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ABSTRACT

We develop the theory of smooth principal bundles for a smooth group

G, using the framework of diffeological spaces. After giving new examples

showing why arbitrary principal bundles cannot be classified, we define D-

numerable bundles, the smooth analogs of numerable bundles from topol-

ogy, and prove that pulling back a D-numerable bundle along smoothly

homotopic maps gives isomorphic pullbacks. We then define smooth struc-

tures on Milnor’s spaces EG and BG, show that EG → BG is a D-

numerable principal bundle, and prove that it classifies all D-numerable

principal bundles over any diffeological space. We deduce analogous classi-

fication results for D-numerable diffeological bundles and vector bundles.

∗ The second author was partially supported by NNSF of China (No. 112530) and

STU Scientific Research Foundation for Talents (No. 760179).

Received November 12, 2018 and in revised form February 25, 2020

911



912 J. D. CHRISTENSEN AND E. WU Isr. J. Math.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 912

2. Background on diffeological spaces and bundles . . . . . . 916

3. There is no classifying space for all diffeological principal

bundles . . . . . . . . . . . . . . . . . . . . . 921

4. Partitions of unity and D-numerable bundles . . . . . . . 925

5. Classifying D-numerable principal bundles . . . . . . . . . 933

6. Classifying D-numerable diffeological bundles . . . . . . . 943

7. Classifying D-numerable vector bundles . . . . . . . . . . 946

Appendix A. A smooth function that detects zeros . . . . . 949

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 954

1. Introduction

The theory of classifying spaces for principal bundles has a long history in

topology [Mi, Se, St] and its importance is well-established. In this paper, we

develop the analogous theory for spaces with a smooth structure. In brief, given

a smooth group G, we put a smooth structure on EG and BG, define a smooth

principal G-bundle EG → BG, and show that this bundle is universal in an

appropriate sense. We show how these results can be used to classify smooth

fiber bundles as well as smooth vector bundles, laying the foundation for future

work on smooth characteristic classes and smooth K-theory.

The framework we use to formulate these results is that of diffeological spaces.

A diffeological space is a set X along with a chosen collection of functions

U → X (called plots), where U runs over open subsets of Euclidean spaces. The

plots are subject to three simple axioms (see Definition 2.1). The category of

diffeological spaces and smooth maps between them is a convenient category in

which to make constructions. It includes smooth manifolds as a full subcategory,

as well as function spaces, diffeomorphism groups and singular spaces such as

manifolds with corners and all quotients. The geometry and homotopy theory

of diffeological spaces is well-developed (see [CSW, CW1, CW2, Ig1, Ig2, So1,

So2, Wu] and references therein), giving a solid framework in which to develop

the present theory.
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When classifying principal bundles in topology, one has to either restrict to

base spaces that are paracompact or (more generally) consider only numerable

bundles. The issue is that it is not true in general that if π : E′ → B′ is a prin-

cipal bundle and f, g : B → B′ are homotopic, then the pullback bundles f∗(π)
and g∗(π) over B are isomorphic. The same issue arises in the smooth setting.

We use results on the homological algebra of diffeological vector spaces [Wu] to

give examples of this phenomenon that are unique to the smooth setting. In

these new examples, the group is a diffeological vector space. We also show that

a topological example [Go, An] adapts to diffeological spaces. In all of these

cases, the approach is to give a non-trivial principal bundle π over a smoothly

contractible space X . It then follows that the identity map X → X and a con-

stant map X → X are smoothly homotopic but that the pullbacks of π along

these maps are not isomorphic. It also follows that there is no classifying space

for such principal bundles.

Because of this, we focus on D-numerable bundles, the smooth analogs of

numerable bundles. These are bundles for which one can choose a smooth

partition of unity on the base space subordinate to a trivializing open cover.

Our first substantial result is the following:

Corollary 4.14: If π : E′ → B′ is a D-numerable principal G-bundle, and f

and g are smoothly homotopic mapsB →B′, then the pullbacks f∗(π) and g∗(π)
are isomorphic as principal G-bundles over B.

Here G is a diffeological group, which is a generalization of a Lie group. Our

method of proof follows [Hu] in outline, but requires many changes in the details

due to the smoothness requirement. The main technical difficulty is surmounted

using the following result,1 which may be of independent interest:

Proposition A.4: There exists a smooth map F : C∞(R,R≥0) → R≥0 such

that F (f) = 0 if and only if f(x) = 0 for some x ∈ [0, 1].

This function is used in place of the function sending f to minx∈[0,1] f(x),

which is not smooth.

Next, given a diffeological groupG, we define a principalG-bundle EG → BG,

show that it is D-numerable, and prove our main result:

1 We thank Chengjie Yu for a sketch of the proof of Proposition A.4, and Gord Sinnamon

and Willie Wong for ideas that led towards this result.
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Theorem 5.10: For any diffeological space B and any diffeological group G,

the pullback operation gives a bijection

[B,BG] → PrinDG(B)

which is natural in B.

Here [B,BG] denotes the set of smooth homotopy classes of maps,

and PrinDG(B) denotes the set of isomorphism classes of D-numerable prin-

cipal G-bundles over B. Our EG and BG are set-theoretically the same as

those of [Mi] and [Hu], but are endowed with diffeologies. When the under-

lying topological group D(G) is locally compact Hausdorff, the space D(BG)

is homeomorphic to the usual classifying space of D(G). Note that because

π : EG → BG is itself D-numerable and the base B is not constrained, π is

truly universal and therefore BG is the unique diffeological space up to smooth

homotopy equivalence that classifies D-numerable principal G-bundles.

We go on to develop the theory of associated bundles, showing in Theorem 6.2

that for any diffeological space F , BDiff(F ) classifies D-numerable diffeological

bundles with fiber F . Here Diff(F ) is the diffeological group of diffeomorphisms

from F to itself, and D-numerable diffeological bundles are the smooth analog

of numerable fiber bundles. We show in Theorem 6.4 that the bijection in

Theorem 5.10 is natural in G.

Finally, we define diffeological vector bundles and show in Theorem 7.7 that

for any diffeological vector space V , BGL(V ) classifies the D-numerable vector

bundles with fiber V . Here GL(V ) is the diffeological group of smooth linear

isomorphisms from V to V .

As mentioned above, many of our arguments follow the topological arguments

in their overall strategy, but differ in the details. We also adapt a topological

result from [Bo] in order to correct some minor gaps in the arguments of [Hu].

Future work. This paper is intended to provide a foundation for future work.

For example, the theory of characteristic classes for bundles over a smooth man-

ifold M has two incarnations. One can use Chern–Weil theory to construct

explicit de Rham forms on M using invariant polynomials and a connection

on the bundle. Alternatively, one can study the singular cohomology of the

classifying space BG, and pull back singular cohomology classes along the clas-

sifying map M → BG. By the results of the present paper, BG is a diffeological

space, and so one can work directly with de Rham forms on BG. We intend

to explore the theory of connections on diffeological bundles, and use this to
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apply Chern–Weil theory to the universal case, thereby bringing the geometric

and topological approaches to characteristic classes closer together. (See also

the remarks below about [Mo].)

We also expect the results of this paper to be useful in the study of smooth

tangent bundles and smooth K-theory.

Relationship to other work. In [Ig1], Iglesias-Zemmour introduced diffeo-

logical bundles, an elegant generalization of smooth fiber bundles for manifolds,

well-suited to the category of diffeological spaces. Our current work is based on

the general theory of diffeological bundles established in that thesis.

In [Mo], Mostow defined smooth versions of classifying spaces of Lie groups,

using a framework called differentiable spaces. His focus was on studying the

cohomology of such classifying spaces, and so he did not prove analogs of our

results showing that these spaces do indeed classify certain bundles. His results

are related to the ideas described under the Future Work heading above. We

expect to get cleaner and more general results by working with diffeological

spaces, since the theory of diffeological spaces is better developed. Moreover,

the results of the present paper, which show that the universal bundle is truly

universal, would then complete the circle, giving a close relationship between

the Chern–Weil approach to classifying spaces and the topological approach.

In [MW], Magnot and Watts have independently worked on smooth clas-

sifying spaces using diffeological spaces, and some comments comparing the

approaches are in order. As sets, our EG and BG are the same as the sets de-

fined by Magnot and Watts, which we’ll denote EGMW and BGMW . However,

the diffeologies we use have fewer plots, which leads to better properties. First,

our universal bundle is D-numerable, while the MW universal bundle is only

weakly D-numerable (see [MW, Definition 2.17]). Moreover, our universal bun-

dle classifies D-numerable principal bundles over all diffeological spaces, while

EGMW → BGMW only classifies D-numerable principal bundles over diffeo-

logical spaces that are Hausdorff, second-countable and smoothly paracompact.

This greater generality is useful in practice, as one of the aims of diffeological

spaces is to encompass mapping spaces and quotients, and also means that our

classifying space is uniquely determined up to smooth homotopy equivalence,

while BGMW is not. We also obtain stronger results about the classification

of fiber bundles. Magnot and Watts discuss many topics we do not, such as

connections and various applications.
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Organization. In Section 2, we review diffeological spaces, diffeological

groups, diffeological bundles and principal bundles. In Section 3, we give ex-

amples of non-trivial principal bundles over smoothly contractible base spaces,

motivating our focus on D-numerable bundles. In Section 4, we develop the

theory of smooth partitions of unity, D-numerable diffeological bundles, and

D-numerable principal bundles, and prove that, for D-numerable bundles, ho-

motopic maps give isomorphic pullbacks. In Section 5, we define EG → BG and

prove that it is a universal D-numerable bundle, our main result, using many

of the tools from Section 4. In Sections 6 and 7, we develop the theories of as-

sociated bundles and diffeological vector bundles, respectively. In Appendix A,

we prove needed results in analysis, including Proposition A.4.

Conventions. Every manifold is assumed to be finite-dimensional, smooth,

second-countable, Hausdorff and without boundary. Every manifold is equipped

with the standard diffeology when viewed as a diffeological space. Every product

of diffeological spaces is equipped with the product diffeology.

2. Background on diffeological spaces and bundles

2.1. Diffeological spaces.

Definition 2.1 ([So2]): A diffeological space is a setX together with a specified

set of functions U → X (called plots) for each open set U in Rn and each n ∈ N,

such that for all open subsets U ⊆ Rn and V ⊆ Rm:

(1) (Covering) Every constant function U → X is a plot.

(2) (Smooth Compatibility) If U → X is a plot and V → U is smooth, then

the composite V → U → X is also a plot.

(3) (Sheaf Condition) If U = ∪iUi is an open cover and U → X is a function

such that each restriction Ui → X is a plot, then U → X is a plot.

A function f : X → Y between diffeological spaces is smooth if for every

plot p : U → X of X , the composite f ◦ p is a plot of Y .

An isomorphism in the category Diff of diffeological spaces and smooth maps

will be called a diffeomorphism.
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Every manifold M is canonically a diffeological space with the plots taken

to be all smooth maps U → M in the usual sense. We call this the standard

diffeology on M . It is easy to see that smooth maps in the usual sense be-

tween manifolds coincide with smooth maps between them with the standard

diffeology.

For a diffeological space X with an equivalence relation ∼, the quotient dif-

feology on X/∼ consists of all functions U → X/∼ that locally factor through

the quotient map X → X/∼ via plots of X . A subduction is a map diffeo-

morphic to a quotient map. That is, it is a map X → Y such that the plots

in Y are the functions that locally lift to X as plots in X .

For a diffeological space Y and a subset A of Y , the sub-diffeology consists

of all functions U → A such that U → A ↪→ Y is a plot of Y . An induction is

an injective smooth map A → Y such that a function U → A is a plot of A if

and only if U → A → Y is a plot of Y .

More generally, we have the following convenient properties of the category

of diffeological spaces:

Theorem 2.2: The categoryDiff is complete, cocomplete and cartesian closed.

For more details, see [CSW, Section 2]. The (co)limit of a diagram of diffe-

ological spaces has as its underlying set the (co)limit of the underlying sets of

the diffeological spaces in the diagram. Given diffeological spaces X and Y , the

set C∞(X,Y ) of all smooth maps X → Y has a canonical diffeology so that the

exponential law holds.

Every diffeological space has a canonical topology:

Definition 2.3 ([Ig1]): Given a diffeological space X , a subset A ⊆ X is

D-open if p−1(A) is open in U for each plot p : U → X . The D-open sets form

a topology on X called the D-topology, and we write D(X) for the set X

equipped with this topology.

Example 2.4: The D-topology of a manifold with the standard diffeology is the

usual topology.

Remark 2.5: If X is a disjoint union of D-open subsets Ui, then X is the co-

product of the Ui in the category of diffeological spaces.
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2.2. Diffeological bundles.

Definition 2.6: Let F be a diffeological space. A smooth map π : E → B

between two diffeological spaces is trivial of fiber type F if there exists a

diffeomorphism h making the following diagram commute:

E

π
���
��
��
�

h �� B × F

p1����
��
��
�

B,

where p1 is the projection.

The map π is locally trivial of fiber type F if there exists a D-open

cover {Bi} of B such that π|Bi : π−1(Bi) → Bi is trivial of fiber type F for

each i.

The map π is a diffeological bundle of fiber type F if the pullback of π

along any plot of B is locally trivial of fiber type F .

In all of these cases, we call F the fiber of π, E the total space, and B the

base space.

Two diffeological bundles π : E → B and π′ : E′ → B are isomorphic if

there exists a diffeomorphism h : E → E′ such that π = π′ ◦ h.
The concept of diffeological bundle was first defined in [Ig1] using groupoids.

Proposition 3.1.2 of [Ig1] shows that it is equivalent to the definition given above.

Moreover, Iglesias-Zemmour has given another equivalent characterization of

diffeological bundles:

Theorem 2.7 ([Ig1, Corollary 3.8.3] or [Ig2, 8.19]): A smooth map π : E → B

between two diffeological spaces is a diffeological bundle of fiber type F if and

only if the pullback of π along any global plot of B (that is, a plot of the form

Rn → B) is trivial of fiber type F .

Note that every locally trivial bundle is a diffeological bundle, but that the

converse fails in general.

Example 2.8: If B is a manifold and π : E → B is smooth, then π is locally

trivial of fiber type F if and only if it is a diffeological bundle of fiber type F .

Moreover, if the fiber F is a manifold, then it is also equivalent for π to be a

smooth fiber bundle in the usual sense.
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Lemma 2.9: If B is a disjoint union of D-open sets Bi and π : E → B is a

diffeological bundle which is trivial over each Bi, then π is trivial.

Proof. E is the disjoint union of the open sets Ei := π−1(Bi), so by Remark 2.5,

E → B is the coproduct of the trivial bundles Ei → Bi and hence is trivial.

2.3. Principal bundles.

Definition 2.10 ([So1]): A diffeological group is a group object in Diff. That

is, a diffeological group is both a diffeological space and a group such that the

group operations are smooth maps.

Example 2.11: Every subgroup of a diffeological group equipped with the sub-

diffeology is a diffeological group.

Example 2.12: Given a diffeological space X , write Diff(X) for the set of all

diffeomorphisms X → X . Define p : U → Diff(X) to be a plot if the maps

U × X → X given by (u, x) �→ p(u)(x) and (u, x) �→ (p(u))−1(x) are both

smooth. These plots form a diffeology on Diff(X) making it a diffeological

group. We always equip Diff(X) with this diffeology.

Here is a G-equivariant version of Definition 2.6:

Definition 2.13: Let G be a diffeological group and let π : E → B be a smooth

map between diffeological spaces. Assume that G has a smooth right action

on E, i.e., E has a right G action and the action map E ×G → E is smooth.

Also assume that π(x · g) = π(x) for all x ∈ E and g ∈ G.

We say that π is a trivial principal G-bundle if there is a G-equivariant

diffeomorphism h making the following diagram commute:

E

π
���
��
��
�

h �� B ×G

p1����
��
��
�

B.

Here the action of G on B ×G is defined by (b, g) · g′ = (b, gg′).
We say that π is a locally trivial principal G-bundle if there exists

a D-open cover {Bi} of B such that π|Bi : π−1(Bi) → Bi is a trivial prin-

cipal G-bundle for each i.
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The map π is a (diffeological) principal G-bundle if the pullback of π

along any plot of B is a locally trivial G-bundle.

Two principal G-bundles π : E → B and π′ : E′ → B are isomorphic if

there exists a G-equivariant diffeomorphism h : E → E′ such that π = π′ ◦ h.
Here is an equivalent characterization of principal bundles which will be used

frequently later:

Theorem 2.14 ([Ig2, 8.11, 8.13]): If E → B is a principal G-bundle, then the

smooth map a : E × G → E × E given by (x, g) �→ (x, x · g) is an induction

and there is a diffeomorphism B ∼= E/G commuting with the maps from E.

Conversely, if E × G → E is a smooth action of a diffeological group G on E

and the map a is an induction, then the quotient map E → E/G is a principal

G-bundle.

Remark 2.15: It follows from the above theorem that a principal bundle is trivial

if and only if it has a smooth global section [Ig2, 8.12]. Therefore, a principal

bundle is locally trivial as a principal bundle if and only if it is locally trivial

as a diffeological bundle.

As another application of the above theorem, we have:

Proposition 2.16 ([Ig2, 8.15]): Let G be a diffeological group, and let H be a

subgroup of G with the sub-diffeology. Then G → G/H is a principalH-bundle,

where G/H is the set of left cosets of H in G, with the quotient diffeology.

Note that we are not requiring the subgroup H to be closed. In particular,

we have the following interesting example:

Example 2.17 ([Ig2, 8.38]): Let T 2 = R2/Z2 be the usual 2-torus, and let Rθ

be the image of the line {y = θx} under the quotient map R2 → T 2, with θ

a fixed irrational number. Note that T 2 is an abelian Lie group, and Rθ is a

dense subgroup which is diffeomorphic to R. The quotient group T 2
θ := T 2/Rθ

with the quotient diffeology is called the irrational torus of slope θ, and by

the above proposition, the quotient map T 2 → T 2
θ is a principal R-bundle.

Proposition 2.18 ([Ig2, 8.10, 8.12]): If f : B′ → B is a smooth map and

E → B is a diffeological bundle of fiber type F (resp. a principal G-bundle),

then so is the pullback f∗(E) → B′. Moreover, pullback preserves triviality and

local triviality.
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The following result follows immediately from [Ig2, 8.13 Note 2] and will be

useful later:

Proposition 2.19: Let

E′ f ��

π′
��

E

π

��
B′

g
�� B

be a commutative square in Diff, where π′ and π are principal G-bundles and f

is G-equivariant. Then π′ is isomorphic to g∗(π) as principal G-bundles over B′.

3. There is no classifying space for all diffeological principal bundles

This section motivates our focus on D-numerable bundles in later sections.

We first recall the situation in topology. Let G be a topological group. We

would like to have a space BG such that for any topological space X , the set

of isomorphism classes of principal G-bundles over X naturally bijects with the

set of homotopy classes of maps from X to BG. This is possible when the

space X is restricted to being paracompact, or, more generally, if one considers

only numerable bundles, but is not possible in general. One way to show that

it is not possible is as follows. First observe that BG must be path-connected,

by taking the case where X is a point. Next, one shows that there is a non-

trivial principal G-bundle π over a contractible space X . Then there are at

least two non-isomorphic principal G-bundles over X , but only one homotopy

class of maps X → BG for any path-connected space BG. In addition, such

an example shows that, in general, homotopic maps do not have isomorphic

pullbacks: the pullback of π along the identity map X → X is π, while the

pullback of π along a constant map is trivial.

Analogous results hold in the diffeological context, and the same technique is

used. In the first part of this section, we give a family of examples of non-trivial

diffeological principal bundles over smoothly contractible base spaces, using the

theory of diffeological vector spaces from [Wu]. These examples are new, and

we are not aware of similar topological examples.

Then, in Example 3.12, we give another example of a non-trivial principal

bundle over a smoothly contractible base space. This example is even locally

trivial, and so shows that restricting to this subclass of diffeological principal
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bundles does not solve the problem. This example is a straightforward adapta-

tion of an example from topology [Go, An].

We begin by recalling the concept of smooth homotopy [CW1, Section 3.1]:

Definition 3.1: Given diffeological spacesX and Y , two smooth maps f, g :X→Y

are called smoothly homotopic if there exists a smooth map F : X ×R → Y

such that F (x, 0) = f(x) and F (x, 1) = g(x) for each x in X . A diffeological

space X is smoothly contractible if the identity map is smoothly homotopic

to a constant map.

Given diffeological spaces X and Y , the relation of smooth homotopy

on C∞(X,Y ) is an equivalence relation, and we denote the quotient set by [X,Y ].

Definition 3.2: A diffeological vector space V is both a diffeological space

and an R-vector space such that addition V ×V → V and scalar multiplication

R× V → V are both smooth.

Observe that every diffeological vector space V is smoothly contractible

via the smooth homotopy sending (v, t) to tv. A short exact sequence in

the category DVect of diffeological vector spaces and smooth linear maps is a

diagram

(1) 0 �� V1
i �� V2

j �� V3
�� 0

which is a short exact sequence of vector spaces such that i is a linear induction

and j is a linear subduction. For any such short exact sequence, we have a

commutative triangle

V2

j

����
��
�� π

���
��

��
��

V3 V2/V1,��

where the horizontal map is an isomorphism of diffeological vector spaces.

Hence, by Proposition 2.16, j is a diffeological principal V1-bundle. This bundle

is trivial if and only if the short exact sequence (1) splits smoothly (see [Wu,

Theorem 3.16]). In particular, it follows that if (1) does not split smoothly,

then there is no classifying space for principal V1-bundles.



Vol. 241, 2021 SMOOTH CLASSIFYING SPACES 923

Example 3.3: Let j : C∞(R,R) → ∏
ω R be defined by j(f)n := f (n)(0), and

let K be the kernel. It is shown in [Wu, Example 4.3] that this is a short exact

sequence of diffeological vector spaces that does not split smoothly. Therefore,

there is no classifying space for principal K-bundles.

We now give additional examples of this flavor, using some results from [Wu].

Definition 3.4: A diffeological vector space P is called projective if for any

linear subduction π : W1 → W2 and any smooth linear map f : P → W2, there

exists a smooth linear map g : P → W1 such that f = π ◦ g.
Proposition 3.5 ([Wu, Theorem 6.13]): For every diffeological vector space V ,

there exists a projective diffeological vector space P with a linear subduction

P → V .

Theorem 3.6: Let V be a non-projective diffeological vector space. Then there

exists a diffeological vector space W and a non-trivial diffeological principal W -

bundle over V . This implies that there is no classifying space for principal

W -bundles.

Proof. Let W be the kernel of a linear subduction P → V with P projective.

Since projectives are closed under summands ([Wu, Proposition 6.11(3)]), the

sequence does not split smoothly. Thus there is a non-trivial principalW -bundle

over V .

Example 3.7: We saw in Example 3.3 that
∏

ω R is not projective. It is shown

in [Wu, Example 6.9] that R with the indiscrete2 diffeology is also not projective.

To obtain further examples, including examples where the base space is not

a diffeological vector space, we make use of the following construction.

Proposition 3.8 ([Wu, Proposition 3.5]): For every diffeological space X ,

there is a diffeological vector space F (X) together with a smooth map

i : X → F (X) such that the following universal property holds: for any dif-

feological vector space V and any smooth map f : X → V , there exists a

unique smooth linear map g : F (X) → V satisfying f = g ◦ i.
We call F (X) the free diffeological vector space generated by X.

2 An indiscrete diffeological space has all possible functions as plots, and hence has the

indiscrete D-topology.
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Example 3.9: Not every free diffeological vector space is projective. For exam-

ple, it is shown in [Wu, Example 6.9] that F (T 2
θ ) is not projective, where T 2

θ is

the irrational torus from Example 2.17.

Some necessary conditions for a free diffeological vector space to be projective

have been found in [CW2, Corollary 3.17].

Corollary 3.10: Let X be a diffeological space such that F (X) is not pro-

jective. Then there exists a non-trivial diffeological principal W -bundle over X ,

where W is a diffeological vector space.

Proof. By Theorem 3.6, there is a non-trivial diffeological principal W -bundle

π :P →F (X) withW a diffeological vector space. Consider its pullback p :E→X

along i : X → F (X). We claim that p is not trivial. Suppose it is. Then p has

a smooth section, which implies that there exists a smooth map f : X → P

such that i = π ◦ f . The universal property of F (X) then implies that π has

a smooth section over F (X). By Remark 2.15, we deduce that π is trivial, a

contradiction.

Example 3.11: If X is an indiscrete diffeological space with more than one

point, then X is smoothly contractible and F (X) is not projective ([CW2,

Corollary 3.17]). So there exists a non-trivial diffeological principal bundle

π : E → X .

The above examples are diffeological principal bundles which may not be

locally trivial, and thus have no direct analog in topology. We now show that

even locally trivial diffeological principal bundles do not have a classifying space.

Example 3.12: The following is adapted from a topological example [Go, An].

Consider the diffeological space

B := (R× {0, 1})/∼,

where (x, 0) ∼ (x, 1) if x ∈ R>0. Write r : R×{0, 1} → B for the quotient map

and let

Ui := r(R× {i})
for i = 0, 1. Then each Ui is D-open in B and canonically diffeomorphic to R,

and U0∩U1 is canonically diffeomorphic to R>0. Define E to be the pushout of

U1 × R>0 (U0 ∩ U1)× R>0�� � � �� U0 × R>0,
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where the first map is given by (r(x, i), g) �→ (r(x, 1), xg). The projections

Ui ×R>0 → Ui ↪→ B induce a smooth map p : E → B which is a locally trivial

principal R>0-bundle. Here we are regarding R>0 as a diffeological group under

multiplication. Consider the smooth map (R× {0, 1})× R → R×{0, 1} defined
by (x, i, t) �→ (ρ(t) + (1 − ρ(t))x, i) for i = 0, 1, where ρ : R → R is a smooth

function with ρ(0) = 0, ρ(1) = 1 and Im(ρ) = [0, 1]. This induces a smooth

homotopy B × R → B between the identity map and a constant map, which

shows that B is smoothly contractible. Now if p : E → B were trivial, we

would have an R>0-equivariant trivialization E ∼= B×R>0 over B. Restricting

to each Ui × R>0 would give maps Ui × R>0 → B × R>0 sending (r(x, i), g)

to (r(x, i), αi(x)g) for some smooth functions αi : R → R>0. Since these re-

strictions must agree on (U0 ∩ U1) × R>0, we must have that α0(x) = α1(x)x

for x > 0. But then the identity map R>0 → R>0 would have a smooth exten-

sion R → R>0 sending x to α0(x)/α1(x), which is impossible by continuity.

4. Partitions of unity and D-numerable bundles

In the previous section, we saw that in general there is no classifying space for

all principal G-bundles. Because of this, we restrict our attention to a special

class of principal bundles called D-numerable principal bundles. In the next

section, we will show that there is a classifying space for D-numerable principal

bundles over arbitrary diffeological spaces.

4.1. Partitions of unity. We first recall the concept of smooth partition of

unity in the framework of diffeology:

Definition 4.1: Let X be a diffeological space.

A collection {Ui}i∈I of subsets of X is locally finite if every point in X has a

D-open neighborhood that intersects Ui for only finitely many i. Note that {Ui}
is locally finite if and only if the collection {Ūi} of D-closures is locally finite.

A family of smooth functions {μi : X → R}i∈I is a smooth partition of

unity if it satisfies the following conditions:

(1) 0 ≤ μi(x) for each i ∈ I and x ∈ X ;

(2) {supp(μi)}i∈I is locally finite;

(3) the sum
∑

i∈I μi(x), which makes sense because of (2), is equal to 1 for

all x ∈ X .
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Here supp(μi) is the closure of μ−1
i ((0,∞)) in the D-topology, and (2) is equiv-

alent to requiring that {μ−1
i ((0,∞))} is locally finite.

If X = {Xi}i∈I is a collection of subsets of X indexed by the same indexing

set, we say that our partition of unity is subordinate to X if supp(μi) ⊆ Xi

for each i ∈ I.

If instead of (3), we have that
∑

i∈I μi(x) is nonzero for each x ∈ X , or

equivalently that the sets μ−1
i ((0,∞)) form a cover of X , then one can scale the

functions to obtain a smooth partition of unity.

The following is a smooth version of a result that can be found in [Bo, Sec-

tion 4]. It tells us how to adjust a partition of unity to reduce the supports,

allowing us to fill some minor gaps in the arguments of [Hu].

Lemma 4.2: Let X be a diffeological space. If {ρi : X → R}i∈I is a smooth

partition of unity, then there is a smooth partition of unity {μi : X → R}i∈I

subordinate to {ρ−1
i ((0,∞))}i∈I .

Proof. Define σ : X → R by σ(x) =
∑

i ρi(x)
2. Note that σ is smooth, nowhere

zero and

σ(x) ≤ (sup
i

ρi(x))
∑
i

ρi(x) = sup
i

ρi(x)

for each x. Let φ be a smooth function such that φ(t) = 0 for t ≤ 0 and φ(t) > 0

for t > 0, and define a smooth function μi : X → R by

μi(x) = φ(ρi(x) − σ(x)/2)

for each i.

We will show that supp(μi) ⊆ ρ−1
i ((0,∞)), which then implies that

{supp(μi)}i∈I is locally finite. Suppose that ρi(y) = 0. Then there is a D-

open neighborhood V of y such that ρi(x) − σ(x)/2 < 0 for x in V . That is,

μi(x) = 0 for each x in V . Therefore, y �∈ supp(μi), as required.

Since {supp(μi)} is locally finite,
∑

i μi(x) is well-defined. Note that for

each x there is a j such that

ρj(x) = sup
i

ρi(x) ≥ σ(x) > σ(x)/2.

For this j, μj(x) �= 0, and so
∑

i μi(x) is nowhere zero. Therefore the

functions μi can be scaled to form a smooth partition of unity subordinate

to {ρ−1
i ((0,∞))}i∈I .
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Our next lemma shows that one can replace any partition of unity with a

related countable one.

Lemma 4.3: Let B be a diffeological space and let {ρi : B → R}i∈I be a

smooth partition of unity. Then there exists a countable smooth partition of

unity {τn : B → R}n∈N such that each τ−1
n ((0,∞)) is a disjoint union of D-open

sets each of which is contained in ρ−1
i ((0,∞)) for some i ∈ I.

Proof. Fix a smooth function φ : R → R with φ(t) = 0 if t ≤ 0 and φ(t) > 0

if t > 0. For any non-empty finite subset J of the indexing set I, define

σJ : B → R by

σJ (b) =
∏
j∈J

φ(ρj(b)−
∑

k∈I\J
ρk(b)).

By local finiteness of {supp(ρi)}i∈I , σJ is well-defined and smooth. Write

BJ := σ−1
J ((0,∞)). Since each b ∈ B is in BJ , where J = {j ∈ I | ρj(b) �= 0},

we have that
⋃

J BJ = B. Moreover, each BJ ⊆ ρ−1
j ((0,∞)) for any j ∈ J .

Write |J | for the cardinality of the set J . Then for any J �= J ′ with |J | = |J ′|,
we have BJ ∩BJ′ = ∅. Otherwise, let b ∈ BJ ∩BJ′ , and choose j ∈ J \ J ′ and
j′ ∈ J ′ \ J . Since b ∈ BJ , we have that

ρj(b)−
∑

k∈I\J
ρk(b) > 0,

which implies that ρj(b) > ρj′(b). But b ∈ BJ′ implies that ρj(b) < ρj′ (b), a

contradiction.

For n ∈ N>0, define τn : B → R by

τn(b) =
∑

J⊆I,|J|=n

σJ(b).

Then

Bn := τ−1
n ((0,∞)) =

⋃
J⊆I,|J|=n

BJ

is a disjoint union of sets BJ each of which is contained in some ρ−1
j ((0,∞)).

(Also define τ0 to be the zero function, with B0 = ∅.) By local finiteness of

{ρ−1
i (0,∞)}i∈I , one sees that {Bn}n∈N is locally finite, and therefore

that {supp(τn)}n∈N is locally finite. The result then follows by normalizing

the τn’s.
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4.2. D-numerable diffeological bundles.

Definition 4.4: Let F be a diffeological space. A smooth map π : E → B

is called a D-numerable diffeological bundle of fiber type F if there

exists a smooth partition of unity {μi : B → R}i∈I subordinate to a D-open

cover {Bi}i∈I of B such that each π|Bi is trivial of fiber type F .

Clearly,

trivial =⇒ D-numerable =⇒ locally trivial =⇒ diffeological bundle.

By Lemmas 4.2 and 4.3, our definition ofD-numerable agrees with that of [MW].

Example 4.5: If B is a manifold, then the following concepts (over B) coincide:

(1) D-numerable diffeological bundle;

(2) locally trivial bundle;

(3) diffeological bundle.

Example 4.6: If a diffeological space B has indiscrete D-topology, then the only

D-numerable diffeological bundle over B is the trivial bundle. In particular, the

only D-numerable diffeological bundle over an irrational torus or an indiscrete

diffeological space is trivial.

Lemma 4.7: The pullback of a D-numerable diffeological bundle of fiber type F

is again D-numerable of fiber type F .

Proof. This is straightforward.

We now show that one can assume that the indexing set is countable.

Proposition 4.8: Let π : E → B be aD-numerable diffeological bundle. Then

there exists a countable smooth partition of unity {μn : B → R}n∈N subordinate

to a locally finite D-open cover {Bn}n∈N of B such that π|Bn : π−1(Bn) → Bn

is trivial for each n.

Proof. Let {ρi : B → R}i∈I be a smooth partition of unity subordinate to a

D-open cover {Ui}i∈I of B such that each π|Ui is a trivial diffeological bundle.

By Lemma 4.3, there is a countable smooth partition of unity {τn : B → R}n∈N

such that each Bn := τ−1
n ((0,∞)) is a disjoint union of D-open sets each of

which is contained in ρ−1
i ((0,∞)) for some i. It follows from Lemma 2.9 that

π|Bn : π−1(Bn) → Bn is trivial for each n. By Lemma 4.2, we can find another

countable smooth partition of unity {μn : B → R}n∈N subordinate to {Bn}n∈N,

which completes the argument.
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4.3. D-numerable principal bundles.

Definition 4.9: Let G be a diffeological group. A principal G-bundle π : E → B

is D-numerable if there exists a smooth partition of unity {μi : B → R}i∈I

subordinate to a D-open cover {Bi}i∈I of B such that each π|Bi is a trivial

principal G-bundle.

By Remark 2.15, it is equivalent to require that π is D-numerable as a diffe-

ological bundle.

Just as for diffeological bundles, we can assume that the indexing set is count-

able. This will be used in the proof of Proposition 5.9.

Proposition 4.10: Let π : E → B be a D-numerable principal G-bundle.

Then there exists a countable smooth partition of unity {μn : B → R}n∈N

subordinate to a locally finite D-open cover {Bn}n∈N of B such that

π|Bn : π−1(Bn) → Bn is trivial for each n.

Proof. This follows from Proposition 4.8.

Our next goal is to show that pulling back a D-numerable principal bundle

along homotopic maps gives isomorphic bundles. While the general argument

follows existing approaches from topology, several key steps need novel proofs

in order to work in the smooth setting.

Lemma 4.11: The pullback of a D-numerable principal G-bundle is a D-nu-

merable principal G-bundle.

Proof. This is straightforward.

Proposition 4.12: For every D-numerable principal G-bundle π : E → B×R,

there exists a D-open cover {Bk}k∈K of B together with a smooth partition of

unity subordinate to it such that

π|Bk×[0,1] : π
−1(Bk × [0, 1]) → Bk × [0, 1]

is trivial for each k ∈ K.

This proof is based on the proof of [Hu, Lemma 4.9.5] (which is essentially

due to [Do]), with the function F from Proposition A.4 playing the role of the

min function.
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Proof. Let {ρi : B × R → R}i∈I be a smooth partition of unity such that π

is trivial over each set ρ−1
i ((0,∞)). By Proposition A.4, there exists a smooth

map F : C∞(R,R≥0) → R≥0 such that F (f) = 0 if and only if f(s) = 0 for some

s ∈ [0, 1]. For every n ∈ Z>0 and k = (k(1), . . . , k(n)) ∈ In, define ρ̂k : B → R

by

b �→
n∏

i=1

F (ρ̃i(b)),

where ρ̃i : B → C∞(R,R≥0) is defined by ρ̃i(b)(s) = ρk(i)(b,
2s+i−3/2

n ), using

cartesian closedness of Diff. Write Bk := ρ̂−1
k ((0,∞)), which is D-open in B

since ρ̂k is smooth. Then b ∈ Bk if and only if

{b} ×
[ i− 3/2

n
,
i+ 1/2

n

]
⊆ ρ−1

k(i)((0,∞))

for each i∈{1, 2, . . . , n}, which implies that π is trivial on eachBk×( i−3/2
n , i+1/2

n ).

By [Ig2, Lemma 1 in 8.19], we see that π|Bk×[0,1] : π
−1(Bk× [0, 1]) → Bk× [0, 1]

is trivial.

Let K =
⋃

n I
n and write B = {Bk}k∈K . Since [0, 1] is compact, it is easy to

see that for every b ∈ B, there exists l ∈ K such that b ∈ Bl, i.e., B is a D-open

cover of B. By [CSW, Lemma 4.1], the D-topology on B×R coincides with the

product topology. Fix b ∈ B and n ∈ N. For i = 1, . . . , n, there exist D-open

sets Ui ⊆ B and Vi ⊆ R such that (b, i/n) ∈ Ui × Vi and Ui × Vi intersects only

finitely many of the sets ρ−1
j ((0,∞)) for j ∈ I. Let

U :=

n⋂
i=1

Ui,

so the same properties hold for each U × Vi. For k ∈ In, b ∈ Bk implies that

(b, i/n) ∈ {b} × [ i−3/2
n , i+1/2

n ] ⊆ ρ−1
k(i)((0,∞)) for each i ∈ {1, 2, . . . , n}, and so

there are only finitely many k ∈ In so that U intersects Bk.

We next tweak the functions in order to make their supports locally finite as

n varies as well. For each r ∈ N>1, write τr for the sum of all ρ̂k′ with k′ ∈ In

and n < r, and write τ0 = τ1 = 0. Each τr : B → R is smooth, by the previous

paragraph. Fix a smooth function φ : R → R with φ(t) = 0 for all t ≤ 0 and

φ(t) > 0 for all t > 0. For k ∈ Ir, define σk : B → R by σk(b) = φ(ρ̂k(b)−rτr(b)).

For fixed b ∈ B, we have a k̄ ∈ I r̄ with r̄ minimal with respect to the property

that ρ̂k̄(b) > 0. From this, one obtains that

σk̄(b) = φ(ρ̂k̄(b)− r̄τr̄(b)) = φ(ρ̂k̄(b)) > 0.
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On the other hand, let m ∈ N be such that m > r̄ and ρ̂k̄(b) > 1/m.

Since ρ̂k̄ : B → R is smooth, there exists a D-open neighborhood V of b such

that for every x ∈ V , ρ̂k̄(x) > 1/m. Then for any l ≥ m, we have

lτl(x) ≥ mτm(x) ≥ mρ̂k̄(x) > 1

for all x∈V , i.e., σk(x)=0 for all k∈I l and x ∈ V . Therefore, {σ−1
k ((0,∞))}k∈K

is locally finite.

Therefore, after scaling, the conditions in Lemma 4.2 hold for {σk}k, and we

get a smooth partition of unity subordinate to {σ−1
k ((0,∞))}k. It is easy to

check that σ−1
k ((0,∞)) ⊆ Bk, so we are done.

Proposition 4.13: Let π : E → B×R be a D-numerable principal G-bundle.

Define p to be the pullback

E1
��

p

��

E

π

��
B

i
�� B × R

where i(b) = (b, 1). Then there exists an isomorphism of principal G-bundles:

π−1(B × [0, 1])
α ��

π|B×[0,1] 		��
���

���
��

E1 × [0, 1]

p×1[0,1]

			
		
		
		

B × [0, 1].

Proof. We first show that there is a commutative diagram in Diff

(2)

π−1(B × [0, 1])

π|B×[0,1]

��

f �� π−1(B × [0, 1])

π|B×[0,1]

��
B × [0, 1]

r
�� B × [0, 1],

where f is G-equivariant and r(b, t) = (b, 1). By the previous proposition, there

is a smooth partition of unity {ρk : B → R}k∈K subordinate to a D-open cover

{Bk}k∈K of B such that π is trivial over Bk × [0, 1] for each k. As in the proof

of Lemma 4.2, define σ : B → R by

σ(b) =
∑
k

ρk(b)
2.
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Note that σ is smooth, nowhere zero and σ(b) ≤ supk ρk(b). Let

uk(b) = φ(ρk(b)/σ(b)),

where φ : R → R is a smooth function such that φ(t) = 0 for t ≤ 0, φ(t) = 1 for

t ≥ 1 and Im(φ) = [0, 1]. Then supk uk(b) = 1 for each b and supp(uk) ⊆ Bk.

For each k, define rk : B × [0, 1] → B × [0, 1] by

rk(b, t) = (b,H(uk(b), t)),

where H : [0, 1] × [0, 1] → [0, 1] is defined by H(s, t) = (1 − t)s + t. Note

that if uk(b) = 0, rk(b, t) = (b, t), so for any given b, only finitely many rk’s

are not the identity. Also, if uk(b) = 1, then rk(b, t) = (b, 1). Now choose a

G-equivariant trivialization hk : Bk × [0, 1]× G → π−1(Bk × [0, 1]) and define

a function fk : E → E over rk by setting fk(hk(b, t, g)) = hk(rk(b, t), g) for b

in Bk and fk(x) = x otherwise. Then fk is G-equivariant. Since rk is the

identity outside of the support of uk, fk is smooth.

Choose a total ordering of the indexing set K. Define f : E → E to be the

composite fkn ◦ · · · ◦ fk1 on π−1({b} × [0, 1]), where

{k1, . . . , kn} = {k ∈ K | uk(b) �= 0}
and k1 < · · · < kn. This respects the G-action, and lies over rkn ◦ · · · ◦ rk1 . The

latter composite sends (b, t) to (b, 1), since at least one rki does, and every rk

sends (b, 1) to (b, 1).

It remains to show that f is smooth, and it suffices to check this on an

open cover. For each b in B, choose a D-open neighborhood U of b so that

{k ∈ K | U ∩ Bk �= ∅} is finite, enumerated as {j1, . . . , jn} with j1 < · · · < jn.

Then, on π−1(U × [0, 1]), we have that f is equal to the composite fjn · · · fj1 ,
since a map fj is the identity over {b}× [0, 1] if uj(b) = 0. This shows that f is

locally smooth and therefore smooth. Thus, we have the required diagram (2).

Since r factors through i : B → B × [0, 1] and p is a pullback, we get a

commutative square

π−1(B × [0, 1])

π|B×[0,1]

��

�� E1

p

��
B × [0, 1]

p1

�� B,

where p1 is the projection. By Proposition 2.19, π|B×[0,1] is isomorphic to the

pullback of p along p1, which is the product p× 1[0,1], as required.
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Corollary 4.14: If π : E′ → B′ is a D-numerable principal G-bundle, and f

and g are smoothly homotopic maps B→B′, then the pullbacks f∗(π) and g∗(π)
are isomorphic as principal G-bundles over B.

Proof. Let F : B × R → B′ be a smooth homotopy between f and g. Then

F ∗(π) is a D-numerable principal G-bundle over B×R by Lemma 4.11. By the

previous proposition, F ∗(π) is isomorphic to a product E1 × [0, 1] → B × [0, 1]

for a certain principal G-bundle p : E1 → B. Thus the restrictions to B × {0}
and B × {1} are both isomorphic to p.

Recall that we saw in Section 3 that this property does not hold for an

arbitrary principal G-bundle.

Corollary 4.15: If π : E′ → B′ is a D-numerable diffeological bundle,

and f and g are smoothly homotopic maps B → B′, then the pullbacks f∗(π)
and g∗(π) are isomorphic as diffeological bundles over B.

Proof. This follows from [Ig2, 8.16] (see Section 6) and Corollary 4.14.

5. Classifying D-numerable principal bundles

In this section, which forms the heart of the paper, we construct a classifying

space for all D-numerable principal bundles.

Let G be a diffeological group with identity e. Consider the infinite simplex

Δω :=

{
(t0, t1, . . .) ∈

⊕
ω

R |
∞∑
i=0

ti = 1 and ti ≥ 0 for each i

}
,

equipped with the sub-diffeology of
⊕

ω R, where
⊕

ω R is the coproduct of

countably many copies of R in DVect (see [Wu, Proposition 3.2]). Explicitly, a

function t : U → Δω is a plot if and only if each component function ti : U → R

is smooth and for each u ∈ U there are an open neighborhood V of u and n ∈ N

such that ti(v) = 0 for all v ∈ V and i > n. Put another way, any such plot t

locally lands in

Δn :=

{
(t0, t1, . . . , tn) ∈ Rn+1 |

n∑
i=0

ti = 1 and ti ≥ 0 for each i

}

for some n, where Δn has the sub-diffeology of Rn+1, and is also naturally a

diffeological subspace of Δω.
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On Δω×∏
ω G, define (ti, gi) ∼ (t′i, g

′
i) if the following conditions are satisfied:

(1) ti = t′i for each i ∈ ω;

(2) if ti = t′i �= 0, then gi = g′i.

This is an equivalence relation on Δω×∏
ω G, and we write EG for the quotient

diffeological space and [ti, gi]EG or simply [ti, gi] for an equivalence class.

Now we consider group actions. Define (Δω ×∏
ω G)×G → Δω ×∏

ω G by

((ti, gi), g) �→ (ti, gig).

Note that this is smooth and compatible with the equivalence relation ∼, and

hence induces a smooth right action EG × G → EG. It is easy to see that

this action is free, i.e., [ti, gi] · g = [ti, gi] implies that g = e. We write BG for

the corresponding orbit space with the quotient diffeology and write elements

in BG as [ti, gi]BG or simply [ti, gi] if no confusion will occur.

Both E and B are functors from the category of diffeological groups and

smooth group homomorphisms to Diff.

Our first goal is to show that the quotient map π : EG → BG is a D-

numerable principal G-bundle. This requires a lemma that we will use implicitly

in various places, and a remark.

Lemma 5.1: The function fi :BG→R sending [tj , gj] to ti is smooth for each i.

Proof. It suffices to show that the composite Δω ×∏
ω G → EG → BG → R is

smooth, where the first two maps are the quotient maps and the third map is fi.

This composite is equal to the composite Δω × ∏
ω G → Δω ↪→ ⊕

ω R → R,

where the first map is the projection, the second is the inclusion, and the third

is projection onto the ith summand, all of which are smooth.

Remark 5.2: Any plot p : U → EG locally factors through the quotient map

Δω × ∏
ω G → EG. Therefore, by the description of the diffeology on Δω, it

locally lands in Δn × ∏
ω G for some n. This lift can be adjusted so that its

values (ti, gi) have gi = e for i > n, which means that it factors through the

natural map from Δn × Gn+1. In particular, if we let EGn ⊆ EG consist of

those points [ti, gi] with ti = 0 for all i > n, then p locally factors through EGn

for some n.

Similarly, a plot p : U → BG locally factors through Δn×Gn+1 for some n. In

particular, if we define BGn ⊆ BG analogously, p locally factors through BGn

for some n.
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Another way to phrase these facts is to say that

EG = colimEGn and BG = colimBGn,

where the colimits are in the category of diffeological spaces. It follows from this

and [CSW, Lemmas 3.17 and 4.1] that if D(G) is a locally compact Hausdorff

topological group, then

D(BG) ∼= BTop(D(G)),

where the right-hand side denotes the usual classifying space construction ap-

plied to the topological group D(G).

Theorem 5.3: The quotient map π : EG → BG is a D-numerable principal

G-bundle.

Proof. We first show that π is a locally trivial principal G-bundle. Let

Bi := {[tj , gj] ∈ BG | ti > 1/2i+1}.
Then Bi is D-open in BG. Since

∑∞
i=0 1/2

i+1 = 1, we see that the Bi’s

cover BG. We claim that π|Bi is trivial for each i. Define h : Bi×G → π−1(Bi)

by sending ([tj , gj ]BG, g) to [tj , gjg
−1
i g]EG. This is smooth, G-equivariant, and

commutes with the projections to Bi. Its inverse sends [tj , gj]EG in π−1(Bi) to

([tj , gj]BG, gi), and is therefore also smooth and G-equivariant. So π is locally

trivial.

Now we show that π is D-numerable. We first claim that the D-open

cover {Bi} is locally finite. Fix [t̄j , ḡj] ∈ BG, and choose N so that t̄i = 0

for all i > N . Let B := {[tj, gj ] ∈ BG | ti < 1/2i+1 for all i > N}. Then

[t̄j , ḡj ] ∈ B and B only intersects finitely many Bi’s. We are left to show that B

is D-open. Let p : U → BG be a plot. By Remark 5.2, we can replace U by a

smaller open subset so that there exist n ∈ N and a smooth map U → Δn×Gn+1

such that the following diagram commutes:

U

��

p

		
















Δn ×Gn+1 �� BG.

Since the preimage of B in Δn ×Gn+1 under the horizontal map in the above

diagram is D-open, as it is a finite intersection of D-open subsets, p−1(B) is

open in U . Hence B is D-open in BG.
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Fix any smooth function ρ : R → R such that ρ(t) = 0 for all t ≤ 0 and ρ is

strictly increasing on (0,∞). Define τi : BG → R by

τi([tj , gj]) = ρ(ti − 1/2i+1).

Note that Bi = τ−1
i ((0,∞)), so these open supports are locally finite.

Since
∑n

i=0 1/2
i+1 < 1 for each n, at least one τi is nonzero at each point, so

we can normalize the τi’s to obtain a smooth partition of unity. By Lemma 4.2,

we obtain a smooth partition of unity subordinate to the trivializing open

cover {Bi} of BG. Therefore, π : EG → BG is D-numerable.

The next result will imply that EG is contractible and is a key step in proving

that π : EG → BG is a universal D-numerable bundle.

Proposition 5.4: Let E be any diffeological space with a right G-action,

and let h0, h1 : E → EG be G-equivariant maps. Then there is a smooth

G-equivariant homotopy h0 � h1.

By a G-equivariant homotopy, we mean a homotopy through G-equivariant

maps.

Proof. Fix a smooth function ρ : R → R such that there exists ε > 0 with

ρ(t) = 0 if t<ε, ρ(t)=1 if t>1−ε, and Im(ρ)=[0, 1]. Define Hod :EG× R→EG

by sending ([ti, gi], t) to [t′i, g
′
i] defined as follows. If t ≤ 0, then [t′i, g

′
i] = [ti, gi].

If t is in the interval [ 1
n+1 ,

1
n ) for n ∈ N>0, then

t′i =

⎧⎪⎪⎨
⎪⎪⎩
ti, if i < n,

(1− α(t))tn+j , if i = n+ 2j for j ∈ N,

α(t) tn+j , if i = n+ 2j + 1 for j ∈ N,

where

α(t) = ρ

(
t− 1

n+1
1
n − 1

n+1

)
,

and

g′i =

⎧⎪⎪⎨
⎪⎪⎩
gi, if i < n,

gn+j , if i = n+ 2j for j ∈ N,

gn+j , if i = n+ 2j + 1 for j ∈ N.
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If t ≥ 1, then t′2j = tj , t
′
2j+1 = 0, g′2j = gj and g′2j+1 = e for j ∈ N. Although gi

is not well-defined when ti = 0, Hod is well-defined. Also, Hod|t=0 = 1EG

and Hod|t=1 lands in the subset EGod := {[ti, gi] ∈ EG | ti = 0 for i odd}.
One can see that Hod is smooth, using that every plot of EG locally factors

through Δn×Gn+1 for some n (Remark 5.2). Also, Hod is a homotopy through

G-equivariant maps. It follows that h0 isG-equivariantly homotopic to a map h′
0

landing in EGod.

Similarly, we can show that h1 is G-equivariantly homotopic to a map h′
1

landing in EGev := {[ti, gi] ∈ EG | ti = 0 for i even}.
Now define H : E × R → EG as follows. Given (x, t) ∈ E × R, suppose

h′
s(x) = [tsi , g

s
i ] for s = 0, 1. Define H(x, t) to be [ti, gi], where

ti =

⎧⎨
⎩
(1− ρ(t))t0i , if i is even,

ρ(t) t1i , if i is odd,

gi =

⎧⎨
⎩
g0i , if i is even,

g1i , if i is odd.

Although gsi is not well-defined when tsi = 0, H(x, t) is well-defined. In fact, by

Remark 5.2, we can locally make smooth choices of representatives gsi , which

shows that H is smooth. Since h′
0 and h′

1 are G-equivariant, so is H . And H

is a homotopy between h′
0 and h′

1, which shows that h0 and h1 are smoothly

G-equivariantly homotopic.

Corollary 5.5: For any diffeological group G, EG is smoothly contractible.

Proof. Let B be any diffeological space. Then smooth maps B → EG biject

withG-equivariant mapsB×G → EG. Given two smooth maps f0, f1 : B→EG,

the associated maps B×G → EG are smoothly homotopic, by Proposition 5.4.

Restricting to e ∈ G gives a smooth homotopy f0 � f1. Therefore, EG is

smoothly contractible.

Remark 5.6: Since every diffeological group is fibrant ([CW1, Proposition 4.30]),

and every diffeological bundle with fibrant fiber is a fibration ([CW1, Propo-

sition 4.28]), we know that π : EG → BG is always a fibration. Also, by the

long exact sequence of smooth homotopy groups of a diffeological bundle ([Ig2,

8.21]) together with Corollary 5.5, we have a group isomorphism

πD
n+1(BG, b) ∼= πD

n (G, e)
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for every n ∈ N and b ∈ BG. In addition, BG is path-connected. Indeed,

given a point [ti, gi] in BG, choose a path in the infinite simplex from (ti) to

(1, 0, 0, . . .). This gives a path in BG from [ti, gi] to

[(1, 0, 0, . . .), (g0, g1, . . .)] = [(1, 0, 0, . . .), (e, e, . . .)].

Definition 5.7: Let G be a diffeological group and let B be a diffeological space.

Write PrinG(B) (resp. PrinDG(B)) for the set of all (resp.D-numerable) principal

G-bundles over B modulo isomorphism of principal G-bundles. Let

θ : [B,BG] → PrinDG(B)

be defined by

[f ] �→ f∗(π : EG → BG).

This is well-defined by Corollary 4.14.

The final goal of this section is to prove that θ is a bijection for every B. We

break the proof into two propositions.

Proposition 5.8: The map θ : [B,BG] → PrinDG(B) is injective.

Proof. Let f0, f1 : B → BG be smooth maps such that f∗
0 (π : EG → BG)

and f∗
1 (π : EG → BG) are isomorphic principal G-bundles over B. Say they

are isomorphic to the principal G-bundle p : E → B. Then there exist smooth

maps h0, h1 : E → EG making the following diagrams commutative:

E
h0 ��

p

��

EG

π

��
B

f0

�� BG

E
h1 ��

p

��

EG

π

��
B

f1

�� BG.

By Proposition 5.4, there is a smooth G-equivariant homotopy H between h0

and h1. By G-equivariance, H induces a smooth homotopy f0 � f1.

Proposition 5.9: The map θ : [B,BG] → PrinDG(B) is surjective.

Proof. Let p : E → B be a D-numerable principal G-bundle. By Proposi-

tion 2.19, it is enough to show that there exist a G-equivariant smooth map

f : E → EG and a smooth map g : B → BG making the following diagram
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commutative:

E

p

��

f �� EG

π

��
B

g
�� BG.

By Proposition 4.10, there exists a countable smooth partition of unity

{τn : B → R}n∈N subordinate to a locally finite D-open cover {Bn}n∈N of B

such that p : p−1(Bn) → Bn is trivial for each n. Let hn : Bn ×G → p−1(Bn)

be a G-equivariant trivialization over Bn, and let qn : Bn × G → G be the

projection. Define f : E → EG by

x �→ [τi(p(x)), qi(h
−1
i (x))].

Note that whenever h−1
i (x) is undefined, τi(p(x)) = 0, and we define

qi(h
−1
i (x)) = e. Hence, f is well-defined. It is easy to check that f is G-

equivariant, and therefore induces a function g : B → BG making the re-

quired square commutative. So we are left to show that f is smooth. Since

{p−1(Bn)}n∈N is a locally finite D-open cover of E, for every x ∈ E, there exists

a D-open subset V of x in E such that V only intersects p−1(Bi1), . . . , p
−1(Bis)

for a finite subset IV := {i1, . . . , is} ⊂ N. Then IV is a disjoint union of I ′V
and I ′′V with x∈p−1(Bi) for every i∈I ′V and x /∈p−1(Bj) for every j∈I ′′V . Then

Ex := V ∩
( ⋂

i∈I′
V

p−1(Bi)

)
∩
( ⋂

j∈I′′
V

E \ p−1(supp(τj))

)

is a D-open neighborhood of x in E. By definition of f and EG, it is clear

that f |Ex is smooth, and therefore f is smooth.

In summary, we have proved:

Theorem 5.10: For any diffeological space B and any diffeological group G,

the map θ : [B,BG] → PrinDG(B) is a bijection which is natural in B.

The naturality of θ with respect to G will be explained in Theorem 6.4 in the

next section.

Example 5.11: For any smoothly contractible diffeological space B, the only

D-numerable principal bundle over B is the trivial bundle. For example, this

applies when B is an indiscrete diffeological space or a diffeological vector space.
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As an immediate consequence of the above theorem, we have:

Corollary 5.12: Classifying spaces are unique up to smooth homotopy, in

the sense that if a diffeological space X has the property that there is a bijec-

tion [B,X ] → PrinDG(B) which is natural in B, then X is smoothly homotopy

equivalent to BG.

Note that this corollary uses the fact that we classify certain bundles over all

diffeological spaces. We use this to calculate some examples of BG:

Proposition 5.13: Let V be a diffeological vector space, and let G be an ad-

ditive subgroup. Assume that the principal bundle V → V/G is D-numerable.

Then BG is smoothly homotopy equivalent to V/G. In particular, BV is

smoothly contractible andBZn is smoothly homotopy equivalent to T n = (S1)n.

Proof. By the universality of EG → BG (Theorem 5.10), we get a G-equivariant

smooth map f : V → EG. On the other hand, we can define g : EG → V by

sending [ti, gi] to
∑

i tigi. It is not hard to show that g is well-defined, smooth,

and G-equivariant. By Proposition 5.4, we know that f ◦ g is G-equivariantly

smoothly homotopic to 1EG. Since every G-equivariant smooth map h : V → V

is G-equivariantly smoothly homotopic to 1V via the affine homotopy

F (v, t) := th(v) + (1− t)v,

we know that g◦f is G-equivariantly smoothly homotopic to 1V . Therefore, EG

is G-equivariantly smoothly homotopy equivalent to V . It follows that BG is

smoothly homotopy equivalent to V/G.

Taking G = V , we have that V → V/G = ∗ is a D-numerable principal V -

bundle and so BV is smoothly homotopy equivalent to a point. To see that BZn

is smoothly homotopy equivalent to T n, take V = Rn and observe that we have

a D-numerable principal Zn-bundle Rn → Rn/Zn ∼= T n.

Remark 5.14: More generally, consider any additive subgroup G of a diffeolog-

ical vector space V . As described in the proof of Proposition 5.13, there is a

smooth, G-equivariant map g : EG → V . The map g induces a smooth map

h : BG → V/G, and by Proposition 2.19, we know that h∗(p) is isomorphic to

EG → BG as principal G-bundles over BG, where p : V → V/G is the pro-

jection. It follows that every D-numerable principal bundle is isomorphic to a

pullback of p. However, p itself may not be D-numerable (consider R → R/Q)

and homotopic maps X → V/G may not give isomorphic pullbacks.
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On
⊕

ω R, we have a smooth inner product defined by

〈(xi), (yi)〉 =
∑
i

xiyi.

Let S∞ be the subspace of
⊕

ω R consisting of the elements of norm 1. The

discrete multiplicative group Z/2 = {±1} acts on S∞ by (xi) · (−1) = (−xi).

Write RP∞ for the orbit space. Identifying
⊕

ω R with
⊕

ω C, S∞ can also be

thought of as the unit vectors in
⊕

ω C. Therefore, the Lie group S1 acts on S∞

by pointwise multiplication. Write CP∞ for the orbit space.

Proposition 5.15:

(1) BZ/2 is smoothly homotopy equivalent to RP∞.

(2) BS1 is smoothly homotopy equivalent to CP∞.

Proof. (1) We first show that the quotient map p : S∞ → RP∞ is a D-

numerable principal Z/2-bundle. Let Uj := {[xi] ∈ RP∞ | |xj | > 1/(2j + 2)}.
Then {Uj}j∈ω is a D-open cover of RP∞. Define μj : RP

∞ → R by

μj([xi]) =

⎧⎨
⎩
exp( −1

|xj |−1/(2j+2) ), if |xj | > 1/(2j + 2),

0, else.

Then μj is smooth, and μ−1
j ((0,∞)) = Uj. By an argument similar to the proof

of Theorem 5.3, one can show that {Uj}j∈ω is locally finite. By Lemma 4.2,

there is a smooth partition of unity subordinate to {Uj}j∈ω. It is straightfor-

ward to check that p|Uj is trivial for each j. Therefore, p : S∞ → RP∞ is a

D-numerable principal Z/2-bundle.

By the universality of EZ/2 → BZ/2, we have a Z/2-equivariant smooth

map f : S∞ → EZ/2. Define g : EZ/2 → S∞ by

g([ti, gi]) =

(
giti√∑

j t
2
j

)
.

It is smooth and Z/2-equivariant. By Proposition 5.4, we know that f ◦ g is

Z/2-equivariantly smoothly homotopic to 1E(Z/2).

Next we show that 1S∞ is Z/2-equivariantly smoothly homotopic to both iev

and iod. Here iev : S∞ → S∞ sends (xi) to (yi) with y2i = xi and y2i+1 = 0,

and similarly, iod : S∞ → S∞ sends (xi) to (yi) with y2i+1 = xi and y2i = 0.

We show 1S∞ �Z/2 iev below, and the other case is similar.
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Fix a smooth function ρ : R → R such that there exists ε > 0 with ρ(t) = 0

if t < ε, ρ(t) = π/2 if t > 1− ε, and Im(ρ) = [0, π/2]. Define H : S∞×R → S∞

by sending ((xi), t) to (yi) given as follows. When t ≤ 0, yi = xi. When

t ∈ [1/(n+ 1), 1/n),

yi =

⎧⎪⎪⎨
⎪⎪⎩
xi, if i < n,

cos(αn(t))xn+j , if i = n+ 2j for j ∈ N,

sin(αn(t))xn+j , if i = n+ 2j + 1 for j ∈ N,

where

αn(t) = ρ

(
t− 1

n+1
1
n − 1

n+1

)
.

When t ≥ 1, y2i = xi and y2i+1 = 0. Since H is smooth and Z/2-equivariant,

we have 1S∞ �Z/2 iev.

Given any Z/2-equivariant smooth map h :S∞→S∞, defineK :S∞ × R→S∞

by sending (x, t) to cos(ρ(t)) iev(h(x))+sin(ρ(t)) iod(x). Since K is smooth and

Z/2-equivariant, we have iev ◦ h �Z/2 iod. So we have

h �Z/2 iev ◦ h �Z/2 iod �Z/2 1S∞ .

Hence, g ◦ f is Z/2-equivariantly smoothly homotopic to 1S∞ .

Therefore, BZ/2 is smoothly homotopy equivalent to RP∞.

(2) This can be proved similarly, by considering the D-numerable principal

S1-bundle S∞ → CP∞.

We also have:

Proposition 5.16: Let G and H be diffeological groups. Then B(G×H) and

BG×BH are smoothly homotopy equivalent.

Proof. There is a natural (G×H)-equivariant smooth map

g : E(G×H) → EG× EH

defined by sending [ti, (gi, hi)] to ([ti, gi], [ti, hi]).

The D-topology of a product is not the same as the product of the D-

topologies in general. Nevertheless, if U is D-open in BG and V is D-open

in BH , then U × V is D-open in BG×BH . Moreover, if {σi}i∈I and {τj}j∈J

are smooth partitions of unity for BG and BH respectively, then {ρij}(i,j)∈I×J

is a partition of unity for BG × BH , where ρij(x, y) := σi(x)τj(y). It follows
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that EG×EH → BG×BH is a D-numerable (G×H)-principal bundle. There-

fore, we have a (G×H)-equivariant smooth map f : EG× EH → E(G×H).

By Proposition 5.4, we know that f ◦ g is (G × H)-equivariantly smoothly

homotopic to 1E(G×H).

If X has a (G×H)-action, then a (G×H)-equivariant map X → EG× EH

is the same as a G-equivariant map X → EG and an H-equivariant map

X → EH . Therefore, using Proposition 5.4 on each factor, we conclude that

any two (G ×H)-equivariant maps X → EG× EH are (G×H)-equivariantly

smoothly homotopic to each other. In particular, g ◦ f is (G×H)-equivariantly

smoothly homotopic to 1EG×EH .

The claim follows.

6. Classifying D-numerable diffeological bundles

For diffeological spaces B and F , write BunF (B) (resp. BunDF (B)) for the set

of isomorphism classes of all (resp. D-numerable) diffeological bundles over B

with fiber F . This is a functor of B under pullback of bundles.

It was shown in [Ig2, 8.16] that given a principal G-bundle r : E → B and a

diffeological space F with a left G-action, we can form an associated diffeological

bundle t : E ×G F → B with fiber F . Here

E ×G F := (E × F )/∼,

where

(y, f) ∼ (y · g, g−1 · f)
for all g ∈ G, and t([y, f ]) = r(y). Moreover, if r is trivial (as a principal

G-bundle), then so is t (as a diffeological bundle). This gives a natural trans-

formation assoc : PrinG(B) → BunF (B) that depends on F and the G-action,

and sends D-numerable bundles to D-numerable bundles.

On the other hand, it was shown in [Ig2, 8.14] that given a diffeological

bundle π : E → B with fiber F , there exists an associated principal Diff(F )-

bundle s : E′ → B which we call the frame bundle. As a set,

E′ =
∐
b∈B

Diff(Fb, F ),

where Fb = π−1(b) and Diff(Fb, F ) consists of all diffeomorphisms Fb → F .

The map s sends f : Fb → F to b. We equip E′ with the following diffeology:

p : U → E′ is a plot if and only if all of the following conditions hold:
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(1) s ◦ p : U → B is smooth;

(2) {(u, y) ∈ U × E | s(p(u)) = π(y)} → F sending (u, y) to p(u)(y) is

smooth;

(3) U × F → E sending (u, x) to (p(u))−1(x) is smooth.

The action E′ ×Diff(F ) → E′ is given by

(f, g) �→ g−1 ◦ f.

Moreover, by [Ig2, 8.16], if π is trivial (as a diffeological bundle), then so is s

(as a principal Diff(F )-bundle). This gives a natural transformation frame :

BunF (B) → PrinDiff(F )(B) that sends D-numerable bundles to D-numerable

bundles.

In [Ig2, 8.16] it is shown that assoc ◦ frame is the identity, where to define assoc

we use the natural action ofDiff(F ) on F . That is, if we start with a diffeological

bundle π : E → B with fiber F , form the associated principal Diff(F )-bundle,

and then take the associated F -bundle, we get a bundle isomorphic to π.

In fact, these operations are inverse to each other:

Theorem 6.1: We have a natural isomorphism

assoc : PrinDiff(F )(B) → BunF (B)

which restricts to a natural isomorphism assoc : PrinDDiff(F )(B) → BunDF (B).

Proof. We saw that assoc◦ frame is the identity. To check that frame ◦ assoc is
the identity, we start with a principal Diff(F )-bundle r : E → B and show

it is isomorphic to the frame bundle s : E′ → B of the associated bun-

dle t : E ×Diff(F ) F → B. It is enough to construct aDiff(F )-equivariant smooth

map α : E → E′ such that s ◦α = r. For y ∈ E we define α(y) : t−1(r(y)) → F

by sending [x, f ] in E ×Diff(F ) F to θ(f), where θ is the unique element of

Diff(F ) such that x = y · θ. Such a θ exists because r(x) = r(y), and α(y) is

well-defined because [x · φ, φ−1(f)] is sent to (θφ)(φ−1(f)) = θ(f) as well. It is

then not hard to check that α(y) is a diffeomorphism for each y ∈ E, and that

α is Diff(F )-equivariant and smooth.

The last claim follows from the fact that both assoc and frame preserve D-

numerable bundles.

Combining this result with Theorem 5.10, we get:
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Theorem 6.2: There is a bijection [B,BDiff(F )] → BunDF (B) which is natural

in B.

Using the techniques from this section, we can also show that the bijection

in Theorem 5.10 is natural with respect to the diffeological group.

Definition 6.3 (Functoriality of PrinG(B)): Let h : G → G′ be a smooth ho-

momorphism between diffeological groups. Define a left action of G on G′

by g · g′ := h(g)g′. Given a principal G-bundle E → B, we can form the asso-

ciated diffeological bundle E ×G G′ → B with fiber G′. We can define a right

action of G′ on E ×G G′ by

[x, g′] · ĝ′ := [x, g′ĝ′].

One can check that this is a principal G′-bundle, and that this defines a function

h∗ : PrinG(B) → PrinG′(B) making PrinG(B) into a functor of G. Moreover,

if E → B is D-numerable, then so is E′ → B, so we see that PrinDG(B) is also

functorial in G.

Theorem 6.4: The bijection θ : [B,BG] → PrinDG(B) from Theorem 5.10 is

natural in G. That is, for any smooth homomorphism h : G → G′ between
diffeological groups, the following diagram commutes:

[B,BG]
θ ��

Bh∗
��

PrinDG(B)

h∗
��

[B,BG′]
θ

�� PrinDG′(B).

Proof. We first consider the universal case, where B = BG and we start with

the identity map BG → BG. Define a map EG × G′ → EG′ by sending

([ti, gi], g
′) to [ti, h(gi)g

′], and notice that this is well-defined on the associated

principal G′-bundle EG×G G′. It is also G′-equivariant, and makes the square

EG×G G′

��

�� EG′

��
BG

Bh
�� BG′

commute. Thus, by Proposition 2.19, it is a pullback square, as required.
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Now, given a map f : B → BG, we compute the pullback of EG′ along the

composite B → BG → BG′ as

B ×BG′ EG′ ∼= B ×BG (BG×BG′ EG′) (by functoriality of pullback)

∼= B ×BG (EG×G G′) (by the previous paragraph)

∼= (B ×BG EG)×G G′ (by naturality of assoc),

which shows that the square commutes.

7. Classifying D-numerable vector bundles

We first recall the following definition from [CW2]:

Definition 7.1: Let B be a diffeological space. A diffeological vector space

over B is a diffeological space E, a smooth map π : E → B and a vector space

structure on each of the fibers π−1(b) such that the addition E ×B E → E, the

scalar multiplication R× E → E and the zero section B → E are all smooth.

In the case when B is a point, we recover the concept of diffeological vector

space. More generally, for any b ∈ B, π−1(b) equipped with the sub-diffeology

of E is a diffeological vector space.

Lemma 7.2: Let π : E → B be a diffeological vector space over B, and let

f : B′ → B be a smooth map. Then the pullback f∗(π) is a diffeological vector

space over B′.

Proof. This is straightforward.

Definition 7.3: Let V be a diffeological vector space. A diffeological vector

space π : E → B over B is called trivial of fiber type V if there exists

a diffeomorphism h : E → B × V over B, such that for every b ∈ B, the

restriction h|b : π−1(b) → V is an isomorphism of diffeological vector spaces.

A diffeological vector space π : E → B over B is called locally trivial

of fiber type V if there exists a D-open cover {Bi} of B such that each

restriction π|Bi : π
−1(Bi) → Bi is trivial of fiber type V .

A diffeological vector space π : E → B over B is called a vector bundle

of fiber type V if the pullback along every plot of B is locally trivial of fiber

type V .
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Definition 7.4: Let V be a diffeological vector space. A vector bundle π : E → B

of fiber type V is calledD-numerable if there exists a smooth partition of unity

subordinate to a D-open cover {Bi}i∈I of B such that each π|Bi is trivial of

fiber type V .

Let V be a diffeological vector space and let GL(V ) be the set of all linear iso-

morphisms V → V equipped with the sub-diffeology of Diff(V ). Then GL(V ) is

a diffeological group. Let G be a diffeological group. A (left) linear G-action

on V is a smooth group homomorphism G → GL(V ). Given a principal G-

bundle r : E → B and a linearG-action on V , we have an associated diffeological

bundle t : E ×G V → B.

Lemma 7.5: Under the above assumptions, t : E×G V → B is a vector bundle

of fiber type V .

Proof. We make E×G V → B into a diffeological vector space over B using the

following maps. The addition map

(E ×G V )×B (E ×G V ) → E ×G V

sends ([x, v], [x′, v′]) to [x, v + g · v′], where g ∈ G is chosen so that x′ = x · g,
which is possible since r(x) = r(x′). The scalar multiplication map

R× (E ×G V ) → E ×G V

sends (α, [x, v]) to [x, αv]. And the zero section

B → E ×G V

sends b to [x, 0], where x is any element of π−1(b). It is straightforward to check

that these maps are all smooth and make t : E ×G V → B into a diffeological

vector space over B, and that t is a vector bundle.

Write VBV (B) (resp. VBD
V (B)) for the set of isomorphism classes of (resp. D-

numerable) vector bundles over B. Therefore, we have a natural transformation

assoc:PrinG(B)→VBV (B) that depends on the diffeological vector space V and

the linear G-action, and sends D-numerable bundles to D-numerable bundles.

On the other hand, given a vector bundle π : E → B of fiber type V , let

E′′ =
∐
b∈B

Isom(π−1(b), V )
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be equipped with the sub-diffeology of E′ defined in Section 6,

where Isom(π−1(b), V ) denotes the set of all isomorphisms π−1(b) → V of diffe-

ological vector spaces. So we have a composite of smooth maps E′′ ↪→ E′ → B,

denoted by s, which sends each f : π−1(b) → V to b.

Lemma 7.6: Under the above assumptions, s : E′′ → B is a principal GL(V )-

bundle.

Proof. It is easy to see that there is a commutative square

E′′ ×GL(V )

��

a′′
�� E′′ × E′′

��
E′ ×Diff(V )

a′
�� E′ × E′,

where the vertical maps are inclusions and the horizontal ones are the action

maps as in Theorem 2.14. Since all the other maps in the square are inductions,

so is a′′. Therefore, we have a commutative triangle

E′′

q

����
��
��

s

���
��

��
�

X �� B,

where X is the orbit space of E′′ under the GL(V )-action, the quotient map q

is a principal bundle, and the horizontal map is a smooth bijection. We will

show that this horizontal map is a diffeomorphism, and for this it is enough to

show that s : E′′ → B is a subduction. Let p : U → B be an arbitrary plot.

Since π : E → B is a vector bundle, without loss of generality, we may assume

that there is a diffeomorphism

α : U × V → {(u, x) ∈ U × E | p(u) = π(x)}
over U such that for each u ∈ U , the restriction αu : V → π−1(p(u)) is an iso-

morphism of diffeological vector spaces. It is then easy to check that α̂ : U → E′′

defined by α̂(u) := α−1
u is smooth. This gives a commutative triangle

E′′

s

��
U

α̂

��









p
�� B,

which implies that s is a subduction.
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Therefore, we have a natural transformation frame : VBV (B)→PrinGL(V )(B)

that sends D-numerable bundles to D-numerable bundles.

Theorem 7.7: We have a natural isomorphism assoc:PrinGL(V )(B)→VBV (B)

which restricts to a natural isomorphism assoc : PrinDGL(V )(B) → VBD
V (B).

Proof. The proof that frame ◦ assoc is the identity is the same as that of The-

orem 6.1. Now we show that assoc ◦ frame is the identity. Let π : E → B be a

vector bundle with fiber V . We need to show that E′′×GL(V ) V → B and π are

isomorphic vector bundles over B. One can check that α : E′′ ×V → E defined

by α(f, v) := f−1(v) is smooth. Therefore, α induces a smooth bijection ᾱ

making the triangle

E′′ ×GL(V ) V
ᾱ ��



�
��

��
��

�
E

π
����
��
��

B

commute. So we are left to show that α is a subduction. This follows from the

argument used in the proof of the previous lemma.

The last claim follows from the fact that both assoc and frame preserve D-

numerable bundles.

Combining this result with Theorem 5.10, we get:

Theorem 7.8: There is a bijection [B,BGL(V )] → VBD
V (B) which is natural

in B.

Appendix A. A smooth function that detects zeros

In the proof of Proposition 4.12, we used the existence of a certain smooth map

motivated by the continuous function min : C([0, 1], R≥0) → R≥0. We will give

our smooth replacement in Proposition A.4.

We equip R≥0 with the sub-diffeology of R, so C∞(R,R≥0) consists of the

smooth, non-negative functions R → R, and C∞(R,R≥0) has the sub-diffeology

of C∞(R,R).

We first need some lemmas:
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Lemma A.1: For any f ∈ C∞(R,R≥0) such that f(x) > 0 for x ∈ [0, 1], we

have

C exp(−C

∫ 1

0

1

f(x)
dx) ≤ min

x∈[0,1]
f(x),

for any positive C ≥ maxx∈[0,1] |f ′(x)|.
Proof. Write m for minx∈[0,1] f(x), so m = f(x0) for some x0 ∈ [0, 1]. By the

mean value theorem, we have

f(x)−m = f(x)− f(x0) ≤ C|x − x0|

for all x ∈ [0, 1]. Therefore,

∫ 1

0

1

f(x)
dx ≥

∫ 1

0

1

m+ C|x − x0|dx

=

∫ x0

0

1

m+ C(x0 − x)
dx+

∫ 1

x0

1

m+ C(x − x0)
dx

=
1

C
ln

m2 + Cm+ C2x0(1− x0)

m2

≥ 1

C
ln

m+ C

m
.

So,

m ≥ C exp

(
− C

∫ 1

0

1

f(x)
dx

)
,

as required.

As a special case, we obtain:

Lemma A.2: For f ∈ C∞(R2,R≥0) and a < b, there exists C > 0 such that

C exp

(
− C

∫ 1

0

1

f(t, x)
dx

)
≤ min

x∈[0,1]
f(t, x)

for all t ∈ [a, b] such that f(t, x) > 0 for all x ∈ [0, 1].

Proof. By the previous lemma, it suffices to choose

C ≥ max
x∈[0,1],t∈[a,b]

∣∣∣∂f
∂x

(t, x)
∣∣∣.

The last inequality we need for our result is:
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Lemma A.3: Let f ∈ C∞(R2,R≥0) and a < b, and assume that f(t0, x0) = 0

for some t0 ∈ [a, b] and x0 ∈ [0, 1]. Then there exists c > 0 such that

∫ 1

0

1

f(t, x)
dx ≥ c

|t− t0|
for all t ∈ [a, b] such that f(t, x) > 0 for all x ∈ [0, 1].

Proof. By translating t, we may assume that t0 = 0, so f(0, x0) = 0. By

enlarging the interval [a, b], we may assume that it is symmetric about 0. By

scaling t, we may assume that [a, b] = [−1, 1]. Then, by smoothness, there

exists b > 0 such that

f(t, x) ≤ b(t2 + (x − x0)
2)

for every t ∈ [−1, 1] and x ∈ [0, 1]. The squares comes from the fact that f is

assumed to be a non-negative smooth function, so

∂xf(0, x0) = ∂tf(0, x0) = 0.

In particular, if |x− x0| ≤ |t|, then
f(t, x) ≤ 2bt2.

Choose t ∈ [−1, 1] such that f(t, x) > 0 for all x ∈ [0, 1]. Integrating, we get

∫ 1

0

1

f(t, x)
dx ≥

∫ min(x0+|t|,1)

max(x0−|t|,0)

1

f(t, x)
dx

≥
∫ min(x0+|t|,1)

max(x0−|t|,0)

1

2bt2
dx ≥ |t|

2bt2
=

c

|t| ,

as claimed. The last inequality comes from the fact that the interval of integra-

tion has width at least |t|.

Now we prove the main result of this appendix.

Proposition A.4: There exists a smooth map F : C∞(R,R≥0) → R≥0 such

that F (f) = 0 if and only if f(x) = 0 for some x ∈ [0, 1].

Proof. We are going to show that F : C∞(R,R≥0) → R≥0 defined by

(3) F (f) =

⎧⎨
⎩
exp(− exp(

∫ 1

0
1

f(x) dx)), if f(x) > 0 for all x ∈ [0, 1],

0, otherwise,
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satisfies the requirements. By definition of F , we have F (f) = 0 if and only

if f(x) = 0 for some x ∈ [0, 1]. We are left to show the smoothness of F . By

Boman’s theorem (see, e.g., [KM, Corollary 3.14]), it is enough to show that

for every plot p : R → C∞(R,R≥0), F ◦ p : R → R is smooth. The map

p̃ : R× R → R defined by p̃(t, x) = p(t)(x) is smooth and non-negative, and

(F ◦ p)(t) =
⎧⎨
⎩
exp(− exp(

∫ 1

0
1

p̃(t,x) dx)), if p̃(t, x) > 0 for all x ∈ [0, 1],

0, otherwise.

It is easy to see that A := {t ∈ R | p̃(t, x) > 0 for all x ∈ [0, 1]} is open in R,

and F ◦ p is smooth on A. To prove that F ◦ p is smooth, it suffices to show

that for each n ≥ 0 and each t0 ∈ R \ A, (F ◦ p)(n)(t0) exists and is zero. We

will prove this by induction on n. For n = 0, this holds by definition.

For the inductive step, let t0 ∈ R \A and consider

(F ◦ p)(n+1)(t0) = lim
t→t0

(F ◦ p)(n)(t)
t− t0

.

For t ∈ R \ A, the numerator is zero by the inductive hypothesis. So we must

bound
|(F ◦ p)(n)(t)|

|t− t0|
for t in A.

By a separate induction, one can show that for t ∈ A

(F ◦ p)(n)(t) = exp(−G(t))
∑
i

G(t)ni

∏
j

Dij(t),

where i ranges over a finite set,

G(t) = exp

(∫ 1

0

1

p̃(t, x)
dx

)
,

each ni is in N, j ranges over a finite set depending on i, and

Dij(t) =

∫ 1

0

Eij(t, x)

p̃(t, x)mij
dx

with Eij a polynomial of finitely many iterated partial derivatives of p̃ with

respect to t and mij ∈ N≥1.

We fix an i and a neighborhood [a, b] of t0, and will bound

exp(−G(t))G(t)ni
∏

j Dij(t) for t ∈ [a, b]∩A. Using Lemma A.2, choose C > 0

so that

CG(t)−C ≤ m(t)
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for t ∈ [a, b] ∩A, where m(t) := minx∈[0,1] p̃(t, x). For each j, let

Mij := max
t∈[a,b],x∈[0,1]

{|Eij(t, x)|}

and let Mi :=
∏

j Mij . Then for t ∈ [a, b] ∩A we have

∣∣∣∣ exp(−G(t))G(t)ni

∏
j

Dij(t)

∣∣∣∣ = exp(−G(t))G(t)ni

∏
j

∣∣∣∣
∫ 1

0

Eij(t, x)

p̃(t, x)mij
dx

∣∣∣∣

≤ Mi exp(−G(t))G(t)ni

∏
j

∫ 1

0

1

p̃(t, x)mij
dx

≤ Mi exp(−G(t))G(t)ni

∏
j

1

m(t)mij

≤ Mi exp(−G(t))G(t)ni

∏
j

(G(t)C

C

)mij

= M ′
i exp(−G(t))G(t)n

′
i .

Here, M ′
i = Mi

∏
j

1
Cmij and n′

i = ni +
∑

j Cmij are constants.

By Lemma A.3, there is a c > 0 such that lnG(t) ≥ c/|t−t0| for t in [a, b]∩A.

Therefore,

M ′
i exp(−G(t))G(t)n

′
i

|t− t0| ≤ M ′
i

c
exp(−G(t))G(t)n

′
i lnG(t).

It also follows that G(t) → +∞ as t → t0 through A, and so the right-hand

side goes to 0 as t → t0 through A.

Since this is true for each i and by the induction hypothesis (F ◦ p)(n)(t) = 0

for t ∈ R \A, it follows that

(F ◦ p)(n+1) = lim
t→t0

(F ◦ p)(n)(t)
t− t0

= 0.

This completes the inductive step and the proof of the proposition.

We would like to thank Chengjie Yu for coming up with the formula (3) and

sketching the proof of the proposition, and Gord Sinnamon and Willie Wong

for ideas that led towards this result.
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inar on Geometry, II (Lyon, 1983), Travaux en Cours, Hermann, Paris, 1984, pp. 73–

119.

[St] N. E. Steenrod, Milgram’s classifying space of a topological group, Topology 7 (1968),

349–368.

[Wu] E. Wu, Homological algebra for diffeological vector spaces, Homology, Homotopy and

Applications 17 (2015), 339–376.


