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ABSTRACT

Consider the generalized absolute value function defined by

a(t) = |t|tn−1, t ∈ R, n ∈ N≥1.

Further, consider the n-th order divided difference function a[n] :Rn+1→C

and let 1 < p1, . . . , pn < ∞ be such that
∑n

l=1 p
−1
l = 1. Let Spl denote

the Schatten–von Neumann ideals and let S1,∞ denote the weak trace

class ideal. We show that for any (n+ 1)-tuple A of bounded self-adjoint

operators the multiple operator integral TA
a[n] maps Sp1 × · · · × Spn to

S1,∞ boundedly with uniform bound in A. The same is true for the class

of Cn+1-functions that outside the interval [−1, 1] equal a. In [CLPST16]

it was proved that for a function f in this class such boundedness of TA
f [n]

from Sp1 ×· · ·×Spn to S1 may fail, resolving a problem by V. Peller. This

shows that the estimates in the current paper are optimal. The proof is

based on a new reduction method for arbitrary multiple operator integrals

of divided differences.

1. Introduction

This paper is concerned with the following problem. Consider a Borel function

f : R → C. Consider the divided difference function f [n] : Rn+1 → C and

assume it is bounded. For an (n + 1)-tuple A = (A0, . . . , An) of bounded

self-adjoint operators, consider the multiple operator integral

(1.1) TA
f [n] : S2 × · · · × S2 → S2.

Here S2 is the Hilbert–Schmidt ideal and by [CLPST16] the map (1.1) is

well-defined. We now ask for an extension of the multi-linear map (1.1) to

other Schatten Sp-spaces. Such extensions have several important applica-

tions to differentiability properties of functions on non-commutative spaces;

see, e.g., [PSS13], [ST].

Problem 1: For which class of functions f : R → C and which values of

1 ≤ p1, . . . , pn <∞ with
∑n

l=1
1
pl

= 1 does TA
f [n] for every A ∈ B(H)×n+1

sa

extend to a bounded map

(1.2) TA
f [n] : Sp1 × · · · × Spn → S1,∞?

In case n = 1 a complete solution to this problem was found by D. Potapov

and the authors in [CPSZ19]. In this case (1.2) concerns boundeness of

(1.3) TA
f [1] : S1 → S1,∞.
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The main result of [CPSZ19] yields that (1.3) is bounded uniformly in

A ∈ B(H)×2
sa if and only if f is Lipschitz. Preliminary results on this prob-

lem have been obtained by Nazarov and Peller [NaPe09] for rank 1 operators

and by the authors [CPSZ15] for f the absolute value map. Through inter-

polation [CPSZ19] (see also [CSZ18]) it implies the main results of [PS11] and

[CMPS14] as well as many previous results on perturbation of commutators

and non-commutative Lipschitz properties. In this sense the so-called weak

type (1, 1) estimate (1.3) is the optimal one. Crucial in the proof of [CPSZ19] is

the connection to non-commutative Calderón–Zygmund theory and the results

by Parcet [Par09] and Cadilhac [Cad18].

That Problem 1 is the right question to pose is further witnessed by the fact

that there is no uniform bound in A ∈ B(H)n+1
sa of the map

(1.4) TA
f [n] : Sp1 × · · · × Spn → S1.

For n = 1 counterexamples were (in different but related contexts) obtained

by Farforovskaya [Far67], [Far68], [Far72], Kato [Kat73] and Davies [Dav88].

Most notably Davies proves in [Dav88] that the estimate (1.4) fails for n = 1

and for the absolute value map f. For n ≥ 2 negative results were obtained

much more recently in [CLPST16]. The functions that are used in [CLPST16]

to show failure of a uniform bound in A ∈ B(H)n+1
sa of (1.4) are variations of a

generalized (higher order) absolute value map

(1.5) a(t) = |t|tn−1, t ∈ R.

This class of functions is exactly the object of study of the current paper, see the

final Remark 5.3. Further negative results for n ≥ 2 can be found in [PSST17].

The results so far naturally motivate a study of Problem 1 for n ≥ 2. More-

over, affirmative answers to Problem 1 for classes of functions give optimal

solutions to some of the main results in [PSS13] where it was proved that for

any f ∈ Cn(R) with bounded n-th order derivative f (n) we have

TA
f [n] : Sp1 × · · · × Spn → Sp, 1 < p, p1, . . . , pn <∞, with

n∑
l=1

1

pl
=

1

p
.

Despite its importance up until now for n ≥ 2 nothing is known about the

boundedness of (1.2) for any class of functions f unless already the stronger

estimate (1.4) holds. This paper is the first attempt to fill in a void in this

area. Namely, we give an affirmative answer to Problem 1 for the generalized
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absolute value function a as well as for a class of related functions. Note that

these examples are historically the most natural ones, since several results have

been obtained in the past for absolute value maps. In particular, we show

that the class of counterexamples obtained in [CLPST16] to the estimate (1.4)

does satisfy the weak (1, 1) estimate (1.2). For other results on absolute value

maps in this context we refer to [McI71], [Kat73], [Dav88], [Kos92], [DDPS97],

[DDPS99], [APS05], [CPSZ15], [CLPST16], [PSST17].

Here is our main theorem. We draw the reader’s attention that our assump-

tion on the indices p1, . . . , pn below are wider than those in [PSS13]. This

explains a serious difference between our method and that of [PSS13].

Theorem 1.1: Let n ∈ N≥1 and 1 ≤ p1, . . . , pn <∞ with
∑n

l=1
1
pl

= 1. There

exists a constant D(p1, . . . , pn) > 0 such that for every A ∈ B(H)×n+1
sa we have

(1.6) ‖TA
f [n] : Sp1 × · · · × Spn → S1,∞‖ ≤ D(p1, . . . , pn),

where f = a as defined in (1.5). Moreover, the same result holds for any function

f ∈ Cn+1(R) such that f(t) = a(t) for t ∈ R\[−1, 1].

Note that condition
∑n

l=1
1
pl

= 1 implies that n = 1 if and only if for

some 1 ≤ k ≤ n we have pk = 1. Further, if n = 1 then Theorem 1.1 is the

main result of [CPSZ15]. Therefore this paper mainly deals with the case n ≥ 2

and pk > 1 for all 1 ≤ k ≤ n.

Let us comment on the proof. In contrast to [CPSZ19], which covers the case

n = 1, we do not rely on Calderón–Zygmund theory but rather rely on the key

results from [CPSZ15] together with a new reduction technique. Theorem 4.5

shows that the problem of finding weak type (1, 1) estimates of a double operator

integral of divided differences is concentrated on the case that A = (A, . . . , A)

with either A ≥ 0 or A ≤ 0. To prove this we use reductions from multiple

operator integrals to double operator integrals.

Structure. Section 2 settles all notation and preliminaries on divided differ-

ences and multiple operator integrals. Section 3 introduces several reduction

techniques for multiple operator integrals. Of crucial importance is Lemma 3.3.

Section 4 proves a reduction theorem which is fundamental to our paper. Then

in Section 5 we present the main results. In particular we prove Theorem 1.1.
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2. Preliminaries

Throughout the entire paper n is a fixed number in N≥1. For sets B0 ⊆ B1 we

write B1\B0 for the set of all elements in B1 that are not in B0. We write χG for

the indicator function of a set G ⊆ Rn+1 and χ0 when G = {0}. For p ∈ [1,∞]

we denote the conjugate exponent by p′ ∈ [1,∞] which is defined by 1
p +

1
p′ = 1.

For normed spaces X and Y we denote X × Y for the Cartesian product

equipped with the max norm ‖(x, y)‖ = max(‖x‖, ‖y‖).
Inner products are linear in the first argument and anti-linear in the second

one. In this paper H is an infinite dimensional separable Hilbert space, B(H)

is the algebra of all bounded operators on H and B(H)sa stands for the set of

all bounded self-adjoint operators. Note that the separability of H is used in

[CLS17]. We write Tr for the trace on B(H). For A ∈ B(H)sa we denote σ(A)

for the spectrum of A and σp(A) for the point spectrum of A. So σp(A) consists

of all eigenvalues of A. Let EA be the spectral measure of A (see [Rud91]). A

scalar valued spectral measure of A is a positive scalar valued finite measure λA

on the Borel sets of σ(A) having the same sets of measure 0 as EA. As observed

in [CLS17, Preliminaries] such a measure always exists and the constructions

below are independent of the choice of λA. See also [Con90, Section IX.8].

2.1. Schatten spaces Sp and operator ideals. For additional informa-

tion concerning material reviewed in this subsection, we refer to [LSZ]. We

let Sp(H), 1 ≤ p < ∞ be the Schatten–von Neumann non-commutative Lp-

spaces associated with B(H). We simply write Sp for Sp(H) and omit H

in the notation; Sp is the Banach space consisting of all x ∈ B(H) such

that ‖x‖p :=Tr(|x|p)1/p<∞; S∞ denotes the compact operators. The Hölder in-

equality holds ‖xy‖p ≤ ‖x‖q‖y‖r whenever x ∈ Sq, y ∈ Sr and p−1 = q−1+r−1.

For x ∈ B(H) we set the singular value sequence

μk(x) = inf{‖x(1− p)‖ | p ∈ B(H) projection,Tr(p) ≤ k}, k ∈ N≥0.

We let S1,∞ be the space of x ∈ B(H) for which (μk(x))k∈N≥0
is in �1,∞, e.g.

‖x‖1,∞ := sup
k∈N≥0

(k + 1)μk(x) <∞.

Then S1,∞ is a quasi-Banach space with quasi-triangle inequality

‖x+ y‖1,∞ ≤ 2‖x‖1,∞ + 2‖y‖1,∞, x, y ∈ S1,∞.

Further S1 ⊆ S1,∞ ⊆ Sp, 1 < p ≤ ∞.
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2.2. Multiple operator integrals. Fix a separable Hilbert space H .

Let A = (A0, . . . , An) be an (n+ 1)-tuple of self-adjoint operators Ai ∈ B(H).

We shall write this as A ∈ B(H)×n+1
sa . Let λAi be the scalar valued spec-

tral measure of Ai. For functions φi ∈ L∞(σ(Ai), λAi), i = 0, . . . , n set

φ = φ0 ⊗ · · · ⊗ φn and define

TA
φ :

n copies︷ ︸︸ ︷
S2 × · · · × S2 →S2,

(x0, . . . , xn) 
→φ0(A0)x1φ1(A1)x1 · · ·φn−1(An−1)xnφn(An).

We have

L∞(σ(A0), λA0)⊗ · · · ⊗L∞(σ(An), λAn)

⊆ L∞(σ(A0)× · · · × σ(An), λA0 × · · · × λAn),

by identifying

(φ0 ⊗ · · · ⊗ φn)(t0, . . . , tn) = φ0(t0) . . . φn(tn), ti ∈ σ(Ai).

Next, the space L∞(σ(A0)× · · · × σ(An), λA0 × · · · ×λAn) is equipped with the

weak-∗ topology induced by the predual L1(σ(A0)×· · ·×σ(An), λA0×· · ·×λAn)

and the linear span of the elementary tensor products is weak-∗ dense in this

space. In [CLS17] it is explained that also the space of bounded multi-linear

maps S2 × · · · × S2 → S2 is canonically a dual space and therefore carries the

weak-∗ topology. More precisely, for ξ0 ⊗ · · · ⊗ ξn ⊗ η ∈ S2⊗̂ · · · ⊗̂S2 (n + 2

projective tensor products) define the multi-linear map

n+1 copies︷ ︸︸ ︷
S2 × · · · × S2 →S2,

μ0 ⊗ · · · ⊗ μn 
→ 〈μ0, ξ
∗
0 〉 · · · 〈μn, ξ∗n〉η.

By [CLS17] this isomorphism complex linearly identifies the space of multi-

linear maps S2 × · · · ×S2 → S2 as the dual of S2⊗̂ · · · ⊗̂S2 (n+2 tensors). This

isomorphism defines the weak-∗ topology on S2 × · · · × S2 → S2.

By [CLS17, Proposition 5] (see also [ST, Section 4.2] and [Pav69], [SoSt69])

the assignment φ 
→ TA
φ extends uniquely to a linear weak-∗ continuous map:

L∞(σ(A0)× · · · × σ(An), λA0 × · · · × λAn) → B(S2 × · · · × S2,S2).

This defines TA
φ for φ in this domain. By [CLS17, Remarks after Corollary 10]

we have for such φ that

‖φ‖∞ = ‖TA
φ : S2 × · · · × S2 → S2‖.
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Note that if φ : Rn+1 → C is a bounded Borel function, then it defines an

equivalence class [φ] in L∞(σ(A0)× · · · × σ(An), λA0 × · · · × λAn) and we keep

denoting TA
φ for TA

[φ].

Let φ : Rn+1 → C be a bounded Borel function and A ∈ B(H)×n+1
sa . In this

paper we shall be interested in extensions of TA
φ to various Schatten classes.

Let 1 ≤ p, p1, . . . , pn <∞. We denote

(2.1) ‖TA
φ : Sp1 × · · · × Spn → Sp‖

for the infimum of all constants C > 0 such that for every

(x1, . . . , xn) ∈ (S2 ∩ Sp1)× · · · × (S2 ∩ Spn)
we have TA

φ (x1, . . . , xn) ∈ Sp and moreover,

‖TA
φ (x1, . . . , xn)‖Sp ≤ C

∏
l=1,...,n

‖xl‖Spl
.

In case (2.1) is finite, TA
φ extends to a bounded map Sp1 × · · · × Spn to Sp still

denoted by TA
φ . Analogously we can replace the target space Sp by S1,∞ in this

terminology. We shall also say that TA
φ is bounded from Sp1 × · · · × Spn to Sp

or S1,∞.

Lemma 2.1: Let φ : Rn+1 → C be a bounded Borel function. Let χ+ (resp. χ−)
be the indicator function on R

×n+1
≥0 (resp. −R

×n+1
≥0 ). Let A ∈ B(H)sa.

(1) If A ≥ 0 we have T
(A,...,A)
φ = T

(A,...,A)
φχ+

and if A ≤ 0 we have

T
(A,...,A)
φ = T

(A,...,A)
φχ− .

(2) T
(A,...,A)
χ± :Sp1×· · ·×Spn →S1 is a contraction for every 1≤p1, . . . , pn<∞

with
∑n

l=1
1
pl

= 1.

Proof. Set the projection P := χ[0,∞)(A). (1) First assume that

φ = φ0 ⊗ · · · ⊗ φn ∈ L∞(σ(A0), λA0)⊗ · · · ⊗ L∞(σ(An), λAn)

is an elementary tensor product. If A ≥ 0, then P = 1. Then for xi ∈ S2,

T
(A,...,A)
φ (x1, . . . , xn) = φ0(A)x1φ1(A) . . . φn−1(A)xnφn(A)

= φ0(A)Px1φ1(A)P . . . φn−1(A)Pxnφn(A)P

= T
(A,...,A)
φχ+

(x1, . . . , xn).
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By weak-∗ density of the linear span of elementary products we conclude the

lemma for every bounded Borel function φ : Rn+1 → C. The statement

for A ≤ 0 follows similarly. (2) We find for xl ∈ Spl ∩ S2 that

T (A,...,A)
χ+

(x1, . . . , xn) = Px1P · · ·PxnP,

which defines a contraction by the Hölder inequality. The case for χ− is treated

similarly.

Remark 2.2: Let φ : Rn+1 → C be a bounded Borel function and let

φm =
∑

(l0,...,ln)∈Zn+1

φ
( l0
m
, . . . ,

ln
m

)
χ∏n

i=0[
li
m ,

li+1

m )
.

Let A ∈ B(H)sa with spectral measure E and set El,m = E([ lm ,
l+1
m )).

Let 1 ≤ p, p1, . . . , pn < ∞ be such that 1
p =

∑n
k=1

1
pk
. Then for xk ∈ S2 ∩ Spk

we have

(2.2)

T
(A,...,A)
φm

(x1, . . . , xn)

=
∑

(l0,...,ln)∈Zn+1

φ
( l0
m
, . . . ,

ln
m

)
El0,mx1El1,mx2 · · ·Eln−1,mxnEln,m.

Assume that φm → φ pointwise (which holds true in particular if φ is con-

tinuous on Rn+1\{0}). Then by the Lebesgue dominated convergence theo-

rem φm → φ in the weak-∗ topology of L∞(σ(A), λA)
⊗n+1. By weak-∗ conti-

nuity we have a convergence in S2

T
(A,...,A)
φm

(x1, . . . , xn) → T
(A,...,A)
φ (x1, . . . , xn).

On the other hand assume that φ is in the class Cn from [PSS13, Eqn. (3.1)].

If the maps T
(A,...,A)
φm

are bounded Sp1 × · · · × Spn → Sp uniformly in m and

if (2.2) converges in Sp for every xi ∈ S2∩Spi , then we see that the limiting oper-

ator equals the one from [PSS13, Definition 3.1]. In particular, this applies to the

class of polynomial integral momenta [PSS13, Theorem 5.3] (where 1 < p <∞)

and the multiple operator integrals appearing in Proposition 2.6 below.

We conclude that the multiple operator integrals that occur in this paper

coincide with those defined in [PSS13, Definition 3.1]. Further, it was already

observed in [PSS13, p. 510] that these multiple operator integrals also agree

with Peller’s definition and approach [Pel06] (see also [ACDS09]).
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2.3. Reduction to the case A = A×n+1
. Let H be a Hilbert space. Con-

sider H(n+1) = H ⊕ · · · ⊕H the (n+ 1)-fold direct sum and identify

B(H(n+1)) �Mn+1(C)⊗B(H)

and
Sp(H(n+1)) � Sp(Cn+1)⊗ Sp(H), 1 ≤ p ≤ ∞.

LetEi,j ∈Mn+1(C) denote the matrix unit with zero entries everywhere except

for a 1 at the i-th row and j-th column. We have the following matrix amplifi-

cation trick.

Proposition 2.3: Let φ : Rn+1 → C be a bounded Borel function. Let

A = (A0, . . . , An) ∈ B(H)×n+1
sa and let x1, . . . , xn ∈ S2. Define elements

of Mn+1(C)⊗B(H) by

−→
A =

n∑
l=0

El,l ⊗Al, and zl = El−1,l ⊗ xl, l = 1, . . . , n.

Note that zl ∈ S2(C
n+1)⊗ S2(H) with ‖zl‖2 = ‖xl‖2. Further, set the (n+ 1)-

tuple
−→
A = (

−→
A, . . . ,

−→
A ). Then

(2.3) T
−→
A
φ (z1, . . . , zn) = E0,n ⊗ TA

φ (x1, . . . , xn).

Proof. By linearity and weak-∗ continuity of the maps

φ→ TA
φ , φ→ T

−→
A
φ ,

it suffices to check (2.3) for φ = φ0 ⊗ · · · ⊗ φn an elementary tensor product of

bounded Borel functions φi : R → C. We have

φk(
−→
A ) =

n∑
l=0

El,l ⊗ φk(Al).

Thus,

φk(
−→
A )zk+1 = (Ek,k ⊗ φk(Ak))(Ek,k+1 ⊗ xk+1).

Therefore,

T
−→
A
φ (z1, . . . , zn) =φ0(

−→
A )z1φ1(

−→
A ) · · ·φn−1(

−→
A )znφn(

−→
A )

=(E0,0 ⊗ φ0(A0))(E0,1 ⊗ x1)(E1,1 ⊗ φ1(A1))(E1,2 ⊗ x2)

×· · · (En−1,n−1 ⊗ φn−1(An−1))(En−1,n ⊗ xn)(En,n ⊗ φn(An))

=E0,n ⊗ (φ0(A0)x1φ1(A1) · · ·φn−1(An−1)xnφn(An))

=E0,n ⊗ TA
φ (x1, . . . , xn).

This concludes the proof.
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Corollary 2.4: Recall that H is an infinite dimensional separable Hilbert

space. Let 1 ≤ p1, . . . , pn < ∞. Let φ : Rn+1 → C be a Borel function.

Suppose that there exists a constant D > 0 such that for all A ∈ B(H)sa we

have

‖T (A,...,A)
φ : Sp1 × · · · × Spn → S1,∞‖ ≤ D.

Then in fact for all A0, . . . , An ∈ B(H)sa we have

‖T (A0,...,An)
φ : Sp1 × · · · × Spn → S1,∞‖ ≤ D.

The same statement holds with the target space S1,∞ replaced by Sr
for 1 ≤ r ≤ ∞.

Proof. We use the notation of Proposition 2.3 and the fact that H is isomorphic

to H(n+1) because the dimension of H is infinite. Note that for l = 1, . . . , n we

have

‖xl‖pl = ‖zl‖pl .
We thus have

‖T (A0,...,An)
φ (x1, . . . , xn)‖S1,∞ = ‖E0,n ⊗ T

(A0,...,An)
φ (x1, . . . , xn)‖S1,∞

= ‖T (
−→
A,...,

−→
A)

φ (z1, . . . , zn)‖S1,∞

≤ D

n∏
l=1

‖zl‖Spl
= D

n∏
l=1

‖xl‖Spl
.

2.4. Reduction to the case 0 �∈ σp(A). For φ : Rn+1 → C bounded Borel

and δ ∈ R let

τδ(φ)(t0, . . . , tn) = φ(t0 + δ, . . . , tn + δ).

Recall that χ0 := χ{0}. For A ∈ B(H)sa we have

(2.4) T
(A,...,A)
τδ(φ)

= T
(A−δ,...,A−δ)
φ , T (A,...,A)

cχ0
= T (χ0(A),...,χ0(A))

c , c ∈ C.

Indeed, one first verifies the first equality of (2.4) on elementary tensors

φ = φ0 ⊗ · · · ⊗ φn

and then uses weak-∗ density. The second equality of (2.4) follows straight from

the definitions.
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Proposition 2.5: Let 1 ≤ p1, . . . , pn < ∞ be such that
∑n
l=1

1
pl

= 1.

Let φ : Rn+1 → C be a function that is continuous on Rn+1\{0} and with

φ(0) = 0 and ‖φ‖∞ ≤ 1. Suppose that there exists a constant D > 0 such that

for all A ∈ B(H)sa with 0 �∈ σp(A) we have that

(2.5) ‖T (A,...,A)
φ : Sp1 × · · · × Spn → S1,∞‖ ≤ D.

Then for all A ∈ B(H)sa we have

‖T (A,...,A)
φ : Sp1 × · · · × Spn → S1,∞‖ ≤ 2D + 2.

Proof. For δ > 0 let φδ(t0, . . . , tn) = φ(t0+δ, . . . , tn+δ) if (t0, . . . , tn) is non-zero

and φδ(0, . . . , 0) = 0. So

(2.6) φδ = τδ(φ) − φ(δ, . . . , δ)χ0.

We have that φδ → φ uniformly on compact sets in Rn+1\{0} as δ → 0. Assume

first that A ∈ B(H)sa is such that for some α > 0 we have spectral gap

σ(|A|) ⊆ {0} ∪ (α,∞).

Then φδ → φ uniformly on σ(A)×n+1. Therefore (see [CLS17, Remark after

Corollary 10]) for xl ∈ S2 ∩ Spl with ‖xl‖Spl
≤ 1 we have

T
(A,...,A)
φδ

(x1, . . . , xn) → T
(A,...,A)
φ (x1, . . . , xn)

in norm of S2. Further, for δ > 0 we have

T
(A,...,A)
φδ

(2.6)
= T

(A,...,A)
τδ(φ)

− T
(A,...,A)
φ(δ,...,δ)χ0

(2.4)
= T

(A−δ,...,A−δ)
φ − T

(A,...,A)
φ(δ,...,δ)χ0

.

If 0 < δ < α then 0 �∈ σp(A − δ), so that by assumption (2.4) and the quasi-

triangle inequality,

‖T (A,...,A)
φδ

(x1, . . . , xn)‖S1,∞ ≤2‖T (A−δ,...,A−δ)
φ (x1, . . . , xn)‖S1,∞

+ 2‖T (χ0(A),...,χ0(A))
φ(δ,...,δ) (x1, . . . , xn)‖S1,∞

≤2(D + φ(δ, . . . , δ)) ≤ (2D + 2).

By the Fatou property [DDPS97] we have T
(A,...,A)
φ (x1, . . . , xn) ∈ S1,∞ with

norm majorized by 2D + 2.
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Now take general A ∈ B(H)sa, not necessarily with spectral gap. Take

again xl ∈ S2 ∩ Spl with ‖xl‖Spl
≤ 1. For α > 0 set

Pα := χ(−∞,−α)∪{0}∪(α,∞)(A).

We have as α ↘ 0 that PαxlPα → xl both in the norm of S2 and Spl ; see

[ChSu94]. It follows that for α ↘ 0,

T
(A,...,A)
φ (Pαx1Pα, . . . , PαxnPα) → T

(A,...,A)
φ (x1, . . . , xn),

in the norm of S2. Further,

T
(A,...,A)
φ (Pαx1Pα, . . . , PαxnPα) = T

(PαA,...,PαA)
φ (Pαx1Pα, . . . , PαxnPα),

and the right hand side of this expression is in S1,∞ with norm majorized

by 2D + 2. By the Fatou property [DDPS97] we conclude that

T
(A,...,A)
φ (x1, . . . , xn) ∈ S1,∞

with norm majorized by 2D + 2.

2.5. Divided differences. Let Cn(I) be the set of all n times continuously

differentiable functions on I. For g ∈ Cn(R) let g(n) be the n-th order derivative

of g. Let Cn−1(R) ∩ Cn(R\{0}) be the space of functions f ∈ Cn−1(R) whose

restriction to R\{0} is in Cn(R\{0}). For f ∈ Cn−1(R)∩Cn(R\{0}) we set the
n-th order divided difference function f [k,n] : Rk+1 → C by inductively defining

for 0 ≤ k ≤ n the function (here, f [0,n] = f)

(2.7)

f [k,n](t0, . . . , tk)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f [k−1,n](t0,t2,t3,...,tk)−f [k−1,n](t1,t2,t3...,tk)
t0−t1 t0 �= t1,

0
k = n and

0 = t0 = t1 = · · · = tn,

d
dt |t=t0f [k−1,n](t, t2, . . . , tk) otherwise.

Since f is n − 1 times differentiable on R and n times differentiable on R\{0}
the formulae (2.7) are well-defined. Further, f [k,n], 0 ≤ k < n is continuous

on Rk and f [n,n] is continuous on Rn+1\{0}. For k = n this definition of the

divided difference function differs from the usual one (as in [PSS13]) in the

point 0 ∈ Rn+1; the conventional definition in our current notation would be

f [n,n] + f (n)(0)χ0
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(which requires f to be in Cn(R)). We have that f [k,n] is symmetric under per-

mutation of the variables (see [DeLo93]); i.e., for any permutation σ of {0, . . . , k}
we have

(2.8) f [k,n](t0, . . . , tk) = f [k,n](tσ(0), . . . , tσ(k)).

In this paper we shall fix n and write

f [k] := f [k,n], 0 ≤ k ≤ n.

The following result follows from proofs and observations that were made in

[PSS13].

Proposition 2.6: Let g ∈ Cn+1(R) have compact support. Then there exists

a constant D > 0 such that for every A ∈ B(H)×n+1
sa we have

‖TA
g[n,n] : Sp1 × · · · × Spn → S1‖ ≤ D.

Proof. The conditions on g imply that the Fourier transform of the n-th or-

der derivative g(n) is integrable [PS09, Lemma 7] or [PSS13, Top of p. 503].

By [ACDS09, Lemma 2.3] (see [PSS13, Top of p. 512]) g[n,n] + g(n)χ0 and

hence g[n,n] belong to the class Cn defined in [PSS13]. So by [PSS13, Lemma

3.5] we conclude the argument.

3. A reduction formula for divided differences

The aim of this section is to demonstrate reduction techniques for multiple

operator integrals. In particular, Lemma 3.3 is crucial in this paper.

3.1. A special double operator integral. Define the auxiliary functions

ρ(s) =
|s0|

|s0|+ |s1| , ψ(s) =
|s1|

|s0|+ |s1| , s = (s0, s1) ∈ R
2\{(0, 0)}.

Further,

ρ(0, 0) = ψ(0, 0) = 0.

The following lemma is the main tool behind the paper [CPSZ15] and it is im-

plicitly stated and proved there. We show how to derive it from [CPSZ15] in the

discrete case and then refer to [CPSZ19] for an approximation argument. The

lemma can also be derived from the much stronger result [CPSZ19, Theorem1.2].
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Lemma 3.1 ([CPSZ15]): There exists C > 0 such that for everyA0, A1∈B(H)sa

we have,

(3.1) ‖TA0,A1
ρ : S1 → S1,∞‖ ≤ C.

The same statement is true with ρ replaced by ψ.

Proof sketch. By Corollary 2.4 we may assume that A0 = A1 = A ∈ B(H)sa.

By Proposition 2.5 we may assume that 0 �∈ σp(A). For ε1, ε2 ∈ {−,+} let χε1ε2
be the indicator function of ε1R≥0× ε2R≥0. Under these assumptions it follows

from the definition of the double/multiple operator integral that

TA,Aρ = TA,Aχ++ρ + TA,Aχ+−ρ + TA,Aχ−+ρ + TA,Aχ−−ρ.

Hence it suffices to estimate the norm of each of the latter four summands. Note

that ρ(s0, s1) = ρ(|s0|, |s1|). We have

T−A,−A
χ−−ρ = T−A,A

χ−+ρ = TA,−Aχ+−ρ = TA,Aχ++ρ,

and so it suffices to estimate TA,Aχ++ρ. Setting A+ = χ[0,∞)(A) we have that

TA,Aχ++ρ = TA+,A+
χ++ρ

so that we may assume without loss of generality that A has non-negative

spectrum.

Assume further that A has finite spectrum and 0 �∈ σ(A). So

A =

K∑
k=1

λkqk

with λk > 0 and qk the spectral projections. Then

TA,Aρ (x) =

K∑
k,l=1

λk
λk + λl

qkxql =
1

2

K∑
k,l=1

(
1 +

λk − λl
λk + λl

)
qkxql.

Then [CPSZ15, Lemma 3.2] shows that TA,Aρ is bounded S1 → S1,∞ with bound

uniform in A ∈ B(H)sa. For A ≥ 0 arbitrary we have that TA,Aρ : S1 → S1,∞
uniformly boundedly in A by approximation (see [CPSZ19, Section 5]). Since

ψ = 1− φ the last statement of the lemma follows from the others.
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3.2. A reduction formula for divided differences.

Lemma 3.2: Let f ∈ Cn−1(R) ∩ Cn(R\{0}). We have

(3.2) f [n](0, t1, . . . , tn) = g[n−1](t1, t2, . . . , tn),

where g(t) = f [1](t, 0) and t, t1, . . . , tn ∈ R. Here

f [n] = f [n,n] and g[n−1] = g[n−1,n−1].

Proof. If all ti’s are 0, then (3.2) follows from (2.7). So assume not all ti’s are 0.

For n = 1 we obtain

f [1](0, t1) =
f(0)− f(t1)

0− t1
= g(t1).

We proceed by induction and suppose that the assertion holds for n. We prove

it for n + 1. Assume tn �= tn+1. We have by definition (2.7) and permutation

invariance of the variables (2.8) that

f [n+1](0, t1, . . . , tn+1)
(2.8)
= f [n+1](tn, tn+1, 0, t1, . . . , tn−1)

(2.7)
=

f [n](tn, 0, t1, . . . , tn−1)− f [n](tn+1, 0, t1, . . . , tn−1)

tn − tn+1

(2.8)
=

f [n](0, t1, . . . , tn−1, tn)− f [n](0, t1, . . . , tn−1, tn+1)

tn − tn+1
.

By induction

f [n](0, t1, . . . , tn−1, tn) =g
[n−1](t1, . . . , tn−1, tn),

f [n](0, t1, . . . , tn−1, tn+1) =g
[n−1](t1, . . . , tn−1, tn+1).

Hence

f [n+1](0, t1, . . . , tn+1) =
g[n−1](t1, . . . , tn−1, tn)− g[n−1](t1, . . . , tn−1, tn+1)

tn − tn+1

= g[n](t1, . . . , tn+1).

Finally, if tn = tn+1 and not all ti’s are 0, then (3.2) follows by continuity from

the previous cases.

The following formula shall be crucial in the proof of our main theorem. It

contains a new decomposition of f [n] as a linear combination of a product of a

function of 2 variables and a function of n variables.
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Lemma 3.3: Let f ∈Cn−1(R)∩Cn(R\{0}). We have for every 0 ≤ i, j ≤ n, i �= j

and every t ∈ Rn+1\{0} with ti �= tj and ti �= 0, tj �= 0 that

(3.3)

f [n](t0, . . . , tn) =
ti

ti − tj
g[n−1](t0, . . . , tj−1, tj+1, . . . , tn)

− tj
ti − tj

g[n−1](t0, . . . , ti−1, ti+1, . . . , tn).

Here g(t) = f [1](t, 0), t ∈ R, where f [n] = f [n,n] and g[n−1] = g[n−1,n−1].

Proof. Since ti �= tj not all variables are equal, so we are not in the second case

of the defining relation for f [n]; see (2.7). By (2.8) we have

f [n−1](t0, . . . , ti−1, ti+1, . . . ,tj−1, 0, tj+1 . . . , tn)

= f [n−1](t0, . . . , ti−1, 0, ti+1 . . . , tj−1, tj+1, . . . , tn).

We have, by using (2.7) and (2.8) for the first and last equality,

f [n](t0, . . . , tn)

=
f [n−1](t0, . . . , tj−1, tj+1 . . . tn)− f [n−1](t0, . . . , ti−1, ti+1 . . . tn)

ti − tj

=
ti

ti − tj

f [n−1](t0, . . . , tj−1, tj+1 . . . tn)

ti

− ti
ti − tj

f [n−1](t0, . . . , ti−1, ti+1, . . . , tj−1, 0, tj+1 . . . , tn)

ti

+
tj

ti − tj

f [n−1](t0, . . . , ti−1, 0, ti+1 . . . , tj−1, tj+1, . . . , tn)

tj

− tj
ti − tj

f [n−1](t0, . . . , ti−1, ti+1 . . . tn)

tj

=
ti

ti − tj
f [n](t0, . . . , tj−1, 0, tj+1, . . . , tn)

− tj
ti − tj

f [n](t0, . . . , ti−1, 0, ti+1, . . . , tn).

Let f ∈ Cn−1(R) ∩Cn(R\{0}). Now define inductively f0 = f and then

(3.4) fl(t) = f
[1]
l−1(t, 0), t ∈ R, 1 ≤ l < n.
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Lemma 3.4: Let f ∈ Cn−1(R) ∩ Cn(R\{0}). We have, for l = 0, 1, . . . , n− 1,

(3.5) f [n](t0, . . . , tn−l, 0, . . . , 0) = f
[n−l]
l (t0, . . . , tn−l),

where t0, . . . , tn−l ∈ R. Here f [n] = f [n,n] and f
[n−l]
l = f

[n−l,n−l]
l .

Proof. The proof follows by induction on l. If l = 0 the statement is trivial.

Suppose that the corollary is proved for l. We shall prove it for l + 1. Indeed

by induction, symmetry of the variables (2.8) and Lemma 3.2 applied to the

function f
[n−l]
l we have

f [n](t0, . . . , tn−l−1, 0, . . . , 0) = f
[n−l]
l (t0, . . . , tn−l−1, 0)

= f
[n−l]
l (0, t0, . . . , tn−l−1)

= f
[n−l−1]
l+1 (t0, . . . , tn−l−1).

4. Main results

The aim of this section is the proof of Theorem 4.5. The theorem remarkably

reduces the problem of estimating multiple operator integrals of divided differ-

ences T
(A0,...,An)

f [n] to the case that A := A0 = · · · = An and A ≥ 0. We shall see

in Section 5 that for functions that are close to the generalized absolute value

map this reduction is sufficient to obtain weak type (1, 1) estimates.

4.1. Main theorem in a special case. We assume in this subsection that

A := A0 = · · · = An is in B(H)sa with 0 �∈ σp(A) where σp(A) is the point spec-

trum of A. Let 1 < p1, . . . , pn <∞ such that
∑n
k=1

1
pk

= 1. Take xk ∈ Spk ∩ S2.

Let A ⊆ {0, . . . , n} and set

xAk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χ(0,∞)(A)xkχ(0,∞)(A), k − 1, k ∈ A,
χ(0,∞)(A)xkχ(−∞,0)(A), k − 1 ∈ A, k �∈ A,
χ(−∞,0)(A)xkχ(0,∞)(A), k − 1 �∈ A, k ∈ A,
χ(−∞,0)(A)xkχ(−∞,0)(A), k − 1, k �∈ A.

Since we assumed 0 �∈ σp(A) we have 1 = P− + P+ with P− = χ−(∞,0)(A)

and P+ = χ(0,∞)(A). Let f ∈ Cn−1(R) ∩ Cn(R\{0}) and assume that f [n] is
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bounded. Since 0 �∈ σp(A) multi-linearity of the multiple operator integral gives

T
(A,...,A)

f [n] (x1, . . . , xn)

=T
(A,...,A)

f [n] ((P− + P+)x1(P− + P+), . . . , (P− + P+)xn(P− + P+))

=
∑

A⊆{0,...,n}
T

(A,...,A)

f [n] (xA1 , . . . , x
A
n ).

(4.1)

The S1,∞-norms of these summands where A �= ∅,A �= {0, . . . , n} turn out to

be much easier to estimate. Recall the auxiliary functions

ρ(s) =
|s0|

|s0|+ |s1| , ψ(s) =
|s1|

|s0|+ |s1| , s = (s0, s1) ∈ R
2\{(0, 0)}.

Further ρ(0, 0) = ψ(0, 0) = 0. Further, recall that fl was defined in (3.4).

Lemma 4.1: Let f ∈ Cn−1(R)∩Cn(R\{0}) with f [n] bounded, let A ∈ B(H)sa,

0 �∈ σp(A) and let 1 < p1, . . . , pn <∞ be such that
∑n
k=1

1
pk

= 1. Suppose that

A �= ∅, A �= {0, . . . , n}. Then there exists an absolute constant C > 0 such that

for xk ∈ Spk ∩ S2,

‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞ ≤C max

1≤k≤n
{pk, p′k} ·M(f ;A) ·

n∏
k=1

‖xk‖Spk
,(4.2)

where M(f ;A) is the maximum of the terms

(4.3)

max
1≤k≤n−1

‖T (A,...,A)

f
[n−1]
1

:Sp1×· · ·× Spk−1
×S pkpk+1

pk+pk+1

×Spk+2
×· · ·×Spn→S1,∞‖,

‖T (A,...,A)

f
[n−1]
1

: Sp1 × . . .× Spn−1 → Sq1‖,

‖T (A,...,A)

f
[n−1]
1

: Sp2 × . . .× Spn → Sq2‖,

with 1
q1

=
∑n−1

i=1
1
pi
, 1
q2

=
∑n

i=2
1
pi
.

Proof. Since we may multiply f with a positive scalar we may assume without

loss of generality that M(f ;A) = 1.

Throughout the entire proof, fix 0 ≤ k < n such that k ∈ A and k + 1 �∈ A
(or k + 1 ∈ A and k �∈ A). We assume the first case, the second case can be

proved similarly. We then have

xAk+1 = χ(0,∞)(A)x
A
k+1χ(−∞,0)(A)
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and, therefore,

T
(A,...,A)

f [n] (xA1 , . . . , x
A
n )

= T
(A,...,A)

f [n] (xA1 , . . . , x
A
k , χ(0,∞)(A)x

A
k+1χ(−∞,0)(A), x

A
k+2, . . . , x

A
n )

= T
(

k terms︷ ︸︸ ︷
A, . . . , A,χ(0,∞)(A)A,χ(−∞,0)(A)A,

n−k−1 terms︷ ︸︸ ︷
A, . . . , A )

f [n] (xA1 , . . . , x
A
n ).

Consequently, this expression only depends on the values f [n](t0, . . . , tn) with

tk > 0 and tk+1 < 0. For tk > 0 and tk+1 < 0 we have by Lemma 3.3 that

f [n](t0, . . . , tn) =ρ(tk, tk+1)f
[n−1]
1 (t0, . . . , tk−1, tk, tk+2, . . . , tn)

+ ψ(tk, tk+1)f
[n−1]
1 (t0, . . . , tk−1, tk+1, tk+2, . . . , tn).

Therefore if 0 < k < n− 1 we have1 that

T
(A,...,A)

f [n] (xA1 , . . . , x
A
n )

=T
(A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
k−1, x

A
k , T

A,A
ρ (xAk+1) · xAk+2, x

A
k+3, . . . , x

A
n )

+ T
(A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
k−1, x

A
k · TA,Aψ (xAk+1), x

A
k+2, . . . , x

A
n ).

In case k = 0 we have

(4.4)

T
(A,...,A)

f [n] (xA1 , . . . , x
A
n ) =T

(A,...,A)

f
[n−1]
1

(TAρ (xA1 ) · xA2 , . . . , xAn )

+ TA,Aψ (xA1 ) · T (A,...,A)

f
[n−1]
1

(xA2 , . . . , x
A
n ).

1 Here, we are using the equality

T
(A,...,A)
h1

(V1, . . . , Vn) = T
(A,...,A)
h2

(V1, . . . , Vk, T
(A,A)
h3

(Vk+1), Vk+2, . . . , Vn),

which is valid whenever

h1(t0, . . . , tn) = h3(tk , tk+1) · h2(t0, . . . , tn),

and the observation

T

n+1 terms
︷ ︸︸ ︷
(A, . . . , A)
h (V1, . . . , Vn) = T

n terms︷ ︸︸ ︷
(A, . . . , A)
h (V1, . . . , Vk, Vk+1 · Vk+2, Vk+3, . . . , Vn),

which is valid whenever h does not depend on the (k + 1)-st variable. These equalities

can be verified directly when h = h0 ⊗ · · · ⊗ hn is an elementary tensor product; then

the general case follows from weak-∗ continuity just as in the proofs of Lemma 2.1 and

Proposition 2.3. See also [PSS13, Lemma 3.2].
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In case k = n− 1 we have

(4.5)
T

(A,...,A)

f [n] (xA1 , . . . , x
A
n ) =T

(A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
n−1) · TA,Aρ (xAn )

+ T
(A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
n−2, x

A
n−1 · TA,Aψ (xAn )).

Let us first consider the case 0 < k < n − 1; the cases k = 0, n − 1 can be

proved similarly. We find from the quasi-triangle inequality and the assumption

M(f ;A) ≤ 1 that

‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞

≤2‖T (A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
k−1, x

A
k , T

A,A
ρ (xAk+1)x

A
k+2, x

A
k+3, . . . , x

A
n )‖S1,∞

+ 2‖T (A,...,A)

f
[n−1]
1

(xA1 , . . . , x
A
k−1, x

A
k T

A,A
ψ (xAk+1), x

A
k+2, . . . , x

A
n )‖S1,∞

≤2

k∏
l=1

‖xAl ‖Spl
‖TA,Aρ (xAk+1)x

A
k+2‖S pk+1pk+2

pk+1+pk+2

n∏
l=k+3

‖xAl ‖Spl

+ 2

k−1∏
l=1

‖xAl ‖Spl
‖xAk TA,Aψ (xAk+1)‖S pkpk+1

pk+pk+1

n∏
l=k+2

‖xAl ‖Spl

≤2

n∏
l=1

‖xl‖Spl
(‖TA,Aρ : Spk+1

→ Spk+1
‖+ ‖TA,Aψ : Spk+1

→ Spk+1
‖).

By Lemma 3.1 and complex interpolation there is some absolute constant C > 0

such that

‖TAρ : Spk+1
→ Spk+1

‖, ‖TAψ : Spk+1
→ Spk+1

‖ ≤ Cmax{pk+1, p
′
k+1}.

This concludes the proof in case 0 < k < n− 1. The cases k = 0, n− 1 can be

proved completely analogously by estimating the expressions (4.4) and (4.5).

Definition 4.2: We define, for f ∈ Cn−1(R)∩Cn(R\{0}) with f [n] bounded and

1 ≤ p1, . . . , pn <∞ with
∑n
l=1

1
pl

= 1,

Mn(f, p1, . . . , pn) = sup
A∈B(H)sa

‖T (A,...,A)

f [n] : Sp1 × · · · × Spn → S1,∞‖,

M+
n (f, p1, . . . , pn) = sup

A∈B(H)sa,A≥0

‖T (A,...,A)

f [n] : Sp1 × · · · × Spn → S1,∞‖,

M−
n (f, p1, . . . , pn) = sup

A∈B(H)sa,A≤0

‖T (A,...,A)

f [n] : Sp1 × · · · × Spn → S1,∞‖.
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Proposition 4.3: Using the assumptions of Lemma 4.1 there exists a constant

C(p1, . . . , pn) > 0 such that

Mn(f,p1, . . . , pn)

≤4M+
n (f, p1, . . . , pn) + 4M−

n (f, p1, . . . , pn) + C(p1, . . . , pn)

×
(

max
1≤k≤n−1

Mn−1

(
f1, p1, . . . , pk−1,

pkpk+1

pk + pk+1
, pk+2, . . . , pn

)
+‖f [n]‖∞

)
.

Proof. Take A ∈ B(H)sa with 0 �∈ σp(A). By [PSS13, Remark 5.4] we have

that there exists a constant C0(p1, . . . , pn) > 0 such that

‖T (A,...,A)

f
[n−1]
1

: Sp1 × . . .× Spn−1 → Sq1‖ <C0(p1, . . . , pn)‖f [n]‖∞,

‖T (A,...,A)

f
[n−1]
1

: Sp2 × . . .× Spn → Sq2‖ <C0(p1, . . . , pn)‖f [n]‖∞,

where 1
q1

=
∑n−1

i=1
1
pi
, 1
q2

=
∑n
i=2

1
pi
. Therefore by Lemma 4.1 for A �= ∅

and A �= {0, . . . , n} there exists a constant C1(p1, . . . , pn) > 0 such that for

xk ∈ Spk ∩ S2,

(4.6)

‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞

≤ C1(p1, . . . , pn)

×
(

max
1≤k≤n−1

Mn−1

(
f1, p1, . . . , pk−1,

pkpk+1

pk+pk+1
, pk+2, . . . , pn

)
+‖f [n]‖∞

)

×
n∏
k=1

‖xk‖Spk
.

Further, for A = ∅ we have

T
(A,...,A)

f [n] (xA1 , . . . , x
A
n ) = T

(A−,...,A−)

f [n] (xA1 , . . . , x
A
n ), A− = χ(−∞,0](A).

And similarly for A = {0, . . . , n} we have

T
(A,...,A)

f [n] (xA1 , . . . , x
A
n ) = T

(A+,...,A+)

f [n] (xA1 , . . . , x
A
n ), A+ = χ[0,∞)(A).

It follows that

(4.7) ‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞ ≤M±

n (f, p1, . . . , pn)

n∏
k=1

‖xk‖Spk
,
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where ± = − if A = ∅ and ± = + if A = {0, . . . , n}. Then we use (4.1) and the

quasi-triangle inequality followed by estimates (4.6), (4.7) to get

(4.8)

‖T (A,...,A)

f [n] (x1, . . . , xn)‖S1,∞

≤ 2n+1
∑

A⊆{1,...,n},
A�=∅,A�={1,...,n}

‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞

+ 4
∑

A=∅,{1,...,n}
‖T (A,...,A)

f [n] (xA1 , . . . , x
A
n )‖S1,∞

≤
(
22n+1C1(p1, . . . , pn)

×
(

max
1≤k≤n−1

Mn−1

(
f1, p1, . . . , pk−1,

pkpk+1

pk+pk+1
, pk+2, . . . , pn

)
+‖f [n]‖∞

)

+ 4M+
n (f, p1, . . . , pn) + 4M−

n (f, p1, . . . , pn)
)

×
n∏
k=1

‖xk‖Spk
.

This estimate (4.8) is uniform in A ∈ B(H)sa with 0 �∈ σp(A). Therefore by

Proposition 2.5 the estimate (4.8) holds uniformly for every A ∈ B(H)sa which

is exactly the desired estimate.

For π1, π2 disjoint subsets of N we write π1 < π2 if every element in π1 is

(strictly) smaller than every element in π2.

Definition 4.4: We say that (q1, . . . , qk) is a consummation of (p1, . . . , pn) if

there exists a partition {π1, . . . , πk} of {1, . . . , n} with π1 < π2 < · · · < πn such

that
1

qk
=

∑
l∈πk

1

pl
.

For f ∈ Cn−1(R) ∩ Cn(R\{0}) with f [n] bounded and 1 ≤ p1, . . . , pn < ∞
with

∑n
l=1

1
pl

set

(4.9)
L+
n (f, p1, . . . , pn) = sup{M+

n−k(fk, q1, . . . , qk) | 0 ≤ k < n},
L−
n (f, p1, . . . , pn) = sup{M−

n−k(fk, q1, . . . , qk) | 0 ≤ k < n},

where the suprema are taken over all consummations (q1, . . . , qk) of (p1, . . . , pn).
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Theorem 4.5: Let f ∈ Cn−1(R) ∩ Cn(R\{0}) with f [n] bounded and let

1 ≤ p1, . . . , pn <∞ with
∑n

l=1
1
pl

= 1. There exists a constantC(p1, . . . , pn) > 0

such that for every A ∈ B(H)×n+1
sa we have

(4.10)
‖TA

f [n] : Sp1 × · · · × Spn‖
≤ C(p1, . . . , pn)(‖f [n]‖∞ + L+

n (f, p1, . . . , pn) + L−
n (f, p1, . . . , pn)).

Proof. Proposition 4.3 shows that for every 0 ≤ k < n − 1 and any consum-

mation (q1, . . . , qn−k) of (p1, . . . , pn) there exists a constant C(q1, . . . , qn−k)
such that

(4.11)
Mn−k(fk, q1, . . . , qn−k)

≤4L+
n (f, p1, . . . , pn) + 4L−

n (f, p1, . . . , pn)

+ C(q1, . . . , qn−k)

×
(

max
1≤k≤n−1

Mn−k−1

(
fk+1, q1, . . . , qk−1,

qkqk+1

qk+qk+1
, qk+2, . . . , qn

)
+‖f [n]‖∞

)
.

If k = n− 1, then by [CPSZ19, Theorem 1.2] there exists C > 0 such that

(4.12) M1(fn−1, 1) ≤ C‖f [n]‖∞.
Applying the estimate (4.11) inductively from k = 0 to k = n−2 and using (4.12)

for k = n− 1 we see that there is a constant C(p1, . . . , pn) > 0 such that

Mn(f, p1, . . . , pn)

≤ C(p1, . . . , pn)(L
+
n (f, p1, . . . , pn) + L−

n (f, p1, . . . , pn) + ‖f [n]‖∞).

This is the desired estimate (4.10) forA = (A, . . . , A), A ∈ B(H)sa. The general

case follows from Corollary 2.4.

5. Consequences of Theorem 4.5: Weak (1, 1) estimates for generalized

absolute value functions

We now arrive at the applications of Theorem 4.5.

Theorem 5.1: Let a(t) = |t|tn−1, t ∈ R. Fix 1 < p1, . . . , pn < ∞ such

that
∑n

l=1
1
pl

= 1. Then there exists a constant D > 0 such that for every

A ∈ B(H)×n+1
sa we have that

(5.1) ‖TA
a[n] : Sp1 × · · · × Spn → S1,∞‖ ≤ D.
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Proof. Let ε = ±1. Set b(t) = tn. Then a(t) = εb(t) for every t ∈ R with εt ≥ 0.

Consequently, a[n](t) = εb[n](t) for every t ∈ ε ·Rn+1
≥0 . Recall that ak and bk are

defined in (3.4) with f replaced by a and b respectively. So by Lemma 3.4 we

certainly have

(5.2) a
[n−k]
k (t) = εb

[n−k]
k (t), t ∈ ε · Rn−k+1

≥0 , 0 ≤ k < n.

Further, for the n-th order derivative we have b(n)(t) = n! for t ∈ R. By

the integral expression for divided differences [PSS13, Lemma 5.1] we conclude

that b[n](t) = n! for t ∈ Rn+1\{0} and so by (5.2) we find a[n](t) = εn! for

all t ∈ ε · Rn+1
≥0 \{0}. So by Lemma 3.4 we certainly have

a
[n−k]
k (t) = εn!, t ∈ ε · Rn−k+1

≥0 \{0}, 0 ≤ k < n.

Let χε,k be the indicator function of ε·Rn−k+1
≥0 . Then χε,ka

[n−k]
k = εn!(χε,k−χ0).

We conclude from Lemma 2.1 that for εA ≥ 0,

T
(A,...,A)

a
[n−k]
k

= T
(A,...,A)

χε,ka
[n−k]
k

= εn!(T (A,...,A)
χε,k

− T (A,...,A)
χ0

).

By Lemma 2.1 the multiple operator integrals T
(A,...,A)
χε,k and T

(A,...,A)
χ0 are con-

tractions Sr1 × · · · × Srn−k
→ S1 for any (r1, . . . , rn−k) with

∑n−k
l=1

1
rl

= 1. So

certainly they are contractions Sr1 × · · · × Srn−k
→ S1,∞. We conclude that

Lεn(a, p1, . . . , pn) < 2n!.

Hence we conclude the theorem from Theorem 4.5.

Theorem 5.2: Let g ∈ Cn+1(R) be such that g(t) = |t|tn−1, t ∈ R\[−1, 1]. Fix

1 < p1, . . . , pn <∞ such that
n∑
l=1

1

pl
= 1.

Then there exists a constant D > 0 such that for every A ∈ B(H)×n+1
sa we have

that

(5.3) ‖TA
g[n] : Sp1 × · · · × Spn → S1,∞‖ ≤ D.

Proof. Set c = g − a, where a is defined in Theorem 5.1. From the definition

of divided differences c[n] = g[n] − a[n]. By Theorem 5.1 and the quasi-triangle

inequality it suffices to show that TA
c[n] is bounded Sp1 × · · · × Spn → S1,∞

uniformly in A ∈ B(H)×n+1
sa .
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Note that by the assumptions c is supported on [−1, 1]. Let ε = ±1.

Let B : R → [0, 1] be a smooth compactly supported function that is 1 on the

interval ε[0, 1]. Set

cε(t) = B(t)(g(t)− εtn), t ∈ R.

Then cε is a compactly supported Cn+1-function and cε(t) = c(t), t ∈ εR≥0.

Therefore for all t ∈ ε · Rn+1
≥0 we have c

[n]
ε (t) = c[n](t). By Lemma 3.4 for

all t ∈ ε · Rn−k+1
≥0 we have

c
[n−k]
ε,k (t) = c

[n−k]
k (t).

In other words, if χε,k is the indicator function on ε · Rn−k+1
≥0 ,

(5.4) c
[n−k]
ε,k χε,k = c

[n−k]
k χε,k.

By Proposition 2.6 there exists a constant D > 0 such that for all A ∈ B(H)sa

we have

(5.5) ‖T (A,...,A)

c
[n−k]
ε,k

: Sp1 × · · · × Spn → S1‖ ≤ D.

We see by (5.4), (5.5) and Lemma 2.1 that for all A ∈ B(H)sa with εA ≥ 0,

‖T (A,...,A)

c
[n−k]
k

= T
(A,...,A)

c
[n−k]
k χε,k

= T
(A,...,A)

c
[n−k]
ε,k χε,k

: Sp1 × · · · × Spn → S1‖ ≤ D.

So in Theorem 4.5 we have that Lεn(c, p1, . . . , pn) < ∞ and so by the same

Theorem 4.5 we conclude the proof.

Remark 5.3: In [CLPST16, Lemma 28], see in particular the line after equa-

tion (37) of [CLPST16], the following result was proved and is a key step in

the resolution of Peller’s problem as stated in [CLPST16]. Let n = 2 and

let g : R → C be a function as in the statement of Theorem 5.2 with the ad-

ditional assumption that g(0) = g′(0) = g′′(0) = 0. There exists no constant

0 < D <∞ such that for all A ∈ B(H)×3
sa we have

‖TA
g : S2 × S2 → S1‖ ≤ D.

This shows that Theorem 5.2 is optimal.

Acknowledgement. The authors are grateful to the referee for detailed com-

ments which helped to improve the exposition.
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