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1. Introduction

One of the most important theorems of the operator ideals theory proved by

Grothendieck in 1953 [5] states that any bounded linear operator T : L1 →
L2 is absolutely summing (for definitions and notation used in this paper see

[3], [14]). This theorem, beginning with the Lindenstrauss–Pe�lczyński (cf. [8])

paper, inspired a great development of Banach space geometry and many other

fields (cf. [12]) and still attracts wide attention (cf. [2], [10], [9], [1]).

A weaker (and simpler) version of Grothendieck’s theorem claims that such

operators are 2-absolutely summing. This weaker statement is equivalent to the

property that every operator between Hilbert spaces which factorizes through L1

is a Hilbert–Schmidt operator (cf. [4], Prop. 16.3.2). As observed by Kislyakov

(cf. [7]), one cannot replace L1 by the Sobolev space W 1
1 in this theorem. In-

deed, the classical embedding operator of W 1
1 (T2) to L2(T2) is not 2-abolutely

summing. However, as proved in [13], it is (p, 1)-summing for every p > 1. This

suggests the following conjecture.

Conjecture 1: Any operator between Hilbert spaces which factorizes through

the Sobolev space W 1
1 belongs to some non-trivial Schatten class.

Not only are we unable to prove the conjecture, but we do not even know if

there exists an infinitely dimensional complemented subspace of W 1
1 which is

isomorphic to a Hilbert space. However, as proved (cf. [11]), there are no such

spaces which are translation invariant. This suggests that assuming some addi-

tional structure may help to verify the conjecture and motivate us to consider

its special case—translation invariant operators. We introduce the following

definition

Definition 1: Let X(Td), Y (Td), Z(Td) be translation invariant spaces on the d-

dimensional torus. We say that a bounded linear operator T : X(Td) → Y (Td)

admits invariant factorization through Z(Td) provided there exist translation

invariant bounded linear operatorsA : X(Td) → Z(Td) and B : Z(Td) → Y (Td)

such that T = B ◦A.

Under this restriction we were able to prove our conjecture. The main result

of this paper is
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Theorem 1: Let T : L2(Td) → L2(Td) be a bounded linear operator which

admits an invariant factorization through W 1
1 (Td). Then σp(T ) <∞ for every

p > 2d+ 4, where σp denotes the p-th Schatten norm.

The main theorem is a direct consequence of the following estimate on the

growth of the coefficients of Fourier multiplier operators.

Theorem 2: Let T : W 1
1 (Td) → L2(Td) be a translation invariant operator

such that

T̂ (f)(n) = λn · f̂(n).

Then for any ε > 0 the following inequality is satisfied:∑
n∈Zd\{0}

( |λn|
|n|2

)2d+4+ε

<∞.

We show now how the main result follows from Theorem 2. Let T given

by T (ei〈n,t〉) = λne
i〈n,t〉 factorize by A,B, where A : W 1

1 (Td) → L2(Td)

is given by A(ei〈n,t〉) = αne
i〈n,t〉 and B : L2(Td) → W 1

1 (Td) is given by

B(ei〈n,t〉) = βne
i〈n,t〉 for n ∈ Zd. Then using an obvious estimate |βn||n|2 ≤ ‖B‖

we get ∑
|λn|p =

∑
|αn · βn|p ≤ ‖B‖p

∑( αn

|n|2
)p

≤ C‖A‖p‖B‖p.

Theorem 2 is a special case of the following result:

Theorem 3: Let 1 < p ≤ 2 and T : W 1
1 (Td) → Lp(Td) be a translation invari-

ant operator such that

T̂ (f)(n) = λn · f̂(n).

Then for any ε > 0, the following inequality is satisfied:∑
n∈Zd\{0}

( |λn|
|n|2

) p
p−1+

p
p−1 (d+1)+ε

<∞.

The rest of the paper is devoted to the proof of Theorem 3.

Remark 1: We don’t know whether the exponent in Theorem 1 is sharp. The

most prominent example of an operator which is a subject of Theorem 1 is the

classical Sobolev embedding operator T : W 1
2 (T2) → L2(T2). In this case we

have λn = 1 and σp(T ) < ∞ for p > 2 which is much stronger than the state-

ment of Theorem 1 (which gives p > 8). Possibly the exponent in Theorem 1

could be improved.



36 K. KAZANIECKI, P. PAKOSZ AND M. WOJCIECHOWSKI Isr. J. Math.

Remark 2: As a matter of fact the result of this paper is a subject of harmonic

analysis and concerns Fourier multipliers. We only indicated an interpretation

for it in terms of operator ideals and used this interpretation to support Conjec-

ture 1. Note that the invariant little Grothendieck theorem for L1 is an obvious

well known property (see [6] Theorem 1.4).

Remark 3: In the case when X and Y are Hilbert spaces we can formulate

the definition of invariant factorization in a more abstract way. For a compact

abelian group G and an invariant function space Z(G) we say that an oper-

ator T : H1 → H2 factorizes invariantly through Z(G) if there are orthonor-

mal bases {hn,1} of H1 and {hn,2} of H2 and operators A : H1 → Z(G) and

B :Z(G)→H2 such that T =B ◦A and A(hn,1)∈span γn and B(γn)∈spanhn,2

for n = 1, 2, . . . , where (γn) is an enumeration of characters of the group G.

Conjecture 2: If Z(G) has no complemented, invariant infinitely dimensional

subspaces isomorphic to a Hilbert space, then any Hilbert space operator T

which factorizes invariantly through Z(G) belongs to some nontrivial Schatten

class.

2. Summability of the multiplier

For any k ∈ N we denote by Rk = {(n1, . . . , nd) ∈ Zd : 3k ≤ maxi{|ni|} < 3k+1}
a k-th triadic ring. For n ∈ Zd by n(i) we denote the i-th coordinate of n and

by |n|2 its euclidean norm. Observe that for n ∈ Rk we have

(1) 3k ≤ |n|2 ≤
√
d3k+1.

In order to prove Theorem 3 we will use two auxiliary lemmas on the growth of

λn on triadic rings. In the first lemma we control the behavior of the sequence

λn on a single triadic ring.

Lemma 1: There exists a constant C > 0 independent of k, such that for any

k ∈ N ∑
n∈Rk

( |λn|
|n|2

) p
p−1

< C.

The second lemma provides an estimate on the growth of the sequence of

maximal elements of λn in the triadic rings.
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Lemma 2: For every ε > 0∑
k∈N

max
n∈Rk

( |λn|
|n|2

) p
p−1 (d+1)+ε

<∞.

We postpone the proofs of the lemmas to Section 3 and Section 4. Now we

use them to prove the main theorem.

Proof of Theorem 3. For n ∈ Rk we have the following estimate( |λn|
|n|2

) p
p−1+

p
p−1 (d+1)+ε

=
( |λn|
|n|2

) p
p−1 ·

( |λn|
|n|2

) p
p−1 (d+1)+ε

≤
( |λn|
|n|2

) p
p−1 · max

n∈Rk

( |λn|
|n|2

) p
p−1 (d+1)+ε

.

From Lemma 1 and the above estimate we get∑
n∈Zd\{0}

( |λn|
|n|2

) p
p−1 (d+2)+ε

=
∑
k∈N

∑
n∈Rk

( |λn|
|n|2

) p
p−1+

p
p−1 (d+1)+ε

≤
∑
k∈N

∑
n∈Rk

( |λn|
|n|2

) p
p−1 · max

n∈Rk

( |λn|
|n|2

) p
p−1 (d+1)+ε

< C ·
∑
k∈N

max
n∈Rk

( |λn|
|n|2

) p
p−1 (d+1)+ε

.

By Lemma 2, the right hand side of the above inequality is finite. Hence∑
n∈Zd\{0}

( |λn|
|n|2

) p
p−1+

p
p−1 (d+1)+ε

<∞.

3. Proof of Lemma 1

The proof of Lemma 1 is based on the well known properties of Fejer’s kernel.

It is standard, however we present it here for the reader’s convenience.

We will denote by Kn the classical Fejer’s kernel:

K̂n(k) =

⎧⎨
⎩1 − |k|

n for |k| ≤ n,

0 otherwise.

For a fixed k ∈ N we define φ(x1, . . . , xd) : Td → C by the formula

φ̂(m1, . . . ,md) =

d∏
j=1

K̂3k+2(mj).
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Since Kn is a trigonometric polynomial of degree n, by the classical Bernstein’s

inequality we have∥∥∥ ∂

∂xj
φ
∥∥∥
1

=
∥∥∥ ∂

∂y
K3k+2(y)

∥∥∥
1
≤ 3k+2‖K3k+2(y)‖1.

Therefore

‖φ‖1,1 := ‖φ‖1 +

d∑
j=1

∥∥∥ ∂

∂xj
f
∥∥∥
1
≤ 1 + d · 3k+2.

Let us observe that for m ∈ Rk we have |φ̂(m)| ≥ ( 2
3 )d. Indeed, |mj | < 3k+1

and

1 − |mj |
3k+2

>
2

3
.

By the Hausdorff–Young inequality, we get

‖Tφ‖p ≥ ‖λ · φ̂‖ p
p−1

≥
(2

3

)d
( ∑

n∈Rk

|λn|
p

p−1

) p−1
p

.

Combining the above estimates with (1) completes the proof:

∑
n∈Rk

( |λn|
|n|2

) p
p−1 ≤ 3−

pk
p−1 ·

∑
n∈Rk

|λn|
p

p−1

≤ 3−
pk

p−1 ·
(3

2

) dp
p−1 · ‖Tφ‖

p
p−1
p

≤ 3−
pk

p−1 ·
(3

2

) dp
p−1 · ‖T ‖ p

p−1 · ‖φ‖
p

p−1

1,1

≤ 3−
pk

p−1 ·
(3

2

) dp
p−1 · ‖T ‖ p

p−1 · (1 + d · 3k+2)
p

p−1

≤ C(p, d)‖T ‖ p
p−1 .

4. Proof of Lemma 2

For any fixed sequence {ni}Ni=1 ⊂ Zd\{0} such that |ni+1|2
|ni|2 > 3, we define a

finite Riesz product corresponding to the sequence {nj}Nj=1, a trigonometric

polynomial R : Td → R given by a formula

R(t) =

N∏
j=1

(1 + cos(2π〈nj , t〉)).
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Let X = {−1, 0, 1}N. For any ξ ∈ X we define L(ξ) as a number of non-zero

coordinates of ξ, i.e., L(ξ) =
∑N

j=1 |ξj | and M(ξ) =
∑N

j=1 ξj ·nj . One can easily

check that

(2) R(t) =
∑
ξ∈X

1

2L(ξ)
e2πi〈M(ξ),t〉

and

(3) ‖R(t)‖1 = 1.

We introduce the auxiliary notion of the growth of the sequence {nj}Nj=1.

Definition 2: Let α > 1. We will call a sequence n1, . . . , nN ∈ Zd\{0} α-sparse
if

|nj+1|2
|nj |2 ≥ 3α for every j = 1, . . . , N − 1.

For j ∈ 1, . . . , d we define the set

Aj = {n ∈ Zd\{0} : j is a smallest index such that |nj | = max
k∈{1,...,d}

|nk|}.

Clearly the sets Aj are pairwise disjoint and

Zd\{0} =

d⋃
j=1

Aj .

Let j ∈ 1, . . . , d. Then for n ∈ Aj and k ∈ {1, . . . , d}\{j} we have nk

nj
∈ [−1, 1].

Fix a large number N . We want to further subdivide the sets Aj into pieces

to control the value of quotients nk/nj up to 1/N for n in a single piece.

For such N we define sets Ãj,a := Ãj,a(N) ⊆ Zd\{0} for j ∈ {1, . . . , d},

a ∈ {1, . . . , N}d ∩ {aj = 1}:

Ãj,a =
{
n ∈ Zd\{0} :

∣∣∣nk

nj
−
(2ak − 1

N
− 1

)∣∣∣ ≤ 1

N
, k = 1, . . . , d

}
.

One can check that

Aj =
⋃
a

Ãj,a

Since the sets Ãj,a are no longer pairwise disjoint, we choose symmetric and

pairwise disjoint sets Aj,a := Aj,a(N) such that Aj,a ⊂ Ãj,a and⋃
a

Aj,a = Aj .

Obviously ⋃
j,a

Aj,a =
⋃
j

Aj = Zd\{0}.
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Definition 3: We call the set Aj,a an N-sector.

Remark 4: We choose sets Aj,a in such a way that vectors from the fixed set Aj,a

almost point in the same direction, up to some error which depends on N . This

allows us to construct in the next section a test function φ, which behaves

like a function whose Fourier spectrum is contained in a fixed line. Note that

the function ψ whose Fourier spectrum is contained in a fixed line satisfies teh

equation

∇ψ = v
∂

∂xj
ψ

for some fixed v ∈ Rd. In fact, what we need from the sets Aj,a is for them

(1) to be symmetric,

(2) to be pairwise disjoint,

(3)
⋃

j,aAj,a = Zd\{0},

(4) | tan�(vj,α, n)| < C
N for all n ∈ Aj,a, fixed C > 0 and fixed vj,α ∈ Aj,α,

(5) for n ∈ Aj,α the j-th coordinate dominates other coordinates.

Construction of the test function. Let N be a fixed natural number

and let a sequence {nj}Nj=1 ⊂ Zd\{0} be an N -sparse sequence contained in the

single N -sector Aj0,a. Let R(t) be a finite Riesz product corresponding to the

sequence n1, . . . , nN . We define a function φ = φN ;n1,...,nN : Td → C by∫
Td

φ(t)dμ(t) = 0

and

(4)
∂

∂xj0
φ = R(t) − 1.

We will estimate the Sobolev norm of the function φ. Without loss of generality

we can assume that the sequence is a subset ofA1,a. From the triangle inequality

and (3) we get ∥∥∥ ∂

∂x1
φ
∥∥∥
1

= ‖R(t) − 1‖1 ≤ ‖R(t)‖1 + ‖1‖1 = 2.

We will estimate the remaining derivatives.
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Lemma 3: There exists a constant C > 0, such that for any number N , any

a ∈ [0, N ]d and any N -sparse sequence n1, . . . , nN ∈ Zd\{0} contained in the

N -sector A1,a, we have

∥∥∥ ∂

∂xj
φ
∥∥∥
1
< C ∀ j ∈ {2, . . . , d}.

Proof. Note that

φ =
∑

ξ∈X\{0}

1

2L(ξ)

1

M(ξ)(1)
e2πi〈M(ξ),t〉

and

(5)
∂

∂xj
φ =

∑
ξ∈X\{0}

1

2L(ξ)

M(ξ)(j)

M(ξ)(1)
e2πi〈M(ξ),t〉.

Let

Xl := {ξ ∈ X : ∀k>l ξk = 0}.
We define ψl by the formula

ψl =
∑

ξ∈Xl−1

1

2L(ξ)
e2πi〈M(ξ),t〉.

The function ψl is just a finite Riesz product corresponding to the sequence

n1, . . . , nl. Hence ‖ψl‖1 = 1. We can rewrite equation (2) in the following way:

(6)

R(t) − 1 =
∑

ξ∈X\{0}

1

2L(ξ)
e2πi〈M(ξ),t〉 =

N∑
l=1

∑
ξ∈Xl\Xl−1

1

2L(ξ)
e2πi〈M(ξ),t〉

=
N∑
l=1

1

2
(e2πi〈nl,t〉 + e2πi〈−nl,t〉)ψl.

We define an auxiliary function Hl(ξ) for ξ ∈ Xl−1 as follows:

Hl(ξ) =
1

2
e2πi〈nl,t〉

(M(ξ)(j) + n
(j)
l

M(ξ)(1) + n
(1)
l

− n
(j)
l

n
(1)
l

)

+
1

2
e2πi〈−nl,t〉

(M(ξ)(j) − n
(j)
l

M(ξ)(1) − n
(1)
l

− n
(j)
l

n
(1)
l

)
.
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Similarly as in (6) we can rewrite equation (5) in terms of Hl(ξ) and ψl:

(7)

∂

∂xj
φ =

N∑
l=1

∑
ξ∈Xl−1

1

2L(ξ)
Hl(ξ)e

2πi〈M(ξ),t〉

+

N∑
l=1

n
(j)
l

n
(1)
l

1

2
(e2πi〈nl,t〉 + e2πi〈−nl,t〉)ψl.

In order to estimate the norm of the first term on the right hand side we need

the following lemma:

Lemma 4: There exists a constant C > 0 independent ofN and a sequence {nk}
such that for any ξ ∈ Xl we have ‖Hl(ξ)‖1 ≤ C′

3N .

Assuming Lemma 4 we get the following bound:

(8)

∥∥∥∥
N∑
l=1

∑
ξ∈Xl

1

2L(ξ)
Hl(ξ)e

2πi〈M(ξ),t〉
∥∥∥∥
1

≤
N∑
l=1

∑
ξ∈Xl

‖Hl(ξ)‖1

≤
N∑
l=1

∑
ξ∈Xl

C′

3N
≤

N∑
l=1

C′′ · 3l−1

3N
≤ C′′.

Now we estimate the second term on the right hand side of (7). Let

θ = −1 +
2aj − 1

N

where {nk} ⊂ Ai,a; obviously |θ| ≤ 1. Moreover, if n ∈ A1,a then |n(j)

n(1) −θ| ≤ 1
N .

From the triangle inequality and (6) we get that∥∥∥∥
N∑
l=1

n
(j)
l

n
(1)
l

e2πi〈nl,t〉 + e2πi〈−nl,t〉

2
ψl

∥∥∥∥
1

≤
∥∥∥∥

N∑
l=1

(n(j)
l

n
(1)
l

− θi

)e2πi〈nl,t〉 + e2πi〈−nl,t〉

2
ψl

∥∥∥∥
1

+ |θi| ·
∥∥∥∥

N∑
l=1

e2πi〈nl,t〉 + e2πi〈−nl,t〉

2
ψl

∥∥∥∥
1

≤ 1

N

N∑
l=1

∥∥∥e2πi〈nl,t〉 + e2πi〈−nl,t〉

2
ψl

∥∥∥
1

+ ‖R(t) − 1‖1

≤1 + 2 = 3.

This together with (8) implies Lemma 3.
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It remains to prove Lemma 4.

Proof. Since the sequence {nk} is N -sparse we know that for k ∈ {1, . . . , l} we

have

max(|n(1)
l−j |, |n(j)

l−j |) ≤ |nl−k|2 ≤ 3−kN |nl|2.
Hence for ξ ∈ Xl, from the triangle inequality we have the following bounds

max(|M(ξ)(1)|, |M(ξ)(j)|) ≤ |nl|2 ·
( 1

3N
+

1

32N
+ · · ·

)
= |nl|2 3

2 · 3N
.

Since ni ∈ A1,a, we know that for 1 ≤ i ≤ l we have

|n(1)
i | ≥ |n(j)

i | and
√
d · |n(1)

i | ≥ |ni|2.
From the triangle inequality

∣∣∣n(j)
l ±M(ξ)(j)

n
(1)
l ±M(ξ)(1)

− n
(j)
l

n
(1)
l

∣∣∣ =
∣∣∣n(1)

l M(ξ)(j) − n
(j)
l M(ξ)(1)

n
(1)
l (n

(1)
l ±M(ξ)(1))

∣∣∣
≤ C

|n(1)
l M(ξ)(j) − n

(j)
l M(ξ)(1)|

|nl|22
≤ C′

3N
|nl|22
|nl|22

=
C′

3N
.

Therefore we get

‖Hl(ξ)‖1 ≤ 1

2
· 2 ·

∣∣∣n(j)
l ±M(ξ)(j)

n
(1)
l ±M(ξ)(1)

− n
(j)
l

n
(1)
l

∣∣∣ ≤ C′

3N
.

From Lemma 3 and the Poincaré inequality we deduce a bound on a W 1
1

norm of the function φ,

(9) ‖φ‖1,1 ≤ C‖∇φ‖1 ≤ C1,

where the constant C1 depends only on d. This estimate is crucial in the proof

of Lemma 2.

Lemma 5: There exists a constant K > 0 independent of N such that for any

N -sparse sequence n1, . . . , nN ∈ Zd\{0} which is a subset of a single N -sector,

we have
N∑
i=1

( |λni |
|ni|2

) p
p−1 ≤ K.
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Proof. Let φ be defined as in (4). Recall that

φ =
∑

ξ∈X\{0}

1

2L(ξ)

1

M(ξ)(1)
e2πi〈M(ξ),t〉.

Hence

Tφ =
∑

ξ∈X\{0}
λM(ξ)

1

2L(ξ)

1

M(ξ)(1)
e2πi〈M(ξ),t〉.

From the Hausdorff–Young inequality

‖Tφ‖pp ≥
( ∑

ξ∈X\{0}

∣∣∣λM(ξ)
1

2L(ξ)

1

M(ξ)(1)

∣∣∣ p
p−1

)p−1

.

We estimate the right hand side summing only over ξ with L(ξ) = 1. We get

‖Tφ‖pp ≥ C

( N∑
i=1

∣∣∣ λni

n
(1)
i

∣∣∣ p
p−1

)p−1

= C

( N∑
i=1

∣∣∣ λni

|ni|2 · |ni|2
n
(1)
i

∣∣∣ p
p−1

)p−1

.

Obviously |ni|2 ≥ |n(1)
i |. Hence

‖Tφ‖pp ≥ C

( N∑
i=1

( |λni |
|ni|2

) p
p−1

)p−1

.

Boundedness of T and the inequality (9) yields the existence of a constant C > 0

independent of N such that

N∑
i=1

( |λni |
|ni|2

) p
p−1 ≤ C‖T ‖ p

p−1 .

We will use the following simple property of the sum of monotonic sequences:

Lemma 6: Let {bj}∞j=1 be a non-negative, non-increasing sequence such that

N∑
j=1

bj ≤ O(Nα),

where 0 < α < 1. Then the sequence {bj} ∈ �q for any q > 1
1−α .

Proof. Since the sequence is non-increasing we have

N · aN ≤
N∑
j=1

aj ≤ C ·Nα.

Therefore aN ≤ CNα−1.
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The next lemma will be used only to justify the existence of a non-increasing

rearrangement of the sequence.

Lemma 7: If {ni} is a sequence of points in Zd\{0} such that limi→∞ |ni|2 = ∞,

then

lim
i→∞

|λni |
|ni|2 = 0.

Proof. Assume that there is a sequence ni → ∞ such that
|λni

|
|ni|2 > c > 0. We

fix N and we divide Zd\{0} into a finite number of N -sectors (see Definition 3).

There exists an infinite subsequence {ni} contained in one of them. Passing

again to the subsequence we can assume that {ni} is N -sparse. From the

assumptions on ni we have

N∑
i=1

( |λni |
|ni|2

) p
p−1

> Nc
p

p−1 .

On the other hand, the sequence n1, . . . , nN satisfies assumptions of Lemma 5.

Therefore
N∑
i=1

( |λni |
|ni|2

) p
p−1 ≤ K,

where K is independent of N . Hence for any N ∈ N we have Nc
p

p−1 < K. This

is a contradiction.

Proof of Lemma 2. Let μk = maxn∈Rk

|λn|
|n|2 . From Lemma 7 we deduce the

existence of a bijection σ : N → N such that μσ(k) is a non-increasing sequence.

It is enough to show that

(10)

Nd+1∑
j=1

μ
p

p−1

σ(j) < C ·Nd.

Indeed assuming (10), for large enough N ,

N∑
j=1

μ
p

p−1

σ(j) ≤
� d+1√N
d+1∑

j=1

μ
p

p−1

σ(j) < C · � d+1
√
N�d ≤ C′ ·N d

d+1 .

Hence the assumptions of Lemma 6 are satisfied and Lemma 2 follows.

To obtain (10) we fix N . Let nk ∈ Rk be such that μk =
|λnk

|
|nk|2 for k ∈ N. We

divide Zd\{0} into N -sectors. We consider the sequence nσ(1), . . . , nσ(Nd+1). Let

S denote the set of all N -sectors. For A ∈ S we denote by IA ⊂ {1, 2, . . . , Nd+1}
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the set of indices k such that nσ(k) ∈ A. We can divide the set {nσ(i) : i ∈ IA}
into at most (#IA

N + 2N + 1) different N -sparse sequences of length N (note

that {nσ(i) : i ∈ IA} can be ordered in such a way that every element is at least

three times bigger than its predecessor). From Lemma 5 we get∑
i∈IA

( |λni |
|ni|2

) p
p−1 ≤ K ·

(#IA
N

+ 2N + 1
)
.

Summing the above inequality over all N -sectors yields

Nd+1∑
j=1

μ
p

p−1

σ(j) ≤
∑
A∈S

K ·
(#IA
N

+ 2N + 1
)
.

Observe that #S = d ·Nd−1 and
∑

A∈S #Is = Nd+1. In conclusion we obtain

∑
A∈S

K ·
(#IA
N

+ 2N + 1
)

= K · 1

N

( ∑
A∈S

#Is

)
+K ·

∑
A∈S

(1 + 2N)

= K ·Nd +K · (d ·Nd + d ·Nd−1)

≤ CNd.
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