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ABSTRACT

We prove that mcf < cf(Sym(ω))) and mcf > cf(Sym(ω)) = b are both

consistent relative to ZFC. This answers a question by Banakh, Repovš

and Zdomskyy and a question from [MS11].

1. Introduction

We compare the cardinal mcf, the minimal cofinality of the ultrapower (ω,<)

by a non-principal ultrafilter on ω, and the cofinality of the symmetric group

on ω, cf(Sym(ω)). These two cardinal invariants are closely related: Both are
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cofinalities and hence regular. In ZFC, both cardinals have value in the inter-

val [g, d], namely Blass and Mildenberger [BM99] showed mcf ≥ g, Brendle and

Losada [BL03] showed cf(Sym(ω)) ≥ g, and Simon Thomas [Tho95] showed

cf(Sym(ω)) ≤ d. In their relations to b the two cardinals behave differently:

Obviously b ≤ mcf, whereas Sharp and Thomas [ST95, Theorem 1.6] showed

that cf(Sym(ω)) < b is consistent relative to ZFC. Before our research, in all in-

vestigated forcing extensions we have had cf(Sym(ω)) ≤ mcf and in the forcing

extensions in which both cf(Sym(ω)) ≥ b and mcf ≥ b, the two cardinal char-

acteristics cf(Sym(ω)) and mcf coincide. The inequality cf(Sym(ω)) ≤ mcf is

partially due to a mathematical reason: Banakh, Repovš and Zdomskyy showed

[BRZ11, Theorem 1.3]: If D is not nearly coherent to a Q-point then

cf(Sym(ω)) ≤ cf((ω,<)ω/D).

In particular, if there is no Q-point then

cf(Sym(ω)) ≤ mcf.

Here we show that indeed an extra assumption is necessary. Our first forcing

shows the relative consistency of ℵ1 = b = mcf < ℵ2 = cf(Sym(ω)).

In our second forcing we show how to separate the two cardinals in the second

direction above b: ℵ1 = b = cf(Sym(ω)) < mcf is consistent. We use versions

of the oracle-c.c. in the ℵ1-ℵ2-scenario.

There are some known forcings establishing the relative consistency of b<mcf:

Three interesting forcings for ℵ1 = b < mcf are given in [SS93, SS94].

Since b ≤ u [PS87] and since NCF is equivalent to u < mcf [Mil01] the NCF-

models show the relative consistency of b < mcf. In [MS11] we showed that

also b+ < mcf is possible. In the second forcing extension of that work we ar-

ranged b+ < mcf = cf(Sym(ω)). In the other forcing extensions for b < mcf the

value of cf(Sym(ω)) has not yet been computed or is possibly not determined

by the forcing or by NCF.

We recall the definitions: We denote by ωω the set of functions from ω to ω.

For f, g ∈ ωω we write f ≤∗ g and say g eventually dominates f if

(∃n)(∀k ≥ n)(f(k) ≤ g(k)).

A set B ⊆ ωω is called unbounded if there is no g that dominates all members

of B. The bounding number b is the minimal cardinality of an unbounded set.
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Definition 1.1: Let D be a non-principal ultrafilter over ω. By ultrapower we

mean the usual modeltheoretic ultrapower: The structure (ω,<)ω/D is defined

on the domain {[f ]D : f ∈ ωω} where

[f ]D = {g ∈ ωω : {n : f(n) = g(n)} ∈ D}.

The order relation is [f ]D ≤D [g]D iff {n : f(n) ≤ g(n)} ∈ D. We write

cf((ω,<)ω/D) for the minimal size of a set that is cofinal in ≤D. The minimal

cofinality of an ultrapower of ω, mcf, is defined as the

mcf = min{cf((ω,<)ω/D) : D non-principal ultrafilter over ω}.

We define the relation ≤D also on the space ωω by letting f ≤D g iff

{n : f(n) ≤ g(n)} ∈ D.

Definition 1.2: The group of permutations of ω is denoted by Sym(ω). If

Sym(ω) =
⋃

i<κGi, κ = cf(κ) > ℵ0, 〈Gi : i < κ〉 is strictly increasing, and

each Gi is a proper subgroup of Sym(ω), we call 〈Gi : i < κ〉 an increasing

decomposition. We call the minimal κ such that an increasing decomposition

of length κ exists the cofinality of the symmetric group, and denote it

cf(Sym(ω)).

Definition 1.3: A subset G of [ω]ω is called groupwise dense if

(1) (∀X ∈ G)(∀Y ⊆∗ X)(Y infinite → Y ∈ G), and

(2) for every partition of ω into finite intervals Π = {[πi, πi+1) : i ∈ ω}

there is an infinite set A such that
⋃

{[πi, πi+1) : i ∈ A} ∈ G.

The groupwise density number, g, is the smallest number of groupwise dense

families with empty intersection.

An ultrafilter U over ω is called a Q-point, if given any strictly increasing

function f : ω → ω there is an X ∈ U such that ∀n, X ∩ [f(n), f(n + 1)) has

just one element. The existence of a Q-point is independent of ZFC; see, e.g.,

[Can90] for existence and [Mil80] for non-existence. An ultrafilter D is nearly

coherent to an ultrafilter U if there is a finite-to-one function f : ω → ω

such that f(D) = f(U). Here

f(D) = {E : f−1[E] ∈ D}.

Throughout we write g[X ] for the set {g(x) : x∈X} and g−1[Y ]={x : g(x)∈Y }.

The principle NCF says that any two non-principal ultrafilters over ω are nearly
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coherent. Its consistency is established in [BS87, BS89, Bla89]. A base for

an ultrafilter is a subset B of U such that (∀Y ∈ U )(∃X ∈ B)(X ⊆ Y ).

The character of an ultrafilter is the smallest size of a base. The ultrafilter

characteristic u is the smallest character of a non-principal ultrafilter.

In forcing the stronger condition is the larger one. For a forcing order P and

a formula ϕ, we say P forces ϕ if the weakest condition in P forces ϕ.

2. Con(b = cf(ωω/D) < cf(Sym(ω)))

In this section we prove

Theorem 2.1: The constellation ℵ1 = b = mcf < cf(Sym(ω)) is consistent

relative to ZFC.

We essentially use oracle c.c. [She98, Ch. 4], but in addition to the oracle

sequence we construct a sequence 〈D
˜

α : α < ω1〉 which approximates a name D
˜

for an ultrafilter. We construct a notion of forcing P such that for a P-generic

filter G, D
˜
[G] will be an ultrafilter witnessing mcf = ℵ1. The construction

of P is done via an approximation forcing AP , so that P = AP ∗Q
˜
, where Q

˜
is

an AP -name for the AP -generic object.

We recall some oracle technique of [She98, Chapter IV]. Let S be a stationary

subset of ω1. We fix S throughout this section. A set D ⊆ P(S) is called a

filter over S if ∅ 6∈ D , S ∈ D , D is closed under finite intersections and closed

under supersets. A filter D over S is called normal if it contains all sets of the

form [α, ω1) ∩ S, α < ω1, and is closed under diagonal intersections. We recall,

given a sequence 〈Dδ : δ ∈ S〉, that its diagonal intersection is the following set

△δ∈SDδ =

{

γ ∈ S : γ ∈
⋂

δ∈γ∩S

Dδ

}

.

For a filter D over ω1 and X,Y ⊆ ω1 we let X = Y mod D if

(X ∩ Y ) ∪ ((ω1 rX) ∩ (ω1 r Y )) ∈ D ,

and X ⊆ Y mod D if X r Y = ∅ mod D .

We recall the notion of a ♦−
S -sequence. A sequence P̄ = 〈Pδ : δ ∈ S〉 is called

a ♦−
S -sequence if Pδ ⊆ P(δ) is countable and for any X ⊆ ℵ1

{δ ∈ S : X ∩ δ ∈ Pδ} is a stationary subset of S.

It is well known that ♦−
S and ♦S are equivalent (see [Kun80, Ch. III]).
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We fix a sufficiently large regular cardinal χ, indeed χ ≥ (2ℵ2)+ suffices. We

fix a well-order <χ on H(χ).

Definition 2.2: We assume that S ⊆ ω1 is stationary and ♦S .

(1) (See [She98, IV, Def. 1.1]) An S-oracle is a sequence M̄ = 〈Mδ : δ ∈ S〉

such that:

(a) Mδ is countable and transitive and δ + 1 ⊆Mδ.

(b) iδ : (Mδ,∈, (<χ)
Mδ ) →֒elem (H(χ),∈, <χ) is elementary.

(c) Mδ |= δ is countable.

(d) For δ < ε ∈ S, Mδ ⊆Mε.

(e) For any A ⊆ ω1 the set {δ ∈ S : A ∩ δ ∈Mδ} is stationary in ω1.

(2) Let M be a countable elementary submodel of H(χ). A real η ∈ ωω

is called a Cohen real over M iff for any D ∈ M that is dense in

C = {p : (∃n)(p : n → ω)} (ordered by end-extension) there is an n

such that η ↾ n ∈ D. Equivalently, for any meagre set F ⊆ ωω that is

coded in M , e.g., by a sequence of nowhere dense trees, we have η 6∈ F .

(3) We say that 〈M̄, N̄ , η̄〉 is an S-oracle triple if

(a) M̄ = 〈Mδ : δ ∈ S〉 is an S-oracle,

(b) η̄ = 〈ηδ : δ ∈ S〉,

(c) for δ ∈ S, ηδ is Cohen over Mδ,

(d) N̄ = 〈Nδ : δ ∈ S〉,

(e) Nδ =Mδ[ηδ].

(3) Let M̄ be an S-oracle sequence. For A ⊆ H(ω1), we let

IM̄ (A) = {α ∈ S : A ∩ α ∈Mα}

and

DM̄ = {X ⊆ ω1 : (∃A ⊆ ω1)(X ⊇ IM̄ (A))}.

From now on until the end of the section let S ⊆ ω1 be stationary and

assume ♦S . For L-structures A, M, we write A ≺ M if A is an elemen-

tary substructure of M. Since for L-structures A,B,M with A,B ≺ M

and A ⊆ B also A ≺ B holds, we have that the structures on any oracle

sequence are ≺-increasing.

If f : A→ B is a function and C ⊆ A, then we write f [C] for {f(c) : c ∈ C}.

We recall the following important properties of DM̄ .
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Lemma 2.3 ([She98, IV, Claim 1.4]): The set {IM̄ (A) : A ⊆ ω1} is closed under

finite intersections. The filter DM̄ contains every end segment of ω1, is normal,

and contains any club subset of S, and for every A ⊆ H(ℵ1), IM̄ (A) ∈ DM̄ .

Proof. We prove only the very last statement; the others are proved in [She98,

IV, Claim 1.4]. By ♦S, |H(ω1)| = ω1. Let f : H(ω1) → ω1 be the <χ-least

bijection. Let

C = {δ ∈ ω1 : δ limit and (∀α < δ)(f [Mα] ⊆ δ)}.

The set acc(C) of accumulation points of C is club in ω1. Now we con-

sider A ⊆ H(ω1). By definition, IM̄ (f [A]) ∈ DM̄ . For any δ ∈ S ∩ acc(C)

such that f [A] ∩ δ ∈Mδ we have

Mδ ∋ (i−1
δ (f−1))[(f [A ∩ δ])] =

⋃

α<δ

(f−1 ↾ f [Mα])[(f [A] ∩ α)]

=
⋃

α<δ

A ∩ α = A ∩ δ.

Thus we have IM̄ (A) ⊇ IM̄ (f [A]) ∩ acc(C). By [Jec03, Lemma 14.4], for any

club C′ in ω1, any normal filter over S contains the set S ∩C′. Since acc(C) is

a club and DM̄ is a normal filter, acc(C) ∈ DM̄ and thus IM̄ (A) ∈ DM̄ .

We recall when a notion of forcing P has the M̄ -c.c.

Definition 2.4 ([She98, Ch. IV, Def. 1.5]): Let M̄ be an S-oracle sequence and

let P be a notion of forcing. We define when P satisfies the M̄ -c.c. by cases:

(a) If |P| ≤ ℵ0, always.

(b) If |P| = ℵ1 and if for every injective π : P → ω1 the set

{δ ∈ S :(∀A ∈Mδ ∩ P(δ))

(((π−1)[A] is predense in (π−1)[δ]) → ((π−1)[A] is predense in P))}

is an element of DM̄ .

(c) P′′ ⊆ic P means that P′′ is an incompatibility preserving suborder of P,

i.e., for any p, q ∈ P′′, p ≤P′′ q iff p ≤P q and p ⊥P′′ q iff p ⊥P q.

(d) If |P| > ℵ1,and for every P† ⊆ P if |P†| ≤ ℵ1, then there are P′′ such

that |P′′| = ℵ1 and P† ⊆ P′′ ⊆ic P and π : P′′ → ω1 as in (b).

Oracle sequences are not continuous. The requirement δ ∈ Mδ precludes

continuity.
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Lemma 2.5: Assume S is stationary and ♦S .

(1) There is an oracle triple.

(2) Let 〈M̄, N̄ , η̄〉 be an oracle triple. Then

I := {δ ∈ S : {(ε, ηε) : ε < δ} ∈Mδ} ∈ DM̄ .

(3) If 〈M̄, N̄ , η̄〉 is an S-oracle triple then 〈Nε : ε ∈ I〉 is an I-oracle, with

the exception that (Nε,∈) is not necessarily an elementary substructure

of H(χ).1

Proof. (1) Let 〈Pδ : δ ∈ S〉 be a ♦−
S -sequence. Again we fix the <χ-least

bijection f : H(ω1) → ω1. We choose Mδ, iδ by induction on δ. Suppose

that Mγ , iγ , γ < δ, have been chosen. Let M ′
δ ≺ (H(χ),∈, <χ) be a countable

elementary substructure with 〈Mγ , iγ : γ < δ〉, δ, Pδ ∈ M ′
δ. Then δ + 1 ⊆ M ′

δ.

We let Mδ be the Mostowski collapse of M ′
δ. The Mostowski collapse maps Pδ

to itself. Moreover, since Pδ is countable, Pδ ⊆ Mδ, and hence X ∩ δ ∈ Pδ

implies X ∩ δ ∈Mδ. By now, we have taken care of Definition 2.2.(2) (a). For

being definite, we let the Cohen forcing C be the set of finite partial functions

from ω to 2, ordered by extension. By the Rasiowa–Sikorski theorem (e.g.,

[Jec03, Lemma 14.4]) there is a Cohen-generic filter Gδ over Mδ. Then the

function ηδ =
⋃

{p : p ∈ Gδ} ∈ ω2 is a Cohen real overMδ. We letMδ[Gδ] = Nδ.

(2) The set A = {(ε, ηε) : ε ∈ S} ⊆ H(ω1). We fix a club C such for δ ∈ C,

f [{(ε, ηε) : ε < δ}] ⊆ δ.

By Lemma 2.3 we have IM̄ (A) ∈ DM̄ . By normality C ∩ IM̄ (A) ∈ DM̄ . By the

choice of C,

C ∩ IM̄ (A) ⊆ {δ : {(ε, ηε) : ε < δ} ∈Mδ}

and thus the latter is in DM̄ .

(3) Since DM̄ is a normal filter, by [Jec03, Lemma 811], its elements are

stationary sets. Hence I is stationary. For δ < ε, δ ∈ S, ε ∈ I, we have

Nδ ⊆Mε ⊆ Nε. Hence 〈Nε : ε ∈ I〉 is increasing.

From now until the end of the section we fix an S-oracle triple (M̄, N̄ , η̄).

Note that for δ ∈ I, (∀α < δ)(Mα[ηα] ∈Mδ).

1 In Theorem 2.8 below we will rework the proof of the omitting types theorem for the

particular types that shall be omitted and see that the requirement that (Nε,∈) fulfil

sufficiently much of ZFC and be transitive suffices for our application.
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Oracle triples allow for the application of the “Omitting Types Theorem”:

Lemma 2.6 (The Omitting Types Theorem, see [She98, Ch. IV, Lemma 2.1]):

Assume ♦S . Suppose the ψi(x), i < ω1, are Π1
2 formulas on reals with a real

parameter possibly. Suppose further that there is no solution to
∧

i<ω1
ψi(x)

in V and even if we add a Cohen real to V there will be none. Then there is

an S-oracle M̄ ′ such that for any forcing P,

if P has the M̄ ′-c.c, then in VP there is no solution to
∧

i

ψi(x).

We let ψ(x, ηi) say the following:

x = (y, h) ∧ y ∈ ω2 and h ∈ ωω is increasing and

(∀∞n)(ηi ↾ [h(n), h(n+ 1)) 6= y ↾ [h(n), h(n+ 1))).
(2.1)

By [BJ95, Theorem Ch. 2], any meagre subset of 2ω has a superset of the form

M(h,y) = {z ∈ ω2 : (∀∞n)z ↾ [h(n), h(n+ 1)) 6= y ↾ [h(n), h(n+ 1))}

for some strictly increasing function h and some y ∈ ω2. The formula ψ(x, ηi)

says that ηi is in the meagre set M(h,y). So the type Ψ to be omitted is

(2.2)
∧

i∈I

ψ(x, ηi).

Actually, we will have a strong form of omission: There is a set Y in a normal

filter such that for each i ∈ Y , x = (y, h) ∈Mi[P],

(∃∞n)ηi ↾ [h(n), h(n+ 1)) = ηi ↾ [h(n), h(n+ 1)).

Since P ∈M0 and P ⊆
⋃

{Mi : i < ω}, thus {ηi : i ∈ Y } is not meagre in VP.

We check that premise of the omitting types theorem is fulfilled in a very

local form.

Lemma 2.7: Let M be a countable transitive model that can be elementarily

embedded into H(χ), and let η ∈ V be a Cohen real over M . Then there is no

p ∈ C such that p forces in Cohen forcing over V that η is not Cohen overM [C].

Proof. If η ∈ V is Cohen over M and c is Cohen over V then c is also Cohen

over M [η]. So M [η][c] is an iterated Cohen extension and (η, c) is M -generic

for C ∗ C. Since C× C densely embeds into C ∗ C, the order of the two Cohen

reals does not matter. So c is forced to be Cohen over M [η].
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By Lemma 2.7, the omitting types theorem shows that there is an oracle N̄

for the preservation of ηi’ s Coheness over Mi. We review the proof of the

omitting types theorem for the preservation of Coheness in order to show that

Ni =M [ηi] is a strong enough oracle.2

Theorem 2.8: Let M̄ , N̄ , S, I be as in Definition 2.2 and Lemma 2.5(2). For

each P† with the N̄ -c.c. there is a set Y ∈ DN̄ such that for any i ∈ Y , ηi is

Cohen over Mi[P
†].

Proof. We work with the type given in (2.2). We assume P† = ω1. Then by the

oracle-c.c.

Y ′={δ∈S : (∀A ∈ Nδ ∩ P(δ))(((A is predense in (δ) →((A is predense in P))}

is an element of DN̄ .

Let τ be a P†-name for a real. Since P† = ω1 has the c.c.c. we can assume

that τ ∈ H(ω1). Let p ∈ P†. Let Y be the set of δ ∈ Y ′ such that

(a) τ ∈Mδ,

(b) τ = τ (Nδ,δ),

(c) P† ∩ δ ⊆ic P
†.

Then Y ∈ DN̄ . Let G be P†-generic over V and δ ∈ Y . Then G ∩ δ is P† ∩ δ-

generic over Nδ. Since P† ∩ δ is equivalent to Cohen forcing, by Lemma 2.7,

Nδ[G ∩ δ] |= ¬ψ(τ
˜
[G ∩ δ], ηδ).

Since P† ∩ δ ⊆ic P
†, we have τ

˜
[G ∩ δ] = τ

˜
[G]. By absoluteness,

Nδ[G] |= ¬ψ(τ
˜
[G], ηδ).

For building up a name for an ultrafilter witnessing mcf = ℵ1 we introduce

some notions for handling names.

Definition 2.9: Let P be a c.c.c. forcing of size at most ℵ1.

(1) A canonical P-name for a subset of ω is a name of the form

τ = {〈ň, p〉 : p ∈ An〉},

where the An ⊆ P are countable maximal antichains.

2 The sequence of the Ni is not an oracle literally, since its entries are not necessarily

elementary subsets of H(θ). However, they are transitive models of a sufficiently large

fragment of ZFC. Theorem 2.8 shows that this is sufficient for our specific types. Hence-

forth we will also call N̄ an oracle sequence.
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(2) A canonical P-name for a subset of P(ω) is a name of the form

K
˜

= {〈τ, q〉 : q ∈ Aτ , τ ∈ X},

where X is a set of canonical P-names τ for subsets of ω, for maps π as

in (3), and for each τ ∈ X , the set Aτ is a countable antichain in P.

(3) Let π : P → ω1 be injective. We let π[P] = P′ and define a partial order

(or a quasi order) on P′ such that π is an isomorphism from (P, <P) to

(P′, <P′). Then we lift π to a map π̄ : VP → VP′

-names by letting

π̄(τ) = {〈π̄(σ), π(p)〉 : 〈σ, p〉 ∈ τ}.

For canonical names τ , K
˜

as above, π̄(τ) ∈ H(ω1), π̄(K
˜
) ⊆ H(ω1). Thus

according to Lemma 2.3, IM̄ (π̄(K
˜
)) ∈ DM̄ . The names π̄(K

˜
) and π̄(τ) are

canonical.

Definition 2.10: Let M̄ be an S-oracle sequence and P′ ⊆ ω1.

(1) We let τ be a canonical P′-name of a subset of ω. We let for δ ∈ ω1,

τ (Mδ ,δ) =







τ ; if τ is a P′ ∩ δ-name, and τ ∈Mδ,

undefined; otherwise.

(2) For a canonical P′-name K
˜

= {(τ, q) : q ∈ Aτ , τ ∈ X} for a subset

of P(ω) and δ < ω1 we define the Mδ-part as follows:

K
˜

(Mδ,δ) = {(τ, q) :(τ, q) ∈ K
˜
, q ∈ P′ ∩ δ, τ is a P′ ∩ δ-name,

τ ∈Mδ, Aτ ⊆ P′ ∩ δ, Aτ ∈Mδ}.

Note that for a canonical P′-name we have K
˜

(Mδ,δ) ⊆ Mδ, however, in gen-

eral K
˜

(Mδ,δ) is not an element of Mδ. By Lemma 2.3 we have though

{δ ∈ S : 〈(ε,K
˜

(Mε,ε)) : ε < δ〉 ∈Mδ} ∈ DM̄ .

Now we are ready to define the set K1 of pairs that serve as conditions in

the first iterand of our final two-step forcing. The order on K1 will be defined

in Definition 2.18.

Definition 2.11:

(1) For an S-oracle triple (M̄, N̄ , η̄) as above we let K1 be the set of all

(P, D
˜
) with the following properties:

(a) P is a c.c.c. forcing with a nonstationary domain P ⊆ ω1.

(b) D
˜

is a canonical P-name of a non-principal ultrafilter over ω.
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(c) Y (P, D
˜
) ∈ DN̄ , where Y (P, D

˜
) is the set of δ ∈ S such that

items (α) to (ε) hold:

(α) P ∩ δ ∈Mδ.

(β) If E ⊆ P ∩ δ and E ∈ Nδ and E is predense in P ∩ δ then E

is predense in P (so we have that P has the N̄ -oracle-c.c.).

(γ) D
˜

(Mδ,δ) ∈Mδ and Mδ |= “D
˜

(Mδ,δ) is a canonical P∩ δ-name

of an ultrafilter over ω”.

(δ) Nδ |= (P ∩ δ 
 “ηδ is Cohen-generic over Mδ[G
˜

P∩δ]”).

(ε) D
˜

(Nδ,δ) ∈ Nδ is a canonical P∩δ-name of an ultrafilter over ω

such that

P ∩ δ 
 (∀f ∈Mδ[G
˜

P∩δ] ∩
ωω)(f ≤D

˜
(Nδ,δ) ηδ).

(2) For an oracle triple (M̄, N̄ , η̄) we let K2 be the set of (P, D
˜
) ∈ H(ℵ2)

such that there are a non-stationary P′ ⊆ ω1 and a bijective π : P′ → P

and (P′, D
˜

′) ∈ K1, π is an isomorphism from P′ onto P with π̄(D
˜

′) = D
˜
.

Remark 2.12: Since we do not add new types that have to be omitted in the

course of the iteration, one fixed oracle N̄ ∈ V is sufficient.

We recall the successor step and the direct limit step for oracle-c.c.

Lemma 2.13 (Lemma [She98, IV 3.2]): If P has the M̄ -c.c. and P forces that Q

has the 〈Mδ[P] : δ ∈ S〉-c.c., then P ∗Q
˜

has the M̄ -c.c.

Lemma 2.14 (Lemma [She98, IV 3.10]): If 〈Pα,Qα : α < β〉 is a finite support

iteration such that has the M̄ -c.c. and for α < β the forcing Pα forces that Qα

has the 〈Mδ[Pα] : δ ∈ S〉-c.c., then Pβ has the M̄ -c.c.

If π : P′ → P is an isomorphism between forcing orders, we use it also for its

natural extension that maps P-names to P′-names.

Lemma 2.15: Let (M̄, N̄ , η̄) be an S-oracle triple and let K1 be as in Definition

2.11(1). Assume

(1) (P, D
˜
) ∈ H(ℵ2), P is a forcing notion, P ∈ H(ω2) and D

˜
∈ H(ω2) is a

canonical P-name of an ultrafilter over ω.

(2) P′
ℓ is a notion of forcing whose domain is a non-stationary subset of ω1

for ℓ = 1, 2.

(3) πℓ is an isomorphism from P′
ℓ onto P for ℓ = 1, 2,

(4) D
˜

′
ℓ is a P′

ℓ-name of a subset of P(ω) such that πℓ maps D
˜

′
ℓ onto D˜

.

Then (P′
1, D
˜

′
1) ∈ K1 iff (P′

2, D
˜

′
2) ∈ K1.
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Proof. The map π = π−1
2 ◦ π1 is an isomorphism from P′

1 onto P′
2, and its

lifting π̄ maps D
˜

′
1 to D

˜
′
2. According to Lemma 2.3,

Z={δ∈S :π ↾δ is a one-to-one mapping from P′
1 ∩ δ to P′

2 ∩ δ and π ↾δ∈Mδ}

belongs to DM̄ . If δ ∈Z then δ ∈ Y (P′
1, D
˜

′
1) iff δ ∈ Y (P

˜
′
2, D
˜

′
2), since the defin-

ing properties of the sets Y (P
˜
′
ℓ, D˜

′
ℓ) are preserved by isomorphisms of forcing

orders.

This shows that in Definition 2.11(2) the following is true: If the demand holds

for some pair (P′, π) then it holds for every such pair. The primed partial orders

in Lemma 2.15 shall ensure that the domain is a non-stationary subset of ω1.

Canonical P′-names for reals and for filters over ω are actual subsets of H(ω1).

According to Lemma 2.15, their properties are invariant under bijections of ω1.

Since any property of the forcing is named modulo DN̄ the particular choice of

the injections does not matter. For the actual construction of forcing posets it is

convenient to use non-stationary domains for the P′ ∈ K1, since non-stationarity

is preserved by countable unions and by diagonal unions.

The property in Definition 2.11(1)(c)(ε) ensures that D
˜

will be forced to be

an ultrafilter such that the weakest condition in the two-step forcing forces

cf(ωω/D
˜
) = ℵ1, as witnessed by 〈ηδ : δ ∈ S〉. Technically it is more convenient

to prove property (δ) by induction and then derive property (ε) from prop-

erty (δ), though property (ε) is more directly related to cf(ωω/D
˜
) = ℵ1. In

the case of an ≤∗-increasing sequence 〈ηδ : δ < S〉 unboundedness is preserved

in limits of finite support iterations if each initial segment preserves it [BJ95,

Ch. 6, §4]. So it might be possible to prove by induction property (ε) and the

negation of (δ). We have not investigated this issue.

Concerning the preservation of (δ), we will frequently use [BJ95, Chapter 6

Section 4]:

Lemma 2.16: Let Pn ⋖ Pn+1 for n ∈ ω and let P be the direct limit of

〈Pn : n ∈ ω〉. If Pn 
 “ηδ is Cohen generic over Mδ[GPn
]” for all n, then

P 
 “ ηδ is Cohen generic over Mδ[GP].”

Let unif(M) denote the smallest cardinality of a non-meagre set. The fol-

lowing proposition gives the additional information that unif(M) = ℵ1 in our

forcing extensions, as witnessed by {ηδ : δ ∈ S}.
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Proposition 2.17: If (P, D
˜
) ∈ K2 then P forces that {ηδ : δ ∈ S} is a non-

meagre subset of ω2.

Proof. Let p ∈ P force that {ηδ : δ ∈ S} is meagre. Let τ be a name for a meagre

Fσ-set. By the c.c.c., there is a δ ∈ Y (P, D
˜
) such that τ, p ∈Mδ, p ∈ P∩ δ, τ is

a P ∩ δ-name, and p 
 {ηε : ε ∈ S} ⊆ τ . Then p 
P ηδ ∈ τ . Since δ ∈ Y (P, D
˜
),

clause (β) in the definition of Y (P, D
˜
) yields also p 
P∩δ ηδ ∈ τ . This is a

contradiction to Definition 2.11(1)(c)(δ) of the definition of Y (P, D
˜
).

Proposition 2.17 has a sort of an inverse direction for the class of Suslin

forcings. A forcing Q ⊆ ωω is called Suslin if Q is an analytic subset of ωω

and the relations ≤Q and ⊥Q are analytic sets in ωω × ωω. For Suslin proper

forcings, not making the ground model meagre is equivalent to preserving the

genericity of a Cohen real over any countable model [Gol93, 6.21, 6.22], and

then all non-meagre sets in the ground model stay non-meagre.

Now we introduce the approximation forcing (AP,<AP ):

Definition 2.18: We let K2 be as above.

(A) Let p = (Pp, D
˜

p),q = (Pq, D
˜

q) ∈ K2. We define p ≤AP q, that is, q

is stronger than p, if

(a) Pp ⋖ Pq,

(b) 
Pq
D
˜

p ⊆ D
˜

q.

(B) For i = 1, 2, we let forcing order of approximations be AP i = (Ki,≤AP ).

We let AP = AP 2.

The following is the parallel of the basic claim on oracle c.c. forcing, [She98,

Ch. IV, Claim 3.2]. The forcing Pi does not mean iteration up to stage i. The

variable i, ranging over ω + 1 or ω1 + 1 or ω2, is just an index for Pi being a

component of (Pi, D
˜

i) ∈ K2. Pi is an N̄ -oracle c.c. forcing and |Pi| ≤ ℵ1.

Lemma 2.19:

(A) The structure (K2,≤AP ) is a partial order of cardinality |H(ℵ2)|.

(B) K2 6= ∅.

(C) If pn = (Pn, D
˜

n) ∈ K2 for n ∈ ω and pn ≤AP pn+1, then the set has

an upper bound pω = (Pω, D
˜

ω) with Pω =
⋃

{Pn : n ∈ ω}.

(D) (K2,≤AP ) is (ω1+1)-strategically closed, that is, for every p ∈ AP the

protagonist has a winning strategy in the following game a(p): A play

lasts ω1 + 1 moves. During the play the player COM, the protagonist,
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chooses for each i ≤ ω1, pi = (Pi, D
˜

i) ∈ K2, and INC, the antagonist,

chooses qi ∈ K2 such that

(a) pi ≤AP qi,

(b) (∀j < i)(qj ≤AP pi),

(c) p0 = p.

The protagonist COM wins the game if they can always move. The

hard case is the choice of pω1 .

Proof. (A) and (B) are obvious.

(C) Let pn = (Pn, D
˜

n) and let 〈pn : n ∈ ω〉 be ≤AP -increasing. We choose

(Pn, πn,P
′
n, D

˜
′
n) by induction on n with the following properties:

(1) P′
n ⊆ ω1 is not stationary,

(2) πn : P
′
n → Pn is an isomorphism of partial orders,

(3) (π̄)−1(D
˜

n) = D
˜

′
n,

(4) πn ⊆ πn+1,

(5) (P′
n, D

˜
′
n) ∈ K1.

Then we let P′
ω =

⋃

n∈ω P′
n, and the latter is not stationary. Moreover, we

let πω =
⋃

n∈ω πn.

We fix for n ∈ ω a reduction rP′

ω,P′

n
: P′

ω → P′
n and we set

C = {δ ∈ S : δ limit of S and (∀n)rP′

ω ,P′

n
[P′

ω ∩ δ] ⊆ δ}.

Of course C is club in ω1. We let

Y =
⋂

k∈ω

Y (P′
k, D

˜
′
k) ∩ C.(2.3)

By [She98, Ch. IV, Claim 3.2], the poset P′
ω has the N̄ -oracle c.c., i.e., P′

ω

satisfies clause (c)(β) of Definition 2.11. By Lemma 2.16 the set Y is also a

witness to clause (c)(δ) for P′
ω ∈ K1.

We show that there is D
˜

′
ω such that (P′

ω , D
˜

′
ω) is an upper bound of 〈p′

n :n<ω〉

in ≤AP . To this end we define an P′
ω-name D

˜
′
ω for an ultrafilter such that

pω = (P′
ω, D

˜
′
ω) ∈ K1 and Y ⊆ Y (P′

ω, D
′
ω
˜

). We let

P′
ω 
 E

˜
′ =

⋃

k∈ω

D
˜

′
k.

Since P′
k is a complete suborder of P′

ω the D′
k

˜
are names for filters

and 0P′

k+1

 D′

k
˜

⊆ D′
k+1
˜

the weakest element of P′
ω forces that E

˜
′ is a P′

ω-name

for a filter.
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We write next(Y, ε) for the next element in Y after ε, i.e.,

next(Y, ε) = min{δ > ε : δ ∈ Y }.

By induction on δ ∈ Y , we will define a canonical P′
ω ∩ δ-name D′

ω
˜

(δ) ∈ Mδ

such that

P′
ω ∩ δ 
“D′

ω
˜

(δ) ⊇
⋃

{D′
ω
˜

(γ) : γ ∈ Y ∩ δ}

and D′
ω
˜

(δ) is an ultrafilter in Mδ,”

and

P′
ω ∩ next(Y, δ) 
“(∀f ∈Mδ[P

′
ω])(ηδ ≥D′

ω

˜
(next(Y,δ)) f)

and D′
ω
˜

(next(Y, δ)) ∩ P(ω)Nε is an ultrafilter in Nε.”

The restriction of names, mapping each name X to a name X(Mδ,δ), was

defined in Definition 2.10(2). We will often write XMδ instead of X(Mδ,δ). For

k ∈ ω we let

Yk = {δ ∈ Y : D′
k

˜
(δ) = D′

k
˜

Mδ}.

Then Yk ∈ DN̄ and thus also their intersection Y ′ =
⋂

k∈ω Yk is in DN̄ . For

simplicity, we write just Y for Y ′.

Assume that 〈D′
ω
˜

(γ) : γ ∈ Y ∩ δ〉 has been defined. By the induction hy-

pothesis on (p′
k, πk), the P

′
k-names for ultrafilters D′

k
˜

are defined and increasing

in k.

We first consider the limit steps in the induction. Let δ ∈ Y be a limit of Y .

First case: 〈D′
ω
˜

(γ) : γ < Y ∩ δ〉 6∈Mδ. Then we let

1P∩δ 
 D′
ω
˜

(δ) =
⋃

{D′
ω
˜

(γ) : γ ∈ Y ∩ δ}.

Second case: 〈D′
ω
˜

(γ) : γ ∈ Y ∩ δ〉 ∈Mδ. We first show

1 
P′

ω∩δ F
′

˜
(δ) := E′

˜
Mδ ∪

⋃

{D′
ω
˜

(γ) : γ ∈ Y ∩ δ} is a filter base.”

We assume, for a contradiction, that there are a condition p ∈ P′
ω, k ∈ ω, and

a γ ∈ Y ∩ δ and there are names X , X ′, such that p forces that X ∈ D′
k

˜

Mδ

and X ′ ∈ E′

˜
Mδ , γ ∈ Y ∩δ such that X∩X ′ is empty. Then p ↾ P′

k 
 X ∈ D′
k

˜
↾ δ.

Let Gk be P′
k-generic over Nδ with p ↾ P′

k ∈ Gk. We let

Z[Gk] = {n : (∃q̃ ∈ P′
ω ∩ δ/Gk)(q̃ ≥ p[Gk] ∧ q̃ 
 n ∈ X ′[Gk] ∩X)}.

Since pk is a condition the nameD′
ω
˜

(γ)↾δ is an ultrafilter compatible withD′
k
˜
(γ).

Therefore we have that p ↾ P′
k 
P′

k
“Z[Gk] is infinite.” Now we take n ∈ ω, q̃ as
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in the definition of Z[Gk], so that q̃ 
 n ∈ X ∩X ′. So we have a contradiction.

Hence for any γ ∈ Y ∩δ, the weakest condition forces that E′

˜
↾ δ ∪D′

ω
˜

(γ) is a fil-

ter basis. Since the namesD′
ω
˜

(γ) are forced to be increasing with γ ∈ Y ∩ δ, also

their union, F
˜

′(δ), is forced to be a filter basis. Now we choose a

name D′
ω
˜

(δ) ∈Mδ for an ultrafilter that extends F
˜

′(δ).

Now we consider the beginning and the successor steps of the induction. For

the beginning, let γ = −1, D
˜

′
ω(−1) = E

˜
′ and let δ = min(Y ), and for the

successor let δ be the successor of γ ∈ Y , i.e., δ = next(Y, γ). Then Nγ ∈ Mδ.

We extend D
˜

′
ω(γ) to D

˜
′
ω(δ) ∈Mδ so that D

˜
′
ω(δ) is a P

′∩δ-name for an ultrafilter

such that

1P∩δ 
 D
˜

′
ω(δ) ⊇ F

˜
(δ) := (E

˜
′ ↾ δ) ∪D

˜
′
ω(γ)

∪ {{n ∈ ω : ηγ(n) ≥ f
˜
(n)} : f

˜
∈Mγ a P′

ω ∩ δ-name for a function}.

Since γ ∈ Y , we can restrict the considerations to P′
ω ∩ γ names f

˜
. Again

we show that the weakest condition forces that F
˜
(δ) has the finite intersection

property. Let q0 ∈ P′
ω ∩δ be given. Let q0 force that A

˜
1 be a name of a member

of D′
k
˜

↾ δ and q0 
 A
˜

2 ∈ D′
ω
˜

(δ) and A3 = {n : ηγ(n) > f
˜
(n)}. Now in Mδ we

define a (P′
k ∩ δ)-name A

˜
23 as follows: if Gk ⊆ P′

pk
, q0 ↾ P′

k ∈ Gk is P′
k-generic

over Mδ we let

A
˜

23[Gk] = {n : (∃q̂ ∈ (P′
ω ∩ δ)/Gk)

(q̂ ≥ q0[Gk] ∧ q̂ 
 (n ∈ A
˜

2[Gk] ∧ ηγ(n) ≥ f
˜
[Gpk

](n)))}.

Then q0 ↾ P′
k 
P′

k
A
˜

1 ∩A
˜

23[Gk] is infinite, since P
′
k is already an approximation

and ηγ is Cohen generic also over Mγ [P
′
k], and hence Mγ [P

′
k] |= ηγ 6≤D′

k

˜

f . We

take q̂ ∈ (P′
ω ∩ δ)/Gk and n as in the definition of A

˜
23[Gk]. Since q0 ↾ P′

k is

P′
k-generic over Mδ, we may assume that q̂ ↾ P′

k ≥ q0 and q̂ 
 “n ∈ A
˜

1 ∩ A
˜
23.”

Hence in Mδ there is a name for an ultrafilter D
˜

′
ω(δ) containing F

˜
(δ), and we

choose and fix the <χ-least one and call it D
˜

′
ω(δ). Since Nγ ⊆Mδ andNγ ∈Mδ,

D
˜

′
ω(δ) ∩ P(ω)Nγ is an ultrafilter in Nγ .

Now the induction on δ ∈ Y is carried out. We choose a name D′
ω
˜

such that

P′
ω 
 D′

ω
˜

=
⋃

{D′
ω
˜

(δ) : δ ∈ Y }.

We mirror the construction back to the class K2: by letting D
˜

ω = π̄(D
˜

′
ω).

(D) Let p ∈ K2 be given. We write pi = (Pi, D
˜

i), i < ω1. The strategy of

the protagonist is to choose in addition to pi ≥AP qj for j < i, on the side also

p′
i = (P′

i, D
˜

′
i) ∈ K1 and πi : P

′
i → Pi and ξi ∈ ω1 with the following properties:



Vol. 242, 2021 COFINALITIES 113

(a) 〈ξi : i < ω1〉 is continuously increasing.

(b) (P′
i, D
˜

′
i) ∈ K1, P′

i r
⋃

{P′
j : j < i} ⊆ [ξi + 1, ω1).

(c) πi is a isomorphism from P′
i onto Pi mapping D

˜
′
i onto D

˜
i.

(d) For j < i, πj ⊆ πi (so the P′
i are ⊆-increasing in ω1).

(e) For j < i, (P′
j , D
˜

′
j) ≤AP 1 (P′

i, D
˜

′
i) and (Pj , D

˜
j) ≤AP (Pi, D

˜
i).

(f) If k < j ≤ i, p ∈ P′
k and q ∈ P′

j ∩ ξi and p and q are compatible in P′
i,

then they are compatible with a witness in P′
i ∩ ξi. (Then the proof of

[She98, Claim 3.2] for showing that also Pi has the N̄ -c.c. works.)

(g) If i = j + 1 < ω1 is a successor ordinal, then COM chooses pi = qj .

(h) If i < ω1 is a limit ordinal and if there is j(∗) < i such that

H =
⋂

{Y (P′
j , D
˜

′
j) : j ∈ [j(∗), i)} ∈ DN̄ ,

then player COM takes for pi the limit of a countable cofinal sequence

of qj ’s in the manner described in (C). Thus

(2.4) H ⊆ Y (P′
i, D
˜

′
i).

If there is no such j(∗), then COM can play just any lower bound of the count-

able sequence qj , j < i. For a set of i ∈ DN̄ there is such a j(∗) < i with

Equation (2.4).

Now if p′
i, i < ω1, are defined, in the ω1-limit COM chooses P′

ω1
as the direct

limit. Then Equation (2.4) implies that

Y (P′
ω1
, D
˜

′
ω1
) ⊇ △i∈ω1Y (P′

i, D
˜

′
i) ∩ {i : ξi = i},

and hence Y (P′
ω1
, D
˜

′
ω1
) ∈ DN̄ . Hence

1P′ 
 D
˜

′
ω1

=
⋃

i<ω1

D′
i

˜
is an ultrafilter extending D′

i
˜
, i < ω1.

We mirror the primed objects via
⋃

j<ω1
πj back to K2 and thus we get a

forcing Pω1 =
⋃

{Pi : i < ω} and a Pω1-name D
˜

ω1 for an ultrafilter over ω. The

protagonist COM hence has won the play of the completeness game.

Definition 2.20: Let GAP be an AP -generic filter. In V[GAP ] we let

Q =
⋃

{P : (∃D
˜
) (P, D

˜
) ∈ G

˜
AP }

and let E
˜

be a Q-name such that

Q 
 E
˜
=

⋃

{D
˜

: (∃P) (P, D
˜
) ∈ G

˜
AP }.
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We let Q
˜
be an AP -name for Q and we use the symbol E

˜
also for an AP -name

for E
˜
.

Lemma 2.21:

(a) 
AP Q
˜

is a c.c.c. forcing of cardinality ℵ2,

(b) 
AP E
˜

is a Q
˜
-name of a non-principal ultrafilter and b = ℵ1,

(c) if (P, D
˜
) ∈ AP , then (P, D

˜
) 
AP (Q

˜

 〈ηδ : δ ∈ S〉 is a ≤E

˜
-increasing

sequence and cofinal in ωω/E
˜
).

Proof. For (a), see [She98, Ch. IV, Claim 1.6]. Now we prove (b). By the

c.c.c. and the construction with direct limits, for every AP ∗ Q
˜
-name τ for a

real there are a pair p = (P, D
˜
) ∈ AP and a condition p ∈ P, and a P-name

real τ ′ for such that (p, p) 
AP∗Q
˜
τ ′ = τ .

(c) We work with the approximation forcing AP 1. Suppose for a contradic-

tion that ((P, D
˜
), p) 
AP 1∗Q

˜
(∃f ∈ ωω)(f ≥E

˜
〈ηδ : δ ∈ S〉). Then there is

((P′, D
˜

′), p′) ≥AP 1 ((P, D
˜
), p) and there is a canonical P′-name h

˜
such that

(2.5) ((P′, D
˜

′), p′) 
AP 1∗Q
˜
h
˜
≥E

˜
〈ηδ : δ ∈ S〉.

Since h
˜

is a name of a real in the c.c.c. forcing P′, there are some δ0 < ω1,

h′
˜

∈ Mδ0 such that h
˜
′ is a P′ ∩ δ0-name such that ((P′, D

˜
′), p′) 
AP 1∗Q

˜

h
˜
= h′

˜
.

We fix such a δ0, h
′

˜
. Since (P′, D′

˜
) ∈ K1, by Lemma 2.8 there is δ ≥ δ0 such

that

Nδ |= (∀h ∈Mδ[GP′∩δ])(h 6≥D′

˜
[GP′∩δ ]

ηδ).

We take a condition q ∈ P′ ∩ δ, q ≥P′ p′, forcing ∀h ∈ Mδ[GP′ ]h 6≥D′

˜
ηδ. Thus

((P′, D
˜

′), q′) ≥ ((P′, D
˜

′), p′) and this is a contradiction to Equation (2.5).

Now we show that the union of the generic filter of the approximation forc-

ing, i.e., the Q
˜

as given in Lemma 2.21, fulfils 
AP∗Q
˜
cf(Sym(ω)) = ℵ2. The

conditions of the form ((P∗, D
˜

∗), p) with p ∈ P∗ are dense in AP ∗Q
˜
.

A forcing destroying a given increasing cofinal chain of subgroups 〈Gi : i < ω1〉

of Sym(ω) is written down in [MS11]. Such a forcing adds one particular real, a

new permutation g that for cofinally many i < ω1 there is fi ∈ Gi+1 rGi such

that g◦fi◦g
−1 ∈ Gi. Thus in the extension we have g ∈ Sym(ω)r

⋃

{Gi : i < ω1}

and the sequence 〈Gi : i < ω1〉 is not cofinal any more.

In the rest of this section we construct a variant of such a forcing that adds

such a conjugator and at the same time has the N̄ -oracle c.c. We first show

that we can work with convenient supports of permutations.
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Lemma 2.22: Suppose that a chain of subgroups 〈Gi : i < ω1〉 is an increasing

chain of subgroups of Sym(ω) such that all permutations that move only finitely

many elements are elements of G0. Suppose that U ⊆ ω1 is uncountable and

there are

〈ζ1i , ζ
2
i , f

1
i , f

2
i : i ∈ U〉 and g

with the following properties:

(1) for i < j ∈ U , i ≤ ζ1i < ζ2i < j,

(2) for i ∈ U , f1
i ∈ Gζ1

i
and f2

i ∈ Gζ2
i
rGζ1

i
, and

(3) for i ∈ U , (∀∞n)((g ◦ f1
i )(n) = (f2

i ◦ g)(n)).

Then g ∈ Sym(ω)r
⋃

{Gi : i ∈ ω1}.

Proof. If g ∈ Gζ1
i
for some i ∈ U , then by (3) also f2

i ∈ Gζ1
i
, contradiction.

For carrying this out we use some notions describing permutation groups.

Definition 2.23: Let f : ω → ω. supp(f) = {n : f(n) 6= n}.

Observation 2.24: If f ∈ Sym(ω), then f [supp(f)] = supp(f).

For f ∈ Sym(ω), we say f has order 2 if f ◦ f is the identity.

For arguing with given supports, we use

Lemma 2.25 ([MS11, Lemma 3.3]): If 〈Gi : i < ω1〉 is an increasing sequence

of proper subgroups of Sym(ω) with union Sym(ω), and G0 contains all permu-

tations with finite support, then for any W ∈ [ω]ℵ0 the sequence

〈Gi ∩ {f ∈ Sym(ω) : supp(f) ⊆W ∧ f is of order 2} : i < ω1〉

is not eventually constant.

Now we return to forcing.

Lemma 2.26: 
AP∗Q
˜
“ cf(Sym(ω)) = ℵ2”.

Proof. Assume towards a contradiction:

⊕1 ((P∗, D
˜

∗), p∗) 
AP∗Q
˜
“〈Gi

˜
: i < ω1〉 is an increasing sequence of proper

subgroups of Sym(ω) with union Sym(ω), and G0
˜

contains all permu-

tations with finite support”.

⊕2 By Lemma 2.25, ⊕1 implies: ((P∗, D
˜

∗), p∗) 
AP∗Q
˜
“if W ∈ [ω]ℵ0 then

〈Gi
˜

∩ {f ∈ Sym(ω) : supp(f) ⊆ W ∧ f is of order 2} : i < ω1〉 is not

eventually constant”.
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⊕3 We let 〈mη : η ∈ ω>ω〉 be a sequence of natural numbers without

repetitions. For η ∈ ωω we let W (η) = {mη↾n : n ∈ ω}. Then for η 6= η′

and k = min{n : η(n) 6= η′(n)} we have

W (η) ∩W (η′) = {mη↾n : n < k}.

By induction on i < ω1 we choose pi = (Pi, D
˜

i) ∈ AP , πi, p
′
i ∈ AP 1,

ξi ∈ ω1, and (pi, πi,p
′
i, ξi, ζ

˜

1
i , ζ
˜

2
i , f
˜

1
i , f
˜

2
i ,R

′

˜
i, Y (P′

i, D
˜

′
i)) such that:

(a) p0 = p∗, Y (P′
0, D
˜

′
0) = Y (P∗, D

˜
∗).

(b) pi = ((Pi, D
˜

i), p∗) ∈ AP ∗Q
˜

and j < i→ pj ≤AP pi.

(c) p′
i = ((P′

i, D
˜

′
i), p∗) ∈ AP 1 ∗Q

˜
satisfies

(α) P′
0 ∩ {ξi : i < ω1} = ∅, the set of members of

P′
i r

⋃

{P′
j : j < i} ⊆ [ξi + 1, ω1),

hence P′
i ∩ ξi = P′

j ∩ ξi for any j ≥ i,

(β) πi : P
′
i → ω1 is a one-to-one function mapping P′

i onto Pi and

mapping D
˜

′
i onto D

˜
i,

(γ) if j < i, then πj ⊆ πi,

(δ) 〈ξi : i < ω1〉 has the properties (a) to (d) of the proof of

Lemma 2.19 (D) with respect to the sequence 〈p′
i, πi : i<ω1〉,

(ε) the set Y (P′
i, D
˜

′
i) witnesses that (P

′
i, D
˜

′
1) ∈ K1 as in Defini-

tion 2.11(1)(c).

(d) At double successor steps of limit ordinals we add a new Cohen real:

If i = ωj + 1 then P′
i+1 = P′

i ∗ (
ω>ω, ⊳), we let ν

˜
i be a name for a

(ω>ω, ⊳)-generic real. So ν
˜
i is a Cohen real over VP′

ω·j . Since VP′

i

is unbounded in VP′

i+1 by Lemma 2.7, there is a Pi+1-name for an

ultrafilter D
˜

i+1. The set

Y (Pi+1, D
˜

i+1) = Y (Pi, D
˜

i) ∩ [i + 1, ω) ∈ DN̄

witnesses that (P′
i+1, D

˜
′
i+1) ∈ K1.

(e) Also, if i = ωj + 1 then we choose D
˜

′
i+1 such that

(P′
i+1, D

˜
′
i+1) ≥AP (P′

i, D
˜

′
i) and 〈Gℓ

˜
∩ P(ω)P

′

j : ℓ < ω1〉

and even 〈Gℓ
˜

∩ P(ω)P
′

i : ℓ < ω1〉 is a P′
i-name.

(f) Also at double successors to limit ordinals we fix witnessing func-

tions with the new Cohen νi as information in their support, i.e.,

if i = ω · j + 1 then
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(α) for ℓ = 1, 2, p′
i+1 forces that i < ζ

˜

1
i < ζ

˜

2
i ,

(β) and for ℓ = 1, 2, p′
i+1 forces that f

˜

2
i ∈ Gζ

˜

2
i

˜

rGζ
˜

1
i

˜

, f
˜

1
i ∈ Gζ

˜

1
i

˜is a P′
i+1-name of a member of Sym(ω) of order 2 such that

P′
i+1 
 supp(f ℓ

i ) ⊆ w
˜

ℓ
i =W (〈ℓ〉⌢ν

˜
i).

Here 〈ℓ〉⌢ν is the concatenation of the singleton 〈ℓ〉 and ν, i.e.,

(〈ℓ〉⌢ν)(k) = ℓ if k = 0, and = ν(k − 1) else. Recall that for

η ∈ ωω, W (η) has been defined in ⊕3.

By Lemma 2.25, the desired names for countable ordinals ζ
˜

1
i , ζ

˜

2
i

and names f
˜

1
i , f

˜

2
i exist. The triple p′

i ∈ AP ∗Q
˜

stays unchanged.

(g) At limit steps i < ω1, we let (P
′
i, D
˜

′
i) be a lower bound of (Pj , D

˜
j),

j < i, as in Lemma 2.19(C). We let Y (P′
i, D
˜

′
i) ∈ DN̄ be a witness

to (P′
iD
˜

′
i) ∈ K1.

(h) Now finally we explain the order Pi+1 for countable limit ordinals i.

We let

H =
⋂

{Y (P′
ε, D
˜

′
ε) : ε < i}.

Then H ∈ DN̄ . We let Yi, ξi be as follows:

(2.6)

Yi ={δ∈H : (∀j <i)(ξj<δ)∧(∀j1∈ i)

((ζ
˜

1
j1
, ζ
˜

2
j1
, f
˜

1
j1
, f
˜

2
j1
)∈Mδ∧Nj1 ∈Mδ

∧ ζ
˜

1
j1
, ζ
˜

2
j1
, f
˜

1
j1
, f
˜

2
j1

are P′
i ∩ δ-names)},

ξi =min(Yi).

Then Yi ∈ DN̄ . Since any element of DN̄ is unbounded in ω1, the

ordinal ξi is well-defined. We define R
˜
′
i ∈Mξi : R

˜
′
i is a P′

i∩ξi-name

of a c.c.c. forcing notion. Recall that w1
ε , w

2
ε , ε < ξi, ε successor

ordinal, are defined in ⊕3(f)(β). The key fact to the N̄ -c.c. is that

these names are so faintly related to the Cohen reals 〈ηδ : δ ∈ S〉.

The following is forced by P′
i∩ξi: A member of R′

i has the form (u, g)

such that:

(α) u ⊆ {ω · j + 1 : ω · j + 1 ∈ ξi} is finite, g a finite partial per-

mutation of order two, dom(g) ⊆
⋃

ε∈uw
2
ε , such that ε ∈ u

implies range(g) ⊆ w1
ε .

(β) Recall that for η ∈ ω>ω, mη has been defined in ⊕3. The sets

dom(g) and range(g) are sufficiently large in the following

sense:
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• if δ 6= ε ∈ u then we fix n, such that νδ ↾ n 6= νε ↾ n

and then require that for k = 1, 2 the set

{m〈k〉⌢νδ↾ℓ : ℓ < n} ⊆ dom(g) ∩ range(g),

• ∀ε ∈ dom(p), if ε is Cohen coordinate (as in ⊕3(d)) and

p(ε) ∈ 2n, ℓ ≤ n, k = 1, 2, then

m〈k〉⌢p(ε)↾ℓ ∈ dom(g) ∩ range(g).

(γ) If ε ∈ u then dom(g)∩w2
ε is closed under f1

ε and range(g)∩w1
ε

is closed under f2
ε .

(δ) For (u1, g1), (u2, g2) ∈ R′
i we let (u1, g1) ≤ (u2, g2) iff

(i) u1 ⊆ u2,

(ii) g1 ⊆ g2,

(iii) (∀ε ∈ u1)(∀n ∈ w2
ε ∩ (dom(g2)rdom(g1))(g2(n) ∈ w1

ε ∧

f2
ε (g2(n)) = g2(f

1
ε (n))).

We let P′
i+1 = P′

i ∗ R
′
i.

Since R′
i is countable, P′

i+1 has the N̄ -c.c., and again by Lemma

2.7 we find D
˜

′
i+1 such that (P′

i+1, D
˜

′
i+1) ∈ K1 with witness

Y (Pi+1, D
˜

i+1) = Yi ∩ [ξi, ω1).

⊕4 Once the induction is performed, we define pω1 = (Pω1 , D
˜

ω1) and

p′
ω1

∈ K1 and π =
⋃

i<ω1
πi which maps p′

ω1
onto pω1 as follows:

(a) P′
ω1

=
⋃

{(P′
i ∩ ξi) ∗ R

′
i : i < ω1, i limit}.

(b) P′
ω1


 D
˜

′
ω1

=
⋃

{D′
i

˜
: i < ω1, i limit}.

(c) π =
⋃

i<ω1
πi is an isomorphism from P′

ω1
onto Pω1 mapping D

˜
′
ω1

to D
˜

ω1 .

(d)
∧

i<ω1
pi ≤ pω1 ∈ K2,

∧

i<ω1
p′
i ≤ p′

ω1
∈ K1.

We show that p′
ω1

∈ K1. We let Y (P′
ω1
, D
˜

′
ω1
) be the diagonal inter-

section of the Y (P′
i, D
˜

′
i) intersected with the set of i such that for any

j < i, ξj < i. Since DN̄ is a normal filter, Y (P′
ω1
, D
˜

′
ω1
) ∈ DN̄ . We show

that this set witnesses Definition 2.11(1)(c). To this end, we prove the

following claim.

Claim: Suppose that i ∈ Y (P′
ω1
, D
˜

′
ω1
). The forcing P′

i ∩ ξi forces the

following: If i1 < i, i1 ∈ Y (P′
i, D
˜

′
i), then R

˜
′
i1

⊆ic R
˜
′
i and if D0 ∈ Ni1 is

a predense subset of P′
i1
∩ ξi1 ∗ R

˜
′
i1

then D0 is predense in P′
i ∩ ξi ∗ R

˜
′
i.
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We prove this claim: P′
i ∩ ξi 
 R

˜
′
i1
⊆ic R

˜
′
i follows from the definition

of the orders R′
j .

Assume that D0 ∈ Ni1 is an open dense subset of P′
i1
∩ ξi1 ∗ Ri1 ,

and p = (p ↾ ξi1 , p(ξi1)) ∈ (P′
i ∩ i ∗ R

′
i). We have to find a condition in

q ∈ D0 that is compatible with p. Assume that p ∩ ξi1 
P′

ξi1

p(i1)=(u, g)

and u, g are pinned down in V, not names. After possibly strengthen-

ing p and g we can assume that g is so strong that it fulfils:

dom(g) ⊇{mp(β)↾k : β ∈ supp(p), β successor ordinal,

β ∈ u, k ≤ |p(β)| ∧ P′
β = P′

β−1 ∗ (
ω>ω, ⊳)};

range(g) ⊇{(f1
β)(mp(β)) : β ∈ supp(p), β successor ordinal,

β ∈ u, k ≤ |p(β)| ∧ P′
β = P′

β−1 ∗ (
ω>ω, ⊳)}.

After possibly further strengthening p we can assume that p ↾ ξi1 de-

termines ζjβ for j = 1, 2 and determines f
˜

2
β restricted to the set on the

right-hand side of the first eqution, and determines f
˜

1
β on the right-hand

side of the second equation for any β ∈ u. We assume the analogous

strength of p′ for all triples (p′, (u′, g′)) appearing later in the proof. We

assume that dom(g) ∈ ω and that dom(g) is larger than any W 2
ε ∩W 2

ζ

for ε 6= ζ ∈ u and that range(g) is a superset of W 1
ε ∩W 1

ζ for ε 6= ζ ∈ u.

Now we choose p0 = (p ↾ ξi1 , (u ∩ ξi1 , g)) ∈ Mξi1
. We choose

q0 = (q0 ↾ ξi1 , (uq0 , gq0)) ≥ p0, q0 ∈ D ∩ ξi1 ∩ Mξi1
. Then q0 does

not determine more of the Cohen real νε for ε ∈ uq0 than p0 does. Then

we take q1 ≥ q0 such that

q1 = (q0 ↾ ξi1 ∪ {(ε, q1(ε)) : ε ∈ uq0 r ξi1}, (uq0 , gq0))

where for each ε ∈ ur ξi1 ,

q1(ε) 
W (0⌢νε
˜
) ∩ (dom(gq0)r dom(g)) = ∅

∧W (1⌢νε
˜
) ∩ (range(gq0)r range(g)) = ∅.

This special point (not in [She98, Ch. IV], [She06]) is that the ν
˜
i, i

sucessor of a countable limit ordinal, ηδ, δ ∈ S, are just Cohen reals:

Defining relevant generic objects that have a Cohen real as domain

allows us to carry on the oracle-c.c. and thus to preserve the Cohenness

of the ηδ. This main trick is also used in the next section. Now q1 is

compatible with p.
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Thus Y (P′
ω1
, D
˜

′
ω1
) ∈ DN̄ is a witness for the oracle-c.c. of P′

ω1
, as

required in Definition 2.11(1)(c)(β). The other properties in Definition

2.11(1)(c) follow now for i ∈ Y (P′
ω1
, D
˜

′
ω1
) by the inductive definition of

the P′
i.

This finishes the construction of a stronger member in AP -forcing.

⊕5 Let

g
˜
=
⋃

{g : ∃p∃u(p, (u, g)) ∈ GP′

ω1

˜

},

U
˜

=
⋃

{u : ∃p∃g(p, (u, g)) ∈ GP′

ω1

˜

}.

We show

((P′
ω1
, D
˜

′
ω1
), p∗) 
AP∗Q

˜
|U
˜

= ℵ1| ∧ “g
˜
6∈
⋃

{Gi
˜

: i < ω1}”.

Proof. We fix a generic filter GP′

ω1
. By the construction of P′

ω1
we have

(∀i < j ∈ S ∩ C)(f
˜

ℓ
i ∈Mj ∧ f

˜

ℓ
i is a P′

ω1
∩ j-name).

The forcing P′
ω1

adds a g :
⋃

ε∈U w
2
ε →

⋃

ε∈U w
1
ε that conjugates

for i ∈ U , f1
i ∈ Gζ1

i
and f2

i ∈ Gζ2
i
rGζ1

i
. If i ∈ U then

dom(f ℓ
i ) = wℓ

i =W〈ℓ〉⌢νi

and g conjugates f1
i and f2

i up to a finite mistake, by ⊕3 item (i)(δ)(iii).

So, for each i ∈ U , g ◦ f1
i ◦ g−1 = f2

i up to finitely many arguments.

But g is in some subgroup Gj . So for ζ1i > i > j, i ∈ X , f2
i ∈ Gζ1

i
,

contradiction.

End of proof of Theorem 2.1. We assume that S⊆ω1 is stationary andV |=♦−
S .

We extend V with the forcing poset AP ∗Q
˜
. By Lemma 2.21, mcf = ℵ1 in the

extension, and by Lemma 2.26, cf(Sym(ω)) = ℵ2.

3. On Con(b = cf(Sym(ω)) < mcf)

Now we show that ℵ1 = b = cf(Sym(ω)) < ℵ2 = mcf is consistent rela-

tive to ZFC. In [MST06] we established that it is consistent relative to ZFC

that ℵ1 = b = g < ℵ2 = mcf. Brendle and Losada showed that g ≤ cf(Sym(ω))

in ZFC; see [BL03]. So the following theorem gives another consistency proof

for ℵ1 = b = g < ℵ2 = mcf.

Theorem 3.1: It is consistent relative to ZFC that b = cf(Sym(ω)) < ℵ2 = mcf.
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For the proof we will again work with oracle c.c.-forcing. Let D ⊆ [ω]ω be a

filter over ω. Then we write D+ for the D-positive sets, i.e., X ∈ D+ iff X ∩ Y

is infinite for any Y ∈ D.

Lemma 3.2: Let κ ≥ ℵ2 be a cardinal in V. The (A)κ implies (B)κ.

(A)κ For every filter D ⊆ [ω]ω over ω such that P(ω)/D has the c.c.c. (that

is: for every Ai, i < ω1, such that Ai ∈ D+ there are i 6= j such that

Ai∩Aj ∈ D+), for every regular κ∗ < κ, for every sequence 〈fi : i < κ∗〉

of functions fi ∈ ωω there is g ∈ ωω such that for unboundedly many

i < κ∗, ¬g ≤D fi.

(B)κ After forcing with a c.c.c. ωω-bounding forcing Q, in the extension VQ

for every non-principal ultrafilterD on ω, cf(ωω/D) ≥ κ, and bV = bV
Q

.

Proof. Assume (A)κ and that q0 ∈ Q forces “D
˜

is an ultrafilter over ω and

〈f
˜
α : α < κ∗〉 is increasing modulo D

˜
and κ∗ < κ”. So κ∗ is regular and

uncountable in VQ and hence regular and uncountable in V. We shall show

that there is q∗ ≥ q0,

(⊡) q∗ 
 ∃f ∈ (ωω)
∧

α<κ∗

f
˜
α <D

˜
f,

and thus we will have established (B)κ.

Since Q is ωω-bounding and c.c.c., we can take gα ∈ V for α ∈ κ∗ such that

q0 
Q “f
˜
α ≤∗ gα”.

We let

E = {A ∈ P(ω)V : (∃q ∈ Q)(q ≥ q0 ∧ q 
 Ǎ ∈ D
˜
)}

and we let

D′ = {A ∈ P(ω)V : q0 
 Ǎ ∈ D
˜
}.

Then we have E,D′ ∈ V and the following holds:

(1) D′ is a filter over ω.

(2) E ⊆ (D′)+. Let A ∈ E, say q 
 A ∈ D
˜
, q ≥ q0 and let B ∈ D′. Then

q 
 A ∈ D
˜
∧B ∈ D

˜
, so q 
 “A ∩B is infinite.” Since A,B ∈ V, A ∩B

is infinite. Since this holds for every B ∈ D′, item (2) is proved.

(3) (D′)+ ⊆ E. Suppose that X 6∈ E. Then ∀q ∈ Q, q ≥ q0 implies that

q 6
 X ∈ D
˜
, so q0 
 X 6∈ D

˜
. Since D

˜
is a name of an ultrafilter

q0 
 Xc ∈ D
˜
. So Xc ∈ D′ and X 6∈ (D′)+.

(4) So together: (D′)+ = E.
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(5) q0 forces that D′ is a c.c.c. filter. Proof: Let q0 
Q Aα ∈ (D′)+ = E for

α ∈ ω1, via qα ≥ q0. Since Q is c.c.c. there are α 6= β such that qα 6⊥ qβ .

Then there is r ∈ Q, r 
 Aα ∈ D
˜
, Aβ ∈ D

˜
, and hence r 
 Aα ∩Aβ ∈ D

˜
since D

˜
is forced to be a filter. So Aα ∩Aβ ∈ D′+.

Let g be as in the condition (A)κ, applied to D′ and 〈gα : α < κ〉, so for

some cofinal set u ⊆ κ∗ we have for α ∈ u ⊆ κ∗, ¬g ≤D′ gα. Hence for α ∈ u,

q0 6
 {n : g(n) ≤ gα(n)} ∈ D
˜

and there is

q̃α ≥ q0, q̃α 
 {n : g(n) ≤ gα(n)} 6∈ D
˜
.

Thus q̃α 
 {n : g(n) > gα(n)} ∈ D
˜

and the choice of gα implies

q̃α 
 {n : g(n) > f
˜
α(n)} ∈ D

˜
.

Since Q has the c.c.c., we have cf(κ∗)>ω. Therefore κ∗-many of the q̃α are in the

generic filter. So for any Q-generic filter G with q0 ∈ G we have f
˜
α[G] ≤D

˜
[G] g

for cofinally many α ∈ u. Hence a condition q∗ ≥ q0 forces this. Since the

sequence 〈f
˜
α : α < κ∗〉 is ≤D

˜
-increasing, we get q∗ 
 “(∀α < κ∗)(f

˜
α ≤D

˜
g).”

Thus Equation (⊡) and the first statement of (B)κ are proved.

Since the forcing Q is ωω-bounding, we have bV = bV
Q

.

An example for such a Q is the forcing adding ℵ1 random reals, in a countable

support iteration or with the measure algebra over 2ω1 . From now on, we

let Q be one of these forcing for adding ℵ1 random reals. In the extension VQ

of Lemma 3.2 we have cf(Sym(ω)) = ℵ1 by [ST95, Theorem 1.6]. So if we

succeed to establish the condition (A)κ of the lemma together with b = ℵ1 for

some κ ≥ ℵ2, Theorem 3.1 will be proved. We fix a stationary S ⊆ ω1 and

take κ = ℵ2 and we work again with oracle-c.c. forcings in order to establish

the consistency of (A)ℵ2 and b = ℵ1.

Lemma 3.3: We assume that inV, the set S is stationary in ω1 and the two dia-

mond principles ♦S and ♦{δ<ℵ2:cf(δ)=ℵ1} hold. Then there is an oracle c.c. forc-

ing notion P such that in VP we have (A)ℵ2 of the previous lemma, and b = ω1.

Proof. We fix inV a≤∗-increasing sequence 〈gδ : δ < ω1〉 that is≤
∗-unbounded.

We fix an oracle M̄ = 〈Mε : ε ∈ S〉 such that the M̄ -c.c. ensures that the type
∧

δ<ω1
x ≥∗ gδ is omitted. Indeed, 〈gδ : δ ∈ ω1〉 ∈M ′

0 ≺ H(χ) andM0 being the

Mostowski collapse ofM ′
0 suffices for this. In addition we fix a ♦{α<ℵ2:cf(α)=ℵ1}-

sequence 〈Tα : α ∈ ω2, cf(α) = ℵ1〉 ∈M ′
0.
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In the following α, α′ will range over ω2, i, j, ε, ζ, ξ over ω1, and the let-

ters β, γ, δ will denote particular functions with values in ω2, ω1, ω1. We

fix a bijection b : 2<ω → ω, a bijection c : 2ω ∩ V → ω1 and another bijection

b2 : ℵ2 → (P(H(ω1)))
2. By ♦S and ♦{α<ℵ2:cf(α)=ℵ1} such bijections exist.

A finite support iteration 〈Pα,Qβ

˜
: β < ω2, α ≤ ω2〉 is constructed by induc-

tion on α ≤ ω2 with the following properties:

(1) |Pα| ≤ ℵ1 for α < ω2,

(2) Pα has the M̄ -c.c.

For an odd stage α ∈ ω2 we force via Qα = C, and we conceive Cohen

forcing C in the form

{p : p is a partial function from 2<ω to 2, |p| < ω}

and fix for η ∈ 2ω ∩V sets

Aα,η = {b((p(η ↾ 0), . . . , p(η ↾ n− 1))) : n ∈ ω, p ∈ G} ⊆ ω

in the extension by C, where b is the bijection from above. Note that for η 6= η′,

Aα,η ∩ Aα,η′ is finite. We write A′
α,ε = Aα,c−1(ε). Then |Pα+1| ≤ ℵ1.

For even α < ω2 we define Qα as follows: If cf(α) < ω1, we let Qα be the

trivial forcing, i.e., Qα = {0}. Now let α > 0. We assume that Pα ⊆ ω1. Then

every canonical Pα-name (D
˜
, 〈fi
˜

: i < ω1〉) for a subset of P(ω) and an ω1-

sequence of reals is a subset of H(ω1). We say that T ⊆ α codes the canonical

name (D
˜
, 〈fi
˜

: i < ω1〉) if b2[T ] = (D
˜
, 〈fi
˜

: i < ω1〉).

If cf(α) = ω1 and Tα is a canonical Pα-name of a pair (D
˜
, 〈f
˜
α,i : i < ω1〉)

such that

Pα 
 “D
˜

contains the cofinite sets and P(ω)/D
˜

is c.c.c.”

then we first fix in the ground model an increasing sequence 〈β(α, i) : i < ω1〉

that converges to α such that each β(α, i) is an odd member of ω2.

Next we define by induction on i < ω countable ordinals as follows:

(3.1)
γ(α, 0) = min{ε < ω1 : fα,0

˜
∈ VPβ(α,ε)},

γ(α, i) = min{ε < ω1 : fα,i
˜

∈ VPβ(α,ε) ∧ (∀j < i)(ε > γ(α, j))}.

Later it will be important that the γ(α, i), i < ω1, are pairwise different.

Then for each i<ω1 we choose with the maximum principle a name δ(α, i)∈ω1

such that

(3.2) Pα 
 (ω rAβ(α,γ(α,i)),δ(α,i)) ∈ D
˜
.
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We do not write the tildes under the names of the δ. For the existence of

such δ(α, i) we use the following claim.

Claim: For any i < ω1 there are coboundedly many ε such that

Pα 
 (ω rAβ(α,γ(α,i)),ε) ∈ D
˜
.

Proof. Assume for a contradiction that i < ω1 is a counterexample to the claim.

Then there are unboundedly many ε ∈ ω1 such that there is pε ∈ Pα such

that pε 
 Aβ(α,γ(α,i)),ε) ∈ D
˜

+. Since Pα has the c.c.c. there is a Pα-generic G

that contains ℵ1 many pε as above. Call this uncountable set of ε’sX . However,

for ε 6= ε′ ∈ X ,

Pα 
 Aβ(α,γ(α,i)),ε ∩ Aβ(α,γ(α,i)),ε′

is finite. This contradicts the fact that Pα 
 P(ω)/D
˜

is c.c.c., and thus the

claim is proved.

We use only one δ(α, i) and its value in ω1 is not important. However, for

the γ(α, i), the pairwise inequality β(α, γ(α, i)) 6= β(α, γ(α, j)) for i 6= j is

important, so that there are no conflicts between the various instances of con-

dition (6) below.

Once the sequence 〈γ(α, i), δ(α, i) : i < ω1〉 is chosen, we define in VPα the

forcing Qα as follows: p ∈ Qα iff

(1) p = (up, hp),

(2) up ⊆ ω1 is finite,

(3) hp ∈ ω>ω.

Qα |= p ≤ q if

(4) up ⊆ uq and

(5) hp E hq and

(6) if ξ ∈ up and

m ∈ (ω rAβ(α,γ(α,ξ)),δ(α,ξ)) ∩ (dom(hq)r dom(hp))

then fα,ξ(m) < hq(m).

We show by induction on α ≤ ω2 that Pα has the M̄ -c.c. and |Pα| ≤ ℵ1

for α < ω1. Since we take direct limits, the limit steps are covered by [She98,

Ch. IV, 3.2]. The start of the induction is trivial. Now we look at the successor

steps Pα+1 = Pα ∗Qα
˜

.
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Odd α: Qα is the Cohen forcing. Any countable forcing has the M̄ [Pα]-c.c.

Putting this together with the induction hypothesis, Pα+1 has the M̄ -c.c.

Even α: Since Pα has the c.c.c., there is a set of representatives of Pα-names

of members of Qα of size at most ℵ1. Hence we can assume that |Pα+1| ≤ ℵ1.

To simplify notation, we assume that Pα ⊆ ω1 and we assume

Pα 
 Qα ∩ ε = {(u, p) ∈ Qα : u ⊆ ε}.

We fix a witness Y (Pα) ∈ DM̄ for the M̄ -c.c. of Pα, i.e., for every ε ∈ Y (Pα) for

every I ∈Mε that is a dense subset of Pα ∩ ε, I is dense in Pα.

We intersect Y (Pα) with the club C ⊆ ω1 of countable limit ordinals that are

closed under the functions γ(α, ·) and δ(α, ·) that are defined as in Equations

(3.1), (3.2). Since Pα is c.c.c., such a club can be found in the ground model

although δ(α, ·) is a name.

Next we prove that Y (Pα) ∩ C witnesses that Pα+1 has the M̄ -c.c.

Let ε ∈ Y (Pα) ∩C, D ∈Mε be an open and dense subset of (Pα ∩ ε) ∗ (Q ∩ ε).

Let p ∈ Pα+1. We have to show that there is q ∈ D that is compatible with p.

We write p = (p ↾ α, (up(α), hp(α))) and we assume that p ↾ α determines the

finite sets up(α) and hp(α) so that they are elements of [ω1]
<ω and ω>ω and that

it also determines γ(α, ξ) and δ(α, ξ) for any ξ ∈ up(α).

The search for q proceeds in four steps:

First step: We apply the induction hypothesis. We let D′ = D∩Pα; D
′ ∈Mε

is dense and open in Pα ∩ ε. Since Pα has the M̄ -c.c. and ε ∈ Y (Pα) there

is q′ ∈ D′ ∩Mε that is compatible with p ↾ α. We fix a witness r′ ∈ Pα for

compatibility.

Second step: We choose (h′, up(α)) ≥ p(α) to take a record of r′ on its finitely

many Cohen coordinates by taking n ∈ ω so large such that

(3.3)
(∀m)(∀ξ ∈ up(α))(∀β = β(α, γ(α, ξ)) ∈ supp(r′))

((r′ 
 (m 6∈ Aβ(α,γ(α,ξ)),δ(α,ξ))) → m < n).

Such an n exists since r′pins down only a finite part of the nameAβ(α,γ(β,ξ)),δ(α,ξ)

for any ξ ∈ up(α) with β(α, γ(α, ξ)) ∈ dom(r′). Now we let dom(h′) = n

and on n r dom(hp(α)) we fix some h′(k) ≥ fα,ξ(k) for all ξ ∈ up(α). We let

q′ = (h′, up(α)).
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Third step: We go again into D ∩ Mε. With the maximum principle we

choose q(α) ∈ Mε such that q′ 
 q(α)
˜

≥Qα
(up(α) ∩ ε, h

′) ∧ q(α)
˜

∈ Dα[Pα] and

let q = (q′, q(α)
˜

). Then q = (q′, q(α)
˜

) ∈Mε ∩D.

Fourth step: We show that p and q are compatible. For any ξ ∈ up(α) r ε we

choose q1(β(α, γ(α, ξ))) ≥ q′(β(α, γ(α, ξ))) such that

q1(β(α, γ(α, ξ))) 
Qβ(α,γ(α,ξ))

(∀n ∈ dom(hq(α)
˜

r dom(h′)))(n ∈ Aβ(α,γ(α,ξ)),δ(α,ξ)).
(3.4)

We let

r=(q′ ∪ {(β(α, γ(α, ξ)), q1(β(α, γ(α, ξ)))) :ξ ∈ up(α)
˜

r ε}, (up(α)
˜

∪ uq(α)
˜

, hq(α)
˜

)).

The condition r is well defined, since for any ξ ∈ up(α r ε, the condition

q1(β(α, γ(α, ξ)) ∈ Pα can be chosen to be compatible with q′(β(α, γ(α, ξ)),

by the choice of n as in Equation (3.3).

We show that r ≥ p, q. First r ↾ α ≥ p ↾ α, q′ and q′ = q ↾ α. We show that

r ↾ α 
Pα
(up(α)

˜

∪ uq(α)
˜

, hq(α)
˜

) ≥Qα

˜
(uq(α)

˜

, hq(α)
˜

), (up(α)
˜

, h′).

The first is trivial. For the latter, let ξ ∈ up(α)
˜

. First case: ξ ∈ Mδ. We

chose (after Equation (3.3)) the function hq(α)(k) such that it dominates fα,ξ(k)

on any coordinate k not in dom(hp(α)) such that r′ 
 k 6∈ Aβ(α,γ(α,ξ)),δ(α,ξ).

Thus r ↾ α forces the relevant instances of clause (6) of r(α) ≥ p(α).

Second case: ξ ∈ up(α)
˜

r ε. Since clause (6) speaks only about

m ∈ ω rAβ(α,γ(α,ξ)),δ(α,ξ), Equation (3.4) implies r ↾ α 
Pα
r(α)
˜

≥ q(α)
˜

.

Remark: We work with the assumption ♦{δ<ℵ2:cf(δ)=ℵ1}. Alternatively, we

could force as in the previous section by approximations of size ℵ1 in a first

step and thereafter force with the generic filter of the first forcing. The dia-

mond ♦{δ<ℵ2:cf(δ)=ℵ1} hands down at stage α a possible Pα-name for objects D,

〈gi : i < ℵ1〉 as in property (A)ℵ2 of Lemma 3.2 and thus allows to construct a

finite support iteration up to stage ω2 instead of using an approximation forcing

in a first forcing step. So the partial order P of the sketched alternative con-

struction corresponds in the actually performed forcing AP ∗Q to the generic Q
˜of the approximation forcing AP .
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