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ABSTRACT

Given a group G, we write xG for the conjugacy class of G containing

the element x. A famous theorem of B. H. Neumann states that if G is

a group in which all conjugacy classes are finite with bounded size, then

the derived group G′ is finite. We establish the following result.

Let n be a positive integer and K a subgroup of a group G such

that |xG| ≤ n for each x ∈ K. Let H = 〈KG〉 be the normal closure

of K. Then the order of the derived group H′ is finite and n-bounded.

Some corollaries of this result are also discussed.

1. Introduction

Given a group G and an element x ∈ G, we write xG for the conjugacy class

containing x. Of course, if the number of elements in xG is finite, we have

|xG| = [G : CG(x)].

A group is called a BFC-group if its conjugacy classes are finite and have

bounded size. In 1954, B. H. Neumann discovered that in a BFC-group the

derived group G′ is finite [10]. It follows that if |xG| ≤ n for each x ∈ G, then

the order of G′ is bounded by a number depending only on n. A first explicit

bound for the order of G′ was found by J. Wiegold [17], and the best known was
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obtained in [7] (see also [11] and [14]). The article [3] deals with groups G in

which conjugacy classes containing commutators are bounded. In particular, [3]

contains a proof of the following theorem.

Theorem: Let n be a positive integer and G a group. If |xG| ≤ n for any

commutator x, then |G′′| is finite and n-bounded.

Here G′′ denotes the second commutator subgroup of G. Throughout the ar-

ticle we use the expression “(a, b, . . . )-bounded” to mean that a quantity is finite

and bounded by a certain number depending only on the parameters a, b, . . . .

The following extension of the aforementioned theorems to higher commutator

subgroups was obtained in [1].

Theorem: Let n be a positive integer and w a multilinear commutator word.

Suppose that G is a group in which |xG| ≤ n for each w-value x ∈ G. Then the

verbal subgroup w(G) has derived group of finite n-bounded order.

A related result for groups in which the conjugacy classes containing squares

have finite bounded sizes was established in [4].

In the present paper we obtain a variation of different nature for the Neumann

theorem.

Theorem 1.1: Let n be a positive integer, G a group having a subgroup K

such that |xG| ≤ n for each x ∈ K, and let H = 〈KG〉. Then the order of the

derived group H ′ is finite and n-bounded.

Here, as usual, 〈KG〉 denotes the normal closure of K in G.

Theorem 1.1 will be proved in the next section. Section 3 contains several

easy but surprising corollaries of Theorem 1.1 for finite groups. In Section 4

we handle profinite groups with restricted centralizers. A group G is said to

have restricted centralizers if for each g in G the centralizer CG(g) either is

finite or has finite index in G. This notion was introduced by Shalev in [15]

where he showed that a profinite group with restricted centralizers is virtually

abelian. We say that a profinite group has a property virtually if it has an open

subgroup with that property. The recent article [2] handles profinite groups

with restricted centralizers of w-values for a multilinear commutator word w.

The theorem proved in [2] says that if w is a multilinear commutator word

and G is a profinite group in which the centralizer of any w-value is either

finite or open, then the verbal subgroup w(G) is virtually abelian. In Section 4

we establish
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Theorem 1.2: Let p be a prime and G a profinite group in which the centralizer

of each p-element is either finite or open. Then G has a normal abelian pro-p

subgroup N such that G/N is virtually pro-p′.

The proof of Theorem 1.2 is based on Theorem 1.1. It also uses the celebrated

theorem of Zelmanov [18] which states that a torsion pro-p group is locally

nilpotent.

2. Proof of the main result

The purpose of this section is to prove Theorem 1.1. We start with the following

result which is somewhat similar to Dietzmann’s lemma which says that if x

is an element of finite order in a group G such that xG is finite, then also the

subgroup 〈xG〉 is finite (see [12]).

Lemma 2.1: Let i, j be positive integers and G a group having a subgroup K

such that |xG| ≤ i for each x ∈ K. Suppose that |K| ≤ j. Then 〈KG〉 has

finite (i, j)-bounded order.

Proof. Since CG(K) =
⋂

x∈K CG(x), we observe that the index of CG(K) in G is

at most ij . Let C be the maximal normal subgroup of G contained in CG(K).

Of course, the index of C in G is at most (ij)!. Set H = 〈KG〉. It follows

that |H/Z(H)| ≤ (ij)! and Schur’s theorem [13, 10.1.4] tells us that the order

of H ′ is (i, j)-bounded. Passing to the quotient G/H ′ we can assume that H is

abelian. Then H is a product of at most ij conjugates of K and so the order

of H is at most ji
j

, as desired.

Let G be a group generated by a set X such that X = X−1. Given an

element g ∈ G, we write lX(g) for the minimal number l with the property

that g can be written as a product of l elements of X . The symbol lX(g)

denotes the length of g with respect to X . The proof of the following result can

be found in [3, Lemma 2.1].

Lemma 2.2: Let H be a group generated by a set X = X−1 and let K be a

subgroup of finite index m in H . Then each coset Kb contains an element g

such that lX(g) ≤ m− 1.

We now fix some notation and a hypothesis that we will use within the current

section.
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Hypothesis 2.3: Let G be a group having a subgroup K such that |xG| ≤ n,

for any x ∈ K, and let H = 〈KG〉. Denote by X the set of all conjugates of

elements of K, that is,

X =
⋃

g∈G

Kg.

Let m be the maximum of indices of CH(x) in H for x ∈ K. Select a ∈ K

such that |aH | = m. Choose b1, . . . , bm in H such that lX(bi) ≤ m − 1

and aH = {abi ; i = 1, . . . ,m}. (The existence of the elements bi is guaranteed

by Lemma 2.2.) Set

U = CG(〈b1, . . . , bm〉).
Some of the arguments we use in the proof of the next lemmas are similar to

those used in [3].

Lemma 2.4: Assume Hypothesis 2.3. Then for any x ∈ X the subgroup [H,x]

has finite m-bounded order.

Proof. Take x ∈ X . Since the index of CH(x) in H is at most m, by Lemma 2.2,

we can choose elements y1, . . . , ym in H such that lX(yi) ≤ m− 1 and the sub-

group [H,x] is generated by the commutators [yi, x], for i = 1, . . . ,m. For any

such i write yi = yi1 . . . yi(m−1), with yij ∈ X . By using standard commutator

identities we can rewrite [yi, x] as a product of conjugates in H of the commu-

tators [yij , x]. Let {h1, . . . , hs} be the conjugates in H of all elements from the

set {x, yij | 1 ≤ i, j ≤ m}. Note that the number s here is m-bounded. This

follows form the fact that CH(x) has index at most m in H for each x ∈ X .

Put T = 〈h1, . . . , hs〉. Since [H,x] is contained in T ′, it is enough to show

that T ′ has finite m-bounded order. Observe that the center Z(T ) has index at

most ms in T , since the index of CH(hi) is at most m in H for any i = 1, . . . , s.

Thus, by Schur’s theorem [13, 10.1.4], we conclude that T ′ has finite m-bounded

order, as desired.

Note that the index of U in G is n-bounded. Indeed, since lX(bi) ≤ m − 1

we can write bi = bi1 . . . bi(m−1), where bij ∈ X and i = 1, . . . ,m. By the

hypothesis the index of CG(bij) in G is at most n for any such element bij .

Thus,

[G : U ] ≤ n(m−1)m.

The next result is somewhat analogous to Lemma 4.5 of Wiegold in [17].
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Lemma 2.5: Assume Hypothesis 2.3. Suppose that u ∈ U and ua ∈ X . Then

[H,u] ≤ [H, a].

Proof. Recall that U = CG(〈b1, . . . , bm〉). For each i = 1, . . . ,m we

have (ua)bi = uabi , since u belongs to U . We know that ua ∈ X , so, tak-

ing into account the hypothesis on the order of the conjugacy class of ua in H ,

we deduce that (ua)H consists exactly of the elements uabi , for i = 1, . . . ,m.

Thus, given an arbitrary element h ∈ H , there exists b ∈ {b1, . . . , bm} such that

(ua)h = uab and so uhah = uab. It follows that [u, h] = aba−h ∈ [H, a], and the

result holds.

We are now ready to embark on the proof of Theorem 1.1.

Proof of Theorem 1.1. Recall that G is a group having a subgroup K such

that |xG| ≤ n for any x in K. Let H = 〈KG〉. We need to show that |H ′|
is finite and n-bounded.

As above, the symbol X denotes the set of all conjugates of elements of K.

Thus H = 〈X〉. Let m be the maximum of indices of CH(x) in H , where x ∈ K.

Note that m ≤ n. Choose a ∈ K such that CH(a) has index precisely m

in H . By Lemma 2.2 we can choose b1, . . . , bm in H such that lX(bi) ≤ m − 1

and aH = {abi ; i = 1, . . . ,m}. Set U = CG(〈b1, . . . , bm〉). Note that the index

of U in G is n-bounded.

By the hypothesis a has at most n conjugates in G, say {ag1 , . . . , agn}, that
are elements of X . Let T be the normal closure in G of the subgroup [H, a], thus

T = [H, ag1 ] · · · [H, agn ]. By Lemma 2.4 each of these subgroups has n-bounded

order. We conclude that T has finite n-bounded order.

LetK0=K∩U . Note that for any u∈K0 the product ua belongs toK. There-

fore, by Lemma 2.5, for any u in K0, the subgroup [H,u] is contained in [H, a].

Since T has finite n-bounded order, it is sufficient to show that the derived

group of the quotient H/T has finite n-bounded order. We pass now to the

quotient G/T and, for the sake of simplicity, the images of G, H,U,K and K0

will be denoted by the same symbols. Note that the subgroup K0 becomes

central inH modulo T . Next we consider the quotient G/Z(H). Since the image

ofK0 in G/Z(H) is trivial, we deduce that the subgroupK has n-bounded order

modulo Z(H). Indeed, in G/Z(H) the order of the image of K is at most the

index of U in G. Now it follows from Lemma 2.1 that H has n-bounded order

modulo Z(H). Thus, by Schur’s theorem [13, 10.1.4], we conclude that |H ′| is
n-bounded, as desired.
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3. Corollaries concerning finite groups

In this section we will record several easy corollaries of Theorem 1.1 concerning

finite groups. If φ is an automorphism of a group G, then the centralizer CG(φ)

is the subgroup formed by the elements x ∈ G such that xφ = x. In the case

where CG(φ) = 1 the automorphism φ is called fixed-point-free. A famous

result of Thompson [16] says that a finite group admitting a fixed-point-free

automorphism of prime order is nilpotent. Higman proved that for each prime p

there exists a number h = h(p) such that whenever a nilpotent group G admits

a fixed-point-free automorphism of order p, it follows that G is nilpotent of

class at most h [8]. Therefore the nilpotency class of a finite group admitting a

fixed-point-free automorphism of order p is at most h.

If φ is an automorphism of a finite group G such that (|G|, |φ|) = 1, then for

each normal φ-invariant subgroup N of G we have CG/N (φ) = CG(φ)N/N (see,

for example, [6, Theorem 6.2.2 (iv)]). Write γi(G) for the ith term of the lower

central series of a group G. We have

Corollary 3.1: Let n be a positive integer and G a finite group admitting

an automorphism φ of prime order p such that (|G|, p) = 1 and |xG| ≤ n for

each x ∈ CG(φ). Let h = h(p). Then the order of the derived group of γh+1(G)

is n-bounded.

Proof. Let H be the normal closure of CG(φ). Theorem 1.1 tells us that the or-

der ofH ′ is n-bounded. Note that φ acts fixed-point-freely on the quotientG/H ,

whence G/H is nilpotent of class at most h. Therefore γh+1(G) ≤ H and so

the derived group of γh+1(G) is contained in H ′. The result follows.

Observe that in the particular case where p = 2, Corollary 3.1 states that G′′,
the second derived group of G, has n-bounded order. This is because h(2) = 1,

that is, a finite group admitting a fixed-point-free automorphism of order two

is necessarily abelian.

Recall that any finite soluble groupG has a Sylow basis — a family of pairwise

permutable Sylow pi-subgroups Pi of G, exactly one for each prime divisor of

the order of G, and any two Sylow bases are conjugate. The system normalizer

(also known as the basis normalizer) of such a Sylow basis in G is the intersec-

tion T =
⋂

iNG(Pi). If G is a finite soluble group and T is a system normalizer

in G, then G = 〈TG〉 (see [13, Theorem 9.2.8]). Therefore we deduce
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Corollary 3.2: Let n be a positive integer, G a finite soluble group having a

system normalizer T such that |xG| ≤ n for each x ∈ T . Then the order of the

derived group G′ is n-bounded.

Given a finite group G, the soluble residual of G is defined as the smallest

normal subgroup R with the property that the quotient G/R is soluble.

Corollary 3.3: Let n be a positive integer and G a finite group in

which |xG| ≤ n for each 2-element x ∈ G. Then the order of the soluble

residual of G is n-bounded.

Proof. If G has odd order, then by the Feit–Thompson Theorem [5] G is soluble

and so the soluble residual of G is trivial. Therefore we assume that the order

of G is even. Let S be a Sylow 2-subgroup of G, and let H be the normal

closure of S. Theorem 1.1 tells us that the order of H ′ is n-bounded. The

Feit–Thompson Theorem shows that G/H ′ is soluble. Hence, H ′ contains the
soluble residual of G and the result follows.

4. Proof of Theorem 1.2

Recall that a group G is said to have restricted centralizers if for each g in G the

centralizer CG(g) either is finite or has finite index in G. Of course, in the case

where G is profinite this is equivalent to saying that CG(g) either is finite or is

open. Shalev showed in [15] that a profinite group with restricted centralizers

is virtually abelian. The goal of this section is to establish Theorem 1.2:

Theorem 1.2: Let p be a prime and G a profinite group in which the centralizer

of each p-element is either finite or open. Then G has a normal abelian pro-p

subgroup N such that G/N is virtually pro-p′.

Throughout, by a subgroup of a profinite group we mean a closed subgroup.

As usual, we say that a group has a certain property locally if every finitely

generated subgroup has that property. The next lemma is almost obvious. We

include the proof for the reader’s convenience. Note that the lemma is no longer

true if we drop the assumption that G is residually finite (cf. the non-abelian

semidirect product of the Prüfer group C2∞ by the group of order 2).
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Lemma 4.1: Let G be a locally nilpotent group containing an element with

finite centralizer. Suppose that G is residually finite. Then G is finite.

Proof. Choose x ∈ G such that CG(x) is finite. Let N be a normal subgroup of

finite index such that N ∩ CG(x) = 1. Assume that N �= 1 and let 1 �= y ∈ N .

The subgroup 〈x, y〉 is nilpotent and so the center of 〈x, y〉 has nontrivial in-

tersection with N . This is a contradiction since N ∩ CG(x) = 1. The result

follows.

The next lemma is somewhat similar to Lemma 2.6 in Shalev [15].

Lemma 4.2: Let G be a profinite group having a subgroup K such that the

conjugacy class xG is finite for each x ∈ K. Then there is an integer n such

that |xG| ≤ n for each x ∈ K.

Proof. For each integer i ≥ 1 set

Si = {x ∈ K; |xG| ≤ i}.
The sets Si are closed. Thus, we have at most countably many sets which

cover the subgroup K. The Baire Category Theorem [9, Theorem 34] says

that at least one of these sets has non-empty interior. It follows that there

exists an open normal subgroup N in G, an element a ∈ K, and a positive

integer m such that |yG| ≤ m whenever y ∈ a(N ∩ K). Set K0 = N ∩ K.

Since every element x of K0 can be written as a product of a−1 and ax and

since the centralizers of both a−1 and ax have indices at most m, we conclude

that |xG| ≤ m2 whenever x ∈ K0. Let x1, . . . , xs be a full system of coset

representatives for K0 in K and set

mj = |xj
G| for j = 1, . . . , s.

Let n be the product m1 · · ·msm
2. We deduce that |xG| ≤ n for each x ∈ K,

as required.

We can now proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let P be a Sylow p-subgroup ofG. Suppose first that the

conjugacy class xG is finite whenever x is a p-element in G. By Lemma 4.2 there

is an integer n such that |xG| ≤ n for each x ∈ P . Let H = 〈PG〉. Theorem 1.1

tells us that the derived group H ′ is finite. Choose an open normal subgroup L

in G such that L ∩ H ′ = 1. Then L ∩ H is a normal abelian pro-p subgroup

while G/(L∩H) is virtually pro-p′. This proves the theorem in the case where

the conjugacy classes of p-elements are finite.
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Therefore we assume that P has an element whose centralizer in G is finite.

Suppose that P is torsion. Zelmanov’s theorem [18] says that P is locally

nilpotent. In view of Lemma 4.1 the Sylow subgroup P is finite and so G is

virtually pro-p′, as required.
Hence, we assume that P contains an element a of infinite order. This implies

that CG(a) is open, because 〈a〉 is infinite and contained in CG(a). Let C be an

open normal subgroup of G contained in CG(a). Since every element of C cen-

tralizes 〈a〉, it follows that the centralizer in G of every element from P0 = P ∩ C

is open. By Lemma 4.2 there is an integerm such that |xG| ≤ m for each x ∈ P0.

LetM = 〈P0
G〉. In virtue of Theorem 1.1 the derived groupM ′ is finite. Choose

an open normal subgroup J in G such that J ∩M ′ = 1. Then J ∩M is a nor-

mal abelian pro-p subgroup while G/(J ∩M) is virtually pro-p′. The proof is

complete.
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