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ABSTRACT

We define a canonical quadratic pair on the Clifford algebra of an algebra

with quadratic pair over a field. This allows us to extend to the charac-

teristic 2 case the notion of trialitarian triples, from which we derive a

characterization of totally decomposable quadratic pairs in degree 8. We

also describe trialitarian triples involving algebras of small Schur index.

1. Introduction

Triality is a phenomenon that arises due to the high level of symmetry in the

Dynkin diagram D4. This symmetry is reflected in objects associated to groups

of type D4, such as 8-dimensional quadratic forms, and degree 8 central simple

algebras with orthogonal involution. More precisely, consider a degree 8 central

simple algebra A over a field F of characteristic different from 2. Assume A
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is endowed with an orthogonal involution σA with trivial discriminant. The

Clifford algebra C(A, σA), with its canonical involution σA, is a direct product

of two central simple algebras with involution, which also have degree 8 and are

of orthogonal type, so that we actually get a triple

((A, σA), (B, σB), (C, σC)),

called a trialitarian triple, and an isomorphism

(�) (C(A, σA), σA) � (B, σB)× (C, σC).

By [17, §42], triality then permutes the algebras with involution in this expres-

sion. That is, (�) implies the existence of isomorphisms

(C(B, σB), σB) �(C, σC)× (A, σA),

(C(C, σC), σC) �(A, σA)× (B, σB).

In particular, it follows that the Clifford algebra, viewed as an algebra with

involution, is a complete invariant for orthogonal involutions with trivial dis-

criminant on a degree 8 algebra.

This trialitarian relation has proven to be extremely fruitful; roughly speak-

ing, triality plays the same role in degree 8 as the so-called exceptional isomor-

phisms in smaller degree. For instance, it can be used to characterize totally

decomposable orthogonal involutions on algebras of degree 8 (see [17, §42.B]

and connected problems in [4]). It is related to the classification of groups of

type D4 (see [17, §44] and [13]). It makes the degree 8 case a crucial test case

for some general questions on algebras with involution; see, for instance, [21,

Thm. 5.2] and [22, §4]. Finally, this better understanding of the degree 8 case

can in turn be used to answer questions in larger degree; for instance, it leads

to an example of a degree 16 non-totally decomposable algebra with involution

that is totally decomposable after generic splitting of the underlying algebra,

see [23, Thm. 1.3].

For fields of characteristic 2, triality is not as well studied due to complications

arising when studying quadratic forms and orthogonal groups over these fields.

In particular, the notions of symmetric bilinear forms and quadratic forms are

no longer equivalent. Over such a base, the automorphism group of a bilinear

form is not semisimple anymore, so the corresponding twisted objects, in partic-

ular orthogonal involutions, cannot be used to describe such algebraic groups.

Twisted groups of type D in characteristic 2 were initially studied by Tits, who
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used so-called generalized quadratic forms (see [26] or §5.2), which appear to

be a good replacement for hermitian forms in this setting. Involution-like cor-

responding objects, namely quadratic pairs, were introduced later in [17, §5].

They are related to generalized quadratic forms by an adjunction process, and

behave better than generalized quadratic forms, for instance under scalar ex-

tension. They provide an appropriate tool to describe groups of type D. This

theory is developed in The Book of Involutions [17], where most of the mate-

rial, about involutions and quadratic pairs, their invariants, and relations to

algebraic groups, is developed over a field of arbitrary characteristic. However,

Chapter X, about Trialitarian Central Simple Algebras, is one of the rare ex-

ceptions in [17]; the base field is assumed to be of characteristic not 2 in that

section.

That the group Spin8 has this exceptionally large group of outer automor-

phisms is true independent of the characteristic of the underlying field, and

hence some trialitarian relation should hold for quadratic pairs in characteris-

tic 2 also. One has a notion of a Clifford algebra of a quadratic pair, and we

again have that the Clifford algebra of a quadratic pair with trivial discriminant

is the direct product of two degree 8 central simple algebras with involution (see

[17, §7 and §8]). However, in order to fully recapture the trialitarian relation,

one also needs that the Clifford algebra be equipped with a canonical quadratic

pair, not just a canonical involution. A definition of this canonical quadratic

pair is briefly sketched out in [17, p. 149], in the particular case where A is

split, of degree divisible by 8, and endowed with a hyperbolic quadratic pair.

From this, one can define a canonical quadratic pair in the more general case

via Galois descent. However, this definition is not easy to use, and the lack

of a ‘rational’ definition, that is a definition that avoids the use of Galois de-

scent, is one reason why the results in [17, Chapt. X] are restricted to fields of

characteristic different from 2 (see [17, Chapt. X, Notes] for more details).

The main purpose of this paper is to provide a rational definition for the

canonical quadratic pair of the Clifford algebra of an algebra with quadratic

pair, see Section 3.1. We use as a crucial tool the Lie algebra structures de-

scribed in [17, §8.C]. We also provide an explicit description of this canonical

quadratic pair in the split case in Section 3.2. With this in hand, we extend

to arbitrary fields the main results of [17, (§42)]. In particular, we define a no-

tion of trialitarian triple, and describe the trialitarian action in Section 4, and

we characterize totally decomposable algebras with quadratic pair in degree 8
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in Theorem 5.1. The last section describes all trialitarian triples of small enough

Schur index, see Section 5.2. Partial results in this direction were previously

obtained by Knus and Villa [18, § 7].

We first recall some notation and basic results (§2.1 to 2.3), and make some

preliminary observations on quadratic pairs and tensor products (§2.4).

Acknowledgments. We are grateful to Seidon Alsaody, Philippe Gille and

Jean-Pierre Tignol for insightful discussions.

2. Preliminaries

Throughout the paper, F is a field. We refer the reader to [19] as a general

reference on central simple algebras, [17] for involutions and quadratic pairs

and [11] for hermitian, bilinear and quadratic forms. Most of our notations are

borrowed from those books.

2.1. Algebras with involution. Let A be a central simple algebra of de-

gree n over F . To all a ∈ A, we associate its reduced characteristic polynomial

PrdA,a(X) = Xn − s1(a)Xn−1 + s2(a)X
n−2 − · · ·+ (−1)nsn(a),

which is the characteristic polynomial of a⊗ 1 ∈ A⊗F Ω �Mn(Ω), where Ω is

an algebraic closure of F , see [19, §16.1]. The coefficients of PrdA,a belong to F ;

s1(a) and sn(a) are the reduced trace and the reduced norm of a, respectively

denoted by TrdA(a) and NrdA(a), and s2(a) is denoted by SrdA(a).

All the involutions considered in this paper are F -linear. If the algebra A is

split, that is, A � EndF (V ) where V is a finite dimensional F -vector space, an

F -linear involution on A is the adjoint of a nondegenerate symmetric or skew-

symmetric bilinear form b : V × V → F , uniquely defined up to a scalar factor.

We denote this algebra with involution by Adb. The involution is symplectic

if b is alternating, and orthogonal if b is symmetric and non-alternating.

Let σ be an F -linear involution on A. We use the same notation as in [17,

§2.A] for the subvector spaces Sym(A, σ), Symd(A, σ), Skew(A, σ) and Alt(A, σ)

of symmetric, symmetrized, skew-symmetric and alternating elements, respec-

tively. Recall Sym(A, σ) = Symd(A, σ) if the base field has characteristic dif-

ferent from 2, while in characteristic 2, Symd(A, σ) = Alt(A, σ) is a strict

subspace of Sym(A, σ) = Skew(A, σ), and these spaces have dimension n(n−1)
2

and n(n+1)
2 , respectively. Still assuming the base field has characteristic 2, one
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may prove that the involution σ is symplectic if and only if 1 is a symmetrized

element, or equivalently all symmetric elements have reduced trace 0 [17, (2.6)].

In particular, in characteristic 2, a tensor product of involutions with at least

one symplectic factor always is symplectic. In characteristic different from 2,

a tensor product of involutions is symplectic if and only if there are an odd

number of symplectic involutions in the product (see [17, (2.23)]).

Recall that in arbitrary characteristic, an F -quaternion algebra has a ba-

sis (1, u, v, w) such that

u(1− u) = a, v2 = b and w = uv = v(1 − u)

for some a ∈ F with 4a �= −1 and b ∈ F× (see [1, Chap. IX, Thm. 26]); any such

basis is called a quaternion basis throughout this paper. Conversely, for a ∈ F
and b ∈ F× the above relations uniquely determine an F -quaternion algebra,

which we denote by H = [a, b). If the characteristic of F is different from 2,

substituting i = u − 1
2 and j = v gives the more usual presentation of Q, that

is a basis {1, i, j, ij}, with i2 = c, j2 = d for c, d ∈ F× and ij = −ji. In this

case we denote Q by (c, d).

Recall H = [a, b) has a unique symplectic involution, called the canonical

involution, which is determined by the conditions that u = 1 − u and v = −v.
Considering H as a 4-dimensional vector space over F , we may view NrdH as

a 4-dimensional quadratic form over F , which we call the norm form of H .

2.2. Quadratic forms and their Clifford algebras. We refer to [11] as

a general reference on bilinear and quadratic forms. For b ∈ F×, we denote the

2-dimensional symmetric bilinear form

(x1, x2)× (y1, y2) �→ x1y1 − bx2y2
by 〈〈b〉〉. Such a form is called a 1-fold bilinear Pfister form. For a nonnegative

integer m, by an m-fold bilinear Pfister form, we mean a nondegenerate sym-

metric bilinear form isometric to a tensor product of m 1-fold bilinear Pfister

forms; we use the notation 〈〈b1, . . . , bm〉〉 � 〈〈b1〉〉 ⊗ · · ·⊗ 〈〈bm〉〉, where ⊗ denotes

the usual tensor product on bilinear forms.

Let V be a finite dimensional F -vector space and q : V → F a quadratic

form. The polar form of q is the symmetric bilinear form on V defined by

bq(x, y) = q(x + y)− q(x) − q(y),
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so that bq(x, x) = 2q(x) for all x ∈ V . The quadratic form q is called nonsingular

if its polar form is nondegenerate. In characterictic 2, the polar form bq is

alternating; hence if q is nonsingular, then V has even dimension and bq is

hyperbolic [11, Prop. 1.8]. We denote the isometry of quadratic forms using �
and orthogonal sum of quadratic forms using ⊥. For all b1, b2 ∈ F , we let [b1, b2]
be the quadratic form (x, y) → b1x

2 + xy + b2y
2. This form is nonsingular if

and only if −1 �= 4b1b2. Note that the hyperbolic plane H = [0, 0] satisfies the

following isometries H � [a, 0] � [0, a] for all a ∈ F , so for every nonsingular

2-dimensional quadratic form we may choose a presentation [a, b] with a �= 0.

Recall that any nonsingular quadratic form φ over F decomposes uniquely as

the orthogonal sum of an anisotropic form called the anisotropic part of φ and

denoted by φan, and a hyperbolic form. We thus have φ � φan ⊥ iW (φ) × H,

and the integer iW (φ) is the so-called Witt index of φ.

To a quadratic form q : V → F and a symmetric bilinear form b :W×W → F ,

one associates the quadratic form, denoted by b⊗ q and defined on W ⊗ V by

(b⊗ q)(w ⊗ v) = b(w,w)q(v) for all w ∈W and v ∈ V

(see [11, p. 51]). For any positive integer m, by an m-fold quadratic Pfister

form we mean a quadratic form that is isometric to the tensor product of an

(m − 1)-fold bilinear Pfister form and a nonsingular binary quadratic form

representing 1. We use the notation 〈〈b1, . . . , bm−1, c]] = 〈〈b1, . . . , bm−1〉〉⊗ [1, c].

In particular, the 1-fold quadratic Pfister form 〈〈c]] is the quadratic form [1, c],

regardless of the characteristic of the base field; we thus slightly depart here

from the notations in [11, Example 9.4].

Recall that the Clifford algebra of a quadratic space (V, q) is a quotient

of the tensor algebra T (V ) by the ideal I(q) generated by elements of the

form v ⊗ v − q(v) · 1 for v ∈ V . It has a natural Z/2Z-grading, and the subalge-

bra C0(q) of degree 0 elements is called the even Clifford algebra. The identity

map on V extends to an involution on C(q) and C0(q) called the canonical in-

volution and denoted σq. If q is even-dimensional and nonsingular, the center

of C0(q) is a quadratic étale extension of F . It is determined by a class which

belongs to the multiplicative group of square classes F×/F×2 in characteristic

different from 2 and the additive group F/℘(F ) in characteristic 2, where

℘(F ) = {a2 + a | a ∈ F}
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is the image of the Artin–Schelter map. In both cases, we will refer to this

class as the discriminant of q and denote it by disc(q). If F has characteristic 2

and q � [a1, b1]⊥ · · ·⊥[an, bn] for some ai, bi in F , then disc(q) is the class

of a1b1 + · · ·+ anbn in F/℘(F ).

Example 2.1: For ease of reference in the sequel, we give an explicit description

of the even Clifford algebra of a nonsingular quadratic form over a field of

characteristic 2. Given such a form q, with polar form b, pick a decomposition

q � [a1, b1] ⊥ · · · ⊥ [am, bm],

and let e1, . . . , em, e
′
1, . . . , e

′
m be a basis of the underlying vector space V such

that for all i with 1 � i � m, we have q(ei) = ai, q(e
′
i) = bi, b(ei, e

′
i) = 1 and

all other pairs of basis vectors are orthogonal. We may assume ai �= 0 for all i.

The elements ui = eie
′
i and vi = eiem, for i ∈ {1, . . . ,m − 1}, belong to the

even part C0(q) of the Clifford algebra, and satisfy

ui(1 + ui) = aibi, v2i = aiam, uivi = vi(1 + ui).

They generate pairwise commuting quaternion subalgebras. Further, we have

that

σq(ui) = 1 + ui and σq(vi) = vi.

Moreover, the element

ξ =

m∑
i=1

eie
′
i

also belongs to C0(q), commutes with ui and vi for all i, 1 � i � m − 1, and

satisfies ξ2 = ξ + a1b1 + · · · + anbn. Hence, F [ξ] is a quadratic étale extension

of F , central in C0(q). We also have that

σq(ξ) =

⎧⎨
⎩1 + ξ if m is odd,

ξ if m is even.

So we finally get

(C0(q), σq) �
m−1⊗
i=1

(Qi, )⊗ (F [ξ], γ),

where Qi = [aibi, aiam), stands for the canonical involution, F [ξ] is the center

of C0(q), and γ is the identity if m is even and the non-trivial F -automorphism

of F [ξ] if m is odd.
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We finish this subsection with a characteristic free version of [15, (Example

9.12)] which we require in the sequel. The proof is similar, but we provide full

details and relevant references in characteristic 2 for convenience.

Proposition 2.2: Let q be an 8-dimensional nonsingular quadratic form over F

with trivial discriminant and Clifford algebra C(q) of Schur index at most 2.

Then there exists a 4-dimensional symmetric bilinear form B and a 2-dimen-

sional nonsingular form φ over F such that q � B ⊗ φ.
Proof. Over its function field, q is Witt equivalent to a 6-dimensional quadratic

form with trivial discriminant, that is an Albert form. By [17, (16.5)], this

Albert form is isotropic. Therefore, the Witt index of q over its function field

is at least 2. Choose a quadratic separable extension F (u)/F where u− u2 = a

for some a ∈ F with −1 �= 4a such that q becomes isotropic after extending

scalars to F (u). By [11, (25.1)], the Witt index of q over F (u) also is at least 2.

Hence by [3, Chapter V, (4.2)], we have that q � c〈〈b, a]] ⊥ q′ for some b, c ∈ F×

and a 4-dimensional nonsingular quadratic form q′ over F . Since q has trivial

discriminant, it follows that q′ also has trivial discriminant and hence q′ is

similar to a Pfister form, which we denote by π. The form 〈〈b, a]] ⊥ −π is

Witt equivalent to an Albert form, and has the same Clifford invariant as q, of

index � 2. Therefore, again its Witt index is at least 2, and by [11, (24.2)],

there exist symmetric bilinear forms B′ and B′′ and d ∈ F such that

〈〈b, a]] � B′ ⊗ [1, d] and π � B′′ ⊗ [1, d].

In particular, we have

q � B ⊗ [1, d]

for some symmetric bilinear form B over F .

2.3. Quadratic pairs and their Clifford algebras. In arbitrary char-

acteristic, algebraic groups of type D can be described in terms of quadratic

pairs. For the reader’s convenience, we recall here some basic facts on quadratic

pairs which can be found in [17, §5,7.B, 8.B], and which are used throughout

the paper.

Let A be a degree n central simple algebra over F . A quadratic pair on A

is a couple (σ, f), where σ is an F -linear involution on A, with Sym(A, σ)

of dimension n(n+1)
2 , and f is a so-called semi-trace on (A, σ). That is, f is
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an F -linear map f : Sym(A, σ)→ F such that

f(x+ σ(x)) = TrdA(x) for all x ∈ A.
In particular, all semi-traces coincide on the subspace Symd(A, σ) of sym-

metrized elements. In characteristic different from 2, if follows from this defi-

nition that σ is of orthogonal type and there is a unique semi-trace on (A, σ)

given by f(x) = 1
2 TrdA(x) for all x ∈ Sym(A, σ). Therefore quadratic pairs

and orthogonal involutions are equivalent notions when the characteristic is

not 2. Conversely, in characteristic 2, the existence of a semi-trace implies σ is

symplectic. Indeed, since

TrdA(c) = f(c+ σ(c)) = f(2c) = 0

for all c ∈ Sym(A, σ), the reduced trace vanishes on Sym(A, σ), and this char-

acterizes symplectic involutions by [17, (2.6)(2)].

One may easily check that for all 	 ∈ A such that 	 + σ(	) = 1, the F -linear

map defined by f�(s) = TrdA(	s) for all s ∈ Sym(A, σ) is a semi-trace on (A, σ).

Conversely, it is proved in [17, (5.7)] that any semi-trace f : Sym(A, σ) → F

coincides with f� for some 	 ∈ A satisfying 	 + σ(	) = 1. We say that the

element 	 gives or determines the semi-trace f�. Two distinct such elements 	

and 	′ determine the same semi-trace if and only if they differ by an alternating

element, that is 	 − 	′ = x− σ(x) for some x in A.

Let (V, q) be a nonsingular quadratic space over the field F . The polar form bq

of q induces an involution σq = adbq on A = EndF (V ). As explained in [17,

p. 55], there is an isomorphism of algebras with involution

ϕb : (EndF (V ), σq)
∼−→ (V ⊗ V, ε),

where the product in V ⊗ V is defined on elementary tensors by

(x⊗ y)(x′ ⊗ y′) = xbq(y, x
′)⊗ y′ for all x, y, x′, y′ ∈ V

and ε is the exchange involution, that is ε(x ⊗ y) = y ⊗ x. Moreover, by [17,

(5.11)], there exists a unique semi-trace f defined on Sym(V ⊗ V, ε) and satis-

fying f(x ⊗ x) = q(x) for all x ∈ V . Under the isomorphism above, f defines

a semi-trace fq on (EndF (V ), σq). The quadratic pair adq = (σq, fq) is called

the adjoint of q, and we use the notation Adq for the algebra with quadratic

pair (EndF (V ), σq , fq). As explained in loc. cit., any quadratic pair on a split

algebra EndF (V ) is the adjoint of a nonsingular quadratic form q on V .
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Let (A, σ, f) be an F -algebra with quadratic pair. We assume in addition A

has even degree n = 2m. For further use, we briefly recall the definition of the

discriminant and the Clifford algebra of (A, σ, f), as featured in [17]. Pick an

element 	 ∈ A which determines the semi-trace f = f�. Consider the sandwich

linear map Sand : A ⊗ A → EndF (A), as defined in [17, (3.4)]), where A

denotes A viewed as an F -vector-space. The Clifford algebra C(A, σ, f) of the

algebra with quadratic pair (A, σ, f) is the quotient of the tensor algebra T (A):

C(A, σ, f) = T (A)

J1(σ, f ) + J2(σ, f )

where

(1) J1(σ, f ) is the ideal generated by all the elements of the form s−f(s) ·1
for s ∈ A such that σ(s) = s;

(2) J2(σ, f) is the ideal generated by all elements of the form u−Sand(u)(	)
for u ∈ A ⊗ A such that σ2(u) = u and where σ2 is defined by the

condition

Sand(σ2(u))(x) = Sand(u)(σ(x)) for u ∈ A⊗A, x ∈ A.

The involution on T (A) acting as σ on A induces an involution σ of C(A, σ, f)
called the canonical involution, and satisfying

σ(a1 ⊗ . . .⊗ ar) = σ(ar)⊗ . . .⊗ σ(a1) for all a1, . . . , ar ∈ A.

This construction extends the even Clifford algebra for quadratic spaces, that

is if (A, σ, f) � Adq for some even dimensional nonsingular quadratic form q,

there is a canonical isomorphism between C(A, σ, f) and C0(q), and the canonical

involution σ corresponds to σq under this isomorphism. See [17, §8] for more

details.

Similarly, one may extend the discriminant of even dimensional quadratic

forms to quadratic pairs. More precisely, the center of the Clifford algebra

C(A, σ, f) is a quadratic étale extension of F . It is determined by a class which

belongs to the group of square classes F×/F×2 in characteristic different from 2,

and to the quotient F/℘(F ) of F by the image of the Artin–Schreier map

in characteristic 2. In both cases, this class is called the discriminant of the

quadratic pair, denoted by disc(σ, f). If (A, σ, f) � Adq for some nonsingular

quadratic form q, then disc(σ, f) = disc(q) in the relevant quotient.
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The discriminant of a quadratic pair can also be explicitly computed as fol-

lows. If the characteristic of F is different from 2,

disc(σ, f) = (−1)m NrdA(a) ∈ F×/F×2

for any element a ∈ Alt(A, σ) ∩A×, while in characteristic 2,

disc(σ, f) = Srd(	) +
m(m− 1)

2
∈ F/℘(F ),

where 	 determines the semi-trace f , and A has degree n = 2m. See [17, §7.B]

for more details.

2.4. Semi-traces and tensor products. Let A and B be two F -algebras,

which are central simple over a finite field extension of F . Assume σ and ρ are

symplectic if F has characteristic 2 and orthogonal otherwise, and consider an

embedding of F -algebras with involution

i : (A, σ)→ (D, ρ).

Any element 	 ∈ A such that 	 + σ(	) = 1 maps to an element i(	) ∈ D such

that i(	) + ρ(i(	)) = 1. In addition, alternating elements in (A, σ) map to

alternating elements in (D, ρ). Therefore, to any semi-trace f = f� on (A, σ),

we may associate a well defined semi-trace g = fi(�) on (D, ρ). Clearly, the

semi-trace g depends not only on f , but also on the embedding i. When i

is canonical, we forget the embedding and use the same notation f� for both

semi-traces. This correspondence is not extending or restricting the semi-trace

viewed as a map, even though imaps symmetric elements in (A, σ) to symmetric

elements in (D, ρ). For instance, if D is F -central and A has center ZA, then f

is ZA-linear with values in ZA, while g is F -linear with values in F , and ZA

may be strictly larger than F . We will refer to g as the semi-trace induced by f

on (D, ρ).

An important example of the situation above is when (D, ρ) is decomposable.

Namely, let (B, τ) be an algebra with involution. We assume τ is orthogonal if F

has characteristic different from 2, and either orthogonal or symplectic if F has

characteristic 2. Let (A, σ, f) be an algebra with quadratic pair. The involution

τ⊗σ is then orthogonal if the characteristic of F is different from 2 and symplec-

tic otherwise. Therefore, the construction above applies to the canonical embed-

ding (A, σ)→ (B⊗A, τ⊗σ), so that f induces a semi-trace f� on (B⊗A, τ⊗σ).
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For all b ∈ Sym(B, τ) and a ∈ Sym(A, σ), b⊗ a ∈ Sym(B ⊗A, τ ⊗ σ) and we

have

f�(b⊗ a) = TrdB⊗A((1 ⊗ 	)(b⊗ a)) = TrdB(b)TrdA(	a) = TrdB(b)f(a),

where 	 ∈ A is an element defining the semi-trace f . In [17, (5.18)], it is proved

that the condition

(1) f�(b⊗ a) = TrdB(b)f(a)

actually characterizes the semi-trace f�. This construction defines a tensor

product

(B, τ) ⊗ (A, σ, f) = (B ⊗A, τ ⊗ σ, f�).
One may check that this tensor product corresponds to the usual one in the

split case, that is Adb⊗Adρ = Adb⊗ρ for all nondegenerate symmetric bilinear

forms b and nonsingular quadratic forms ρ; see [17, (5.19)]. In addition, it is

associative, that is

((C, γ)⊗ (B, τ)) ⊗ (A, σ, f) � (C, γ)⊗ ((B, τ) ⊗ (A, σ, f)),

for any algebra with involution (C, γ), with γ orthogonal in characteristic differ-

ent from 2; see [6, (5.3)]. In particular, we may write (C, γ)⊗ (B, τ)⊗ (A, σ, f)

without any ambiguity. We say that (A, σ, f) is totally decomposable if there

exist F -quaternion algebras with involution (Qi, σi)1�i�n−1, with
⊗n−1

i σi or-

thogonal in characteristic different from 2, and an F -quaternion algebra with

quadratic pair (Qn, σn, g) such that

(A, σ, f) �
( n−1⊗

i=1

(Qi, σi)

)
⊗ (Qn, σn, g).

Assume now that F has characteristic 2 and (A, σ) and (B, τ) both are of

symplectic type. We have TrdB(b) = 0 for all b ∈ Sym(B, τ) (see [17, (2.6)(2)])

and formula (1) above shows that, given an arbitrary semi-trace f on Sym(A, σ),

the induced semi-trace f� on Sym(B ⊗ A, τ ⊗ σ) vanishes on
Sym(B, τ) ⊗ Sym(A, σ) ⊂ Sym(B ⊗A, τ ⊗ σ).

Again, this condition characterizes f�, see [17, (5.20)], and in particular, f� does

not depend on the choice of f . We now extend this result to a product with r

symplectic factors.
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Proposition 2.3: Assume F has characteristic 2 and let (Ai, σi)1�i�r be r

algebras with symplectic involution for some r � 2. There exists a unique

semi-trace

f⊗ : Sym

( r⊗
i=1

(Ai, σi)

)
→ F

such that

f⊗|⊗r
i=1 Sym(Ai,σi) = 0.

Proof. For any algebra with involution (A, σ), given two elements a∈Symd(A, σ)

and s ∈ Sym(A, σ) such that s and a commute, the product as is in Symd(A, σ).

From this and [17, (5.17)], an induction argument shows that

Sym

( r⊗
i=1

(Ai, σi)

)
= Symd

( r⊗
i=1

(Ai, σi)

)
+

r⊗
i=1

Sym(Ai, σi).

The uniqueness of the semi-trace f⊗ follows as, by definition, all semi-traces

coincide on the subspace of symmetrized elements. It remains to prove the

existence of such a semi trace. Let

(B, τ) =

r−1⊗
i=1

(Ai, σi).

Since F has characteristic 2, the involution τ is symplectic, and TrdB(b) = 0 for

all b ∈ Sym(B, τ) by [17, (2.6)(2)]. Pick an arbitrary semi-trace f on (Ar, σr)

and consider the tensor product

(B, τ) ⊗ (Ar, σr, f) = (B ⊗Ar, τ ⊗ σr , f�).
Formula (1) above shows that f� vanishes on Sym(B, τ) ⊗ Sym(Ar , σr) which

contains
⊗r

i=1 Sym(Ai, σi), hence f� satisfies the required condition.

Remark 2.4: The proof actually shows that f⊗ is the semi-trace induced by an

arbitrary semi-trace on one of the symplectic factors (Ai, σi), that is

(A1 ⊗ . . .⊗Ar, σ1 ⊗ . . .⊗ σr, f⊗) =
⊗

1�k�r,k �=i

(Ak, σk) ⊗ (Ai, σi, fi),

for any choice of i and of a semi-trace fi on (Ai, σi).

Remark 2.5: Note that the semi trace f⊗ on a totally decomposable algebra

with involution
⊗r

i=1(Ai, σi) does depend on the choice of the F -algebras with

involution (Ai, σi) in the decomposition. Indeed, consider two quaternion F -

algebras Q1 and Q2. Since we are in characteristic 2, a tensor product of
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two symplectic involutions is symplectic. Therefore, the algebras with involu-

tion (Q1, )⊗(Q1, ) and (Q2, )⊗(Q2, ) are both split and symplectic, hence

isomorphic by [11, Prop. 1.8]. However, for i = 1, 2 we have that

(Qi ⊗Qi, ⊗ , f⊗) � AdNrdQi

by [10, (2.9)], and AdNrdQ1
� AdNrdQ2

holds if and only if Q1 � Q2.

To get an example in higher degree, consider two r-fold Pfister forms π1

and π2 over F . By [6, (6.2)], there exist two families of quaternion algebras Qi,j

for i = 1, 2 and 1 � j � r such that

Adπi � (Qi,1 ⊗ · · · ⊗Qi,r, ⊗ · · · ⊗ , f⊗).

In particular, again the algebras are split and the involutions symplectic hence

hyperbolic, so that
r⊗

j=1

(Q1,j , ) �
r⊗

j=1

(Q2,j, ).

However, Adπ1 � Adπ2 if and only if π1 � π2. Therefore the semi-trace f⊗ does

depend on the choice of the quaternion algebras in the decomposition.

Notation 2.6: Let (Ai, σi) be r algebras with symplectic involutions. In charac-

teristic different from 2, we assume in addition that r is even, so that
⊗r

i=1 σi

is orthogonal, and we denote by f⊗ the unique semi-trace on
⊗r

i=1(Ai, σi). In

characteristic 2, f⊗ is as defined in Proposition 2.3. In both cases, we call f⊗
the canonical semi-trace on the tensor product of F -algebras with symplectic

involution
⊗r

i=1(Ai, σi).

3. Canonical quadratic pair on a Clifford algebra

Throughout this section, (A, σ, f) is an algebra with quadratic pair. We as-

sume A has degree n = 2m, with m even, and m ≡ 0 mod 4 if F is of char-

acteristic different from 2. Under this assumption on the degree of A, the

canonical involution σ of the Clifford algebra C = C(A, σ, f) has symplectic

type in characteristic 2, and orthogonal type in characteristic different from 2;

see [17, (8.12)]. If (σ, f) has trivial discriminant, so that C has center F×F , this
means as in [17] that the canonical involution σ of C = C+×C− is symplectic or

orthogonal on each component, and by a semi-trace on (C, σ), we mean in this

case a pair (f+, f−), where f+ (respectively f−) is a semi-trace on (C+, σ+)

(respectively (C−, σ−)). The purpose of this section is to define a semi-trace f
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on (C, σ), which we call the canonical semi-trace of the Clifford algebra, pro-

vided A satisfies the above conditions and has degree 2m � 8. We also give an

explicit description of f in the split case.

3.1. Definition of the canonical semi-trace. Consider the canonical F -

linear map c : A→ C induced by A→ A→ T (A). By [17, (8.16)] we have

c(x) + σ(c(x)) = TrdA(x).

Hence we have

(2) for all x ∈ A,
⎧⎨
⎩c(x) ∈ Skew(C, σ) if and only if TrdA(x) = 0,

c(x) + σ(c(x)) = 1 if and only if TrdA(x) = 1.

The main result in this section is the following:

Proposition 3.1: Assume A has degree 2m � 8 with m even, and assume

further that m ≡ 0 mod 4 if the characteristic is different from 2. Then σ is

symplectic in characteristic 2 and orthogonal otherwise. For any λ ∈ A with

TrdA(λ) = 1, the element c(λ) defines a semi-trace on (C, σ), which does not

depend on the choice of λ.

Proof. Let λ ∈ A be an element with reduced trace 1. By (2), we have that

c(λ) + σ(c(λ)) = 1.

Hence the linear form which maps s ∈ Sym(C, σ) to TrdC(c(λ)s) is a semi-trace

on (C, σ). If (σ, f) has trivial discriminant, so that (C, σ) = (C+, σ+)×(C−, σ−),
we have c(λ) = (c+λ , c

−
λ ) with

c+λ + σ+(c+λ ) = 1 and c−λ + σ−(c−λ ) = 1.

The semi-trace f consists in this case of the pair of semi-traces respectively

induced by c+λ and c−λ .
Given another element λ′ ∈ A, also of reduced trace 1, the difference μ = λ−λ′

has reduced trace 0. Hence, applying again (2), we get that

c(μ) = c(λ) − c(λ′) ∈ Skew(C, σ).
On the other hand c(λ′) defines the same semi-trace as c(λ) if and only if the

difference c(μ) = c(λ) − c(λ′) belongs to Alt(C, σ) by [17, (5.7)]. Hence the

following lemma finishes the proof:
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Lemma 3.2: Assume A has degree at least 6. In the Clifford algebra C, we have
c(A) ∩ Skew(C, σ) = c(A) ∩Alt(C, σ).

The statement is trivial if the characteristic of F is different from 2, as in this

case Skew(C, σ) = Alt(C, σ). Assume now that the characteristic of F is 2. The

inclusion of the left hand side in the right is clear. We now prove the converse.

It suffices to show the result in the case where A is split.

Assume that (A, σ, f)=Adq, for some quadratic form q : V →F , and C=C0(q).
Let q=[a1, b1] ⊥ · · · ⊥ [am, bm] be a decomposition of q and e1, . . . , em, e

′
1, . . . e

′
m

a basis of V as in Example 2.1. As explained in [17, Proof of (8.14)], the vector

space c(A) has dimension

n(n− 1)

2
+ 1 = 2m2 −m+ 1,

and has a basis consisting of

{1} ∪ {eiej , e′ie′j | 1 � i < j � m} ∪ {eie′j | 1 � i, j � m}.
All elements in this basis are (skew-)symmetric except for the elements eie

′
i for

all i ∈ {1, . . . ,m}. However, we have eie
′
i + σ(eie

′
i) = 1, hence eie

′
i + ei+1e

′
i+1

is symmetric for all 1 � i � m− 1. By [17, (8.18)],

c(A)0 = c(A) ∩ Skew(C, σ)
has codimension 1 in c(A). Therefore,

{1}∪{eiej , e′ie′j | 1 � i < j�m}∪{eie′j | i �=j}∪{eie′i+ei+1e
′
i+1 | 1 � i�m−1}

is a basis of c(A)∩Skew(C, σ). To complete the proof, we show that these basis

elements lie in Alt(C, σ).
Pick i, j ∈ {1, . . . ,m} with i �= j. As m � 3, there exists some

k ∈ {1, . . . ,m} \ {i, j}.
As eke

′
k + e′kek = 1, and both ek and e′k commute with ei and ej , and ei and ej

commute, we have that

eiej = eiej · 1 = eiej(eke
′
k + e′kek)

= eiejeke
′
k + eieje

′
kek = eiejeke

′
k + e′kekejei

= eiejeke
′
k + σ(eiejeke

′
k) ∈ Alt(C, σ).
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A similar argument shows that e′ie
′
j and eie

′
j ∈ Alt(C, σ). Consider now

eie
′
i + eje

′
j = eie

′
i(eke

′
k + e′kek) + eje

′
j(eke

′
k + e′kek)

= eie
′
ieke

′
k + e′kekeie

′
i + eje

′
jeke

′
k + e′kekeje

′
j .

Using eie
′
i + e′iei = 1 = eje

′
j + e′jej, we get that

eie
′
i + eje

′
j = eie

′
ieke

′
k + e′kek(1 + e′iei) + eje

′
jeke

′
k + e′kek(1 + e′jej)

= eie
′
ieke

′
k + e′keke

′
iei + eje

′
jeke

′
k + e′keke

′
jej

= (eie
′
ieke

′
k + eje

′
jeke

′
k) + σ(eie

′
ieke

′
k + eje

′
jeke

′
k).

In particular, eie
′
i + ei+1e

′
i+1 ∈ Alt(C, σ) for all 1 � i � m− 1, and this finishes

the proof.

Since the reduced trace is a nonzero linear form, a central simple algebra A

always contains an element λ such that TrdA(λ) = 1. Hence, using the previous

proposition, we get

Definition 3.3: Let (A, σ, f) be an algebra with quadratic pair, of degree 2m � 8

with m even, and assume further m ≡ 0 mod 4 if the characteristic of F is

different from 2. Given λ ∈ A with TrdA(λ) = 1, the semi-trace

f : Sym(C, σ) → F

s �→ TrdC(c(λ)s)

does not depend on λ. It is called the canonical semi-trace on (C, σ). We refer

to the pair (σ, f) as the canonical quadratic pair on C = C(A, σ, f).
Remark 3.4: Assume the characteristic of F does not divide the degree of A,

and let (A, σ) be an algebra with orthogonal involution. Then 1
deg(A) ∈ A has

reduced trace 1, and its image in C(A, σ) is

c
( 1

deg(A)

)
= f

( 1

deg(A)

)
=

1

2

by [17, (5.6)&(8.7)]. So f is half the reduced trace of C, as prescribed in this case.

The next proposition provides some evidence that the quadratic pair we have

just defined is part of the structure of the Clifford algebra. Let

θ : (A, σ, f)→ (B, τ, g)

be an isomorphism of algebras with quadratic pairs. It follows from Defini-

tion [17, (8.7)] that θ induces an isomorphism C(θ) : C(A, σ, f) ∼−→ C(B, τ, g),



188 A. DOLPHIN AND A. QUÉGUINER-MATHIEU Isr. J. Math.

satisfying

C(θ)(cA(a)) = cB(θ(a))

for all a ∈ A, where cA (respectively cB) denotes the canonical map

cA : A→ C(A, σ, f) (respectively cB : B → C(B, τ, g)). Moreover, one may

easily check that C(θ) preserves the canonical involutions. We claim it is an

isomorphism of algebras with quadratic pairs, that is

Proposition 3.5: Every isomorphism of algebras with quadratic pair

θ : (A, σ, f)→ (B, τ, g)

induces an isomorphism of algebras with quadratic pair

C(θ) : (C(A, σ, f), σ, f) ∼−→ (C(B, τ, g), τ , g).
Proof. The proposition follows from Proposition 3.1 by functoriality of the Clif-

ford algebra construction. More precisely, for any λ ∈ A with TrdA(λ) = 1, we

have

TrdB(θ(λ)) = TrdA(λ) = 1.

Hence f is induced by cA(λ) and g is induced by

cB(θ(λ)) = C(θ)(cA(λ)).

It follows that C(θ) preserves the semi-traces as required.

3.2. Explicit description in the split case. Let (V, q) be a nonsingular

quadratic space of dimension 2m, with polar form bq. We assume thatm is even,

and further that m ≡ 0 mod 4 if the characteristic of F is different from 2, so

that the canonical involution σq of C0(V, q) is of orthogonal type in characteristic

different from 2, and of symplectic type otherwise. Since q is nonsingular, we

may find a pair of vectors (e, e′) such that bq(e, e
′) = 1. Let u = ee′ be the

corresponding element in C0(V, q). We have

u+ σq(u) = ee′ + e′e = bq(e, e
′) = 1.

Therefore, this element u defines a semi-trace on (C0(V, q), σq), which we denote

by fee′ . If V has dimension 2m � 8 we claim fee′ coincides with the canonical

semi-trace of (C(Adq), σq) under the canonical identification provided in [17,

(8.8)]. More precisely, we have
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Proposition 3.6: Let (V, q) be a nonsingular quadratic space of dimension

2m � 8, with m even, and assume further that m ≡ 0 mod 4 if the characteris-

tic of F is different from 2. Given a pair of vectors (e, e′) such that bq(e, e
′) = 1,

the standard identification ϕq : V ⊗ V → EndF (V ) induces an isomorphism of

algebras with quadratic pairs

(C0(V, q), σq, fee′) � (C(Adq), σq , fq).

Proof. In view of [17, (8.8)], it only remains to identify the semi-traces. Denote

by P the plane generated by e and e′ in V ; since q restricts to a nonsingular

form on P , by [11, (7.22)], we have V = P ⊥ P⊥. Recall from [17, (5.10)] that

ϕq(e⊗e′) maps x ∈ V to e bq(e
′, x). Hence it vanishes on e′ and P⊥, and maps e

to itself. Therefore, ϕq(e ⊗ e′) ∈ EndF (V ) has trace 1. By Definition 3.3, the

canonical semi-trace of (C(Adq), σq) is determined by the element c(ϕq(e⊗ e′));
the corresponding element in C0(q) is u=ee′, and this proves the proposition.

Remark 3.7: Under the assumptions of Proposition 3.6, the semi-trace fee′

on (C0(V, q), σq) does not depend on the choice of the pair (e, e′). This can be

directly checked as follows if F has characteristic 2. Consider two pairs of vec-

tors (e, e′) and (g, g′) with bq(e, e′) = 1 = bq(g, g
′), and let u = ee′ and v = gg′

be the corresponding elements in C0(q). Let P and Q be the planes in V respec-

tively generated by (e, e′) and (g, g′). The polar form bq is nondegenerate on

both planes, and also on the orthogonal P⊥ of the plane P , which has dimension

2m− 2, see [11, Prop 1.6]. Besides, P⊥ ∩Q⊥ is a subspace of P⊥ of dimension

at least 2m − 4. Since m � 4, P⊥ ∩ Q⊥ has dimension strictly larger than

half the dimension of P⊥. Therefore, bq cannot be identically 0 on P⊥ ∩ Q⊥.
Hence, there exists a third plane R over which bq is nondegenerate, and which

is orthogonal to P and Q. Let (h, h′) be two vectors of R with bq(h, h
′) = 1,

and let w = hh′ ∈ C0(V, q). We have

σq(u) = u+ 1, σq(v) = v + 1 and σq(w) = w + 1.

Moreover, w commutes with u and v. It follows that

u = v + (u+ v)w + σq((u+ v)w).

Hence u and v differ by an alternating element, so they define the same semi-

trace by [17, (5.7)].
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Example 3.8: Assume F has characteristic 2 and (V, q) is a nonsingular qua-

dratic space of dimension 2m � 8. Pick an explicit presentation of the quadratic

form

q = [a1, b1] ⊥ · · · ⊥ [am, bm].

We use the same notations as in Example 2.1, where the algebra with involu-

tion (C0(q), σq) is described. We claim

(3)
(C(Adq), σq, fq) � (Q1 ⊗ · · · ⊗Qm−1, ⊗ · · · ⊗ , f⊗)⊗F K,

� (Q1K ⊗ · · · ⊗Qm−1K , ⊗ · · · ⊗ , f⊗),

where Qi = [aibi, aiam), stands for the canonical involution, K is the qua-

dratic étale extension of F generated by disc(q) ∈ F/℘(F ), and f⊗ is the canon-

ical semi-trace associated to a tensor product as in Proposition 2.3. Indeed,

Proposition 3.6 shows that the canonical semi-trace fq corresponds to fe1e′1 on

C0(V, q). Besides, as explained in Example 2.1, u1 = e1e
′
1 ∈ C0(V, q) corresponds

to

u1 ⊗ 1 ∈ Q1K ⊗
(m−1⊗

i=2

QiK

)
.

Therefore, fe1e′1 on (C0(V, q), σq) is the semi-trace induced by fu1 on (Q1K , )

as in Section 2.4, which coincides with f⊗ by Remark 2.4.

Remark 3.9: It follows from Example 3.8 that (C(Adq), σq , fq) is a totally de-

composable algebra with quadratic pair, and even more, that it has a totally

decomposable descent to F . This extends a well-known result in characteristic

different from 2. Indeed, consider a nondegenerate even dimensional quadratic

space (V, q) over a field F of characteristic different from 2, with orthogonal

basis (e1, e2, . . . , e2m). A direct computation shows that the elements⎧⎨
⎩i1 = e1e2

j1 = e1e3
,

⎧⎨
⎩i2 = e1e2e3e4

j2 = e1e2e3e5
, . . . ,

⎧⎨
⎩im−1 = e1 . . . e2m−3e2m−2

jm−1 = e1 . . . e2m−3e2m−1

generate pairwise commuting F -quaternion algebras in C0(q) that are stable

under the canonical involution. Hence, C0(q) is isomorphic to the tensor product

of those quaternion algebras, extended from F to the center K = F [e1 . . . e2m].

Example 3.10: Let π be a 3-fold Pfister form over F . We claim that

(4) (C(Adπ), σπ , fπ) � Adπ ×Adπ.



Vol. 242, 2021 TRIALITY 191

A conceptual argument is given below, see Proposition 4.1, which extends [17,

(35.1)] to arbitrary characteristic. Over a base field of characteristic 2, this can

also be directly checked as follows. Let

π = 〈〈a, b, c]].
Using the isometry x[1, y] � [x, x−1y] for x ∈ F× and y ∈ F , we obtain that

π � [a, a−1c] ⊥ [b, b−1c] ⊥ [ab, (ab)−1c] ⊥ [1, c].

Hence, by Example 3.8, we have

(C(Adπ), σπ , fπ) = ([c, a)⊗ [c, b)⊗ [c, ab), ⊗ ⊗ , f⊗)⊗F (F × F ).
On the other hand,

Adπ � Ad〈〈a〉〉 ⊗Ad〈〈b, c]] .
Since 〈〈b, c]] is the norm form of the quaternion algebra [c, b), using [5, (5.5)]

and [10, (2.9)] we get

Adπ � ([0, a), τ) ⊗ ([c, b), )⊗ ([c, b), , f),

where for the quaternion basis (1, u, v, w) of [0, a) the orthogonal involution τ

is characterised by τ(u) = u and τ(v) = v and f is any semi-trace on ([c, b), ).

Finally, for a particular choice of the the semi-trace f , the isomorphism from

[6, (5.5)] gives us

([0, a), τ)⊗ ([c, b), , f) � ([c, a)⊗ [c, ab), ⊗ , f⊗).

This shows (4) by Remark 2.4.

We also prove the following extension of [17, (8.5)].

Proposition 3.11: Let q be a nonsingular quadratic form over F of even

dimension 2m � 8 with m even, and m ≡ 0 mod 4 if F has characteristic

not 2. If q is isotropic then (C(Adq), σq , fq) is hyperbolic.

Proof. For the case where F is of characteristic different from 2, see [17, (8.5)].

We now assume that F is of characteristic 2. As q is isotropic we have

q � H ⊥ q′ � [1, 0] ⊥ q′

for some nonsingular quadratic form q′ over F . Hence we may assume a1 = 1

and b1 = 0 in Example 3.8, and we get

(C(Adq), σq , fq) � ([0, c), , f)⊗ (B, τ) ⊗F K
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for some c ∈ F×, some arbitrary choice of a semi-trace f on ([0, c), ), and

some F -algebra with symplectic involution (B, τ) (see Remark 2.5). Since [0, c)

is a split algebra, we may choose f so that ([0, c), , f) is the adjoint of a

hyperbolic plane, and it follows that the Clifford algebra (C0(Adq), σq , fq) is

hyperbolic.

4. Triality

The purpose of this section is to describe the action of the alternating group A3

on PGO+
8 and the induced action on the corresponding Galois cohomology

set H1(F,PGO+
8 ), which can be described in terms of some triples of degree 8

algebras with quadratic pairs, called trialitarian triples. Similar computations

were recently made by Alsaody and Gille [2, §4], where they work over a more

general base (a unital commutative ring), and consider triples of isometries,

while we consider triples of similitudes. Our approach follows [17, §35], with

the additional ingredient that the Clifford algebra is endowed with a canonical

quadratic pair rather than just an involution.

Recall that a similitude of the algebra with quadratic pair (A, σ, f) is an

invertible element g ∈ A× such that

σ(g)g = μ(g) ∈ F×

and f(gsg−1) = f(s) for all symmetric elements s ∈ Sym(A, σ). IfA = EndF (V )

and (σ, f) is the adjoint of a nonsingular quadratic form q, similitudes of (A, σ, f)

coincide with similitudes of the quadratic space (V, q) in the usual sense. Assume

in addition that A has even degree n=2m. The similitude g with multiplier μ(g)

is called proper if it satisfies the following condition [17, (12.24)(12.32)]:

(5)

⎧⎨
⎩If F has characteristic �= 2, NrdA(g) = μ(g)m,

If F has characteristic 2, f(g−1	g − 	) = 0,

where 	 ∈ A is an element defining the semi-trace f . We let

PGO+(q) = GO+(q)/F× and PGO+(A, σ, f) = GO+(A, σ, f)/F×,

where GO+(q) (respectively GO+(A, σ, f)) is the group of proper similitudes

of q (respectively of (A, σ, f)).
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4.1. An action of A3 on PGO+(n). Let O be a Cayley algebra, and denote

by � its para-Cayley product, defined by x � y = x̄ȳ, see [17, §34.A]. The

algebra (O, �, n) is a symmetric composition algebra, where n is the norm form

of O. In particular, the norm form is multiplicative, that is n(x� y) = n(x)n(y)

for all x, y ∈ O. Moreover, we have

(6) x � (y � x) = n(x)y = (x � y) � x for all x, y ∈ O;

see [17, (34.1)]. The key result to define the trialitarian action is the following :

Proposition 4.1: Let t be a proper similitude of (O, n) with multiplier μ(t).

There exist proper similitudes (t+, t−) of (O, n) such that for all x, y ∈ O,
(a) t+(x � y) = μ(t+) t(x) � t−(y);
(b) t(x � y) = μ(t) t−(x) � t+(y);
(c) t−(x � y) = μ(t−) t+(x) � t(y).

The pair (t+, t−) is uniquely defined up to a factor (λ−1, λ) for some λ ∈ F×

and the multipliers satisfy μ(t+)μ(t)μ(t−) = 1.

From this, we derive an action of the alternating group A3 � Z/3 on the

group of projective similitudes PGO+(n) = GO+(n)/F× as follows. Given a

proper similitude t of (O, n) we denote by [t] its class in PGO+(n). It is clear

from the relations above that [t++] = [t−] and [t+++] = [t]. Moreover, since t+

and t− are unique up to a factor (λ−1, λ) for some λ ∈ F×, their classes [t+]

and [t−] are uniquely defined. Hence, we get

Corollary 4.2: The map

θ+ : PGO+(n)→ PGO+(n)

[t] �→ [t+]

defines an action of A3 on PGO+(n).

Remark 4.3: In [2], Alsaody and Gille give an explicit description of the spin

group Spin(n) with its trialitarian action (see [2, Lem. 3.3 and Thm. 3.9]).

Their description is in terms of so-called related triples, which correspond to

triples as in our Proposition 4.1, except that t, t+ and t− are isometries rather

than similitudes. It is clear from their work that the action described in this

section is the induced trialitarian action on PGO+(n). The explicit description

we provide could also be deduced from their results by fppf descent.
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The remainder of this section outlines the proof of Proposition 4.1. The

argument is mostly borrowed from [17, §34], except for Lemma 4.5 which adds

the canonical quadratic pair to the picture.

For all x ∈ O, we denote by rx and 	x the endomorphisms of O defined

by rx(y) = y � x and 	x(y) = x � y for all y ∈ O. We first prove

Lemma 4.4: Let t be a proper similitude of (O, n). The F -linear map

ψt : O →M2(EndF (O)) � EndF (O ⊕O)

defined by

ψt(x) =

(
0 	t(x)

μ(t)−1rt(x) 0

)

induces isomorphisms of F -algebras

C(n) ∼−→EndF (O ⊕O) and

C0(n) ∼−→EndF (O) × EndF (O),
which we denote by Ψt.

Proof. A direct computation shows that for all x, y ∈ O, we have

(7) ψt(x)ψt(y) = μ(t)−1

(
	t(x) ◦ rt(y) 0

0 rt(x) ◦ 	t(y)

)
.

In view of (6), it follows that ψt(x)
2 = μ(t)−1n(t(x)) = n(x) for all x ∈ O.

By the universal property of the Clifford algebra, we get a non-trivial alge-

bra morphism Ψt : C(n) → EndF (O ⊕ O), which is an isomorphism since

both algebras are simple and of the same dimension. By (7), this isomorphism

sends C0(n) to the direct product EndF (O) × EndF (O), which embeds diago-

nally in EndF (O ⊕O).

Assume now that t = Id and consider the corresponding isomorphisms, de-

noted by Ψ1. Since the identity map is an isometry, hence has multiplier 1, it

satisfies

(8) Ψ1(xy) = ψ1(x)ψ1(y) =

(
	x ◦ ry 0

0 rx ◦ 	y

)
.

The next lemma is a refined version of [17, (35.1)] (see also [2, Prop. 3.10]):
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Lemma 4.5: The restriction of the isomorphism Ψ1 to the even Clifford algebra

induces an isomorphim of algebras with quadratic pairs

Ψ1 : (C0(n), σn, fn)→ Adn×Adn,

where (σn, fn) stands for the canonical quadratic pair on C0(n).
Remark 4.6: Since all 3-fold Pfister forms are norm forms of some Cayley alge-

bras, this lemma gives a new proof of Example 3.10.

Proof. By Lemma 4.4, Ψ1 is an isomorphism of algebras, and one may check

it preserves the involution as in [2, Prop. 3.10]. It only remains to prove

that it is compatible with the semi-traces. Therefore, we may assume that

the characteristic of F is 2. Pick a decomposition of the quadratic form n

and a basis (ei, e
′
i)1�i�4 of O as in Example 2.1. By Proposition 3.6, the ele-

ment e1e
′
1 ∈ C0(n) determines the canonical semi-trace fn on C0(n). Under the

isomorphism Ψ1, it corresponds to the semi-trace determined by the element

Ψ1(e1e
′
1) = ψ1(e1)ψ1(e

′
1) =

(
	e1 ◦ re′1 0

0 re1 ◦ 	e′1

)

by (7). Hence, we have to prove that the elements 	e1◦re′1 and re1 ◦	e′1∈EndF (O)
determine the semi-trace fn associated to the norm form n. By [17, (5.11)], this

means we have to check that for all v ∈ O,
TrdEndF (O)((	e1 ◦ re′1 ◦ ϕn)(v ⊗ v)) = n(v),

and similarly for the endomorphisms (re1 ◦ 	e′1 ◦ ϕn)(v ⊗ v), where ϕn is the

standard identification O ⊗ O � EndF (O) defined in [17, (5.2)]. Since the

restriction of a semi-trace to the space of symmetrized elements is determined, it

is enough to prove this equality when v is one of the basis elements (ei, e
′
i)1�i�4;

see the proof of [17, (5.11)]. For all x ∈ O, we have

(	e1 ◦ re′1 ◦ ϕn)(ei ⊗ ei)(x) = (e1 � (ei � e
′
1)) bn(ei, x).

Since all basis elements different from e′i are orthogonal to ei, this endomor-

phism maps all elements of the basis to 0, except for e′i. Hence its trace is the

coordinate of e1 � (ei � e
′
1) on e

′
i, that is bn(e1 � (ei � e

′
1), ei). By [17, §34], we get

bn(e1 � (ei � e
′
1), ei) =bn(ei, e1 � (ei � e

′
1)) = bn(ei � e1, ei � e

′
1)

=n(ei)bn(e1, e
′
1) = n(ei),
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as required. A similar computation shows the equality also holds for e′i ⊗ e′i,
and for the endomorphism (re1 ◦ 	e′1 ◦ϕn)(v⊗v) instead of (	e1 ◦re′1 ◦ϕn)(v⊗v),
so the lemma is proved.

With this in hand, we may now prove Proposition 4.1 as follows. Given a

proper similitude t of (O, n), consider the isomorphisms Ψ1 and Ψt. Identifying

the algebras EndF (O⊕O) andM2(EndF (O)), by the Skolem-Noether theorem,

there exists an invertible element S ∈ M2(EndF (O)) such that the following

diagram commutes:

C(n)
Ψ1

��

Ψt

����
���

���
���

���

M2(EndF (O))
Int(S)

�� M2(EndF (O)).

Restriction to the even part of all three algebras shows that Int(S) preserves

EndF (O) × EndF (O) ⊂M2(EndF (O)), so that

S =

(
s0 0

0 s2

)
for some s0, s2 ∈ EndF (O).

Recall that t also induces an isomorphism C0(t) : C0(n) ∼−→ C0(n) which pre-

serves the canonical quadratic pair by Proposition 3.5. We claim that the

following diagram is commutative:

C0(n)
Ψ1

��

Ψt

�����
����

����
����

���
C0(t) �� C0(n)

Ψ1

��
EndF (O)× EndF (O)

Int(S)

�� EndF (O) × EndF (O).

Indeed, the lower triangle is obtained from the previous commutative diagram

by restriction to the even part. Since C0(t)(xy) = μ(t)−1t(x)t(y) for all x, y ∈ O
(see [17, (13.1)]), we have by (7) and (8)

Ψ1(C0(t)(xy)) = μ(t)−1

(
	t(x) ◦ rt(y) 0

0 rt(x) ◦ 	t(y)

)
= Ψt(xy).

Therefore, the upper triangle also commutes. In view of Lemma 4.5 and Propo-

sition 3.5, the automorphism Int(S) preserves the quadratic pair adn× adn, so

that s0 and s1 are similitudes of (O, n).
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Finally, since Ψt = Int(S) ◦ Ψ1, we have for all x ∈ O, ψt(x) = Sψ1(x)S
−1.

Hence, we get μ(t)−1rt(x) = s2rxs
−1
0 and 	t(x) = s0	xs

−1
2 , so that for all y ∈ O,

μ(t)−1s0(y) � t(x) = s2(y � x) and t(x) � s2(y) = s0(x � y).

Applying the norm n to the second equality, we get μ(t)μ(s2) = μ(s0). Hence,

the similitudes t+ = μ(s0)
−1s0 and t

− = s2 have μ(t)μ(t
+)μ(t−) = 1 and satisfy

equations (a) and (c) in Proposition 4.1. Equation (b) follows from (a) and (c),

as explained in [17, p. 484]. Since

(9) Ψ1 ◦ C0(t) ◦Ψ−1
1 = Int

(
t+ 0

0 t−

)
,

the pair (t+, t−) is unique up to a pair of scalars. The condition on the multi-

pliers guarantees it actually is unique up to (λ−1, λ), for some λ ∈ F×. It only
remains to prove that t+ and t− are proper; as explained in [17, §35.B], if one

of them was improper, it would satisfy a relation similar to [17, (35.4)(5)(6)]

instead of relations (b) and (c) above. This concludes the proof.

Remark 4.7: It follows from the proof that, given a proper similitude t ∈ PGO+
8 ,

we have θ+([t]) = [t+] and θ−([t]) = [t−], where [t+] and [t−] are characterized

by equation (9) above, and Ψ1 is as in Lemma 4.5.

4.2. Trialitarian triples. A trialitarian triple over F is an ordered triple of

degree 8 central simple algebras with quadratic pairs over F ,

((A, σA, fA); (B, σB , fB); (C, σC , fC)),

such that there exists an isomorphism

αA : (C(A, σA, fA), σA, fA)→ (B, σB , fB)× (C, σC , fC).

Two such triples, denoted by (A,B,C) and (A′, B′, C′) for short, are called

isomorphic if there exists isomorphisms of algebras with quadratic pairs

φA : (A, σA, fA)→(A′, σA′ , fA′),

φB : (B, σB , fB)→(B′, σB′ , fB′),

and φC : (C, σC , fC)→(C ′, σC′ , fC′),
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and αA and αA′ as above such that the following diagram commutes:

(C(A, σA, fA), σA, fA) αA ��

C(φA)

��

(B, σB, fB)× (C, σC , fC)

φB×φC

��
(C(A′, σA′ , fA′), σA′ , fA′)

αA′ �� (B′, σB′ , fB′)× (C ′, σC′ , fC′).

Remark 4.8: If (A,B,C) is a trialitarian triple, it follows from the definition

that C(A, σA, fA) has center F×F , hence the quadratic pair (σA, fA) has trivial
discriminant (see [17, (7.7) & (8.28)]).

Example 4.9: Assume F is of characteristic 2. Let q be an 8-dimensional qua-

dratic form with trivial Arf invariant, and let (A, σA, fA) = Adq. Pick a pre-

sentation

q = [a1, b1] ⊥ [a2, b2] ⊥ [a3, b3] ⊥ [a4, b4].

By Example 3.8, (A,B,B) is a trialitarian triple, where B stands for

(B, σB , fB) = ([a1b1, a1a4)⊗ [a2b2, a2a4)⊗ [a3b3, a3a4), ⊗ ⊗ , f⊗).

Hence if the algebra A is split in a trialitarian triple (A,B,C), then B and C

are isomorphic. The converse also holds, as we now explain:

Lemma 4.10: Let (A,B,C) be a trialitarian triple. The following assertions

are equivalent:

(1) The algebra A is split.

(2) The triples (A,B,C) and (A,C,B) are isomorphic.

(3) The algebras with quadratic pairs (B, σB, fB) and (C, σC , fC) are iso-

morphic.

(4) The algebras B and C are Brauer equivalent.

Proof. Assume A is split, and consider an isometry of determinant −1 of the

underlying quadratic space. It induces an automorphism φA of (A, σA, fA) such

that C(φA) acts non trivially on F ×F . Therefore, if ε : B×C → C×B denotes

the switch map, defined by ε(x, y) = (y, x), then ε ◦ αA ◦ C(φA) ◦ α−1
A is an iso-

morphism B ×C → C ×B which acts trivially on F × F . Hence, it is equal to
(φB , φC) for some isomorphisms of algebras with quadratic pairs φB : B → C

and φC : C → B. This shows that (φA, φB , φC , αA, ε ◦ αA) defines an iso-

morphism of triples between (A,B,C) and (A,C,B). Assertion (3) follows

from (2) by definition, and it clearly implies (4). Finally, since A has degree 8,
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and (σA, fA) has trivial discriminant, by the so-called fundamental relations

given in [17, (9.13) and (9.14)], we have [A] = [B ⊗ C] and B and C have

exponent 2, therefore (4) implies (1).

With these definitions in hand, the usual techniques of Galois descent yield

a canonical bijection

(10)
F -isomorphism classes

of trialitarian triples
←→ H1(F, PGO+

8 ).

This follows from [17, §29] as follows. Let n0 be the 8-dimensional hyperbolic

quadratic form, so that PGO+
8 = PGO+(Adn0). According to [17, §29.F],

there is a canonical bijection between H1(F,PGO+
8 ) and isomorphism classes

of quadruples (A, σA, fA, εA), where (A, σA, fA) is a degree 8 algebra with qua-

dratic pair, and εA : ZA → F × F is a fixed isomorphism from the center of

the Clifford algebra of (A, σA, fA) and F × F , which is the center of C0(n0).

To such a quadruple, we may associate a trialitarian triple (A,B,C), where B

and C are defined by⎧⎪⎪⎨
⎪⎪⎩
B = C(A, σA, fA) e,
C = C(A, σA, fA)(1 − e),
and e = ε−1

A ((1, 0)) ∈ ZA ⊂ C(A, σA, fA).
Since A has degree 8, the canonical involution σA acts trivially on ZA. Hence the

canonical pair (σA, fA) induces quadratic pairs (σB , fB) and (σC , fC) on each

component; see Section 3. Moreover, one may check that isomorphic quadruples

lead to isomorphic trialitarian triples.

Conversely, given a trialitarian triple (A,B,C) pick an isomorphism αA be-

tween C(A) and B × C, and define the εA to be the restriction of αA to the

center ZA of the Clifford algebra of A. We claim that the isomorphism class of

the quadruple (A, σA, fA, εA) does not depend on the choice of αA. If all such

isomorphisms have the same restriction to the centre, this is clear. Assume now

that there exists α
(1)
A and α

(2)
A having different restrictions. Then the composi-

tion α
(2)
A ◦ (α(1)

A )−1 is an isomorphism of the algebra with quadratic pair B×C
whose restriction to the center F×F is the non trivial automorphism. Hence, B

and C are isomorphic, and A is split by Lemma 4.10. In this case, the algebra

with quadratic pair (A, σA, fA) admits improper similitudes, and it follows that

the quadruples (A, σA, fA, ε
(1)
A ) and (A, σA, fA, ε

(2)
A ) are isomorphic.
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4.3. Action of A3 on trialitarian triples. The main result of this section

is the following, which extends [17, (42.3)] to characteristic 2:

Theorem 4.11: The action of A3 on PGO+
8 induces an action on trialitarian

triples, which is given by permutations. In particular, if

(C(A, σA, fA), σA, fA) � (B, σB , fB)× (C, σC , fC),

then we also have

(C(B, σB , fB), σB , fB) � (C, σC , fC)× (A, σA, fA)

and

(C(C, σC , fC), σC , fC) � (A, σA, fA)× (B, σB , fB).

Proof. Let (A,B,C) be a trialitarian triple, and fix an isomorphism

αA : (C(A, σA, fA), σA, fA)→ (B, σB , fB)× (C, σC , fC).

As above, we let n0 be the 8-dimensional hyperbolic form. Recall that Ψ1

defined as in Lemma 4.5 is an isomorphism

Ψ1 : (C0(n0), σn0 , fn0)→ Adn0 ×Adn0 ,

so that (Adn0 ,Adn0 ,Adn0) also is a trialitarian triple. After scalar extension

to a separable closure Fs of the base field F , both triples are isomorphic. More

precisely, consider an arbitrary isomorphism

φA : (Adn0)Fs → (A, σA, fA)Fs .

Composing φA with an improper similitude of n0 if necessary, we may assume

that the composition αA ◦ C0(φA) ◦ Ψ−1
1 acts trivially on F × F , so that it is

given by (φB , φC) for some isomorphisms of algebras with quadratic pairs

φB : (Adn0)Fs → (B, σB , fB)Fs and φC : (Adn0)Fs → (C, σC , fC)Fs .

Hence we get an isomorphism of trialitarian triples, that is a commutative

diagram

(C0(n0), σn0 , fn0)Fs

Ψ1 ��

C(φA)

��

(Adn0)Fs × (Adn0)Fs

φB×φC

��
(C(A, σA, fA), σA, fA) αA �� (B, σB , fB)× (C, σC , fC).
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Identifying the automorphism group of (Adn0)Fs with PGO+
8 (Fs), we get by

Galois descent that the map

a : ΓF → PGO+
8 (Fs), γ �→ φ−1

A ◦ γφA

is a 1-cocycle whose cohomology class determines the triple (A,B,C). Finally,

from the commutative diagram above, we have

Ψ1 ◦ C0(φ−1
A ◦ γφA) ◦Ψ−1

1 =(Ψ1C(φ−1
A )α−1

A ) ◦ (αAC(γφA)Ψ−1
1 )

=(φ−1
B ◦ γφB, φ

−1
C ◦ γφC).

In view of the description of the trialitarian action in Section 4.1, see also

Remark 4.7, we get that θ+(a) and θ−(a) coincide with the cohomology classes of

the cocycles γ �→ φ−1
B ◦γφB and γ �→ φ−1

C ◦γφC , respectively. Hence, θ+(A,B,C)

and θ−(A,B,C) are trialitarian triples having respectively B and C as a first

slot. Finally, we have (θ+)2 = θ− and θ−θ+ = Id. Applying these formulas to

the triple (A,B,C) we get that the second and the third slots in θ+(A,B,C)

respectively are the first slots in θ−(A,B,C) and in (A,B,C), that is

θ+(A,B,C) = (B,C,A).

The same kind of argument shows θ−(A,B,C) = (C,A,B), and this finishes

the proof.

5. Applications of triality

Theorem 4.11 above shows that the Clifford algebra, viewed as an algebra with

quadratic pair, actually is a complete invariant for degree 8 algebras with qua-

dratic pair with trivial discriminant. As a first application of our main result,

we now characterize totally decomposable algebras with quadratic pair in de-

gree 8; see Theorem 5.1. The proof uses Lemma 4.10, which describes all triples

including a split algebra. Using direct sums of algebras with quadratic pairs,

we then provide examples of triples, in which all three slots decompose as a sum

of two degree 4 totally decomposable algebras with quadratic pair. Finally, we

prove that all trialitarian triples that include two algebras of index at most 2

are of this shape.

5.1. Totally decomposable quadratic pairs. Using the trialitarian action

described in the previous section, we may characterize totally decomposable

degree 8 algebras with quadratic pair as follows:
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Theorem 5.1: Let (A, σ, f) be an F -algebra of degree 8 with quadratic pair.

Then (A, σ, f) is totally decomposable if and only if it has trivial discriminant

and its Clifford algebra has a split factor.

Proof. If the base field F has characteristic different from 2, the result follows

immediately from [17, (42.11)] by uniqueness of the semi-trace. Let us now

consider a base field F of characteristic 2. Assume first that (A, σ, f) has trivial

discriminant, and its Clifford algebra has a split factor. This means (A, σ, f) is

part of a trialitarian triple (A,B,C) with B or C split. By Theorem 4.11, it is

also part of a triple whose first slot is split, and in view of Lemma 4.10, we get

a quadratic form q such that

(C(Adq), σq, fq) � (A, σ, f) × (A, σ, f).

By the explicit computation given in Example 3.8, it follows that (A, σ, f) is

totally decomposable.

Assume conversely that (A, σ, f) is totally decomposable, and pick a decom-

position

(A, σ, f) = ([a1, b1)⊗ [a2, b2)⊗ [a3, b3), ⊗ ⊗ , f⊗).

Let q = [b1, a1b
−1
1 ] ⊥ [b2, a2b

−1
2 ] ⊥ [b3, a3b

−1
3 ] ⊥ [1, a1 + a2 + a3]. Then q has

trivial discriminant, and applying again Example 3.8, we get

(C(Adq), σq, fq) � (A, σ, f) × (A, σ, f).

Hence by Theorem 4.11, we have

(C(A, σ, f), σ, f) � (A, σ, f) ×Adq .

This proves (A, σ, f) has trivial discriminant and its Clifford algebra has a split

component.

5.2. Examples of trialitarian triples. Given a trialitarian triple (A,B,C),

it follows from [13, Thm. 1.5] that either all three involutions σA, σB and σC are

isotropic, or all three are anisotropic. The triple is called isotropic or anisotropic

accordingly. In this section, we provide explicit examples of trialitarian triples,

and we prove all triples that include at least two algebras of Schur index at

most 2 are of this shape, as well as all isotropic triples. We use the following

definition, which was first introduced for algebras with involution by Dejaiffe [8],

and later extended to quadratic pairs in [12, p. 379] (see also [7, Def. 1.4] and [14,

Prop. 7.4.2]).
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Definition 5.2: The algebra with quadratic pair (A, σ, f) is called an orthogonal

sum of (A1, σ1, f1) and (A2, σ2, f2), and we write

(A, σ, f) ∈ (A1, σ1, f1)� (A2, σ2, f2),

if there are symmetric orthogonal idempotents e1 and e2 in the algebra A such

that for i ∈ {1, 2},
(eiAei, σ|eiAei) � (Ai, σi),

so that we may identify Ai with a subset of A, and

f(si) = fi(si) for all si ∈ Sym(Ai, σi).

Note that the identification of Ai with its image in A is compatible with the

reduced trace. More precisely, we have

TrdA(ai) = TrdAi(ai) for all ai ∈ Ai � eiAei ⊂ A;
see the matrix description of the orthogonal sum given in [8, §2]. Moreover, the

direct product (A1, σ1, f1)×(A2, σ2, f2) embeds in (A, σ, f), meaning there is an

embedding of the direct product of algebras with involution, and the restriction

of f to the image of Sym(Ai, σi) coincides with fi for i ∈ {1, 2}.
Example 5.3: Let (V1, q1) and (V2, q2) be two nonsingular quadratic spaces

over F . For all μ ∈ F×, we have

Adq1⊥〈μ〉q2 ∈ Adq1 �Adq2 .

This follows directly from the description of Adq given in [17, §5.B], and the

definition above, taking e1 and e2 in

A = EndF (V1 ⊕ V2)
to be the orthogonal projections on V1 and V2 respectively.

As this example shows, an orthogonal sum (A, σ, f) is not uniquely deter-

mined by its summands (A1, σ1, f1) and (A2, σ2, f2) and (A1, σ1, f1)�(A2, σ2, f2)

should be considered as a set.

With this in hand, we may produce examples of trialitarian triples as follows.

Let Q1, Q2, Q3 and Q4 be quaternion algebras such that
⊗4

i=1Qi is split. For

all i and j with i �= j, we denote by fij the semi-trace f⊗ on Sym(Qi⊗Qj, ⊗ )

associated to the tensor product decomposition (Qi, ) ⊗ (Qj , ) as in Nota-

tion 2.6. We have the following
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Proposition 5.4: Let (A, σ, f) be an F -algebra with quadratic pair such that

(A, σ, f) ∈ (Q1 ⊗Q2, ⊗ , f12)� (Q3 ⊗Q4, ⊗ , f34).

Then (σ, f) has trivial discriminant, and the Clifford algebra C(A, σ, f), with
its canonical quadratic pair, is a direct product of

C+(A, σ, f) ∈(Q1 ⊗Q3, ⊗ , f13)� (Q2 ⊗Q4, ⊗ , f24),

and C−(A, σ, f) ∈(Q1 ⊗Q4, ⊗ , f14)� (Q2 ⊗Q3, ⊗ , f23).

Proof. In characteristic different from 2, the algebra with involution version of

this result is stated and proved in [24, Prop. 6.6], and the proposition follows

immediately by uniqueness of the semi-trace in this case. So we may assume F

has characteristic 2. The same argument as in characteristic different from 2

applies, and we get a description of (C(A, σ, f), σ) as an algebra with involution.

By Definition 5.2, it only remains to check that the canonical semi-trace f acts

as fij on each subset

Sym(Qi ⊗Qj , ⊗ ) ⊂ Sym(C(A, σ, f), σ).

For i ∈ {1, 2}, let ui in Qi be a quaternion such that ūi + ui = 1. Identify-

ing Q1 ⊗Q2 to a subset of A as above, we have

TrdA(u1 ⊗ u2) = TrdQ1⊗Q2(u1 ⊗ u2) = TrdQ1(u1)TrdQ2(u2) = 1.

Therefore, the canonical semi-trace f on C(A, σ, f) is determined by the ele-

ment c(u1 ⊗ u2) in C(A, σ, f) by Definition 3.3.

Recall from [17, (15.12)] that the Clifford algebra of (Qi ⊗ Qj , ⊗ , fij),

with its canonical involution, is the direct product (Qi, )× (Qj , ). The same

argument as in the proof of [8, Prop. 3.5] shows that the embedding of the direct

product (Q1 ⊗ Q2, ⊗ , f12) × (Q3 ⊗ Q4, ⊗ , f34) in (A, σ, f) induces an

embedding of the tensor product of the corresponding Clifford algebras

((Q1, )× (Q2, ))⊗ ((Q3, )× (Q4, )) ↪→ (C(A, σ, f), σ).

It follows that c(u1⊗u2) is c12(u1⊗u2)⊗ (1, 1), where c12 is the canonical map

from (Q1 ⊗Q2, ⊗ , f12) to its Clifford algebra (Q1, )× (Q2, ). This map

is described in [17, (8.19)], and we get

c(u1 ⊗ u2) = (u1, u2)⊗ (1, 1) = (u1 ⊗ 1, u2 ⊗ 1, u1 ⊗ 1, u2 ⊗ 1),
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in (Q1 ⊗ Q3) × (Q2 ⊗ Q4) × (Q1 ⊗ Q4) × (Q2 ⊗ Q3). Therefore, the canonical

semi-trace acts on Sym(Qi ⊗Qk, ⊗ ) for i ∈ {1, 2} and k ∈ {3, 4} by
f(x) = TrdQi⊗Qk

((ui ⊗ 1)x).

In particular, it vanishes on Sym(Qi, ) ⊗ Sym(Qk, ) and coincides with fik

by [17, (5.20)]; see also Section 2.4. This finishes the proof.

Remark 5.5: (1) If one of the quaternion algebras, say Q4, is split, then the

algebras with quadratic pair (Qi⊗Q4, ⊗ , fi4) are hyperbolic for i ∈ {1, 2, 3};
see [17, (15.14)]. Hence, we get an isotropic trialitarian triple in which the

algebras with quadratic pairs are respectively Witt equivalent to

(Q1 ⊗Q2, ⊗ , f12), (Q1 ⊗Q3, ⊗ , f13) and (Q2 ⊗Q3, ⊗ , f23),

where Q1 Q2 and Q3 are quaternion algebras with Q1 ⊗ Q2 ⊗ Q3 split. In

particular, all three algebras in the triple have index at most 2.

(2) The argument in the proof of [24, Prop. 6.12] extends to this setting and

it follows that all trialitarian triples which are isotropic are either as in (1) or

with a split component. In the second case, they coincide up to permutation

with

(Adq⊥H,M2(D),M2(D)),

where q is an Albert form, D is the corresponding biquaternion algebra, which

may have index 1, 2 or 4 depending on q, and M2(D) is endowed with a hyper-

bolic quadratic pair; see Proposition 3.11.

The purpose of the remaining part of this section is to prove the following

theorem, which provides a description of all trialitarian triples including at least

two algebras of Schur index at most 2.

Theorem 5.6: Let (A,B,C) be a trialitarian triple over F such that at least

two of the algebras A, B and C have Schur index at most 2. Then there exist

F -quaternion algebras Q1, Q2, Q3 and Q4, with Q1 ⊗Q2 ⊗Q3 ⊗Q4 split, such

that

(A, σA, fA) ∈(Q1 ⊗Q2, ⊗ , f12)� (Q3 ⊗Q4, ⊗ , f34),

(B, σB, fB) ∈(Q1 ⊗Q3, ⊗ , f13)� (Q2 ⊗Q4, ⊗ , f24),

and (C, σC , fC) ∈(Q1 ⊗Q4, ⊗ , f14)� (Q2 ⊗Q3, ⊗ , f23),

where fij is the semi-trace f⊗ on Sym(Qi⊗Qj , ⊗ ) associated to the tensor

product decomposition (Qi, )⊗ (Qj , ) as in Notation 2.6.
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In characteristic 2, the proof of the theorem uses the so-called generalized

quadratic forms, as defined by Tits in [26]. We first recall the definition

and a few well-known facts. Let D be a central simple F -algebra with in-

volution θ of the first kind. A generalized quadratic form over (D, θ) is a

pair (V, q) where V is a finitely generated right projective D-module and q is a

map q : V → D/ Symd(D, θ) subject to the following conditions:

(a) q(xd) = θ(d)q(x)d for all x ∈ V and d ∈ D.

(b) There exists a hermitian form h defined on V and with values in (D, θ)

such that for all x, y ∈ V we have

q(x+ y)− q(x) − q(y) = h(x, y) + Symd(D, θ).

In this case the hermitian form (V, h) is uniquely determined (see [16, (5.2)])

and we call it the polar form of (V, q). Note that it follows from (b) that

h(x, x) ∈ Symd(A, θ), for all x ∈ V,
hence the polar form of any quadratic form over (D, θ) is alternating. We

call (V, q) nonsingular if its polar form is nondegenerate. We say that (V, q)

represents an element d ∈ D if q(x) = d + Symd(D, θ) for some x ∈ V \ {0}.
We call (V, q) isotropic if it represents 0 and anisotropic otherwise. For a field

extension K/F we write

(D, θ)K = (D ⊗F K, θ ⊗ Id), VK = V ⊗F K,

and by qK we mean the unique generalized quadratic form

q : VK → DK/ Symd(DK , θK)

such that

qK(x⊗ k) = q(x)k2 + Symd(DK , θK)

for all x ∈ V and k ∈ K.

Assume now that D is a division algebra over F . For a1, . . . , an ∈ D, we de-

note by 〈a1, . . . , an〉 the quadratic form (Dn, q) over (D, θ) where q is defined by

q(x1, . . . , xn) =

n∑
i=1

θ(xi)aixi + Symd(D, θ)

for all (x1, . . . , xn) ∈ Dn. We call such a form a diagonal form. We call a

quadratic form diagonalisable if it is isometric to a diagonal form.

The proof of Theorem 5.6 uses the following:
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Lemma 5.7: Let (Q, ) be an F -quaternion division algebra endowed with its

canonical involution, and let (V, q) over (Q, ) be a skew-hermitian space in

characteristic different from 2 and a generalized quadratic space in character-

istic 2. Let K be a separable quadratic extension of F contained in Q and

pick u ∈ Q, a pure quaternion in characteristic different from 2 and a quater-

nion with trace 1 in characteristic 2, such that K � F [u]. If the form qK is

isotropic, then q represents uλ for some λ ∈ F×.

Proof. The result is clear if q is isotropic, since (V, q) contains a hyperbolic

plane, which does represent u; in characteristic 2, this follows from the fact that

all 2-dimensional isotropic generalized quadratic forms are isometric, therefore q

contains a subform isometric to 〈u,−u〉; see [16, (5.6.1)]. We may therefore

assume that q is anisotropic.

Let us writeK = F [α] where α satisfies α2 = a = u2 in characteristic different

from 2 and α2 + α = a = u2 + u in characteristic 2. Assume qK is isotropic;

there exist x, y ∈ V such that

qK(x⊗ 1 + y ⊗ α) = 0.

We claim that q(x+ yu) = uλ for some λ ∈ F×.
In order to prove this, assume first that F has characteristic 2, so that q is

a generalized quadratic form with polar form h. Since Symd(Q, ) = F , the

forms q and qK respectively have values in Q/F and QK/K. We have

qK(x⊗ 1 + y ⊗ α) =qK(x ⊗ 1) + qK(y ⊗ α) + hK(x ⊗ 1, y ⊗ α)
=q(x) ⊗ 1 + q(y)⊗ α2 + h(x, y)⊗ α
=(q(x) + q(y)a)⊗ 1 + (h(x, y) + q(y))) ⊗ α
=0 mod K.

Therefore, since QK/K � Q/F ⊗ 1 ⊕Q/F ⊗ α, we get that q(x) + q(y)a ∈ F
and h(x, y) + q(y) ∈ F . Hence, we have

q(x + yu) =q(x) + q(yu) + h(x, yu) = q(x) + (u+ 1)q(y)u+ h(x, y)u

=(q(x) + uq(y)u) + (h(x, y) + q(y))u

=(q(y)a+ uq(y)u) + (h(x, y) + q(y))u ∈ Q/F.
Take any ξ ∈ Q such that q(y) = ξ mod F . The quaternion ξa+uξu commutes

with u, hence belongs to F [u] ⊂ Q. Therefore, q(x+ yu) ∈ F [u]/F , and since q

is anisotropic, it is equal to uλ mod F for some λ ∈ F×.
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Assume now F has characteristic different from 2, so that q is a skew-

hermitian form over (Q, ), which we denote by h in the computations below

to avoid confusion. A similar computation as above shows

hK(x⊗ 1+y ⊗ α, x⊗ 1 + y ⊗ α)
= (h(x, x) + h(y, y)a)⊗ 1 + (h(x, y) + h(y, x))⊗ α.

Hence, h(x, x) = −ah(y, y). Moreover, h(x, y) = −h(y, x), and since h is skew-

hermitian, it follows that h(y, x) ∈ F . From this, we get

h(x+ yu, x+ yu) =(h(x, x) − uh(y, y)u) + 2h(x, y)u

=− (ah(y, y) + uh(y, y)u) + 2h(x, y)u.

Again, since ah(y, y) + uh(y, y)u commutes with u and h(x, y) ∈ F , this proves
that h(x+ yu, x+ yu)) ∈ F [u]. The form h is anisotropic and skew-symmetric,

so we get h(x+ yu, x+ yu) = uλ for some λ ∈ F× as required.

With this in hand, we may now prove Theorem 5.6.

Proof. Let (A, σ, f) be an F -algebra with quadratic pair. Assume A has de-

gree 8, (σ, f) has trivial discriminant and two of A, C+(A, σ, f) and C−(A, σ, f)
have index at most 2. By triality, we may assume that A and at least one compo-

nent of the Clifford algebra of (A, σ, f) have index at most 2. By Proposition 5.4,

it is enough to prove there exist quaternion algebras Q1, Q2, Q3 and Q4 such

that

(11) (A, σ, f) ∈ (Q1 ⊗Q2, ⊗ , f12)� (Q3 ⊗Q4, ⊗ , f34).

Let us first consider the split case, so that (A, σ, f) � Adq for some non-

singular quadratic form q over F with trivial discriminant. By assumption,

we have in addition ind(C0(q)) � 2. Therefore by Proposition 2.2 there exist

a 4-dimensional symmetric bilinear form B and a 2-dimensional nonsingular

quadratic form φ over F such that q � B ⊗ φ. In particular, we may write

q � B1 ⊗ φ ⊥ B2 ⊗ φ
for some 2-dimensional symmetric bilinear forms B1 and B2. Since these sum-

mands are similar to 2-fold Pfister forms, taking the adjoint quadratic pair gives

the result, by Remark 2.5 and Example 5.3.

Assume now ind(A) = 2. Let Q be an F -quaternion division algebra such

that A is Brauer equivalent to Q.
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If F has characteristic different from 2, there exists a skew-hermitian form q

over (Q, ) such that σ = adq; since the semi-trace is unique in this case, the

quadratic pair (σ, f) is determined by q, so we say it is adjoint to q and we write

(σ, f) � adq .

Let u be a pure quaternion represented by q. We have q = 〈u〉 ⊥ q′ for some

rank 3 skew-hermitian form q′ over (Q, ), so that

(A, σ, f) ∈ Ad〈u〉 �Adq′ .

A similar decomposition may be obtained if F has characteristic 2. Pick

a generalized quadratic space (V, q) over (Q, ) such that (A, σ, f) = Adq,

see [12, Thm 1.5]. The form q is nonsingular, hence by [9, (6.3) and (7.5)] it is

diagonalisable, with entries that are non-symmetric elements of (Q, ). Hence,

q = 〈u1〉 ⊥ q′ for some quaternion u1 with nonzero trace and some nonsingular

generalized quadratic form q′. Let u = u1 TrdQ(u1)
−1; u is a quaternion with

reduced trace 1, and it satisfies

Ad〈u1〉 � Ad〈u〉 .

Therefore, we get

(A, σ, f) ∈ Ad〈u〉 �Adq′ .

Finally, let K = F [u]. In both cases, K is a quadratic separable field exten-

sion of F that splits Q, and the quadratic pair (Ad〈u〉)K has trivial discrim-

inant. Therefore, the hypothesis on (A, σ, f) guarantees that the remaining

part (Adq′)K is adjoint to a quadratic form over K which is 6-dimensional, has

trivial discriminant, and has Clifford invariant of index 2. By [17, (16.5)], it is

isotropic. Hence, Lemma 5.7 shows that q′ = 〈uλ〉 ⊥ q′′ for some nonsingular

q′′, which is a skew-hermitian form or a generalized quadratic form over (Q, ),

depending on the characteristic of F . In both cases, we get

(A, σ, f) ∈ Adq1 �Adq2 ,

where both q1 and q2 have trivial discriminant. Hence both Adq1 and Adq2 are

decomposable by [17, (15.12)], and this finishes the proof.
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6. Appendix: Canonical semi-trace on the full Clifford algebra of a

quadratic form

In this appendix, we will show how one can construct a canonical semi-trace

on the full Clifford algebra of a quadratic form. This semi-trace will be closely

related to the semi-trace constructed in Section 3. If the field is of characteristic

different from 2, then the full Clifford algebra has a unique semi-trace if and only

if the canonical involution is orthogonal. Therefore, throughout this section, we

assume that F is a field of characteristic 2.

We first give a construction of the full Clifford algebra of a nonsingular qua-

dratic form. For this, we use the following presentation of quaternion algebras.

When the characteristic of F is 2, a quaternion algebra may be defined as F -

algebra generated by two elements r, s subject to r2, s2 ∈ F and rs + sr = 1 .

If s2 �= 0, then (1, sr, s, sr2) is a quaternion basis of this algebra, in the sense

of §2.1, and otherwise the algebra is split (see [17, p. 25]).

Example 6.1: Let q be a nonsingular quadratic form over F with polar form b.

Pick a decomposition

q � [a1, b1] ⊥ · · · ⊥ [am, bm],

and let (ei, e
′
i)1�i�m be a basis of the underlying vector space V such that for

all i with 1 � i � m, we have

q(ei) = ai, q(e′i) = bi, b(ei, e
′
i) = 1

and all other pairs of basis vectors are orthogonal. We may assume ai �= 0 for

all i.

The full Clifford algebra of q is generated by the elements {ei, e′i}1�i�m,

subject to the following relations for all i ∈ {1, . . . ,m}:

e2i = ai, e′i
2
= bi, eie

′
i + e′iei = 1.

In addition, any pair of elements in the basis other than (ei, e
′
i) commute. By

definition, the elements ei and e′i are fixed under the canonical involution σq

on C(q). Therefore, the pairs (ei, e
′
i)1�i�m each generate pairwise commuting

σq-stable F -quaternion subalgebras of C(q), respectively isomorphic to [aibi, ai),

and σq restricts to the canonical involution on each of these quaternion subal-

gebras. In particular, the canonical involution on C(q) is always symplectic.
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Proposition 6.2: Let (V, q) be a nonsingular quadratic space of even dimen-

sion 2m � 6. Given a pair (e, e′) ∈ V 2 with bq(e, e
′) = 1, the map

f : Sym(C(q), σq)→F,
x �→TrdC(q)(ee′x),

is a semi-trace and does not depend on the choice of (e, e′).

We will refer to this semi-trace as the canonical semi-trace on the full Clifford

algebra, and use the same notation, fq, as for the canonical semi-trace on the

even Clifford algebra.

Remark 6.3: (1) If m is even, we may define fq as the semi-trace on the

full Clifford algebra C(q) induced by the canonical semi-trace on C0(q),
in the sense of §2.4. Note though that restricting the canonical semi-

trace of C(q), viewed as a map, to the even part Sym(C0(q), σq) does

not produce a semi-trace, since the values are in F , while the center

of C0(q) is a quadratic étale extension of F .

(2) Since the involution σq on C(q) always is symplectic, m need not be

even here, so this remark is not enough to prove the proposition.

Proof. Let (e, e′) ∈ V 2 be two vectors such that bq(e, e
′) = 1. One computes

that the element u = ee′ ∈ C(q) satisfies u + σq(u) = 1, hence it determines a

semi-trace fee′ on C(q).
If m � 4, the same computations as in Remark 3.7 show that fee′ does not

depend on the choice of (e, e′). If m = 3 we may argue as follows. There

exists a base ε = (e, e′, e2, e′2, e3, e
′
3) such that bq(e2, e

′
2) = bq(e3, e

′
3) = 1 and

all other pairs of basis vectors are orthogonal. The computation at the end of

Remark 3.7 shows that fee′ = fe2e′2 = fe3e′3 ; this semi-trace, which is canoni-

cally associated to the basis ε, is denoted by fε in the sequel. Consider now

another pair of vectors (g, g′) with bq(g, g
′) = 1 which is part of another base

ξ = (g, g′, g2, g′2, g3, g
′
3) with bq(g2, g

′
2) = bq(g3, g

′
3) = 1 and all others pairs of

basis vectors are orthogonal. By Revoy’s Proposition [25, Prop. 3], there is

a chain of symplectic bases η1 = ε, η2, . . . , ηr = ξ of (V, q) such that for all i,

1 � i � r − 1, the bases ηi and ηi+1 have a common symplectic pair. Hence,

again by the computations of Remark 3.7, the semi-traces fηi and fηi+1 coincide,

and this concludes the proof.
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Remark 6.4: Using Example 6.1 and the same arguments as in the proof of Ex-

ample 3.8, we see that if q = [a1, b1] ⊥ · · · ⊥ [am, bm], with m � 3, then

(C(q), σq , fq) � ([a1b1, a1)⊗ · · · ⊗ [ambm, am), ⊗ · · · ⊗ , f⊗).

In particular, two decompositions of the algebra with involution (C(q), σq) aris-
ing from two different presentations of q give rise to the same canonical semi-

trace. Compare with Remark 2.5.

Corollary 6.5: Let q be a nonsingular quadratic form over F . If q is isotropic

then (C(q), σq , fq) is hyperbolic.
Proof. This follows from Remark 6.4 using a similar argument as that in Propo-

sition 3.11.
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[23] A. Quéguiner-Mathieu and J.-P. Tignol, Orthogonal involutions on central simple alge-

bras and function fields of Severi–Brauer varieties, Advances in Mathematics 336 (2018),

455–476.
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