and any interval [s, t], 1 ≤ s ≤ t ≤ n, we define

F |[s,t] := {f(a, b, L) ∈ F | s ≤ a < b ≤ t},
i.e., we select all fences from F that lie entirely in this interval. Moreover, for

any integer s we define

F + s := {f(a+ s, b+ s, L+ s) | f(a, b, L) ∈ F}
with L+ s := {x+ s | x ∈ L}, i.e., we shift all fences by s.

Figure 9. Illustration of Lemma 17. The left-hand side shows

the lattice congruence from C4 given by the downset of the

non-essential fence f(2, 3, ∅). The right-hand side shows the

lattice congruence from C∗
3 given by the downset of the essen-

tial fences {f(1, 3, ∅), f(1, 3, {2})}. Both lattice quotients are

isomorphic to the Cartesian product of S2 and S2, whose cover

graph is a 4-cycle.
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Lemma 17: Let R ∈ Cn+1 be a lattice congruence with a non-essential fence

f(s, s + 1, ∅) ∈ FR, and define lattice congruences A ∈ Cs and B ∈ Cn+1−s by

FA = FR|[1,s] and FB = FR|[s+1,n+1] − s. Moreover, let R′ ∈ Cn be the lattice

congruence given by

(4) FR′ = FA ∪ (FB + (s− 1)) ∪D,

where D is the downset of the fences f(s − 1, s + 1, ∅) and f(s− 1, s+ 1, {s})
in the forcing order for Sn. Then Sn+1/R and Sn/R

′ are both isomorphic

to the Cartesian product of Ss/A and Sn+1−s/B. In particular, the lattice

quotients Sn+1/R and Sn/R
′ are isomorphic.

Proof. Consider two equivalence classes X and Y of R, and two permuta-

tions π ∈ X and ρ ∈ Y that differ in an adjacent transposition of two en-

tries a and b. As FR contains the fence f(s, s + 1, ∅), the definition of forc-

ing order implies that FR also contains all fences f(c, d, L) for all c ∈ [1, s],

d ∈ [s + 1, n + 1] and L ⊆ ]c, d[. This means there are permutations π0 ∈ X

and ρ0 ∈ Y , such that in π0 and ρ0 all entries from [1, s] appear before all

entries from [s+1, n+1], and π0 and ρ0 differ in an adjacent transposition of a

and b, and either a, b ∈ [1, s] or a, b ∈ [s + 1, n + 1]. We can reach π0 and ρ0

from π and ρ, respectively, by moving down within the equivalence classes X

or Y towards permutations with fewer inversions, repeatedly swapping any en-

try from [1, s] that is to the right of any entry from [s + 1, n + 1]. It follows

that every cover relation of Sn+1/R has a corresponding cover relation in the

Cartesian product of Ss/A and Sn+1−s/B.

Consider two equivalence classesX and Y of R′, and two permutations π ∈ X

and ρ ∈ Y that differ in an adjacent transposition of two entries a and b. By the

definition (4), the set FR′ contain the fences f(s−1, s+1, ∅), f(s−1, s+1, {s}),
and all fences in their downset of the forcing order for Sn, so the definition of

forcing order yields that FR′ also contains all fences f(c, d, L) for all c ∈ [1, s−1],

d ∈ [s+ 1, n] and L ⊆ ]c, d[. It follows that either a, b ∈ [1, s] or a, b ∈ [s, n]. In

the first case, there are permutations π0 ∈ X and ρ0 ∈ Y , such that in π0 and ρ0

all entries from [1, s] appear at consecutive positions, surrounded by all entries

from [s+ 1, n], and π0 and ρ0 differ in an adjacent transposition of a and b. In

the second case, there are permutations π0 ∈ X and ρ0 ∈ Y , such that in π0

and ρ0 all entries from [s, n] appear at consecutive positions, surrounded by all

entries from [1, s − 1], and π0 and ρ0 differ in an adjacent transposition of a
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and b. Moreover, as π, π0, π
0 ∈ X and ρ, ρ0, ρ

0 ∈ Y , we obtain that every cover

relation of Sn/R
′ has a corresponding cover relation in the Cartesian product

of Ss/A and Sn+1−s/B.

Given any lattice congruenceR∈Cn for which FR contains non-essential fences,

we may repeatedly apply Lemma 17 to eliminate them, until we arrive at a

lattice congruence R′∈C∗
m, m<n, with an isomorphic quotient graph QR′ �QR.

4.2. Exact counts for small dimensions. With computer help, we deter-

mined the number of essential lattice congruences, or equivalently, the number

of quotient graphs, for 2 ≤ n ≤ 6. The results are shown in Table 1. We also

computed the sets Rn ⊆ Qn and Vn ⊆ Qn of all regular and vertex-transitive

quotient graphs, respectively, for 2 ≤ n ≤ 7, with the help of Theorem 26.

Many of the quotient graphs from Qn are isomorphic; cf. [PS19, Figure 8].

This happens for instance if the corresponding arc diagrams differ only by rota-

tion of reflection, but not only in this case; see Figure 10. To this end, we let Q′
n

denote all non-isomorphic quotient graphs fromQn, and we letR′
n and V ′

n be the

non-isomorphic regular and vertex-transitive ones. The corresponding counts

for small n are also shown in Table 1. We clearly have Vn ⊆ Rn ⊆ Qn and

V ′
n ⊆ R′

n ⊆ Q′
n.

4.3. Counting quotient graphs. The following theorem shows that there

are double-exponentially many quotient graphs.

Theorem 18: For all n ≥ 3, we have 22
n−2 ≤ |Qn| ≤ 22

n−2n.

Proof. The number of fences f(a, b, L) ∈ Fn with b − a = k ∈ {1, . . . , n − 1}
is exactly fk := (n − k)2k−1, as for fixed k, there are (n − k) different choices

for a and b, and for fixed a and b, there are 2k−1 many choices for L ⊆ ]a, b[.

As all fences with k = n − 1 are essential for n ≥ 3 and also incomparable in

the forcing order, we obtain at least 2fn−1 distinct downsets. The total number

of essential fences is
∑n−1

k=2 fk = 2n − 2n =: s, so there are at most 2s distinct

downsets.

To estimate the cardinality of Q′
n, we have to factor out symmetries of the

arc diagrams, i.e., horizontal and vertical reflections, which account for a factor

of at most 4. However, isomorphic graphs also arise from arc diagrams that

do not only differ by those symmetries; see Figure 10. In particular, we have

|Qn|/|Q′
n| > 4 for n = 5 and n = 6; see Table 1.
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Figure 10. Three pairs of lattice congruences from C∗
4 (left),

C∗
5 (middle), and C∗

8 (right), with distinct arc diagrams but

isomorphic quotient graphs.

This difference in the growth rates can partially be explained by arc diagrams

that induce a graph product structure. Namely, if we have an arc diagram with

two arcs corresponding to the fences f(s−1, s+1, ∅) and f(s−1, s+1, {s}), then
by Lemma 17 the two parts of the arc diagram separated by these two fences

can be mirrored independently, or modified as described by Figure 10, yielding

the same resulting quotient graph. Such operations clearly yield many more

than 4 symmetries. We cannot fully explain this, but we provide the following

lower bound.

Theorem 19: For all n ≥ 3, we have |Q′
n| ≥ 2n − 2n+ 1.

Proof. We argued before that the total number of essential fences in the forcing

order is 2n − 2n =: s. This implies that the lattice of congruences ordered

by refinement (see Figure 4) contains a chain R0, . . . , Rs ∈ C∗
n of size s + 1,

where R0 is the maximal element and Rs is the minimal element, and along

this chain we have |FRi | = i for i = 0, . . . , s. Consequently, the number of

vertices of the quotient graphs QRi , i = 0, . . . , s, forms a strictly decreasing

sequence, starting with n! and ending with 2n−1. This is because whenever

an additional fence is added, the equivalence classes grow, and so the quotient

graph shrinks. In particular, all those quotient graphs are non-isomorphic,

proving that |Q′
n| ≥ s+ 1.

4.4. Regular quotient graphs. It turns out that the regular quotient

graphs Rn can be characterized and counted precisely via their arc diagrams.

Specifically, we say that an arc is simple if it does not connect two consecutive

points and if it does not cross the vertical line. Also, we say that a reduced arc

diagram is simple if it contains only simple arcs. Note that the fence f(a, b, L)
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corresponding to a simple arc satisfies either L = ∅ or L = ]a, b[. For example,

in Figure 10, the leftmost two reduced arc diagrams are simple, whereas the

others are not. In Theorem 26 below, we establish that a quotient graph is

regular if and only if the corresponding reduced arc diagram is simple. This

yields a closed counting formula involving the squared Catalan numbers; see

Corollary 27.

The first lemma allows us to compute degrees of the quotient graph by con-

sidering only the minima and maxima of equivalence classes.

Lemma 20: Let X be an equivalence class of a lattice congruence R ∈ Cn.
Consider all descents in π := min(X) and all permutations π′

1, . . . , π
′
d obtained

from π by transposing one of them. Also, consider all ascents in ρ := max(X)

and all permutations ρ′1, . . . , ρ
′
a obtained from ρ by transposing one of them.

Then the down-neighbors of X in the quotient graph QR are X(π′
1), . . . , X(π′

d),

and they are all distinct, and the up-neighbors of X in the quotient graph are

X(ρ′1), . . . , X(ρ′a), and they are all distinct. In particular, the degree of X in

the quotient graph is the number of descents of min(X) plus the number of

ascents of max(X).

Proof. From Lemma 2 it follows that for any lattice congruence, the down-

neighbors of the minimum of an equivalence class X all belong to distinct

equivalence classes, and the up-neighbors of the maximum of X all belong to

distinct equivalence classes. Recall that in the weak order on Sn, the down-

neighbors of a vertex are reached by adjacent transpositions of descents, and

the up-neighbors are reached by adjacent transpositions of ascents. From this

the statement follows with the help of Lemma 3.

The next lemma helps us to compute the maximum of an equivalence class

quickly. It is an immediate consequence of the definition of forcing order.

Lemma 21: Consider a lattice congruence R ∈ Cn and a permutation π with an

ascent (a, b). Let A be a substring ending with a of entries of π of size at most a,

and B a substring starting with b of entries that are of size at least b, i.e., we

have π = LABR for some substrings L,R. If the permutation ρ obtained by

transposing the pair (a, b) is in the same equivalence class as π, i.e., π ≡ ρ,

then they are also in the same equivalence class as the permutation obtained

by swapping the entire substrings A and B, i.e., π ≡ ρ ≡ LBAR.
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n

b

1

a

A

C

D

B

π=min(X)=AC a bDB

ρ = AC b aDB

ρ′ = C bAaDB

ρ′′′ = C bB AaD

ρ′′ = AC bB aD

g := f(a− 1, c, ∅)

f(a, b, L)

h := f(d′, b+ 1, ]d′, b+ 1[)

c=min(L)

d′ = max(L)

c′=max(L)

d = min(L)

a− 1

b+ 1

...

...

Figure 11. Illustration of the

proof of Lemma 22. De-

scents in the permutations are

marked by square brackets.

There is a corresponding version

of Lemma 21 for swapping substrings

around a descent (b, a), to quickly com-

pute the minimum of an equivalence class,

but we omit stating this symmetric vari-

ant explicitly here.

We first rule out non-simple arc dia-

grams as candidates for giving a regular

quotient graph.

Lemma 22: If an essential lattice congru-

ence R ∈ C∗
n has a non-simple arc in its

reduced arc diagram, then the quotient

graph QR is not regular.

Proof. As R is essential, FR does not con-

tain any fence of the form f(s, s + 1, ∅),
s ∈ [n − 1]. Consequently, the equiva-

lence class containing the identity permu-

tation idn does not contain any other per-

mutations and so has degree n− 1 in QR

by Lemma 20. In the following we iden-

tify an equivalence class X whose degree

in QR is n, which proves that QR is not

a regular graph. This part of the proof is

illustrated in Figure 11.

Consider a non-simple arc in the reduced arc diagram of R, and consider

the corresponding fence f(a, b, L) ∈ FR, a < b. We define L := ]a, b[ \ L.

The assumption that the arc is not simple means that L and L are both non-

empty. We define c := min(L), c′ := max(L), d := min(L), and d′ := max(L),

and we write C and D for the increasing sequences of numbers in the sets L

and L, respectively. We also define the sequences A := (1, . . . , a − 1) and

B := (b+1, . . . , n). Now consider the equivalence classX ∈ Sn/R which contains

the permutations

π := AC a bDB and ρ := AC b aDB.
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Clearly, π and ρ differ in an adjacent transposition of the entries a and b, and

we have π ≡ ρ due to the fence f(a, b, L) ∈ FR. We first prove that π = min(X).

By Lemma 20, we need to check the descents of π, and there are exactly

two of them, namely (c′, a) and (b, d). None of them can be transposed to

reach a permutation in X , as neither the fence f(a, c′, ]a, c′[∩L), nor the fence

f(d, b, ]d, b[ ∩ L) is in FR, as both are above f(a, b, L) in the forcing order, and

if one of them was in FR, then the arc corresponding to f(a, b, L) would not be

in the reduced arc diagram. This proves that π is the minimum of X .

Now consider the permutation ρ. It has only one descent (b, a), and so n−1 as-

cents. The ascents (c′, b) and (a, d) in ρ cannot be transposed to reach a permu-

tation in X , as neither the fence f(c′, b, ]c′, b[∩L) nor the fence f(a, d, ]a, d[∩L)
is in FR, as both are above f(a, b, L) in the forcing order. Similarly, the as-

cents that lie entirely within C or D cannot be transposed, as for any such

ascent (r, s), the corresponding fence f(r, s, ]r, s[∩L) is above f(a, b, L) in the

forcing order. Moreover, none of the ascents (s, s+1) that lie entirely within A

or B can be transposed, as FR is essential by assumption and so contains none

of the fences f(s, s+1, ∅), s ∈ [n−1]. It remains to consider the ascents (a−1, c)

and (d′, b + 1). They can possibly be transposed to reach a permutation in X ,

but only if the fence

g := f(a− 1, c, ∅)
or the fence

h := f(d′, b+ 1, ]d′, b+ 1[)

is in FR, which may or may not be the case. If g /∈FR and h /∈FR, then we have

ρ = max(X),

and so desc(max(X)) = 1. If g ∈ FR and h /∈ FR, then Lemma 21 shows that

ρ′ := C bAaDB = max(X),

and again we get desc(max(X)) = 1, as the only descent in ρ′ is (b, 1). If g /∈ FR

and h ∈ FR, then Lemma 21 shows that

ρ′′ := AC bB aD = max(X),

and again we get desc(max(X)) = 1, as the only descent in ρ′′ is (n, a). If

g ∈ FR and h ∈ FR, then Lemma 21 shows that

ρ′′′ := C bB AaD = max(X),

and again we get desc(max(X)) = 1, as the only descent in ρ′′′ is (n, 1).
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We have shown that desc(min(X)) = 2 and desc(max(X)) = 1, and so

asc(max(X)) = n− 2. Therefore, by Lemma 20, the degree of X in QR is

desc(min(X)) + asc(max(X)) = 2 + (n− 2) = n,

which shows that QR is not regular. This completes the proof.

We now aim to prove that a simple reduced arc diagram implies an (n− 1)-

regular quotient graph. For this we need two auxiliary lemmas.

Lemma 23: Consider a lattice congruence R ∈ Cn and an equivalence class X

such that min(X) has n at the rightmost position, and max(X) = · · · c n d · · · ,
where c, d ∈ [n− 1]. Then (c, d) is a descent in p(max(X)) ∈ Sn−1. Similarly,

suppose that max(X) has n at the leftmost position, andmin(X) = · · · a n b · · · ,
where a, b ∈ [n− 1]. Then (a, b) is an ascent in p(min(X)) ∈ Sn−1.

Proof. Consider an equivalence class X such that π := min(X) has n at the

rightmost position, and ρ := max(X) = · · · c n d · · · , where c, d ∈ [n − 1].

Let π′ := p(π) ∈ Sn−1 and ρ′ := p(ρ) ∈ Sn−1. By Lemma 10, π′ and ρ′ are
the minimum and maximum of the equivalence class p(X) of the restriction R∗,
and as π = cn(π

′) = π′ n, we also have that σ := cn(ρ
′) = ρ′ n ∈ X. Note that ρ

is obtained from σ by moving n to the left until the entry c is directly left of

it. In particular, the down-neighbor τ of ρ obtained by transposing n and d

satisfies τ ≡ ρ (recall Lemma 2). By Lemma 21, it follows that (c, d) must be

a descent in τ , as otherwise, the up-neighbor τ ′ of ρ obtained by transposing c

and n would also satisfy τ ′ ≡ ρ, contradicting the fact that ρ is the maximum

of X . Consequently (c, d) is also a descent in σ = ρ′ n and in ρ′ = p(max(X)).

The proof of the second part of the lemma is analogous.

For any permutation π ∈ Sn and any integers a, b ∈ [n] with a < b, we

let L(π, a, b) denote the set of all entries of π that are to the left of a, and

whose values are in the interval ]a, b[. For example, for π = 817632459 we have

L(π, 1, 3) = ∅, L(π, 2, 5) = {3}, and L(π, 3, 7) = {6}.
Lemma 24: Consider a lattice congruence R ∈ Cn and an equivalence class X

such that π := min(X) = · · · a n b · · · and ρ := max(X) = · · · c n d · · · , where
a, b, c, d ∈ [n − 1]. Let π′ be the last permutation in X obtained from π by

moving n to the left, and let ρ′ be the last permutation in X obtained from ρ

by moving n to the right. Then we have the following:



392 H. P. HOANG AND T. MÜTZE Isr. J. Math.

(i) the entry left of n in π′ is c;
(ii) the entry right of n in ρ′ is b;
(iii) if c �= a, then c is to the left of a in π, and we have c, b > x for all x

between c and n in π, in particular a < b;

(iv) if b �= d, then b is to the right of d in ρ, and we have c, b > x for all x

between n and b in ρ, in particular c > d;

(v) for any entry x between c and n in π, the fence f(x, n, L(π, x, n)) is in FR;

(vi) for any entry x between n and b in ρ, the fence f(x, n, L(ρ, x, n)) is in FR;

(vii) the fences f(b, n, L(π, b, n)) and f(x, c, L(π, x, c)), where x is the entry

right of c in π, are not in FR;

(viii) the fences f(c, n, L(ρ, c, n)) and f(x, b, L(ρ, x, b)), where x is the entry left

of b in ρ, are not in FR.

nc

min(X) = π = a n b

max(X) = ρ =

π′ =
ρ′ =

c

an bc

d ncmax(X) = ρ = d b

nc d b

min(X) = π = a n bx

x

x

x

Figure 12. Illustration of Lemma 24.

Proof. We only need to prove (i), (iii), (v) and (vii), as the other four statements

are symmetric. See Figure 12.

We first prove (i). Suppose for the sake of contradiction that this is not

the case and that there is another entry e �= c left of n in π′. Note that e

must be to the right of c in π′ and π, as otherwise (n, c) would be an inversion

in π′, but not in ρ, contradicting the fact that ρ is the maximum of X . We

let π′′ /∈ X be the permutation obtained from π′ by transposing e and n, i.e.,

inv(π′′) = inv(π′) ∪ {(n, e)}. It follows that (n, e) /∈ inv(ρ), as otherwise π′′

would be contained in the interval [π, ρ] = X . This means that e is left of n and

left of c in ρ. This implies that c < e, as otherwise (c, e) would be an inversion

in π′, but not in ρ.

We now move up in the weak order from π′ to ρ, creating a sequence of permu-

tations that all contain the ascent (e, n), as follows: Starting from π′, we repeat-
edly choose an arbitrary ascent that we can transpose to stay inside X . First

note that (n, x), x ∈ [n− 1], is never an ascent, so n never moves to the right.

Also (e, n) can never be transposed, as (n, e) /∈ inv(ρ). Whenever we encounter
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a transposition that involves the entry e, then it must be a transposition of the

form (e′, e) → (e, e′) with e′ < e (otherwise the inversion set would shrink), and

we then immediately also perform the transposition (e′, n) → (n, e′), keeping e

and n next to each other, and reaching a permutation in X by Lemma 21. As

(c, e) /∈ inv(π′) and (c, e) ∈ inv(ρ), we must encounter a step in which c and e

are transposed. However, by the same reasoning, we can then also transpose c

and n to reach another permutation in X , a contradiction to (n, c) /∈ inv(ρ).

This completes the proof of (i).

We now prove (iii). The fact that c is left of a in π is an immediate conse-

quence of (i). Note that π′ is obtained from π by moving n to the left until n is

directly right of c, and n cannot move further as (n, c) /∈ inv(ρ). Conversely, π

is obtained from π′ by moving n to the right until n is directly left of b, and n

cannot move further as π is the minimum of X . In particular, the entry n can

be moved across the largest entry e between c and n in π. Lemma 21 therefore

shows that b, c > e, as otherwise n could move to the left of c in π′ or to the

right of b in π.

We now prove (v). This follows immediately by considering all permutations

encountered in X between π to π′, by moving n to the left.

It remains to prove (vii). It is clear that f(b, n, L(π, b, n)) is not in FR, as we

could otherwise transpose b and n in π, reaching a down-neighbor of π in X .

It is also clear that f(x, c, L(π, x, c)) is not in FR, as we know that c > x

from (iii), and so we could transpose c and x, reaching another down-neighbor

of π in X .

With these lemmas in hand, we are now ready to establish a tight lower bound

for the minimum degree of quotient graphs Qn.

Theorem 25: For every essential lattice congruence R ∈ C∗
n, the minimum

degree of the quotient graph QR is n− 1.

Pilaud and Santos proved in [PS19] that for every essential lattice congruence,

QR is the graph of an (n− 1)-dimensional polytope. This in particular implies

Theorem 25. Nevertheless, in this paper we provide a purely combinatorial

proof of the theorem, with the goal of later improving the estimates in the

proof when proving Theorem 26.
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Proof. We prove the theorem by induction on n. For n = 1 there is only the

trivial lattice congruence for the weak order on Sn = {1}, and the corresponding

quotient graph is an isolated vertex which indeed has minimum degree n−1 = 0.

This settles the base case for the induction.

Let n ≥ 2 and consider an essential lattice congruence R ∈ C∗
n. The equiva-

lence class X that contains the identity permutation idn, contains no other per-

mutations by the assumption that R is essential, and so the degree of X = {idn}
in QR is exactly n − 1 by Lemma 20. By Lemma 20, it therefore suffices to

show that for every equivalence class X of R and its minimum π := min(X)

and maximum ρ := max(X), we have that desc(π) + asc(ρ) ≥ n− 1.

For this consider the position of the entry n in both π and ρ. By the as-

sumption that R is essential, we know that f(n − 1, n, ∅) /∈ FR, which implies

idn �≡ cn−1(idn−1). Applying Lemma 7 shows that n cannot be simultaneously

at the rightmost position of π and at the leftmost position of ρ. Consequently,

we are in one of five possible cases:

(a) both π and ρ have n at the rightmost position,

(b) both π and ρ have n at the leftmost position,

(c) π has n at the rightmost position, and ρ = · · · c n d · · · , where c, d ∈ [n−1],

(d) ρ has n at the leftmost position, and π = · · ·a n b · · · , where a, b ∈ [n− 1],

(e) π = · · · a n b · · · and ρ = · · · c n d · · · , where a, b, c, d ∈ [n− 1].

Cases (c) and (d) are exactly the ones discussed in Lemma 23, and case (e) is

exactly the one discussed in Lemma 24. We only prove (a), (c) and (e), as the

proof of (b) is analogous to (a), and the proof of (d) is analogous to (c).

By Lemma 10, Lemma 20, and by induction we know that

(5) desc(p(π)) + asc(p(ρ)) ≥ n− 2.

First consider case (a) above. As n is at the rightmost position in π and ρ,

we have

(6) desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1,

where the +1 comes from the ascent involving n in ρ. Combining (5) and (6)

yields

(7) desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1,

with equality if and only if (5) holds with equality.
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Now consider case (c) above. As n is at the rightmost position in π and n is

between c and d in ρ, we have

(8) desc(π) + asc(ρ) = desc(p(π)) + asc(p(ρ)) + 1− asc(c d),

where the +1 comes from the ascent (c, n) in ρ. By Lemma 23, (c, d) is a

descent, so asc(c d) = 0, and hence combining (5) and (8) yields

(9) desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1,

with equality if and only if (5) holds with equality.

Now consider case (e) above. In this case we have

(10) desc(π) + asc(ρ) = desc(p(π)) + 1− desc(a b) + asc(p(ρ)) + 1− asc(c d),

where the +1s come from the descent (n, b) in π and the ascent (c, n) in ρ,

respectively. We first consider the subcase that c = a and b = d. In this case

(a, b) = (c, d) is either a descent or an ascent, so in any case desc(a b)+asc(c d) =

1, and hence combining (5) and (10) yields

(11) desc(π) + asc(ρ) ≥ (n− 2) + 1 = n− 1,

with equality if and only if (5) holds with equality.

We now consider the subcase that c = a and b �= d. From Lemma 24 (iv) we

obtain that c > d, i.e., asc(c d) = 0, and hence combining (5) and (10) yields

(12) desc(π) + asc(ρ) ≥ (n− 2) + 2− desc(a b) ≥ n− 1,

with equality if and only if (5) holds with equality and desc(a b) = 1.

The subcase c �= a and b = d is similar, and yields

(13) desc(π) + asc(ρ) ≥ (n− 2) + 2− asc(c d) ≥ n− 1,

with equality if and only if (5) holds with equality and asc(c d) = 1.

It remains to consider the subcase c �= a and b �= d. From Lemma 24 (iii)

and (iv) we know that a < b and c > d, i.e., desc(a b) = 0 and asc(c d) = 0, and

hence combining (5) and (10) yields

(14) desc(π) + asc(ρ) ≥ (n− 2) + 2 = n > n− 1.

This completes the proof of the theorem.

We are now in position to prove the main result of this section, a characteri-

zation of regular quotient graphs via their arc diagram.
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n

g := f(e, n, Lg) ∈ FR

h := f(c, n, Lh) /∈ FR b

c

e

x

max(X)=ρ=

h′ := f(x, b, Lh′) /∈ FR

c n d e x b
C

C

B

B

Lg = L(ρ, e, n)

Lh = L(ρ, c, n)

Lh′ = L(ρ, x, b)

Figure 13. Illustration of

the proof of Theorem 26.

Theorem 26: The regular quotient

graphs Rn are obtained from exactly those

lattice congruences C∗
n that have a simple re-

duced arc diagram.

While finalizing this paper, we learnt that

Theorem 26 can be derived from Theo-

rem 1.13 in [DINRT], which characterizes reg-

ular quotient graphs in terms of the minimal

sets of join-irreducible elements that need to

be contracted to generate the congruence.

Proof. By Lemma 22, if the reduced arc di-

agram of a lattice congruence R ∈ C∗
n is not

simple, then the quotient graphQR is not reg-

ular. In the following we will prove the con-

verse, that if the reduced arc diagram of R is

simple, then the quotient graph QR is (n−1)-

regular. We argue by induction on n, using

that by Lemma 9, the arc diagram of the re-

striction of a lattice congruence is obtained by removing the highest point la-

beled n and all arcs incident with it. In particular, removing the highest point

of a simple reduced arc diagram produces another simple reduced arc diagram.

For the induction proof we closely follow the proof of Theorem 25 given

before, and show that all inequalities in that proof are actually tight if we

add the assumption of a simple reduced arc diagram. So consider a lattice

congruence R ∈ C∗
n with a simple reduced arc diagram, an arbitrary equivalence

class X of R, and let π := min(X) and ρ := max(X). We aim to prove that

desc(π) + asc(ρ) = n − 1, assuming by induction that (5) holds with equality,

i.e., we have

(15) desc(p(π)) + asc(p(ρ)) = n− 2.

We now consider the same cases (a)–(e) as in the proof of Theorem 25.

The cases (a) and (b) are easy, as (7) holds with equality by (15). Similarly,

the cases (c) and (d) are easy, as (9) holds with equality by (15). It remains to
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consider the case (e). The subcase c = a and b = d is again easy, as (11) holds

with equality because by (15). We consider the remaining three subcases of (e)

and show the following:

(e1) If c = a and b �= d we have that desc(a b) = 1. From this it follows that (12)

holds with equality by (15).

(e2) If c �= a and b = d we have that asc(c d) = 1. From this it follows that (13)

holds with equality by (15).

(e3) The subcase c �= a and b �= d cannot occur (recall the strict inequal-

ity (14)).

In proving (e1)–(e3), we will use the assumption that the reduced arc diagram

is simple. Note that claims (e1)–(e3) follow immediately from the next two

claims:

(e1′) If b �= d and the arc diagram is simple, then b < c.

(e2′) If c �= a and the arc diagram is simple, then c < b.

Indeed, if c = a and b �= d, then (e1′) gives b < c = a, showing that desc(a b) = 1,

proving (e1). Similarly, if c �= a and b = d, then (e2′) gives c < b = d, showing

that asc(c d) = 1, proving (e2). Lastly, if c �= a and b �= d, then (e1′) and (e2′)
together give b < c and c < b, a contradiction, so this case cannot occur.

We begin proving (e1′); see Figure 13. By Lemma 24 (iv), b is to the right

of d in ρ. Let e be the maximum entry between n and b in ρ, and let x be the

entry directly left of b. It may happen that e = d, or e = x or both, but this is

irrelevant. In fact, the entry d will not play any role in our further arguments.

We clearly have e ≥ x. Applying Lemma 24 (iv), we obtain that c, b > e.

Suppose for the sake of contradiction that b > c. Combining the previous

inequalities, we get x ≤ e < c < b < n, i.e., we have the situation shown in

Figure 13. From Lemma 24 (vi), we obtain that the fence g := f(e, n, Lg) with

Lg := L(ρ, e, n) is in FR. We let C denote the set of values that are strictly

larger than e and not to the right of c in ρ. Similarly, we let B denote the set

of values that are strictly larger than e and not to the left of b in ρ. By these

definitions and the maximal choice of e, we get

Lg = C

and

Lg :=]e, n[\Lg = B.
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As c ∈ Lg and b ∈ Lg, the arc corresponding to the fence g that connects e

with n has c on its left and b on its right, i.e., this arc is not simple. It follows

that this arc cannot be in the reduced arc diagram of R. This means there

must be another fence g′ = f(u, v, ]u, v[ ∩ Lg), e ≤ u < v ≤ n, represented by a

simple arc, that forces g in the forcing order. Clearly, as this arc is simple, we

have that

(16)

]u, v[ ∩ Lg = ∅
or

]u, v[ ∩ Lg = ]u, v[ ,

i.e., ]u, v[ is an interval of consecutive numbers from B or C, respectively.

From Lemma 24 (viii), we also know that the fences

h := f(c, n, Lh)

with Lh := L(ρ, c, n) and
h′ := f(x, b, Lh′)

with Lh′ := L(ρ, x, b) are not in FR. Observe that

Lh = ]c, n[ ∩ Lg and Lh′∩]e, b[= Lg∩]e, b[,
i.e., the arcs corresponding to the fences h and h′ pass to the left and right

of the points in the intervals ]c, n[ or ]e, b[, respectively, exactly in the same

way as the arc corresponding to the fence g; see Figure 13. It follows that the

interval [u, v] cannot be contained in the interval [e, b], as otherwise g′ would
force h′ in the forcing order, and we know that h′ /∈ FR. Similarly, it follows

that the interval [u, v] cannot be contained in the interval [c, n], as otherwise g′

would force h in the forcing order, and we know that h /∈ FR. We conclude

that u < c and v > b. This, however, would mean that c is contained in the

interval ]u, v[∩Lg, but b is not (as b /∈ Lg), so none of the two conditions in (16)

can hold, which means that the fence g′ cannot exist. (In other words, the arc

corresponding to g′ would also have to be non-simple so that g′ could force g.)

We arrive at a contradiction to the assumption b > c. This completes the proof

of (e1′).
The proof of (e2′) is analogous to the proof of (e1′), and uses Lemma 24 (iii)

instead of (iv), (v) instead of (vi), and (vii) instead of (viii). We omit the

details.

From Theorem 26, we obtain the following corollary.
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n

1 0

2(n− 1)

Figure 14. Bijection between

non-nesting arc diagrams on

n points and Dyck paths with

2(n− 1) steps.

Corollary 27: The number of regu-

lar quotient graphs Rn is |Rn| = C2
n−1,

where Cn is the nth Catalan number

Cn := 1
n+1

(
2n
n

)
.

Proof. By Theorem 26, we need to count

simple reduced arc diagrams on n points.

Clearly, arcs passing to the left of the

points are independent from arcs passing

to the right of the points, so the result is

proved by showing that diagrams where

all arcs pass on the same side are counted

by the Catalan numbers Cn−1. Note that

the arcs are all simple, so no arc connects

two consecutive points. Circular arcs in

such a diagram are non-nesting, by the

assumption that the diagram is reduced,

as nested arcs correspond to fences that

are comparable in the forcing order. A

bijection between such non-nesting circular arc diagrams on n points and Dyck

paths with 2(n− 1) steps is illustrated in Figure 14.

4.5. Maximum degree. The next theorem establishes an exact formula for

the maximum degrees of quotient graphs.

Theorem 28: For every lattice congruence R ∈ Cn, the maximum degree of

the quotient graph QR is at most 2n − �2√n�. Moreover, there is a lattice

congruence with a vertex of this degree.

For proving Theorem 28, we need the following variant of the famous Erdős–

Szekeres theorem.

Lemma 29: Consider a sequence of distinct integers of length n, and let r

and s be the length of the longest monotonically increasing and decreasing

subsequences, respectively. Then we have r + s ≥ �2√n�.
The Erdős–Szekeres theorem is usually stated in the slightly weaker form

that one of r or s is at least �√n�. The proof of our lemma follows Seidenberg’s

proof [Sei59] (see also [Ste95]).
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Proof. Let x1, . . . , xn be the sequence we consider. For i = 1, . . . , n, let ai

and bi be the lengths of the longest increasing or decreasing subsequences ending

with xi. Note that for 1 ≤ i < j ≤ n we either have xi < xj , and then we know

that ai < aj , or we have xi > xj , and then we know that bi < bj . Consequently,

all pairs (ai, bi) must be distinct, and we have 1 ≤ ai ≤ r and 1 ≤ bi ≤ s,

implying that n ≤ rs. From the arithmetic/geometric mean inequality we

obtain r + s = 2(r + s)/2 ≥ 2
√
rs ≥ 2

√
n. As r and s must be integers, this

implies the lower bound r + s ≥ �2√n�.

Proof of Theorem 28. Consider any permutation ρ in the weak order on Sn,

and consider another permutation π < ρ in its downset. Consider the longest

monotonically decreasing subsequence of ρ, and let r denote its length. Note

that ρ has at most n−1−(r−1) = n−r ascents, regardless of the values between

the elements of the subsequence. Similarly, consider the longest monotonically

increasing subsequence of ρ, and let s denote its length. Observe that the

elements of this subsequence appear in the same relative order in π, so π has

at most n − 1 − (s− 1) = n− s descents, regardless of the values between the

elements of the subsequence. Overall, we have desc(π) + asc(ρ) ≤ 2n− (r + s).

Applying Lemma 20 and Lemma 29 completes the proof of the upper bound in

the theorem.

It remains to construct a lattice congruence R ∈ Cn that has an equivalence

class X with desc(min(X)) + asc(max(X)) = 2n− �2√n�. This construction is

illustrated in Figure 15. Fill the numbers 1, 2, . . . , n into a table with s := �√n�
columns, row by row from bottom to top, and from left to right in each row. The

topmost row may not be filled completely. It can be checked that the number of

rows r of the table is r = �2√n�− s. Now consider the permutation π obtained

by reading the columns of the table from left to right, and from top to bottom

in each column. It satisfies desc(π) = (n−1)−(s−1) = n−s. Also consider the

permutation ρ obtained by reading the rows of the table from top to bottom,

and from left to right in each row. It satisfies asc(ρ) = (n−1)− (r−1) = n− r.

We now construct a lattice congruence R that has an equivalence class X with

min(X) = π and max(X) = ρ. From Lemma 20, we then obtain that the degree

of X in the quotient graph QR is

desc(π) + asc(ρ) = 2n− (r + s) = 2n− �2√n�.
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ρ = 78456123

1 2 3

4 5 6

7 8

n = 8

s = �√n� = 3

r = �2√n� − s = 3

π = 74185263

X = [π, ρ]

asc(ρ)

desc(π)

R

1

2

3

4

5

6

7

8

Figure 15. Illustration of the proof of Theorem 28. The right

part of the figure shows the reduced arc diagram of the lattice

congruence R.

We construct R by specifying a set of fences in the forcing order, and then

take the downset of all those fences as FR. The fences are constructed as follows:

For each pair of numbers a and b in our table where b is one row above and

one column to the right of a, we let L be the set of all numbers left of b in

the same row as b, and we add the fence f(a, b, L). Now FR is obtained by

taking the downset of all those fences in the forcing order. Observe that as

our initial fences f(a, b, L) all satisfy b − a = s + 1, all fences f(a, b, L) in FR

satisfy b − a ≥ s + 1. Using the definition of fences and Theorem 4, it can

be verified directly that ρ and π belong to the same equivalence class. To see

that π is the minimal element of its equivalence class, note the all descents of π

have difference s, so none of these fences is in R, meaning that none of the edges

leading to a down-neighbor of π is a bar. Similarly, to see that ρ is the maximal

element of its equivalence class, note that all ascents of ρ have difference 1,

so none of these fences is in R, meaning that none of the edges leading to an

up-neighbor of ρ is a bar.

4.6. Vertex-transitive quotient graphs. It turns out that all vertex-

transitive quotient graphs Vn and V ′
n can be characterized and counted precisely

via weighted integer compositions and partitions, respectively; see Theorems 33

and 35 and Corollaries 34 and 36 below. As Vn ⊆ Rn, by Theorem 26 we only

need to consider simple reduced arc diagrams as candidates for vertex-transitive

quotient graphs. However, as we shall see, we will have to impose further re-

strictions on the diagram. Specifically, we refer to an arc corresponding to a
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fence f(a, b, L) with L = ∅ as a left arc, and with L = ]a, b[ as a right arc.

Also, we say that an arc connecting two points s− 1 and s+1, s ∈ [2, n− 1], is

short. Moreover, we say that the reduced arc diagram is empty, if it contains

no arcs. We will see that all reduced arc diagrams that yield vertex-transitive

graphs are suitable concatenations of smaller diagrams that are either empty or

contain only short left or right arcs.

The Cartesian product of two graphs G = (V,E) and H = (W,F ), de-

noted G�H , is the graph with vertex set V ×W and edges connecting (v, w)

with (v′, w′) whenever v = v′ and (w,w′) is an edge in F , or w = w′ and (v, v′)
is an edge in E. We write G � H if G and H are isomorphic graphs. We say

that a graph is prime if it is not a Cartesian product of two graphs with fewer

vertices each. The following lemma captures a few simple observations that we

will need later.

Lemma 30 ([IK00, page 29+Corollary 4.16+Theorem 4.19]): The following

statements hold for arbitrary connected graphs G,G′, H,H ′:

(i) We have G�H � H �G.

(ii) If G�H � G′ �H ′ and both H and H ′ are prime, then we have G � G′

and H � H ′, or G � H ′ and H � G′.
(iii) G and H are vertex-transitive, if and only if G�H is vertex-transitive.

Consider a lattice congruence R ∈ C∗
n such that FR contains two fences

f(s− 1, s+ 1, ∅) and f(s− 1, s+ 1, {s}) for some s ∈ [2, n− 1]. Note that any

essential fence of the form f(a, b, L), with a ∈ [1, s], b ∈ [s, n] and L ⊆ ]a, b[, is

in the downset of one of these two fences in the forcing order. In other words,

the reduced arc diagram of R contains no arc from a point in [1, s] to a point

in [s, n], except the short left arc and short right arc that connect the points s−1

and s+ 1. Moreover, by Lemma 17, the quotient graph QR is obtained as the

Cartesian product of the quotient graphs of the two lattice congruences A ∈ Cs
and B ∈ Cn+1−s whose reduced arc diagrams contain exactly the arcs of the

reduced arc diagram of R restricted to the intervals [1, s] and [s, n], respectively.

We say that in the reduced arc diagram of R, the short left arc and right arc

that connect the points s− 1 and s+1 form a loop centered at s, and we say

that the reduced arc diagram of R is the product of the reduced arc diagrams

of A and B. In this way, the product of two reduced arc diagrams is obtained by

gluing together their endpoints, and placing a loop centered at the gluing point.
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With slight abuse of notation, we use Sn to also denote the cover graph of the

weak order on Sn. The 5-cycle C5 is obtained as the quotient graph for the lat-

tice congruenceR∈C∗
3 given either by FR={f(1, 3, ∅)}, or by FR={f(1, 3, {2})}.

Clearly, both Sn and C5 are vertex-transitive, and the reduced arc diagram of

the former has n points and is empty, and the reduced arc diagram of the latter

has 3 points and either one short left arc or one short right arc that connects the

first with the third point. In the following we argue that all vertex-transitive

quotient graphs Vn have arc diagrams that are products of these two basic di-

agrams. We first rule out any other arc diagrams as candidates for giving a

vertex-transitive quotient graph.

Recall that the quotient graph QR has as vertices all equivalence classes

of R, and an edge between any two classes X and Y that contain a pair of

permutations differing in an adjacent transposition.

Lemma 31: Let n ≥ 4, and let R ∈ C∗
n be a lattice congruence whose reduced

arc diagram is simple and has no loops. If the reduced arc diagram is not empty,

then QR is not vertex-transitive.

Proof. Given a permutation π ∈ Sn and four distinct entries a, b, c, d ∈ [n]

with a < b and c < d such that π is incident with an (a, b)-edge and a (c, d)-edge

in the cover graph of the weak order on Sn, then π forms a 4-cycle in this graph,

given by all four permutations obtained from π by transposing a with b, and c

with d in all possible ways. We denote this 4-cycle by C(π, (a, b), (c, d)). Simi-

larly, given π and three distinct entries a, b, c ∈ [n] with a < b < c such that π

is incident with an (x, y)-edge and an (x, z)-edge, where {x, y, z} = {a, b, c},
then π forms a 6-cycle in the cover graph, given by all six permutations ob-

tained from π by permutating a, b, c in all possible ways. We denote this

6-cycle by C(π, (a, b, c)). Let L denote the set of all entries to the left of

all of a, b, c in π. The 6-cycle C(π, (a, b, c)) has two edges belonging to the

fence f(a, b, L∩ ]a, b[) and two edges belonging to the fence f(b, c, L∩]b, c[), and
we abbreviate these edge sets by E12 and E23, respectively. It also has exactly

one edge belonging to the fence f(a, c, L∩ ]a, c[) and one edge belonging to the

fence f(a, c, L ∩ ]a, c[ ∪ {b}), and we abbreviate these edge sets by E13∅ and

E132, respectively. These edge sets of the 4-cycles and 6-cycles mentioned be-

fore capture how the type i and type ii forcing constraints (recall Figure 2) act

on those cycles. In the following arguments, we have to distinguish carefully

between cycles in the weak order on Sn, and cycles in the quotient graph QR.
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In particular, a 6-cycle in the weak order may result in a 6-, 5-, or 4-cycle in QR,

or collapse to a single edge or vertex in QR, depending on which of the four

aforementioned edges are bars.

By Theorem 26, all vertices in the quotient graph QR have degree n − 1.

The strategy of our proof is to consider two particular vertices in the graph,

and each of the
(
n−1
2

)
pairs of edges incident with each of those vertices. Every

such pair of edges defines a 4-, 5-, or 6-cycle in QR containing these two edges.

In the corresponding quotientope, these cycles bound the 2-dimensional faces

incident to that vertex. We will show that the number of 4-cycles and {5, 6}-
cycles incident to the two vertices is different, implying that the graph is not

vertex-transitive. One of the two vertices we consider is the equivalence class

that contains only the identity permutation idn. The n−1 edges incident with it

are (i, i+1)-edges for i = 1, . . . , n−1 (recall Lemma 20 and that R is assumed to

be essential). There are n−2 pairs of an (i, i+1)-edge and an (i+1, i+2)-edge,

and every such pair of edges defines either a 5-cycle or a 6-cycle in QR: Indeed,

the edges in E12 and E23 of the 6-cycle C(idn, (i, i + 1, i + 2)) are not bars,

as R is essential. Moreover, by the assumption that the diagram of R contains

no loops, at most one of the fences f(i, i+ 2, ∅) or f(i, i + 2, {i+ 1}) is in FR,

so at most one of the edges in E13∅ or E132 of the 6-cycle is a bar. It follows

that the corresponding cycle in QR is a 5-cycle or a 6-cycle. The remaining(
n−1
2

)− (n−2) =
(
n−2
2

)
pairs of an (i, i+1)-edge and a (j, j+1)-edge, j > i+1,

incident with idn all form a 4-cycle in QR: Indeed, none of the edges of the

4-cycle C(idn, (i, i+ 1), (j, j + 1)) are bars, as R is essential.

In the remainder of this proof we identify any arc in the diagram of R with

the fence in the downset FR of the forcing order that it represents. An arc

being in the diagram means that the corresponding fence is contracted, i.e., its

edges are bars, meaning that the permutations that are the endpoints of such

a bar are in the same equivalence class. Conversely, an arc not being in the

diagram means that the corresponding fence is not contracted, i.e., its edges

are not bars.

As the reduced arc diagram of R is not empty, we consider the arc f(a, b, L)

incident to the highest point. As all arcs are simple, we may assume by sym-

metry that it is a left arc, i.e., L = ∅, and if there is also a right arc incident

to this point, then we may assume that the left arc is at least as long as the

right arc.
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(i) The left arc f(a, b, ∅) is in the diagram.

(ii) The endpoints of all arcs are below or at point b.

(iii) If there is a right arc ending at point b, then its starting point a′ satis-
fies a′ ≥ a.

(iv) No two arcs in the diagram are nested, by the assumption that the diagram

is reduced, as nested arcs correspond to fences that are comparable in the

forcing order. In particular, no left arc f(a′, b, ∅), a′ > a, is in the diagram.

(v) All arcs are simple, in particular, no arc connects two consecutive points,

as R is assumed to be essential.

We define the sequences

A := (1, . . . , a− 1), B := (a+ 2, . . . , b− 1), and C := (b+ 1, . . . , n).

The various cases considered in the following proof are illustrated in Figure 16.

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

Case 1. Case 2a.

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

Case 2b.

a

A

a+ 1

B

C

a+ 2

b− 1
b
b+ 1

a− 1

a

A

a+ 1

C

a+ 2

a− 1

Case 3.

a+ 3 n− 2

A

n− 1
n

n− 3

Case 4a.

n− 2

A

n− 1
n

n− 3

Case 4b.

Figure 16. Case distinctions in the proof of Lemma 31. Arcs

in the diagram are drawn with solid lines, arcs that are not in

the diagram are indicated by dashed lines.

Case 1: b − a ≥ 3 and the short right arc f(a, a + 2, {a + 1}) is not in

the diagram of R. Consider the equivalence class X1 containing the permuta-

tion π1 := Aa b (a + 1)BC. It has exactly one descent, namely (b, a + 1),

and as the left arc f(a + 1, b, ∅) is not in the diagram by (iv), we obtain

that π1 is the minimum of X1 (recall Lemma 20). Consider the permuta-

tion ρ1 := bAa (a+ 1)BC, obtained from π1 by transposing the substring Aa

with b, and so by (i) and Lemma 21, ρ1 is also contained in X1. Moreover,

all n− 2 ascents in ρ1 are (i, i+ 1), for i ∈ [n− 1] \ {b− 1, b}, and (b− 1, b+1)

(if b < n), and so by (ii) and (v), ρ1 is the maximum of X1 (recall Lemma 20).
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Table 2. Summary of arguments in case 1 in the proof of

Lemma 31. Edges that are not bars are marked with (i)–(v),

referencing the argument for why that arc is not in the diagram

of R. The edge marked with (∗) is not a bar, and the argument

is given after the table. Edges marked with ? are irrelevant for

our arguments. The 6-cycles marked with [1] are only valid if

b < n, and those marked with [2] are only valid if b < n− 1.

ρ1 = max(X1) = bAa (a+ 1)BC

π1 = min(X1) = Aa b (a+ 1)BC

edges inc. only with idn edges inc. only with X1

(b− 1, b) (a+ 1, b)

(b, b+ 1) [1] (b− 1, b+ 1) [1]

6-cycles inc. only with idn 6-cycles inc. only with X1 E12 E23 E13∅ E132

C(idn, (b− 2, b− 1, b)) C(π1, (a, a+ 1, b)) (v) (iv) ? (∗)
C(idn, (b− 1, b, b+ 1)) [1] C(π1, (a+ 1, a+ 2, b)) (v) (iv) (iv) ?

C(idn, (b, b+ 1, b+ 2)) [2] C(π1, (b− 2, b− 1, b+ 1)) [1] (v) (ii) ? (ii)

C(π1, (b− 1, b+ 1, b+ 2)) [2] (ii) (v) ? (ii)

For the moment we assume that b < n − 1. As Table 2 shows, there are

two edges incident with idn that are labelled with a transposition that does not

appear at any edge incident with X1. Conversely, there are two edges incident

with X1 that are labelled with a transposition that does not appear at any

edge incident with idn. Together with the other edges incident with X1, we

obtain three pairs of edges incident only with idn that define a 6-cycle in the

weak order on Sn, and four pairs of edges incident only with X1 that define

a 6-cycle. All the latter 6-cycles are {5, 6}-cycles in the quotient graph QR,

showing that the number of {5, 6}-cycles incident with a vertex of QR is by

one higher for X1 than for idn. The argument that at most one edge from

each 6-cycle is a bar, is given at the bottom right of the table, separately for

each of the various sets of edges on each cycle. For example, for the 6-cycle

C(π1, (a, a+ 1, b)), the two edges in E12 belong to the fence f(a, a+ 1, ∅), and
the corresponding arc is not in the diagram by (v). It remains to argue about

case (∗) in the table, i.e., the arc f(a, b, {a+ 1}). This arc is non-simple, and

so it is not in the reduced diagram. Moreover, in the forcing order it can only

be forced by a simple arc f(a′, b, ∅) with a′ ≥ a+1, which is impossible by (iv),
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or by the simple short right arc f(a, a+ 2, {a+ 1}), which is impossible by the

extra assumption we imposed at the beginning of case 1. It follows that the

arc f(a, b, {a+ 1}) is not in the diagram of R.

In the cases b = n − 1 and b = n one or two of the 6-cycles in the first

two columns of Table 2 are invalid, but the remaining 6-cycles still result in a

surplus of {5, 6}-cycles incident with X1.

Case 2: b − a ≥ 3 and the short right arc f(a, a + 2, {a + 1}) is in the

diagram of R. Consider the equivalence class X2 containing the permutation

π2 := A (a + 1) a bBC. This permutation has two descents, (a + 1, a) and

(b, a+ 2), and it can be checked that π2 = min(X2).

Subcase 2a: We now additionally assume that if a > 1, then the short left

arc f(a− 1, a+ 1, ∅) is not in the diagram of R. Using this assumption, it can

be checked that ρ2 := max(X2) = A (a+1) bB C a. As before, we now consider

all transpositions that appear as edge labels at only either idn or X2, and we

consider the resulting pairs of transpositions that define a 6-cycle in the weak

order on Sn, yielding the 6-cycles shown in Table 3, where some of them exist

only under the extra conditions on a and b stated in the table.

Unlike in case 1, where we argued that there are more {5, 6}-cycles incident
with X1 than with idn, in case 2 we argue that there are fewer {5, 6}-cycles
incident with X2 than with idn. For this we consider the two 6-cycles marked

with (∗) and (∗∗) in the table, and argue that each of them is contracted to a

4-cycle in the quotient graph QR. Indeed, for the 6-cycle C(ρ2, (a− 1, a+ 1, b)),

the edges in E12 are not bars by the assumption that the short left arc

f(a − 1, a + 1, ∅) is not in the diagram of R, the edges in E23 are not bars

by (iv), the edge in E13∅ is a bar, as the left arc f(a − 1, b, ∅) is forced by the

left arc f(a, b, ∅) in the forcing order, and the edge in E132 is a bar, as the arc

f(a− 1, b, {a+ 1}) is forced by the short right arc f(a, a+ 2, {a+ 1}). For the
6-cycle C(π2, (a, a+1, b)), the edges in E12 are not bars by (v), the edges in E23

are not bars by (iv), the edge in E13∅ is a bar by (i), and the edge in E132 is a

bar, as the arc f(a, b, {a+1}) is forced by the short right arc f(a, a+2, {a+1}).
As one can check from the table, the deficiency of {5, 6}-cycles incident

with X2 compared to idn continues to hold even when some of the 6-cycles

in Table 3 are invalid as a consequence of some or all of the conditions [1]–[5]

being violated, as the cycle marked with (∗∗) is always valid.
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Table 3. Summary of arguments in case 2a. Some 6-cycles

are only valid under the following extra conditions: [1] b < n,

[2] b < n− 1, [3] b > a+ 3, [4] a > 1, [5] a > 2.

ρ2 = max(X2) = A (a+ 1) bB C a

π2 = min(X2) = A (a+ 1) a bB C

edges inc. only with idn edges inc. only with X

(a− 1, a) [4] (a− 1, a+ 1) [4]

(a+ 1, a+ 2) (a+ 1, b)

(b− 1, b) [3] (a+ 2, b) [3]

(b, b+ 1) [1] (b− 1, b+ 1) [1]

6-cycles inc. only with idn 6-cycles inc. only with X

C(idn, (a− 2, a− 1, a)) [5] C(π2, (a− 2, a− 1, a+ 1)) [5]

C(idn, (a, a+ 1, a+ 2)) C(ρ2, (a− 1, a+ 1, b)) [4] (∗)
C(idn, (a+ 1, a+ 2, a+ 3)) [3] C(π2, (a, a+ 1, b)) (∗∗)
C(idn, (b− 2, b− 1, b)) [3] C(ρ2, (a+ 1, a+ 2, b)) [3]

C(idn, (b− 1, b, b+ 1)) [1]+[3] C(π2, (a+ 2, a+ 3, b)) [3]

C(idn, (b, b+ 1, b+ 2)) [2] C(π2, (b− 2, b− 1, b+ 1)) [1]+[3]

C(π2, (b− 1, b+ 1, b+ 2)) [2]

Subcase 2b: We now assume that a > 1 and that the short left arc

f(a−1, a+1, ∅) is in the diagram of R. Using this assumption, it can be checked

that ρ′2 := min(X2) = (a + 1) bB C Aa. Proceeding similarly to before, we

obtain a table that differs from Table 3 exactly by omitting all lines marked [4]

or [5], i.e., we obtain the same conclusion that there is a deficiency of {5, 6}-
cycles incident with X2 compared to idn.

Case 3: a < n− 2 and b = a+ 2. In this case we reconsider the equivalence

class X1 defined in case 1, yielding the following simplified Table 4.

The cycle C(idn, (a + 2, a + 3, a + 4)) is also a 6-cycle incident with idn

in the quotient graph QR by (ii) and (v). We now show that the 6-cycle

C(ρ1, (a, a+ 1, a+ 3)) marked with (∗) is a 5-cycle incident with X1 in QR,

which proves that X1 is incident with one more 5-cycle than idn. Indeed, the

edges in E12 of the marked cycle are not bars by (v), the edges in E23 are not bars

by (ii), the edge in E132 is not a bar, as the right arc f(a, a+3, {a+1, a+2}) is
not in the diagram ofR by (ii), and none of the short right arcs f(a, a+2, {a+1})



Vol. 244, 2021 COMBINATORIAL GENERATION II 409

Table 4. Summary of arguments in case 3. The 6-cycle marked

with [1] is only valid if a < n− 3.

ρ1 = max(X1) = (a+ 2)Aa (a+ 1)C

π1 = min(X1) = Aa (a+ 2) (a+ 1)C

edges inc. only with idn edges inc. only with X1

(a+ 2, a+ 3) (a+ 1, a+ 3)

6-cycles inc. only with idn 6-cycles inc. only with X1

C(idn, (a+ 2, a+ 3, a+ 4)) C(ρ1, (a, a+ 1, a+ 3) (∗)
C(π1, (a+ 1, a+ 3, a+ 4)) [1]

or f(a+1, a+3, {a+2}) that might force it is in the diagram by the assumption

that the diagram has no loops, or by (ii), respectively. Furthermore, the edge

in E13∅ is a bar, as the arc f(a, a + 3, {a + 2}) is forced by the short left arc

f(a, a+ 2, ∅), which is in the diagram by (i).

Case 4: a = n − 2 and b = a + 2 = n. In this case the short right arc

f(n − 2, n, {n − 1}) is not in the diagram of R, by the assumption that the

diagram contains no loops.

Subcase 4a: We now additionally assume that the short left arc

f(n − 3, n− 1, ∅) is not in the diagram of R. In this subcase, we consider two

equivalence classes X4 and Y4 that are distinct from idn. The first equivalence

class X4 is the one containing the permutation π4 := An (n − 1) (n − 2), and

one can check that π4 = min(X4) and that ρ4 := max(X4) = nA (n−1) (n−2).

The second equivalence class Y4 contains only a single permutation

σ4 = min(Y4) = max(Y4) = A (n− 1)n (n− 2).

There is only a single 6-cycle incident with only either X4 or Y4, namely

C(ρ4, (n − 3, n − 2, n − 1)), and one can argue that it is a {5, 6}-cycle in the

quotient graph QR, implying that there are more {5, 6}-cycles incident with X4

than with Y4 in QR; see Table 5.

Subcase 4b: We now assume that the short left arc f(n − 3, n − 1, ∅) is

in the diagram of R. We consider the equivalence class X ′
4 that contains the

permutation π′
4 := A (n − 1) (n − 2)n. One can check that π′

4 = min(X ′
4) and

that ρ′4 := max(X ′
4) = (n−1)A (n−2)n. There is only a single 6-cycle incident

with only either idn or X ′
4, namely C(ρ′4, (n − 3, n − 2, n)); see Table 6. We
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Table 5. Summary of arguments in case 4a.

ρ4 = max(X4) = nA (n− 1) (n− 2)

π4 = min(X4) = An (n− 1) (n− 2) σ4 = min(Y4) = max(Y4) = A (n− 1)n (n− 2)

edges inc. only with X4 edges inc. only with Y4

(n− 2, n− 1) (n− 2, n)

6-cycles inc. only with X4 6-cycles inc. only with Y4

C(ρ4, (n− 3, n− 2, n− 1))

now argue that this is a 5-cycle in the quotient graph QR, implying that there

are more 5-cycles incident with X ′
4 than with idn in QR. Indeed, the edges

in E12 are not bars by (v), the edges in E23 are not bars, as the short right arc

f(n−2, n, {n−1}) is not in the diagram by the assumption that it has no loops.

Morever, the edge in E13∅ is a bar, as the arc f(n− 3, n, {n− 1}) is forced by

the short left arc f(n− 3, n− 1, ∅). Finally, the edge in E132 is not a bar, as the

right arc f(n− 3, n, {n− 2, n− 1}) is not in the reduced diagram by (iii), and

the two short right arcs f(n − 3, n − 1, {n − 2}) and f(n − 2, n, {n− 1}) that
may force it in the forcing order are not in the diagram by the assumption of

loop-freeness.

Table 6. Summary of arguments in case 4b.

ρ′4 = max(X ′
4) = (n− 1)A (n− 2)n

π′
4 = min(X ′

4) = A (n− 1) (n− 2)n

edges inc. only with idn edges inc. only with X ′
4

(n− 1, n) (n− 2, n)

6-cycles inc. only with idn 6-cycles inc. only with X ′
4

C(ρ′4, (n− 3, n− 2, n))

This completes the proof of the lemma.

With Lemma 31 in hand, we are now ready to characterize vertex-transitive

quotient graphs via their arc diagram.

Lemma 32: For n ≥ 2, every vertex-transitive quotient graph from Vn is a

Cartesian product with factors from the set of graphs

(17) P := {S2, S3, S4, . . .} ∪ {C5}.
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The corresponding reduced arc diagrams are products of empty diagrams on at

least 2 points, and of diagrams on 3 points that have either a short left arc or

a short right arc.

Proof. Consider the reduced arc diagram of a lattice congruence R ∈ Vn. By

Lemma 17, for any loop in the diagram centered at some point s ∈ [2, n−1], we

may split the diagram into two diagrams on the intervals [1, s] and [s, n], and

QR is the Cartesian product of the quotient graphs of the two lattice congru-

ences defined by the reduced arc diagrams on the two intervals. We repeat this

elimination of loops exhaustively, yielding a factorization of

QR � QA1 � · · ·�QAp

such that the reduced arc diagram of every lattice congruence Ai ∈ C∗
ni
, ni ≥ 2,

has no loops. As QR is vertex-transitive, Lemma 30 (iii) yields that all fac-

tors QAi must be vertex-transitive. Therefore, by Lemma 31, for any factor

with ni ≥ 4, we know that the arc diagram of Ai must be empty, i.e., we have

QAi = Sni . For any factor with ni = 3, there are exactly three essential lattice

congruences yielding a vertex-transitive quotient graph, given by an arc diagram

on 3 points that is either empty, or that has a short left arc or a short right arc,

and the corresponding graphs are QAi = S3 in the first case, and QAi = C5 in

the latter two cases. For any factor with ni = 2, there is exactly one essential

lattice congruence, represented by an empty arc diagram on 2 points, i.e., we

have QAi = S2. This proves the lemma.

Given an integer n, a composition of n is a way to write n as a sum of positive

integers a1, . . . , ap, i.e., n = a1 + · · · + ap. A partition of n is a composition

of n where the summands are sorted decreasingly, i.e., a1 ≥ · · · ≥ ap.

Theorem 33: For every n ≥ 2 and every integer composition a1 + · · · + ap

of n− 1 with exactly k many 2s, there are 3k vertex-transitive quotient graphs

in Vn, and these graphs are isomorphic to the Cartesian products G1� · · ·�Gp,

where Gi = Sai+1 if ai �= 2 and Gi ∈ {S3, C5} if ai = 2 for all i = 1, . . . , p. The

corresponding reduced arc diagrams are products of empty diagrams on ai + 1

points if ai �= 2, and of diagrams on 3 points that are either empty, or have

one short left arc, or one short right arc that connects the first and third point

if ai = 2. All of these graphs are distinct, and every graph in Vn arises in this

way.
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Figure 17. Reduced arc diagrams of all 22 vertex-transitive

quotient graphs V5 (bottom), plus reduced arc diagrams of cor-

responding isomorphic quotient graphs in Qn, n ≥ 5, with the

maximal number of non-essential fences (top), plus the cor-

responding integer compositions of 4. The dashed short arcs

correspond to copies of the 5-cycle C5 in the Cartesian prod-

ucts. The 8 non-isomorphic quotient graphs V ′
5 are highlighted,

and they correspond to integer partitions.

Proof. The proof is illustrated in Figure 17. We consider an integer composition

a1 + · · · + ap of n − 1 with exactly k many 2s. For each summand ai �= 2, we

consider the empty arc diagram on ai+1 points, and for each summand ai = 2,

we consider an arc diagram on 3 points that is either empty, or has one short

left arc, or one short right arc. As the latter case happens k times, we have 3k

choices. Consider the lattice congruences A1, . . . , Ap defined by these arc dia-

grams, and consider the lattice congruence R ∈ C∗
n whose reduced diagram is the
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product of these diagrams. By Lemma 17, we have that QR � QA1 � · · ·�QAp .

Moreover, if ai �= 2, then we have QAi = Sai+1, and if ai = 2, then we have

QAi ∈ {S3, C5}, i.e., all factors in this product are vertex-transitive. Applying

Lemma 30 (iii), we see that QR is vertex-transitive as well. Clearly, all arc dia-

grams constructed in this way from integer compositions are distinct, yielding

distinct graphs in Vn. By Lemma 32, every graph in Vn arises from such a

composition.

The following corollary is an immediate consequence of Theorem 33.

Corollary 34: Let cn,k denote the number of integer compositions of n with

exactly k many 2s. For n ≥ 2, we have |Vn| =
∑

k≥0 3
kcn−1,k.

Define
an :=

∑

k≥0

3kcn−1,k for n ≥ 2

and bn := an+1 for n ≥ 1. The sequence bn is OEIS sequence A052528, and

the first few terms are 1, 4, 8, 22, 52, 132, 324, 808, 2000. This sequence also has

a linear recurrence, namely

b0 = b1 = 1 and bn = 2bn−2 +
∑

0≤i≤n−1

bi for n ≥ 2.

The generating function is

(1 − x)

(2x3 − 2x2 − 2x+ 1)
,

so the asymptotic growth of bn and an is (1/x0)
n, where x0 is the smallest posi-

tive root of 2x3−2x2−2x+1, numerically x0 ≈ 0.403032 and 1/x0 ≈ 2.481194.

Theorem 35: For every n ≥ 2 and every integer partition a1+ · · ·+ap of n−1

with exactly k many 2s, there are k+1 vertex-transitive quotient graphs in V ′
n,

and these graphs are the Cartesian products G1 � · · ·�Gp, where Gi = Sai+1

if ai �= 2 and Gi ∈ {S3, C5} if ai = 2 for all i = 1, . . . , p. The corresponding

reduced arc diagrams are products of empty diagrams on ai+1 points if ai �= 2,

and of k diagrams on 3 points, exactly j ∈ {0, . . . , k} of which are empty and

k − j of which have one short left arc that connects the first and third point,

if ai = 2. All of these graphs are non-isomorphic, and every graph in V ′
n arises

in this way.

The 8 non-isomorphic vertex-transitive graphs for n = 5 are highlighted in

Figure 17.
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Proof. By Theorem 33, our task is to consider all integer compositions

a1 + · · · + ap of n − 1, and among the corresponding Cartesian products

G1� · · ·�Gp, select those which are non-isomorphic graphs. By Lemma 30 (i),

reordering of the factors of any two Cartesian products yields isomorphic graphs,

and as all graphs in the set P defined in (17) are prime, Lemma 30 (ii) shows

that these reordering operations are the only ones yielding isomorphic graphs.

Consequently, the non-isomorphic quotient graphs can be identified with inte-

ger partitions, obtained by sorting the summands of a composition decreasingly,

and for a partition with k many 2s, we may choose j ∈ {0, . . . , k} factors that

are 6-cycles S3, and the remaining k − j factors as 5-cycles C5.

Corollary 36: Let tn denote the number of 2s in all integer partitions of n.

For n ≥ 2, we have |V ′
n| = tn+1.

By Corollary 36, the number of vertex-transitive quotient graphs for

n = 2, . . . , 10 is tn = 1, 3, 4, 8, 11, 19, 26, 41, 56, respectively, which is OEIS

sequence A024786. It can be shown that tn = eπ
√

2n/3(1+o(1)).

Proof. By Theorem 35, there are exactly
∑

k≥0(k + 1)pn−1,k non-isomorphic

vertex-transitive quotient graphs V ′
n, where pn,k denotes the number of integer

partitions of n with exactly k many 2s. It remains to show that this sum

equals tn+1. Given any integer partition of n − 1 with exactly k many 2s,

there are (k+1) ways to insert another marked 2 into this partition, yielding a

partition of n+ 1 with a marked 2. As all partitions of n+ 1 with a marked 2

arise in this way, this corresponds exactly to counting the number of 2s in all

integer partitions of n+ 1.

Remark 37: The lattice congruences that yield vertex-transitive quotient graphs

described in Theorem 33 are precisely the δ-permutree congruences from [PP18]

for decorations δ ∈ { , , , }n such that any or is preceded and

followed by .

5. Open questions

We conclude with the following open questions:

• We showed that every quotient graph has a Hamilton path, and it is natural

to ask whether it also has a Hamilton cycle for n ≥ 3; recall Remark 16. We

conjecture that this is the case, and we verified this conjecture with computer

help for n ≤ 5. The proof technique described in [HN99] for the associahedron

might be applicable for larger classes of quotientopes.
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• Given our results in Table 1, it seems challenging to characterize the non-

isomorphic quotient graphs Q′
n by their arc diagrams, and to count them;

recall the examples from Figure 10. In particular, we wonder whether the

sequence |Q′
n| grows more than exponentially with n, possibly even double-

exponentially like |Qn|?
• It would also be interesting to provide a lower bound on the number of

non-isomorphic regular graphs R′
n that improves upon the trivial bound

|R′
n| ≥ |V ′

n|, which comes from number partitions. In the proof of Theo-

rem 35, we can replace any factor Sai+1, ai ≥ 3, coming from a partition

with a part ai by a prime regular quotient graph. For example, if n = 4 there

are 7 non-isomorphic prime regular graphs (10 regular, 4 of which are vertex-

transitive, 3 of which are products). This technique could be improved, if we

produce non-isomorphic prime regular graphs for larger part sizes ai. To this

end, it seems worthwile to study the set P ′
n ⊆ R′

n of non-isomorphic prime

regular graphs. Probably most arc diagrams with a single simple arc are

prime graphs, which would show that |P ′
n| ≥ Θ(n), and this would improve

the lower bound for |R′
n|.

• Another natural direction are colorability properties of quotient graphs. We

found experimentally that all bipartite quotient graphs seem to be character-

ized as follows: For any integers a, b ∈ [n] with b−a ≥ 2, we let A(a, b) be the

set of all arcs in the arc diagram connecting the point a with the point b. A

quotient graph is bipartite if and only if its arc diagram is a collection of arc

sets of the form A(ai, bi), where the [ai, bi] are non-nesting intervals. Proving

this rigorously would show that bipartite quotient graphs are counted by the

Catalan numbers Cn−1.

• It would also be interesting to investigate which of our results extend to lattice

quotients of the weak order on finite Coxeter groups other than the symmetric

group Sn (see [Rea12, Rea16a]).
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