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ABSTRACT

Braidoids generalize the classical braids and form a counterpart theory to

the theory of planar knotoids, just as the theory of braids does for the

theory of knots. In this paper, we introduce basic notions of braidoids,

a closure operation for braidoids, we prove an analogue of the Alexander

theorem, that is, an algorithm that turns a knotoid into a braidoid, and

we formulate and prove a geometric analogue of the Markov theorem for

braidoids using the L-moves.
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1. Introduction

A knotoid in an oriented surface Σ is an equivalence class of oriented open-

ended knot diagrams in Σ, with two endpoints that can lie in any local region

determined by the diagram. The equivalence is generated by the Reidemeister

moves and isotopies of Σ, which include the swinging of an endpoint within

a region free of endpoints. View Figures 1 and 2 in Section 2. When Σ is, in

particular, the 2-sphere S2, the knotoids are named spherical knotoids. When Σ

is the plane they are named planar knotoids.

The theory of knotoids was introduced by V. Turaev in 2011 [37]. Turaev

showed that the set of classical knots injects into the set of spherical knotoids,

where a knot can be viewed as a knotoid with zero complexity. The complexity

of a knotoid K (or height, as the term used in [18]) is the minimum number

of crossings over all diagrams of K, that are created when realizing the end-

to-end (under-pass) closure of each diagram of K to a knot diagram. The

above observation provides a strong motivation for using knotoids in computing

classical knot invariants, especially those based on the number of crossings,

since the computations would reduce exponentially with reducing the number

of crossings in a diagram. We recall that the complete classification of knots

is still a big open problem in Mathematics and it is tackled by constructing

isotopy invariants for distinguishing pairs of different knots. Indeed, Turaev—

among other results—defined the knot group in terms of knotoids, invariants

for knotoids, such as the bracket polynomial, and he remarked on the fruitful

connections of the theory with virtual knot theory. Turaev also showed that

there is a surjective map from the set of planar knotoids to the set of spherical

knotoids, which is not injective.

After the works [37, 14] and [7], the interest in knotoids was rekindled by the

second author, who proposed the subject to the first author for her PhD study

[17]. Then, in [18] the first author with L. H. Kauffman constructed new in-

variants for knotoids, considering the virtual end-to-end closure and employing

techniques from virtual knot theory [25]. We recall that a virtual knot diagram

contains classical as well as virtual crossings, where a virtual crossing has no

information under or over; it roughly indicates a permutation of the two arcs

involved. Another interesting result in [18] is the realization of a knotoid via

its lifting to an open-ended curve embedded in 3-space. Through this lifting

knotoids could serve as mathematical models for proteins and the theory of
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knotoids could be used for analyzing their topology. Consequently, in [15] in-

variants of spherical knotoids were applied, which rendered as much information

as the use of the virtual closure, while in [16] the application of planar knotoids

revealed richer structure.

In parallel, the theory of braidoids was initiated by the authors of the present

paper [17, 19] for counterparting the theory of planar knotoids, just as classical

braids comprise an algebraic counterpart to classical knots. A braid is a set of

descending strands with paired top-to-bottom ends, and equivalence classes of

braids under obvious planar isotopy and level preserving Reidemeister moves

realize groups, the Artin braid groups of type A [3, 4, 24]. The paired ends of

a braid can be joined to form a closure, which is a knot or a link. The inverse

operation consists in turning an oriented knot or link into an isotopic closed

braid and this is always possible by the classical Alexander theorem [11, 2, 9].

The Alexander theorem and its proof play a key role in the proof of the Markov

theorem, which provides an equivalence relation among elements of the braid

groups that corresponds precisely to the isotopy relation among oriented knots

and links [34, 39, 9, 8]. The two theorems allow, in principle, for the use of

braids and algebraic techniques in the study of knots and links and they were

successfully used for the first time by V. F. R. Jones in his construction of the

famous Jones polynomial [21, 22]. Consequently, these theorems received anew

the attention of several mathematicians [35, 38, 40, 36, 31, 32, 10], whose works

revealed diverse and interesting approaches.

In analogy to a braid diagram, a braidoid diagram consists in a set of de-

scending strands such that two of them are special: one of them terminates at

an endpoint, the head, and the other starts from the second endpoint, the leg.

Either endpoint may lie in any region and at any height of the diagram. See

Figure 5 in Section 3 for examples. A braidoid, then, is the equivalence class

of braidoid diagrams under obvious isotopy moves analogous to the knotoid

equivalence moves, as illustrated in Figures 6, 8, 9. In particular, endpoints

may swing and there are also the forbidden moves in the theory (Figure 7).

Hence, the notion of braidoid extends the notion of classical braid. We study

braidoids in relation to knotoids by defining an appropriate closure operation,

which respects the forbidden moves. The closure is defined on braidoid dia-

grams with labeled ends, specifying whether the joining arcs will run all over

or all under the rest of the diagram.
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An analogue of the classical Alexander theorem, stating that any knotoid

diagram can be turned into a labeled braidoid diagramwith isotopic closure, was

proved in [19]. In this paper, we give a second proof of the Alexander theorem

for braidoids, which is more adapted for proving an analogue of the classical

Markov theorem. Indeed, we formulate and prove a geometric analogue of the

Markov theorem for braidoids, using the concept of the L-move as introduced

in [31, 32]. An L-move is a geometric as well as algebraic move for braids and it

consists in cutting a braid arc at any point and pulling the two ends along the

vertical line of the cutpoint, both over or both under the rest of the diagram, so

as to obtain in the end a new pair of corresonding braid strands. The L-moves

provide a one-move version of the classical Markov theorem [32]. The set of

braidoids does not support an obvious algebraic structure. So, it would not be

possible to formulate a braidoid equivalence without the use of the L-moves. In

[17, 19] a set of building blocks for braidoids is listed along with some relations

that they satisfy. We then propose in [19] to encode a protein by the monomials

of the building blocks for the braidoids corresponding to the knotoids related to

the protein. We finally relate braidoids to classical or virtual braids by defining

appropriately the under-pass resp. virtual closure. We recall that a virtual

braid contains classical as well as virtual crossings, see [25, 26].

For further works on knotoids and applications the interested reader may

consult [1, 5, 13, 20, 28, 29].

Let us now present the organization of the paper. In Section 2 we review

basics on knotoids. In Section 3 we define the notion of braidoid diagram and

the notion of braidoid by introducing isotopy moves on braidoid diagrams. In

Section 4, we explain a way to close a braidoid diagram with labels which will

relate them to knotoids. Later, in Section 5 we describe an algorithm for turning

a knotoid diagram into a labeled braidoid diagram with isotopic closure. This

yields an analogue of the classical Alexander theorem for braidoids. In Section 6

we adapt the classical L-moves, which were originally defined for braid diagrams

by the second listed author in [30], for braidoid diagrams. We also introduce the

fake swing moves, which along with the L-moves comprise the L-equivalence.

We then prove our geometric analogue of the Markov theorem for braidoids.

Finally, in Section 7 we present the under-pass and virtual closures that relate

a braidoid to a classical resp. a virtual braid.
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2. A review of knotoids

Let [0, 1] be the unit interval and Σ be any oriented surface. A knotoid

diagram K in Σ is an immersion K : [0, 1] → Σ that is generic in the sense

that there is only a finite number of double points appearing as transversal

crossings each with the extra information of under or over. The images of 0

and 1 are two distinct points disjoint from any crossings of K, too, and are

called the leg and head of K, respectively. Furthermore, K inherits a natu-

ral orientation from its leg to its head. In Figure 1 we show some examples of

knotoid diagrams including the trivial knotoid diagram that admits no crossing.

Figure 1. Knotoid diagrams.

Definition 1: A piecewise-linear knotoid diagram is a union of finitely many

edges: [p1, p2], . . . , [pn−1, pn] such that each edge intersects one or two other

edges at the vertices, pi, for i = 2, . . . , n− 1. The vertices p1 and pn correspond

to the endpoints of the diagram. Two edges can also intersect transversely at

double points endowed with over/under data, called crossings of the diagram.

Any classical knot diagram can be turned into a piecewise-linear knot dia-

gram and piecewise-linear isotopy classes are in bijection with ambient isotopy

classes of knots [12]. In a similar way any knotoid diagram can be turned

into a piecewise-linear knotoid diagram. In this paper, we will be working for

convenience with piecewise-linear knotoid diagrams. Moreover, we will be con-

sidering Σ = R2.

2.1. Moves on knotoid diagrams. A Δ-move on a knotoid diagram is a

replacement of an arc with two arcs (or vice versa) forming a triangle which does

not contain any of the endpoints of the knotoid diagram and passing entirely

over or under any arcs intersecting this triangle, as shown in Figure 2. The

Reidemeister moves Ω1, Ω2, Ω3 (Figure 2) are some special cases of Δ-moves.

We shall call a Δ-move that takes place in a triangular region that does not
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contain any arcs of the diagram in its interior a planar Δ-move and denote it

as Ω0-move. Finally, we have the swing moves whereby an arc containing an

endpoint sweeps a triangular region free of any other arcs of the diagram. The

swing moves can be viewed as special cases of Ω0-moves where one side of the

isotopy triangle is omitted. See Figure 2. The moves consisting of pulling the

strand adjacent to an endpoint over or under a transversal strand as shown in

Figure 3 are the forbidden knotoid moves. It is clear that if both forbidden

moves were allowed, any knotoid diagram in S2 and in R2 could be turned into

the trivial knotoid diagram.

swing move

     01

2

3

Figure 2. Δ-moves

Figure 3. Forbidden knotoid moves.

Note: There are two situations where forbidden moves seemingly occur: Pre-

cisely, when the arc adjacent to an endpoint is involved in an Ω1- or an Ω2-move

followed by a planar isotopy, as illustrated in Figure 4. These moves have the

same effect as one or two consecutive forbidden moves of the same type. We

shall call these moves fake forbidden moves.
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fake forbidden

2- move planar isotopy

fake forbidden

1- move
planar isotopy

Figure 4. Fake forbidden moves.

We shall call Ω0,Ω1,Ω2,Ω3 moves together with the swing moves

the Ω-moves. Two knotoid diagrams are isotopic to each other if there is

a finite sequence of Ω-moves that transforms one into the other. The isotopy

generated is clearly an equivalence relation and the isotopy classes of knotoid

diagrams are called knotoids in R2. The set of all knotoids in R2 is denoted

by K(R2).

2.2. Extending the definition of knotoids. A multi-knotoid diagram

in S2 or in R2 [37] is an extended knotoid diagram having a finite number of

knot diagrams. The equivalence relation defined on knotoid diagrams applies to

multi-knotoid diagrams directly, and the corresponding equivalence classes are

called multi-knotoids. Note that other notions generalizing knotoids can be

introduced. For instance we can also define a linkoid diagram as an immersion

of a number of oriented intervals as a generalizing concept to (n, n)-tangles.

See [17] for a discussion on such generalizations.

In this paper we work with multi-knotoids in R2.

3. Braidoids

In this section we define braidoid diagrams and the isotopy classes of them that

we call braidoids. A braidoid diagram is defined similarly to a braid diagram

as a system of finite descending strands. The main difference is that a braidoid

diagram has one or two of its strands starting with/terminating at an endpoint

that is not necessarily at top or bottom lines of the defining region of the dia-

gram.
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3.1. The definition of a braidoid diagram.

Definition 2: Let I denote the unit interval [0, 1] ⊂ R. A braidoid diagram B

is a system of a finite number of arcs immersed in I×I ⊂ R2. We identify R2 with

the xt-plane with the t-axis directed downward. The arcs of B are called the

strands of B. Following the natural orientation of I, each strand is naturally

oriented downward, with no local maxima or minima. There are only finitely

many intersection points among the strands, which are transversal double points

endowed with over/under data. Such intersection points are called crossings

of B.

A braidoid diagram has two types of strands, the classical strands and the

free strands. A classical strand is like a braid strand connecting a point

on I×{0} to a point on I×{1}. A free strand either connects a point in I×{0}
or I × {1} to a special point that is located anywhere in I × I or connects two

special points located anywhere in I × I. These special points are called the

endpoints of B. A braidoid diagram contains either one free strand (see for

example Figure 5a) or two free strands (see, for example, Figure 5b, c, d) and

exactly two endpoints. The endpoints are specifically named as the leg and the

head and are emphasized by graphical nodes labeled by l and h, respectively,

in analogy with the endpoints of a knotoid diagram. Precisely, the head is the

endpoint that is terminal for a free strand with respect to the orientation, while

the leg is the starting endpoint for a free strand with respect to the orientation.

See some examples of braidoid diagrams in Figure 5.

1 21 l 2

a b

h

h
l l

h

1 2 3

c d

1l

h

Figure 5. Some examples of braidoid diagrams.

The ends of the strands of B other than the endpoints are called braidoid

ends. We assume that braidoid ends lie equidistantly on the top and the

bottom lines and none of them is vertically aligned with any of the endpoints.

It is clear that the number of braidoid ends that lie on the top line is equal to
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the number of braidoid ends that lie on the bottom line of the diagram. The

braidoid ends on top and bottom lines are arranged in pairs so that they are

vertically aligned and are called corresponding ends. We number them with

nonzero integers according to their horizontal order (from left to right), as in

the examples illustrated in Figure 5.

Note that the endpoints of B differ conceptually from its braidoid ends. As

we will see in the next section, the endpoints are subject to some isotopy moves

unlike the braidoid ends, and the endpoints do not participate in the closure

operation we introduce unlike the braidoid ends.

A braidoid diagram is piecewise-linear if all of its strands are formed by con-

secutive linear segments. Any braid diagram can be represented by a piecewise-

linear braid diagram. Likewise, any braidoid diagram can be represented by a

piecewise-linear braidoid diagram. We shall consider piecewise-linear braidoid

diagrams, when convenient.

3.2. Braidoid isotopy. There are two types of local moves generating the

braidoid isotopy.

3.2.1. Moves on segments of strands. We adapt the Δ-moves introduced in Sec-

tion 2.1 to braidoid diagrams. A braidoid Δ-move replaces a segment of a

strand with two segments in a triangular disk free of endpoints, passing only over

or under the arcs intersecting the triangular region of the move whilst the down-

ward orientation of the strands is preserved (see Figure 6). The oriented Ω0, Ω2

and Ω3, which keep the arcs in the move patterns directed downward, can be

viewed as special cases of braidoid Δ-moves.

Figure 6. A planar Δ-move on a braidoid diagram.
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3.2.2. Moves of endpoints. Like for knotoid diagrams, we forbid to pull/push

an endpoint of a braidoid diagram over or under a strand, as shown in Figure 7.

These are forbidden moves on braidoid diagrams. It is clear that allowing

both forbidden moves can cancel any braiding of the free strands.

Figure 7. Forbidden braidoid moves.

We allow the following moves on segments of braidoid strands containing

endpoints.

(1) Vertical Move: As shown in Figure 8, the endpoints of a braidoid dia-

gram can be pulled up or down in the vertical direction as long as they

do not violate any of the forbidden moves (e.g., crossing through or in-

tersecting any strand of the diagram). Such moves are called vertical

moves.

11 l

vertical move

h

22 l

h

Figure 8. A vertical move on h.

(2) Swing Moves: An endpoint can also swing to the right or the left like

a pendulum (see Figure 9) as long as the downward orientation on the

moving arc is preserved, and the forbidden moves are not violated.

Figure 9. The swing moves for braidoids.



Vol. 242, 2021 BRAIDOIDS 965

Definition 3 (braidoid isotopy): It is clear that assuming braidoid ends fixed

at the top and bottom lines, the braidoid Ω2- and Ω3-moves together with

braidoid Ω0-moves and the swing and vertical moves for the endpoints generate

an equivalence relation on braidoid diagrams in R2. Two braidoid diagrams are

said to be isotopic if one can be obtained from the other by a finite sequence

of braidoid isotopy moves. An isotopy class of braidoid diagrams is called a

braidoid.

4. From braidoids to planar knotoids—a closure operation

We present a closure operation on braidoid diagrams in analogy with the closure

of braids in handlebodies [33]. In order to do this, we introduce the notion of

labeled braidoids.

Definition 4: A labeled braidoid diagram is a braidoid diagram whose cor-

responding ends are labeled with either o or u in pairs. See Figures 10 and 13.

Each label indicates either an overpassing or under-passing arc, respectively,

that will take place in the closure operation explained below.

Definition 5: Let B be a labeled braidoid diagram. The closure of B, de-

noted ̂B, is a planar (multi)-knotoid diagram obtained by the following topo-

logical operation: each pair of corresponding ends of B is connected with an

embedded arc (with slightly tilted extremes) that runs along the right-hand side

of the vertical line passing through the ends and in a distance arbitrarily close

to this line. The connecting arc goes entirely over or entirely under the rest

of the diagram according to the label of the ends. We demonstrate abstract and

concrete examples in Figures 10 and 13, respectively.

Figure 10. The closure of an abstract labeled braidoid diagram.
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The reason that a joining arc is required to lie in an arbitrarily close distance

to the line of the related corresponding ends is that, otherwise, forbidden moves

may obstruct an isotopy of ̂B between any two joining arcs. Notice also that

the resulting multi-knotoid depends on the labeling of the braidoid ends. In

Figure 13 we see two labeled braidoid diagrams induced by the same underlying

braidoid diagram via different labelings, giving rise to non-equivalent knotoids.

On labeled braidoid diagrams we allow the braidoid Δ-moves and the vertical

moves to take place on labeled braidoid diagrams and we forbid the forbidden

braidoid moves. However, we do not allow swing moves for labeled braidoid di-

agrams in full generality. We only allow the restricted swing moves whereby

the swinging of an endpoint takes place within the interior of the vertical strip

determined by the neighboring vertical lines passing through two consecutive

pairs of corresponding braidoid ends (see Figure 11). The reason for restricting

the swing moves is because if the endpoints surpass the vertical lines of the cor-

responding ends this will cause forbidden moves on the closure. See Figure 12

for an example.

i i+1 i i+1

Figure 11. The restricted swing moves for braidoids.

Figure 12. A swing move causing a forbidden move on the clo-

sure.
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Definition 6: Labeled braidoid isotopy is generated by the braidoid Ω-moves,

the vertical moves and the restricted swing moves, preserving at the same time

the labeling. Equivalence classes of labeled braidoid diagrams under this isotopy

relation are called labeled braidoids.

Lemma 1: The closure operation induces a well-defined mapping from the set

of labeled braidoids to the set of multi-knotoids in R2.

Proof. Let b1 and b2 be two labeled braidoid diagrams representing the same

labeled braidoid. Then b1 and b2 differ from each other by braidoid isotopy

moves. It is clear that braided Ω2- and Ω3-moves are transformed into a se-

quence of knotoid Ω2- and Ω3-moves. Also, the vertical and swing moves are

transformed into planar isotopy on the (multi)-knotoid diagram obtained by

the closure. Therefore the closures of b1 and b2 are isotopic (multi)-knotoid

diagrams.

~ ~

ooo

~

oo u

1 2 3

Figure 13. An example of non-equivalent labeled closures.
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5. An algorithm for obtaining labeled braidoids from planar knotoids

In this section we present the braidoiding moves on knotoid diagrams that

induce algorithms for turning any planar (multi)-knotoid diagram into a labeled

braidoid diagram [17]. By these algorithms we obtain the following theorem.

Theorem 1 (An analogue of the Alexander theorem for knotoids): Any (multi)-

knotoid diagram in R2 is isotopic to the closure of a labeled braidoid diagram.

In [17] two such algorithms for proving Theorem 1 are presented. One of

the algorithms appearing also in [19] is conceptually lighter than the other one

presented here; see also Remark 1. The algorithm we present here is more ‘rigid’

in the sense that it assumes knotoid diagrams as rigid diagrams. This makes the

algorithm more appropriate for proving a braidoid equivalence result analogous

to the classical Markov theorem for classical braids.

5.1. The basics of the braidoiding algorithm. LetK be a (multi)-knotoid

diagram in a plane identified with the xt-plane. We describe below how to

manipulate K in order to obtain a labeled braidoid diagram, after endowing

the plane of K with top-to-bottom direction. We will be assuming that K lies

in [0, 1]× [0, 1] since K is compact.

5.1.1. Up-arcs and free up-arcs. It is clear that by small perturbations K can

be assumed to be a diagram without any horizontal or vertical arcs. Thus K

consists of a finite number of arcs oriented either upward or downward, and these

arcs are separated by finitely many local maxima or minima. The arcs of K

that are oriented upward are called up-arcs and the ones oriented downward

are called down-arcs of K. An up-arc may contain crossings of different types

(over/under-crossings) or no crossing at all. See Figure 14. An up-arc that

contains no crossing is called a free up-arc.

u

o
u

o/u

Figure 14. Two up-arcs containing crossings and a free up-arc.
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5.1.2. Subdivision. We start by marking the local maxima and minima of K

with points, which we name as subdividing points. In the process we may

need to subdivide further some of the up-arcs of K so that each one contains

crossings of only one type. We attach a label to each up-arc accordingly to the

crossing type it contains: we attach o if the up-arc contains over-crossing(s), u

if the up-arc contains under-crossing(s). The up-arcs that are free of crossings

can be labeled either o or u.

5.1.3. Braidoiding moves. The basic idea of turning K into a labeled braidoid

diagram is to keep the arcs of K that are oriented downward, with respect

to the top-to-bottom direction, and to eliminate its up-arcs by turning them

into braidoid strands. The elimination of the up-arcs is done by utilizing the

sequence of moves illustrated in Figure 15. Precisely, a braidoiding move

consists of cutting an up-arc at a point and pulling the resulting sub-arcs to

top and bottom lines entirely over or entirely under the rest of the diagram

by preserving the alignment with the cut-point. Finally we slide the resulting

sub-arcs down and up, respectively, across local triangular regions in order to

eliminate the upward oriented pieces. An up-arc is eventually turned into a

braidoid strand as also depicted in Figure 15. It can also be verified by Figure

15 that the resulting ends obtained by cutting the up-arc QP at a point are

pulled entirely over the rest of the diagram and received the label o, and when

we join the resulting pair of corresponding ends with an over-passing arc, we

obtain a closed strand that is isotopic to the initial up-arc QP .

Q

P

Q

P

cut QP

Q

P

at a point
Δ-move

o

o

o

o

o

closure

Q

P

o

o

Figure 15. A braidoiding move.
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5.1.4. Cut-points and sliding triangles. Let QP be an up-arc of K with respect

to a given subdivision of K, where Q denotes the initial and P denotes the

top-most subdivision point.

The right-angled triangle which lies below QP and admits QP as hypotenuse,

and is a special case of a triangle enabling a Δ-move, is called the sliding tri-

angle of the up-arc QP . We denote the sliding triangle by T (P ); see Figure 16.

The disk bounded by the sliding triangle T (P ) is utilized after cutting QP , for

sliding down the resulting lower sub-arc across it. See Figure 16.

Q

P

Q

P

Q

Po
o o

Figure 16. The sliding triangle of the up-arc QP with P the

cut-point.

A cut-point of an up-arc is defined to be the point where the up-arc is cut to

start a braidoiding move. We pick the top-most point P ∈ QP as the cut-point

of QP for our algorithm.

5.1.5. A condition on sliding triangles. One may come across the situation

where one (or two) of the endpoints lies in the region bounded by some sliding

triangle as in Figure 17. This is an unwanted situation since it would cause

a forbidden move when the knotoid strand obtained by closing the resulting

braidoid strand is tried to be isotoped back to the initial up-arc. We impose

the following condition on knotoid diagrams to avoid this.

The endpoint triangle condition: A sliding triangle of a knotoid diagram is not

allowed to contain an endpoint.

To satisfy this condition we introduce a subdivision of up-arcs into smaller

sub-arcs by adding extra subdividing points. See Figure 17. More precisely, we

have the following proposition.



Vol. 242, 2021 BRAIDOIDS 971

Lemma 2: Let K be a knotoid diagram and T (P ) be the sliding triangle cor-

responding to an up-arc QP . If T (P ) contains the leg or the head of K in its

interior or boundary, then there is a further subdivision of QP admitting new

sliding triangles whose disks are disjoint from the endpoint.

Proof. We can assume that QP lies in the first quadrant of the plane and has

a positive slope without loss of generality. There is a unique horizontal and

vertical line passing through the endpoint in question and each intersecting QP

exactly at one point, since xQ ≤ xendpoint ≤ xP and tP ≤ tendpoint ≤ tQ.

We pick an interior point in the small line segment whose boundary is the

union of the two intersection points and declare it as a new subdividing point

on QP . Let P ∗ denote the chosen point. The sliding triangles intersecting at

the point P ∗ are clearly smaller than the one with the top vertex P and they

do not contain the endpoint. In case that T (P ) contains two of the endpoints,

we introduce two new subdividing points on QP each chosen as above and none

of the corresponding sliding triangles contains the endpoints.

Q

P

subdivision

Q

P

P*P*

Figure 17. A further subdivision of the up-arc QP .

5.2. Braidoiding algorithm. We now present our algorithm for obtaining

a labeled braidoid diagram from a (multi)-knotoid diagram K. The algorithm

runs as follows.

Step 1: Preparation for eliminating the up-arcs

(1) The diagram is marked with subdividing points as explained in Section

5.1.2 so that the endpoint triangle condition is satisfied. It is further-

more assumed to satisfy some general positioning conditions, which can

be ensured by ‘small’ isotopy moves, namely
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(2) no arc is vertical or horizontal,

(3) no subdividing points are vertically aligned with each other unless they

share a common edge and neither with the endpoints or with any of the

crossings,

(4) the endpoints of K are assumed to lie on arcs that are directed down-

ward.

Step 2: Applying the braidoiding moves

We order the up-arc and finally apply the braidoiding moves to each up-arc

of K in the given order.

Figure 18 illustrates for the braidoiding algorithm with a concrete example.

U2
U3

U4
U1

u u u u u u u u

 arrange the endpoints

  1.subdivide K 

           apply
braidoiding moves

isotopy

1 2 3 4 2.order and label 
   the up-arcs

Figure 18. An illustration for the algorithm.

5.2.1. Obstructions for the braidoiding algorithm and resolutions. Now, we dis-

cuss some bugs of the braidoiding algorithm. In some cases, as exemplified in

Figure 19, the algorithm is obstructed by a clasp occurring in the sliding trian-

gle of an up-arc. We see in the figure that the braidoiding move applied on the

second-ordered up-arcs labeled with o and u, respectively, cannot be completed,

due to the clasps in their sliding triangles. It can be verified by checking all

possible positionings, labelings and orderings of any two up-arcs that this type

of obstruction may occur only if:
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• the top-most point of the first-ordered up-arc intersects the sliding tri-

angle of the second-ordered up-arc, and

• two up-arcs with intersecting sliding triangles are labeled the same.

o2

o1

o2o1

    braidoiding 
   in given order

u2

u1

 u2u1

     braidoiding 
   in given order

a clasp

a clasp

Figure 19. Obstructions for applying braidoiding moves.

5.2.2. Resolutions of the obstructions. Due to the conditions creating obstruc-

tions, the resolutions for them can be:

• swapping the ordering of the up-arcs; see Figure 20,

o2

o1

braidoiding in
 given order

o2 o1

Figure 20. Swapping the order of up-arcs repairs the obstruc-

tion.
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• changing the label of the free up-arc if there is a free up-arc involved in

an obstruction; see Figure 21,

braidoiding in
 given order

u1

o
2

u1

o
2

u1 o2

Figure 21. Changing the label of the free up-arc repairs the

obstruction.

• subdividing the up-arcs further to have disjoint sliding triangles; see

Figure 22.

o1
o
2

a new subdividing point o1 o3o2

o3

braidoiding

Figure 22. Adding a subdividing point to the upper up-arc

repairs the obstruction.

5.2.3. The classical triangle condition. We can make the braidoiding algorithm

a simultaneous algorithm that is processed independently of the ordering of the

up-arcs, by imposing the following condition.

Definition 7: Two sliding triangles are said to be adjacent if the corresponding

up-arcs have a common subdidiving point, and non-adjacent otherwise.



Vol. 242, 2021 BRAIDOIDS 975

The classical triangle condition says that non-adjacent sliding triangles

are allowed to intersect only if the up-arcs of the triangles have different labels

(see Figure 23). The classical triangle condition can always be satisfied by the

following lemma.

o

u but not

o

o

Figure 23. The classical triangle condition.

Lemma 3: Let K be a knotoid diagram. There exists a subdivision of K satis-

fying both the classical triangle condition and the endpoint triangle condition.

Proof. This lemma is proved similarly to Lemma 1 in [31]. For complete-

ness, we adapt the proof here for the knotoid case. Let d1 be the minimum

distance between any two crossings appearing on the up-arcs of K. Choose

some r 0 < r < d1 so that the disk of radius r centered at a crossing contained

in an up-arc, intersects the up-arc at only four local strands around the cross-

ing. Let d2 be the minimum distance between any two disjoint points that

are located outside the disks of radius r around the crossings and on different

segments. Letting 0 < ε < 1
2 min{d1, d2} be the distance between any two

subdivision points on K provides a subdivision of K satisfying the classical tri-

angle condition and also the triangle condition for the endpoints. Each sub-arc

of length ε is also labeled according to the crossing type it contains, or if some

become free, they are labeled freely.

Proof of Theorem 1. With the discussion above we know that there is always

a choice for ordering and labeling of up-arcs of a (multi)-knotoid diagram and,

moreover, that we can impose the classical triangle condition to make the algo-

rithm free of ordering. This is equivalent to saying that the braidoiding moves

can be done all simultaneously and it is sufficient for ensuring that the algo-

rithm terminates in a finite number of steps and always results in a labeled

braidoid diagram. Finally, it is clear from Figure 15 that if we apply closure to

the corresponding strands according to their label, then each pair can be con-

tracted back to the initial up-arc. Such contractions utilize the isotopy moves

for knotoids, thus the closure of the resulting braidoid diagram is isotopic to

the (multi)-knotoid diagram we started with.
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Remark 1: In [19] we present another braidoiding algorithm which is also in-

duced by the same braidoiding moves. The main difference of that algorithm

from the one we describe in this paper is that it firstly eliminates each up-arc of

a knotoid diagram that contains a crossing by a 90-degree or 180-degree rotation

of the crossing. The braidoiding moves are applied to the resulting up-arcs that

are all free up-arcs. Furthermore, since the labels of the free up-arcs are not

forced they can be labeled only u. Applying the braidoiding algorithm on such

a knotoid diagram generates a labeled braidoid diagram whose strands are all

labeled u. This induces the idea of closing braidoid diagrams in a uniform way,

that is, by using only under-passing arcs that run in arbitrarily close distance

to the vertical lines of pairs of corresponding ends, for connecting them. We

call this closure the uniform closure.

The above remark leads to the following result.

Theorem 2 ([17, 19]): Any multi-knotoid diagram in R2 is isotopic to the

uniform closure of a braidoid diagram.

6. L-equivalence of braidoid diagrams

The L-moves were originally defined for classical braid diagrams [30, 31, 32] by

the second-listed author, and they were used for proving a one-move analogue of

the classical two-move Markov theorem [34, 39, 9, 8, 35, 36, 10]. In the sequel,

we adapt the L-moves for braidoid diagrams and use them for formulating a

geometric analogue of the classical Markov theorem.

6.1. The L-moves.

Definition 8: An L-move on a labeled braidoid diagram B is the following

operation:

(1) Cut a strand of B at an interior point which is not vertically aligned

with a braidoid end, an endpoint or a crossing of B. The existence of

such a point can be ensured by a general positioning argument.

(2) Pull the resulting ends away from the cut-point to top and bottom

respectively, keeping them vertically aligned with the cut-point, so as to

create a new pair of braidoid strands with corresponding ends. The new

strands run both entirely over or under the rest of the braidoid diagram

depending on the type of the L-move applied. There are two types
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of L-moves, namely Lover- and Lunder-moves, denoted by Lo and Lu

respectively. An Lo-move comprises pulling the resulting sub-strands

entirely over the rest of the diagram. An Lu-move comprises pulling

the sub-strands entirely under the rest of the diagram. See the top row

of Figure 24.

(3) After an L-move applied on a labeled braidoid diagram, the new pair

of corresponding strands gets the labeling of the L-move: If the strands

are obtained by an Lo-move then they are labeled o, and if they are

obtained by an Lu-move then they are labeled u. Then, as can be

verified by Figure 24, the closure of a pair of labeled braidoid strands

resulting from an L-move is isotopic to the initial arc.

Lo-move

o

o

Lu-move

u

u

closureclosure

Figure 24. L-moves and the closures of the resulting strands.
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In order to formulate a braidoid equivalence in analogy to the classical braid

equivalence utilized in the Markov theorem, we also need to discuss the fake

forbidden moves.

Definition 9: We define a fake forbidden move on a labeled braidoid dia-

gram B to be a forbidden move on B which, upon closure, induces a sequence

of fake forbidden moves on the resulting (multi-)knotoid diagram. A fake swing

move is a swing move which is not restricted, in the sense that the endpoint

surpasses the vertical line of a pair of corresponding ends but in the closure

it gives rise to a sequence of swing and fake forbidden moves on the resulting

(multi-)knotoid diagram. See Figure 25 for an example of a fake swing move

and a fake forbidden move on a labeled braidoid diagram.

Figure 25. A fake swing and a fake forbidden move.

Definition 10: The L-moves together with labeled braidoid isotopy moves and

fake swing moves generate an equivalence relation on labeled braidoid diagrams

that is called the L-equivalence. The L-equivalence is denoted by ∼L.

The labeled braidoid that is associated to a knotoid K via a braidoiding algo-

rithm is not unique up to the braidoid isotopy. Precisely, the labeled braidoid

depends on the choices made for bringing the knotoid diagram to satisfy the

general position requirements before starting the braidoiding algorithm, such

as: arrangement of the endpoints, subdivision chosen on the arcs of the knotoid

diagram and the labeling of the free up-arcs. Moreover, the knotoid diagram

is subject to knotoid isotopy moves. We shall show that the labeled braidoid

diagrams that are associated to K are independent of algorithmic choices and

isotopy moves up to L-equivalence.

Before stating our theorem we give the following definition.
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Definition 11: A (multi)-knotoid diagram K in the xt-plane, with a subdivision

and labeling on its up-arcs, is said to be in general position if

• it has no vertical or horizontal arcs,

• no subdividing point or endpoint is vertically aligned with a subdividing

point, a crossing or an endpoint,

• the arcs adjacent to the endpoints of K are down-arcs,

• no sliding triangle encloses an endpoint,

• sliding triangles satisfy the classical triangle condition.

Note that a (multi)-knotoid diagram can be always brought to general posi-

tion by small Δ-moves.

Theorem 3 (An analogue of the Markov theorem for braidoids): [17] The clo-

sures of two labeled braidoid diagrams are isotopic (multi)-knotoids in R2 if and

only if the labeled braidoid diagrams are related to each other via L-equivalence

moves.

Proof. For the proof of Theorem 3, we assume that (multi)-knotoid diagrams

are in general position.

The ‘if’ part is clear from the definitions of L-moves and fake swing moves.

More precisely, let B1, B2 be two labeled braidoid diagrams related to each

other by an L-move. Let the arc, illustrated in Figure 24, be a segment of a

strand of B1 on which an L-move is applied. It can be observed by the same

figure that the closure of the resulting strands, labeled accordingly to the type

of the L-move applied, is isotopic to this arc. This implies that the closures

of B1 and B2 are isotopic. From this, the closure map extends to a well-defined

map clL on the set of all L-equivalence classes of labeled braidoids.

clL : {L-classes of labeled braidoid diagrams} → {Multi-knotoids in R2}.

For showing the ‘only if’ part, we need to show that the map clL is a bijection.

We adapt these parts here and check the cases involving the endpoints. For this

we first show the braidoiding algorithm induces a well-defined mapping br,

br : {Multi-knotoids in R2} → {L-classes of labeled braidoid diagrams},

that associates a (multi)-knotoid K in R2 to the L-class of the braidoid diagram

obtained from any representative of K by the braidoiding algorithm. We call

this map the braidoiding map.
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In order to show the mapping br is well-defined we need to show that, up

to L-equivalence, the resulting labeled braidoid diagram is independent of: the

choices made for bringing a knotoid diagram into general position, choices of

subdividing points for the up-arcs, labelings of free up-arcs, the Ω-moves of kno-

toid diagrams. The parts of the proof of Theorem 3 not involving the endpoints

are analogous to the case of classical knots and braids [30, 31].

Lemma 4: Let K be a (multi)-knotoid diagram in R2 with a subdivision that

satisfies the triangle conditions. Adding a subdividing point to an up-arc

of K and labeling the new up-arcs the same as the initial labeling yields an

L-equivalent labeled braidoid diagram.

Proof. We first note that addition of a subdividing point does not violate the

triangle conditions. Let QP denote an up-arc of K as depicted in Figure 26.

First let us assume that the vertical line passing through an endpoint of K does

not intersect QP . In this case, we can add a new subdividing point on QP

and apply braidoiding moves at that point and the point P . The proof for

showing that the resulting braidoid diagram is L-equivalent to the one obtained

by applying a braidoiding move at the top-most point P follows similarly as for

classical braid diagrams. The reader is directed to [31] for details.

Now let us assume that the vertical line passing through an endpoint of

K intersects with QP at some point on QP . Then QP can be seen as the

union of two sub-arcs joined at the intersection point and one of which contains

the point P . The sub-arcs can be re-labeled accordingly to the initial label-

ing. By the classical argument discussed above, if a new subdividing point is

added on QP on the sub-arc containing P , then applying a braidoiding move

at this point results in a labeled braidoid diagram that is L-equivalent to the

labeled braidoid diagram obtained by applying a braidoiding move at the point

P . Suppose now that a new subdividing point P1 is chosen on the sub-arc

that does not contain the point P . As we can verify in Figure 26, the labeled

braidoid diagram resulting from a braidoiding move applied at the point P can

be taken to the braidoid diagram resulting from the latter subdivision (that

is, by applying braidoiding moves at the points P and P1) by an L-move that

is applied at the point Q∗. Here the point Q∗ denotes the intersection point

of the vertical line passing through P1 and the lower strand containing Q that
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has been obtained by the initial braidoiding of QP . Note that a neighbor-

hood of Q containing the point Q∗ is perturbed to slope slightly downwards for

enabling application of the L-move.

Q

P

P1Q

P

Q

o

o o

o

P

subdivision 

Q

o

P

P1

o

Lo-move at Q*

Q*

braidoiding move braidoiding move

Figure 26. Adding a subdividing point on the up-arc yields L-

equivalence.

Lemma 5: Labeling a free up-arc either with o or u does not change the result-

ing labeled braidoid diagram up to L-equivalence.

Proof. The proof is illustrated in Figure 27 and proceeds in analogy with the

classical case. In the figure, a free up-arc QP is labeled with both u and o. For

simplicity we first assume that the sliding triangle of QP is also free of any arcs.

We start by applying a braidoiding move on QP labeled with u at the point P

to obtain a pair of braidoid strands. Then we apply an Lo-move at a point

(the point P ∗ in the figure) that is arbitrarily close to P so that there is no

endpoint or braidoid end in the vertical strip defined by P and P ∗. Let Q∗
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be the point where the vertical line passing at P intersects the resulting lower

piece of the sub-strand containing Q. We assume that the piece of strand

containing Q∗ slopes downward. Deletion of an Lu-move at the point Q∗ cancels
the pair of braidoid strands labeled u. By the same figure we can verify that

the resulting labeled braidoid diagram can be turned into the labeled braidoid

diagram obtained by a braidoiding move on QP when it is labeled with o, by

a sequence of L-moves: First by applying an Lo-move at Q∗ and then deleting

an Lo-move to cancel one of the pairs of braidoid strands.

Q

Pu

Lo-move deletion of an
    Lu-move 

Q

o

Q

Po

braidoiding move
Q

P

u

Q

P

u o

P*

P*at

Lo-move 
Q*at

Q*

Q

oo

deletion of an
    Lo-move 

Q

o

P
braidoiding move

Figure 27. Different labels on a free up-arc.

The sliding triangle of the up-arc may intersect with other arcs of the diagram

as illustrated in Figure 28. In this figure, we show a case where a free up-arc

labeled with u intersects the sliding triangle of the free up-arc labeled with o.

By using Lemma 4, we first subdivide the free up-arc labeled with o into small

enough sub-arcs to make all disks of the corresponding sliding triangles free of

arcs. We now re-label each of the free up-arcs resulting from the new subdivi-

sion with o. By the discussion above, we know that the diagram obtained by

applying braidoiding moves at each added subdividing points on the up-arc is
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L-equivalent to the one obtained by applying braidoiding moves to the up-arc in

the third row where each sub-arc is labeled with u. Finally, again by Lemma 4

we know that if we delete all the added subdividing points on the up-arc keep-

ing the initial subdividing points and the label u, then by a braidoiding move

we obtain a labeled braidoid diagram that is L-equivalent to the initial labeled

braidoid diagram obtained by a braidoiding move applied on the up-arc labeled

with u. Notice that, to ensure the classical triangle condition in the final step,

we also change the labeling of the intersecting arc from u to o.

Figure 28. Re-labeling the free up-arcs.

Corollary 1: If we have an appropriate choice of relabelling the up-arcs re-

sulting from a further subdivision on K, then by Lemmas 4 and 5, the resulting

labeled braidoid diagrams are L-equivalent.

Lemma 6: Two labeled braidoid diagrams that are obtained with respect to

any two subdivisions S1, S2 on a knotoid diagram K that satisfy the triangle

conditions are L-equivalent to each other.

Proof. It is clear that any subdivision further than S1 or S2 satisfies both tri-

angle conditions. Consider the further subdivision S1 ∪ S2 of both S1 and S2

on K. By Lemmas 4 and 5, the labeled braidoid diagram that results from

the subdivision S1 ∪ S2 is L-equivalent to the labeled braidoid diagrams that

result from the subdivision S1 and S2. Since the L-equivalence is an equivalence

relation, the lemma follows.

Finally we shall show the L-equivalence under the Ω-moves.

Lemma 7: Two (multi-)knotoid diagrams in R2 are related to each other by

planar isotopy and Ω-moves only if the corresponding labeled braidoid diagrams

are related to each other by labeled braidoid isotopy moves, L-moves, fake swing

moves or fake forbidden moves.
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Proof. Let us start with the observation that by imposing the classical triangle

condition, we can assume that the knotoid isotopy moves take place without

interfering with the braidoiding process of the rest of the diagrams that lie

outside the local regions of the moves. In fact we can assume the up-arcs

outside the move disks are all turned into braidoid strands and only the arcs

lying in the move disks are left for elimination.

Examining the Ω1-, Ω2- and Ω3-moves follows similarly to the examination

of Reidemeister moves on classical knots/links under the braiding moves [32,

31]. Here in Figure 29 we give an illustration for the Ω1-move away from the

endpoints and how it is transformed to an L-move under a braidoiding move.

uo uo

isotopy

o

 1 

braidoiding

o u
o

delete an Lu-move isotopy

o

Figure 29. An Ω1-move under braidoiding.

In this setting, it is crucial to examine specifically the swing moves displacing

the endpoints of a knotoid/multi-knotoid diagram. A swing move may displace

an endpoint that lies on a down-arc and in a way that the endpoint does not

change its position with respect to a vertical line passing through a cut-point in

the diagram; then the resulting (labeled) braidoid diagrams are clearly related

to each other by a restricted swing move.

A swing move may move an endpoint so that the swinging arc changes from

being a down-arc to being an up-arc by keeping the endpoint at the same vertical

alignment as in Figure 30. In the braidoiding process, the down-arc is kept but

a braidoiding move is applied on the resulting up-arc. It can be verified by the
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figure that the resulting labeled braidoid diagrams obtained from two knotoid

diagrams which are related by such a swing move are related to each other by

an L-move. See Figure 30. Note that the points P and P ∗ shown in the figure

that are chosen for applying the Lo-move on the resulting braidoid diagram

and the braidoiding move on the resulting knotoid diagram, respectively, are

vertically aligned.

Figure 30. A swing move changing a down-arc to an up-arc.

A swing move may also cause the endpoint to change its position with respect

to a vertical line passing through a cut-point on the diagram as illustrated in

Figure 31. This means that the endpoint of the swinging arc in the resulting

labeled braidoid diagram crosses the vertical line passing through the new pair

of corresponding braidoid ends. This situation can be examined in two separate

cases. One case is that the swinging arc is a down-arc and remains as a down-

arc during the move. In this case, no braidoiding move applies on the arc and

the resulting braidoid diagrams are related to each other by a fake forbidden

move (recall Definition 9). The other case is that the swinging arc is an up-arc

and the endpoint is displaced with respect to a vertical line passing through a

cut-point lying on some up-arc which can be the swinging arc itself. In this case,

we apply a last braidoiding move on the swinging arc before and after the move.

Then the comparison of the resulting (labeled) braidoid diagrams is reduced to

the previous case and they are related to each other by a fake swing move when

the cut-point lies on the swinging arc or a fake forbidden move as discussed in

the previous case. From the above discussion we can deduce Lemma 7.
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Figure 31. A swing move displacing an endpoint with respect

to a cut-point.

Lemma 8: A fake forbidden move on a labeled braidoid diagram is generated

by L-moves, planar isotopy moves and fake or restricted swing moves.

Proof. The proof can be verified by Figure 32. The figure illustrates a finite

sequence of planar isotopy moves, addition/deletion of Lu-moves and restricted

swing moves that gives the fake forbidden move. This can be varied to include

Lo-moves (when the swinging arc goes under a braidoid strand) and fake swing

moves (when the swinging arc swings across the vertical line determined by the

braidoid end that is connected to the swinging endpoint with the swinging arc,

see the first instance of Figure 25. Figure 33 also illustrates the statement on a

complete labeled braidoid diagram.
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Figure 32. A fake forbidden move via L-moves and a swing

move.

uo uo uo u uu uo u

a fake swing move  
            and
a planar isotopy move

an Lu-move  at P

P

delete an Lu-move planar isotopy

Figure 33. A fake forbidden move on a labeled braidoid dia-

gram.

Lemma 9: Two (multi-)knotoid diagrams in R2 are related to each other by

planar isotopy and Ω-moves only if the corresponding labeled braidoid diagrams

are L-equivalent.

Proof. The lemma follows from Lemma 7 and Lemma 8.
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From Lemma 6 and Lemma 9 it follows that the braidoing map br is a well-

defined map. Lastly, it needs to be shown that br is the inverse map of clL.

Let B be a labeled braidoid diagram. It is clear that the closure diagram

of B, ̂B, is a knotoid diagram in general position whose only up-arcs are the

connection arcs taking place in closing B. The braidoiding algorithm eliminates

each up-arc of ̂B and turns it into a labeled braidoid diagram which is isotopic

to B. Thus,

br ◦ clL = id.

Given a knotoid diagram K in general position, by applying the braidoiding

algorithm we obtain a labeled braidoid diagram B. Clearly the closure of any

labeled braidoid diagram that is L-equivalent to B is isotopic to K. Hence it

follows that

clL ◦ br = id.

By the above the proof of Theorem 3 is now completed.

7. From braidoids to braids

In this section we show another application of the L-moves, namely, the induced

relation between the set of all braidoid diagrams and the set of all classical or

virtual braid diagrams.

We define a virtual braidoid diagram to be a braidoid containing classical

as well as virtual crossings and a virtual braidoid to be the equivalence class

of virtual braidoid diagrams under the moves of the braidoid diagrams extended

by the virtual braid moves. For more on virtual braids and the virtual braid

group the reader may consult [25, 26, 6] and references therein. Further, for

analogues of the Alexander and the Markov theorems for virtual knots and

virtual braids see [27, 23].

In analogy to knotoids closing to classical or virtual knots, a braidoid resp. a

virtual braidoid diagram is closed to a classical resp. a virtual braid diagram

by connecting its endpoints with a simple arc in the plane. There are only

finitely many intersection points between the connecting arc and the braidoid

diagram, which are transversal double points endowed with under resp. over

virtual crossing data. By a classical topological argument, the arc connecting

the endpoints of a braidoid diagram is unique up to isotopy in the classical or

in the virtual sense.
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7.1. The under-pass closure and the virtual closure. We fix the con-

necting arc to be passing under any other arc. In order to receive as outcome

a braid diagram, we must also ensure the braid monotonicity condition. There

can be two cases for the connection. If the head of the braidoid diagram ap-

pears before its leg (as t increases), then a downward directed arc can be chosen

to connect them; see the top row of Figure 34 for an abstract illustration. If,

however, the leg of the braidoid diagram appears before its head, then any arc

connecting them is an arc that is directed upward, an up-arc, in the resulting

tangle diagram. In this case, we apply a braiding move on the connecting arc

which turns it into two new corresponding braid strands. See the bottom row

of Figure 34 for an abstraction of this case.

Figure 34. The under-pass closure.



990 N. GÜGÜMCÜ AND S. LAMBROPOULOU Isr. J. Math.

Definition 12: For any given braidoid diagram we define the under-pass clo-

sure of its endpoints as follows. If the head is in a relatively higher position

than the leg, we join them together with a straight under-passing arc. If the leg

is located higher than the head, then we extend both endpoints by a pair of cor-

responding under-passing braid strands, emanating from the leg and the head

respectively, and vertically aligned with a point on the straight arc connecting

the two endpoints.

The above apply analogously for the case where the connecting arc is passing

virtually any other arc. In this case we obtain in the end a virtual braid, and

call the closure the virtual closure. Especially in the case where the leg of

the braidoid diagram appears before its head we eliminate the joining up-arc

by a virtual braiding move, whereby all crossings in the resulting new pair of

strands are virtual; see [27].

7.2. The induced mappings. We shall now establish that the under-pass clo-

sure (resp. the virtual closure) defined on braidoid diagrams induces a well-

defined map on the set of braidoids (that is, isotopy classes of braidoid dia-

grams). We have the following proposition.

Proposition 1: The under-pass closure is a well-defined surjective map from

the set of braidoids to the set of L-equivalence classes of classical braids. Simi-

larly, the virtual closure is a well-defined surjective map from the set of virtual

braidoids to the set of virtual L-equivalence classes of virtual braids.

Proof. It is straightforward to show that the under-pass closure is a surjective

map. Indeed, by cutting out from a given braid diagram an open arc that

either contains no crossings or it is an under-passing arc (resp. a virtual arc),

we obtain a braidoid diagram whose under-pass closure (resp. virtual closure)

is clearly the original braidoid (resp. virtual braidoid) diagram.

Consider a braidoid isotopy on a given braidoid diagram (resp.virtual braidoid

isotopy on a virtual braidoid diagram). The isotopy may keep the endpoints

fixed or it may change their relative vertical or horizontal positions. If the

isotopy keeps the endpoints fixed, then after the under-pass (resp. virtual)

closure this isotopy clearly transforms into braid isotopy (recall Section 3.2).

Suppose that a swing move on one of the endpoints takes place. If the connecting

arc is a down-arc, then the corresponding braid diagrams clearly differ by braid
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isotopy (resp. virtual braid isotopy). If, however, the connecting arc is an up-

arc, then the swing move may change the vertical level (the ordering amongst

the strands) of the resulting two braid strands. For an illustration see Figure 35.

Yet, the two resulting braids will differ by conjugation, which is known to be a

special case of L-equivalence [32] (resp. virtual L-equivalence [27]).

swing move

1 n-1 1 n-1

1 n 1 n

braiding moves at different points

braid conjugation

Figure 35. A swing move transforms into an L-move on the

under-pass closure.

Suppose now that a vertical move on the endpoints takes place. If this move

does not change the relative heights of the endpoints, it is clear that the con-

necting arcs are isotopic. If, however, the move changes the relative heights of

the endpoints, then the connecting arc changes from a down-arc to an up-arc or

vice versa; see Figure 36. In this case, the two resulting braid diagrams differ

by an Lu-move (resp. virtual L-move) applied on the connecting down-arc of

the one diagram and at the same vertical level as that of the braiding move

applied on the connecting up-arc of the other diagram.

By the arguments above the proof of Proposition 1 is completed.
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1

1 n-1

1 n-1

vertical move

n-1

1 n-1

underpass closure

 1     ni*

braiding moveLu-move

Figure 36. A vertical move transforms into an L-move on the

under-pass closure.

8. Discussion

The theory of braidoids is a new diagrammatic setting extending the classical

braid theory and giving rise to many new problems; the underlying algebraic

structure for braidoids is not known yet and we will examine it in a subsequent

paper. However, we know how to partition a braidoid diagram into smaller
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diagrams that we call elementary blocks [19, 17]. Knots and knotoids have been

used for topological tabulation of proteins which are open molecular chains.

In [19] we suggest that braidoids can set up an algebraic way for tabulating

proteins by the use of elementary blocks.
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