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ABSTRACT

We follow Jacquet–Shalika [7], Matringe [12] and Cogdell–Matringe [3] to

define exterior square gamma factors for irreducible cuspidal representa-

tions of GLn(Fq). These exterior square gamma factors are expressed in

terms of Bessel functions associated to the cuspidal representations. We

also relate our exterior square gamma factors over finite fields to those

over local fields through level-zero representations.
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1. Introduction

Let F be a p-adic local field of characteristic zero with residue field f. Fix a

non-trivial additive character ψ of F . In their work [7], Jacquet and Shalika

define important integrals which we call local Jacquet–Shalika integrals, see [7,

Sections 7, 9.3]. These Jacquet–Shalika integrals enable them to introduce inte-

gral representations for the exterior square L-function L(s, π,∧2) of a (generic)

representation π of GLn(F ). Later, Matringe [12] and Cogdell–Matringe [3]

prove local functional equations for these local exterior square L-functions, in

which local factors γ(s, π,∧2, ψ) and ε(s, π,∧2, ψ) play an important role. These

local factors are related via the following equation:

(1.1) γ(s, π,∧2, ψ) =
ε(s, π,∧2, ψ)L(1− s, π̃,∧2)

L(s, π,∧2)
.

If π is an irreducible supercuspidal representation of GLn(F ), then it is

generic, and the local factors γ(s, π,∧2, ψ) and ε(s, π,∧2, ψ) are defined. By

type theory of Bushnell and Kutzko [2], π is constructed from some maximal

simple type (J, λ); see [2, Section 6] for details. Partially, λ comes from some ir-

reducible cuspidal representation π0 of GLm(e), where e is some finite extension

of f. In this paper, we are interested in defining the exterior square gamma

factor γ(π0,∧2, ψ0) for some non-trivial additive character ψ0 of e, and we

relate π to π0 via their exterior square gamma factors, in the case where π is of

level-zero. To be concrete, the main result of this paper is that if π is a level-zero

representation constructed from π0, a cuspidal representation of GLn(f) which

does not admit a Shalika vector, then γ(s, π,∧2, ψ) = γ(π0,∧2, ψ0).

In Section 2, we work with a general finite field F and a non-trivial addi-

tive character ψ. For a generic representation π of GLn(F) where n = 2m

or n = 2m+ 1, we follow [7] to define the Jacquet–Shalika integral Jπ,ψ(W,φ)

and its dual J̃π,ψ(W,φ), where W is a Whittaker function of π and φ is a com-

plex valued function on Fm. Using ideas from [12, 3], we define the exterior

square gamma factor γ(π,∧2, ψ) of π in

Theorem: Let π be an irreducible cuspidal representation of GLn(F) that does

not admit a Shalika vector. Then there exists a non-zero constant γ(π,∧2, ψ)

such that

J̃π,ψ(W,φ) = γ(π,∧2, ψ) · Jπ,ψ(W,φ),
for any Whittaker function W ∈ W(π, ψ) and any complex valued function φ

on Fm. Here n = 2m or n = 2m+ 1.
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This theorem is presented as Theorem 2.15 in Section 2. Its proof is separated

into the even and odd cases, since the Jacquet–Shalika integrals differ in these

cases. The proof relies heavily on some multiplicity one theorems, whose details

can be found in Appendix A. If π admits a Shalika vector, we need to borrow

results from the local field case in order to define the exterior square gamma

factor, which is discussed in Theorem 3.13. By choosing some suitableW and φ,

we are able to express γ(π,∧2, ψ) as a summation of the Bessel function Bπ,ψ
over some tori of GLn(F), see Theorem 2.26 and Theorem 2.27. The ability to

write local factors closely related to the exterior square gamma factor in terms

of integrals of partial Bessel functions over tori as in [4, Proposition 4.6], is one

of the key ingredients that Cogdell, Shahidi and Tsai use in order to prove the

stability of exterior square gamma factors for local fields.

In Section 3, we assume that π is a level-zero representation of GLn(F ),

where F is a p-adic local field of characteristic zero with residue field f. Let ψ be

a non-trivial additive character of F , which descends to a non-trivial additive

character ψ0 of f. By type theory of Bushnell and Kutzko, π is constructed

from a maximal simple type (GLn(o), π0), where o is the ring of integers of F

and π0 is an irreducible cuspidal representation of GLn(f). Our main result is

in Theorem 3.14, which states that if π0 does not admit a Shalika vector, then

γ(s, π,∧2, ψ) = γ(π0,∧2, ψ0).

γ(π0,∧2, ψ0) is a non-zero constant, thus the above equation implies

that γ(s, π,∧2, ψ) is a non-zero constant independent of s. The case where π0

admits a Shalika vector is also treated in Theorem 3.15. We are also able to

specify the local exterior square factors L(s, π,∧2) and ε(s, π,∧2, ψ) explicitly

along with the equalities of the exterior square gamma factors.

This paper grows out of part of a thesis project of the first author, and the

master’s thesis [16] of the second author.

2. The Jacquet–Shalika integral over a finite field

In this section, we define analogs of the local Jacquet–Shalika integrals [7, Sec-

tion 7], [3, Section 3.2] over a finite field. We then prove that they satisfy a

functional equation, which defines an important invariant, the exterior square

gamma factor. This functional equation is valid only under some assumption

on the relevant representation, which we restate in several equivalent ways. We

then express the exterior square gamma factor in terms of the Bessel function

of Gelfand [5].



892 R. YE AND E. ZELINGHER Isr. J. Math.

2.1. Preliminaries and notations.

2.1.1. Notations. Let F be a finite field and denote q = |F|. Fix an algebraic

closure F of F. For every positive integer m, we denote by Fm the unique field

extension of F in F of degree m. Let ψ : F → C
∗ be a non-trivial additive

character. For a non-negative integer m, we denote S(Fm) = {f : Fm → C},
the space of complex valued functions on Fm. If φ ∈ S(Fm), we define its

Fourier transform with respect to ψ by the formula

Fψφ(y) = q−
m
2

∑
x∈Fm

f(x)ψ(〈x, y〉),

where 〈x, y〉 is the standard bilinear form on Fm. We have the following Fourier

inversion formulas:

FψFψφ(x) = φ(−x), Fψ−1Fψφ(x) = φ(x).

For an irreducible generic representation π of GLn(F), we denote by W(π, ψ)

the Whittaker model of π with respect to the character ψ. For W ∈ W(π, ψ),

we define W̃ ∈ W(π̃, ψ−1) by W̃ (g) =W (wng
ι), where

gι = tg−1 and wn =

⎛⎜⎜⎝
1

. .
.

1

⎞⎟⎟⎠ .

Let n1, . . . , nr ≥ 1 with n1 + · · ·+ nr = n and gi ∈ GLni(F) for every i. We

denote

antidiag(g1, . . . , gr) =

⎛⎜⎜⎜⎜⎝
g1

g2

. .
.

gr

⎞⎟⎟⎟⎟⎠ ∈ GLn(F).

2.1.2. The Bessel function. Let (π, Vπ) be an irreducible generic representa-

tion of GLn(F). By [5, Propositions 4.2, 4.3] there exists a unique element

Bπ,ψ ∈ W(π, ψ) satisfying Bπ,ψ(In) = 1 and Bπ,ψ(u1gu2) = ψ(u1)ψ(u2)Bπ,ψ(g),
for every g ∈ GLn(F) and u1, u2 ∈ Nn, where Nn is the upper triangular unipo-

tent subgroup of GLn(F).

Theorem 2.1 ([5, Proposition 4.9]): Let w, d ∈ GLn(F), where w is a permu-

tation matrix and d is a diagonal matrix. Suppose that Bπ,ψ(dw) �= 0. Then

dw = antidiag(λ1In1 , . . . , λrInr ), where n1 + · · ·+ nr = n and λ1, . . . , λr ∈ F
∗.
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2.2. The Jacquet–Shalika integral. In this section, we define the

Jacquet–Shalika integral analog over the finite field F.

2.2.1. The even case. Let (π, Vπ) be an irreducible generic representation

of GL2m(F). For W ∈ W(π, ψ) and φ ∈ S(Fm) we define the Jacquet–Shalika

integral as

Jπ,ψ(W,φ) =
1

[G : N ][M : B]

×
∑

g∈N\G

∑
X∈B\M

W

(
σ2m

(
Im X

Im

)(
g

g

))
ψ(−trX)φ(εg).

Here G = GLm(F), N ≤ G is the upper triangular unipotent subgroup,

M=Mm(F), B ≤M is the upper triangular matrix subspace, ε=εm=( 0 ··· 0 1 );

σ2m is the column permutation matrix corresponding to the permutation

σ =

(
1 2 3 · · · m | m+ 1 m+ 2 · · · 2m

1 3 5 · · · 2m− 1 | 2 4 · · · 2m

)
.

We also define the dual Jacquet–Shalika integral as

J̃π,ψ(W,φ) = Jπ̃,ψ−1

(
π̃

(
Im

Im

)
W̃ ,Fψφ

)
.

It is immediate from the definition that

Proposition 2.2 (Double-duality):

J̃π̃,ψ−1

(
π̃

(
Im

Im

)
W̃ ,Fψφ

)
= Jπ,ψ(W,φ).

One can show the following

Proposition 2.3:

J̃π,ψ(W,φ) =
1

[G : N ][M : B]

×
∑

g∈N\G

∑
X∈B\M

W

(
σ2m

(
Im X

Im

)(
g

g

))
ψ(−trX)Fψφ(ε1gι),

where ε1 = ( 1 0 ··· 0 ).

The following proposition is a simple exercise that follows from Theorem 2.1.

It will also follow as a special case of Lemma 2.28.
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Proposition 2.4: Let W = [G : N ][M : B]π(σ−1
2m)Bπ,ψ, and let

φ(x) = δε(x) =

⎧⎨⎩1 x = ε,

0 else.

Then

Jπ,ψ(W,φ) = 1.

Definition 2.5: The Shalika subgroup S2m ≤ GL2m(F) is defined as

S2m =

{(
g X

g

)
| g ∈ GLm(F), X ∈Mm(F)

}
.

S2m acts on S(Fm) by (
ρ

(
g X

g

)
φ

)
(y) = φ(yg).

We define a character Ψ : S2m → C∗ by

Ψ

(
g X

g

)
= ψ(tr(Xg−1)).

One easily checks

Proposition 2.6 (Equivariance property): Let s ∈ S2m and B ∈ {Jπ,ψ, J̃π,ψ};
we have

B(π(s)W,ρ(s)φ) = Ψ(s)B(W,φ).

Definition 2.7: A vector 0 �= v ∈ Vπ is called a Shalika vector, if for every

s ∈ S2m we have

π(s)v = Ψ(s)v.

Remark 2.8: Suppose that π admits a Shalika vector v. Then for every a ∈ F
∗

we have aI2m ∈ S2m and ωπ(a)v = π(aI2m)v = v, and therefore π has trivial

central character.
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2.2.2. The odd case. Let (π, Vπ) be an irreducible generic representation

of GL2m+1(F). ForW ∈ W(π, ψ) and φ ∈ S(Fm) we define the Jacquet–Shalika

integral as

Jπ,ψ(W,φ)

=
1

[G : N ][M : B]|M1×m(F)|

×
∑

g∈N\G

∑
X∈B\M

∑
Z∈M1×m(F)

W

⎛⎜⎝σ2m+1

⎛⎜⎝Im X

Im

1

⎞⎟⎠
⎛⎜⎝g g

1

⎞⎟⎠
⎛⎜⎝Im Im

Z 1

⎞⎟⎠
⎞⎟⎠

× ψ(−trX)φ(Z).

Here the notations are the same as in the even case, except for σ2m+1 which is

the column permutation matrix corresponding to the permutation

σ =

(
1 2 3 · · · m | m+ 1 m+ 2 · · · 2m | 2m+ 1

1 3 5 · · · 2m− 1 | 2 4 · · · 2m | 2m+ 1

)
.

We also define the dual Jacquet–Shalika integral as

J̃π,ψ(W,φ) = Jπ̃,ψ−1

⎛⎜⎝π̃
⎛⎜⎝ Im

Im

1

⎞⎟⎠ W̃ ,Fψφ

⎞⎟⎠ .

Again, we get immediately from the definition the following analog of Proposi-

tion 2.2:

Proposition 2.9 (Double-duality):

J̃π̃,ψ−1

⎛⎜⎝π̃
⎛⎜⎝ Im

Im

1

⎞⎟⎠ W̃ ,Fψφ

⎞⎟⎠ = Jπ,ψ(W,φ).

One can show the following two propositions which are similar to Proposi-

tions 2.3 and 2.4, respectively.
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Proposition 2.10:

J̃π,ψ(W,φ)

=
1

[G : N ][M : B]|M1×m(F)|
×

∑
g∈N\G

∑
X∈B\M

∑
Z∈M1×m(F)

W

⎛⎜⎝( 1

I2m

)
σ2m+1

⎛⎜⎝Im X

Im

1

⎞⎟⎠
⎛⎜⎝g g

1

⎞⎟⎠
⎛⎜⎝Im − tZ

Im

1

⎞⎟⎠
⎞⎟⎠

× ψ(−trX)Fψφ(Z).
Proposition 2.11: Let W = [G : N ][M : B]|M1×m(F)|π(σ−1

2m+1)Bπ,ψ, and

φ = δ0 be the indicator function of 0 ∈ Fm. Then

Jπ,ψ(W,φ) = 1.

Definition 2.12: The Shalika subgroup S2m+1 ≤ GL2m+1(F) is defined as

S2m+1 =

⎧⎪⎨⎪⎩
⎛⎜⎝g X Y

g

Z 1

⎞⎟⎠ | g ∈ GLm(F), X ∈Mm(F),

Y ∈Mm×1(F), Z ∈M1×m(F)

⎫⎪⎬⎪⎭ .

Let P2m+1 ≤ GL2m+1(F) be the Mirabolic subgroup, i.e., the subgroup of

matrices having ε2m+1 = ( 0 ··· 0 1 ) as their last row. We define a character

Ψ : S2m+1 ∩ P2m+1 → C∗ by

Ψ

⎛⎜⎝g X Y

g

1

⎞⎟⎠ = ψ(tr(Xg−1)).

The Shalika subgroup acts on S(Fm) by the following relations [3, Proposi-

tion 3.1]:

• ρ

⎛⎜⎝g g

1

⎞⎟⎠φ(x) = φ(xg).

• ρ

⎛⎜⎝Im z0

Im

1

⎞⎟⎠φ(x) = ψ(−trz0)φ(x).
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• ρ

⎛⎜⎝Im y0

Im

1

⎞⎟⎠φ(x) = ψ(〈x, y0〉)φ(x).

• ρ

⎛⎜⎝Im Im

x0 1

⎞⎟⎠φ(x) = φ(x+ x0).

As in [3, Proposition 3.1], one has

Proposition 2.13: The action of S2m+1 on S(Fm) is equivalent to

Ind
S2m+1

P2m+1∩S2m+1
(Ψ−1),

given by mapping f ∈ Ind
S2m+1

P2m+1∩S2m+1
(Ψ−1) to φ ∈ S(Fm), defined as

φ(x) = f(
Im

Im
x 1

).

As in [3, Lemma 3.2, 3.3], we have the following analog of Proposition 2.6:

Proposition 2.14 (Equivariance property): Let B ∈ {Jπ,ψ, J̃π,ψ}. Then for

every s ∈ S2m+1,

B(π(s)W,ρ(s)φ) = B(W,φ).

Since in the odd case, the character Ψ is defined only on the subgroup

S2m+1 ∩ P2m+1, we don’t have a definition for a Shalika vector in this case.

2.3. The functional equation. In this section, we prove the functional

equation satisfied by the Jacquet–Shalika integral. This allows us to define

the exterior square gamma factor of an irreducible cuspidal representation

of GLn(F).

Theorem 2.15 (The functional equation): Let n = 2m or n = 2m + 1, and

let π be an irreducible cuspidal representation of GLn(F). If n is even, suppose

that π does not admit a Shalika vector. Then there exists a non-zero constant

γ(π,∧2, ψ) ∈ C∗, such that for every W ∈ W(π, ψ) and φ ∈ S(Fm), we have

J̃π,ψ(W,φ) = γ(π,∧2, ψ) · Jπ,ψ(W,φ).
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The proof of this theorem is based on the proofs for the local field case of

the local Jacquet–Shalika integrals [12, Section 4], [3, Section 3.3]. The Shalika

subgroup Sn plays an important role in the proof. We treat the even case and

the odd case separately. In both cases, the main idea is to show that the space

of Sn equivariant bilinear forms

B : W(π, ψ)× S(Fm) → C

is at most one-dimensional. Since Jπ,ψ and J̃π,ψ define non-zero elements of

this space (see Propositions 2.4 and 2.6 for the even case, and Propositions 2.11

and 2.14 for the odd case), the theorem follows. Since the proofs of the even

case and odd case differ by only a little, we will only stress the proof of the even

case.

Definition 2.16: We call γ(π,∧2, ψ) in the above theorem the exterior square

gamma factor of π with respect to the character ψ.

Remark 2.17: By double duality (Proposition 2.2 and Proposition 2.9), we have

that

γ(π,∧2, ψ) · γ(π̃,∧2, ψ−1) = 1.

Substituting in the functional equation the functions from Proposition 2.4 and

Proposition 2.11 in the even case and the odd case respectively, and using the

fact that Bπ̃,ψ−1 = Bπ,ψ, we get that γ(π,∧2, ψ) = γ(π̃,∧2, ψ−1), and therefore

|γ(π,∧2, ψ)| = 1.

The proof of the functional equation relies on the following lemma.

Lemma 2.18: Let (π, Vπ) be an irreducible cuspidal representation of GLn(F).

Then

dimC HomSn∩Pn(π,Ψ) ≤ 1.

Here Pn ≤ GLn(F) is the mirabolic subgroup.

Proof. We only prove the lemma in the case n = 2m. The case n = 2m+ 1 is

similar. We define a homomorphism

Λ : HomS2m∩P2m(π,Ψ) → HomMm,m∩P2m(π, 1)

by

Λ(L)(v) =
1

|GLm(F)|
∑

g∈GLm(F)

L

(
π

(
g

Im

)
v

)
,
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where Mm,m ≤ GL2m(F) is the Levi subgroup corresponding to the partition

(m,m). We claim that Λ is injective: suppose that L �= 0 and that v ∈ Vπ

satisfies L(v) �= 0. We define, for a function Φ : Mm(F) → C, a vector vΦ ∈ Vπ

by

vΦ =
1√|Mm(F)|

∑
X∈Mm(F)

Φ(X)π

(
Im X

Im

)
v.

Then

Λ(L)vΦ =
1

|GLm(F)|
∑

g∈GLm(F)

FψΦ(g)L
(
π

(
g

Im

)
v

)
.

Choosing Φ such that FψΦ = δIm , we get that Λ(L)vΦ = 1
|GLm(F)|v �= 0, and

therefore Λ(L) �= 0. Thus, Λ is injective. The lemma then follows from the

multiplicity one theorem below.

Theorem 2.19: Let (π, Vπ) be an irreducible cuspidal representation

of GL2m(F). Then

dimC HomMm,m∩P2m(π, 1) ≤ 1.

Here Mm,m ≤ GL2m(F) is the Levi subgroup corresponding to the partition

(m,m).

We have a similar multiplicity one theorem for n = 2m+ 1, but with Mm,m

replaced by a conjugation L2m+1 of Mm+1,m. The proof of Theorem 2.19 will

be given in the appendix, as it is a detour from the main line of the paper.

Theorem 2.19 is restated and proved in Theorem A.1, while the one for the odd

case is Theorem A.2.

Proof of Theorem 2.15, n = 2m. The idea is to show that

dimC HomS2m(π ⊗ S(Fm),Ψ) ≤ 1.

Since Jπ,ψ and J̃π,ψ define non-zero elements of HomS2m(π ⊗ S(Fm),Ψ), it

follows that such a constant exists.

We first claim that the restriction map

HomS2m(π ⊗ S(Fm),Ψ) → HomS2m(π ⊗ S(Fm \ {0}),Ψ)

is injective, where S(Fm \ {0}) is realized as a subspace of S(Fm) by the set of

elements of S(Fm), vanishing at zero.
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Suppose that this restriction map is not injective. Then there exists

0 �= B : Vπ × S(Fm) → C

satisfying

B(π(s)v, ρ(s)φ) = Ψ(s)B(v, φ)

for every s ∈ S2m, such that b ∈ Ṽπ defined by b(v) = B(v, δ0) is not the zero

functional, where δ0 is the indicator function of 0 in Fm. Let (·, ·) be an inner

product on Vπ with respect to which π is unitary, and let 0 �= v0 ∈ Vπ, such

that b(v) = (v, v0). Then since ρ(s)δ0 = δ0 for every s ∈ S2m, it follows from

the equivariance property of B that

b(π(s)v) = B(π(s)v, δ0) = B(π(s)v, ρ(s)δ0) = Ψ(s)B(v, δ0) = Ψ(s)b(v).

Thus, for any s ∈ S2m and v ∈ Vπ, we have

(v, π(s)v0) = (π(s−1)v, v0) = b(π(s−1)v)

= Ψ(s−1)b(v) = Ψ(s)(v, v0) = (v,Ψ(s)v0).

This shows that v0 is a Shalika vector, which is a contradiction.

Next we write a sequence of isomorphisms from which it follows that

dimC HomS2m(π ⊗ S(Fm \ {0}),Ψ) ≤ 1.

Since (S2m ∩ P2m)\S2m
∼= Fm \ {0} by the map ( g Xg ) → εg, we have that

S(Fm \ {0}) ∼= IndS2m

S2m∩P2m
(1)

and we have the following isomorphisms:

HomS2m(π ⊗ IndS2m

S2m∩P2m
(1),Ψ) ∼= HomS2m(Ψ−1 ⊗ π, IndS2m

S2m∩P2m
(1)

�
)

∼= HomS2m(Ψ−1 ⊗ π, IndS2m

S2m∩P2m
(1̃)).

Thanks to Frobenius reciprocity, we get that

HomS2m(Ψ−1 ⊗ π, IndS2m

S2m∩P2m
(1)) ∼= HomS2m∩P2m(Ψ−1 ⊗ π, 1)

∼= HomS2m∩P2m(π,Ψ).

By Lemma 2.18, the last space has dimension ≤ 1.

Remark 2.20: As seen in the proof, the proof fails if π admits a Shalika vec-

tor. In this case, a modified functional equation is valid. This is discussed in

Theorem 3.13.
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2.3.1. Equivalent conditions for admitting a Shalika vector. Let (π, Vπ) be an

irreducible cuspidal representation of GL2m(F). In this section we state equiv-

alent conditions for π to admit a Shalika vector.

Proposition 2.21: The representation π admits a Shalika vector if and only

if there exists W ∈ W(π, ψ) such that Jπ,ψ(W, 1) �= 0, where 1 denotes the

constant function valued 1 on Fm.

Proof. Suppose that there existsW ∈ W(π, ψ) such that Jπ,ψ(W, 1) �= 0. Define

W0 ∈ W(π, ψ) by

W0(h) =
1

[G : N ]

1

[M : B]
∑

g∈N\G

∑
X∈B\M

W

(
h

(
Im X

Im

)(
g

g

))
ψ(−trX).

Then W0 �= 0 as W0(σ2m) = Jπ,ψ(W, 1). By changing variables, we can show

that

W0(hs) = Ψ(s)W0(h),

for every s ∈ S2m, thus W0 is a Shalika vector.

For the other direction, assume π admits a non-zero Shalika vector

W0 ∈ W(π, ψ). Choose an inner product (·, ·) on W(π, ψ), with respect to

which π is unitary. Then W0 defines a non-zero element TW0 ∈ HomS2m(π,Ψ)

by

TW0(W
′) = (W ′,W0).

We have that

HomS2m(π,Ψ) ⊆ HomS2m∩P2m(π,Ψ).

By Lemma 2.18, we have in this case that

0 �= HomS2m(π,Ψ) = HomS2m∩P2m(π,Ψ).

We define W ∈ W(π, ψ) by

W (h) =
∑

g∈N\P

∑
X∈B\M

Bπ,ψ
(
h

(
Im X

Im

)(
g

g

)
σ−1
2m

)
ψ(−trX),

where P = Pm(F) = {g ∈ GLm(F) | εmg = εm} is the mirabolic subgroup. We

can show that for s ∈ S2m ∩ P2m,

W (hs) = Ψ(s)W (h).
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Therefore, W defines an element TW ∈ HomS2m∩P2m(π,Ψ) by

TW (W ′) = (W ′,W ).

Thus TW ∈ HomS2m(π,Ψ). This implies that W is a Shalika vector. We

can also show that Jπ,ψ(W, 1) = W (σ2m). By Proposition 2.4, we have that

W (σ2m) = 1, hence Jπ,ψ(W, 1) =W (σ2m) �= 0.

Corollary 2.22: If π admits a Shalika vector, then the functional equation

in Theorem 2.15 does not hold.

Proof. LetW ∈W(π, ψ), such that Jπ,ψ(W, 1)=1. Then since Fψ1=qm
2 ·δ0, we

have that J̃π,ψ(W, 1) = 0, and therefore no such non-zero constant exists.

Suppose that π is associated with the regular character θ : F∗
2m → C∗ [6]. We

now recall the work of Prasad [14] in order to classify when π admits a Shalika

vector, in terms of θ.

Let Nm,m be the unipotent radical of GL2m(F) corresponding to the partition

(m,m). Denote by VπNm,m,Ψ the twisted Jacquet submodule of Nm,m with

respect to the character Ψ:

VπNm,m,Ψ =

{
v ∈ Vπ | ∀X ∈Mm(F), π

(
Im X

Im

)
v = ψ(trX)v

}
.

Then VπNm,m,Ψ is a subspace invariant under the action πNm,m,Ψ of GLm(F),

defined by πNm,m,Ψ(g)v = π( g g )v, where g ∈ GLm(F), v ∈ VπNm,m,Ψ . Prasad

shows

Theorem 2.23 ([14, Theorem 1]): πNm,m,Ψ
∼= Ind

GLm(F)
F∗
m

(θ �F∗
m
).

From the definition of a Shalika vector and the definition of the representation

πNm,m,Ψ, we see that π admits a Shalika vector if and only if

0 �= HomGLm(F)(1, πNm,m,Ψ)
∼= HomF∗

m
(1, θ �F∗

m
).

The isomorphism above comes from Frobenius reciprocity. The latter space is

non-zero if and only if θ �F∗
m
= 1, and then it is one-dimensional. Therefore we

get the following

Corollary 2.24: π admits a Shalika vector if and only if θ �F∗
m
= 1, and in

this case, the space of Shalika vectors is

We conclude this section with a theorem.
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Theorem 2.25 (Equivalent conditions for admitting a Shalika vector): Sup-

pose π is an irreducible cuspidal representation of GL2m(F) associated with the

regular character

θ : F∗
2m → C

∗.

The following are equivalent.

(1) π admits a Shalika vector.

(2) There exists W ∈ W(π, ψ), such that Jπ,ψ(W, 1) �= 0.

(3) θ �F∗
m
= 1.

Moreover, in these cases, the space of Shalika vectors is one-dimensional.

2.4. An expression for the exterior square gamma factor. Let π be

an irreducible cuspidal representation of GLn(F). If n is even, suppose that π

does not admit a Shalika vector.

In this section we express the exterior square gamma factor of π in terms

of the Bessel function. One may use Proposition 2.4 and Proposition 2.11 in

order to get such an expression, but the Jacquet–Shalika integral sums over too

many elements, some of which are not in the support of the Bessel function.

We find a more accurate expression which involves only elements of the form of

Theorem 2.1.

Our main results of this section are the following theorems:

Theorem 2.26: If n = 2m, the exterior square gamma factor is given by the

formula

γ(π,∧2, ψ)

=q−
m
2 +2(m2 )

∑
m1,...,mr≥1
m1+···+mr=m
λ1,...,λr∈F

∗

q−
∑r

i=1 2(mi
2 )

× Bπ,ψ(antidiag(λ1I2m1 , . . . , λrI2mr )
−1)ψ(λrδmr,1),

where

δmr ,1 =

⎧⎨⎩1 mr = 1,

0 mr �= 1.
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Theorem 2.27: If n = 2m + 1, the exterior square gamma factor is given by

the formula

γ(π,∧2, ψ)= q
m
2 +2(m2 )

∑
m1,...,mr≥1

m1+···+mr=m
λ1,...,λr∈F

∗

q−
∑r

i=1 2(mi
2 )

× Bπ,ψ(antidiag(λ1I2m1 , . . . , λrI2mr , 1I1)
−1).

The following lemma indicates which representatives for g and X in the

Jacquet–Shalika integral contribute to the sum. It is a key to the proofs of

Theorem 2.26 and Theorem 2.27. We will only give the proof of Theorem 2.26,

as the proof of Theorem 2.27 is quite similar.

Lemma 2.28: Let g ∈ GLm(F) and X ∈ N−
m(F) a lower triangular nilpotent

matrix (i.e., a lower triangular matrix with zeros on its diagonal). Suppose that

g = wdu, where u ∈ Nm(F), w is a permutation matrix and d is a diagonal

matrix. Denote by τ the permutation defined by the columns of w. Write

X = (xij). Suppose that

(2.1) σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m ∈ N2m antidiag(λ1In1 , . . . , λrInr )N2m,

where λ1, . . . , λr ∈ F∗, and n1 + · · ·+ nr = 2m. Then:

(1) wd = antidiag(λ1Im1 , . . . , λrImr ), where ni = 2mi, for every 1 ≤ i ≤ r

(and therefore m1 + · · ·+mr = m).

(2) xij = 0 for every (i, j) satisfying j < i and τ−1(j) < τ−1(i).

Furthermore, in this case,

σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m = antidiag(λ1I2m1 , . . . , λrI2mr ) · v,

where v ∈ N2m(F) is an upper triangular unipotent matrix with zeros right

above its diagonal.

Proof. Since σ2m( u u )σ
−1
2m ∈ N2m, we have by Equation (2.1) that

σ2m

(
Im X

Im

)(
wd

wd

)
σ−1
2m ∈ N2m antidiag(λ1In1 , . . . , λrInr )N2m.
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Let

w′ = σ2m

(
w

w

)
σ−1
2m.

Then w′ is a column permutation matrix of the permutation τ ′, where

τ ′(2j) = 2τ(j), and τ ′(2j − 1) = 2τ(j)− 1, for every 1 ≤ j ≤ m, therefore

w′ =
(
e2τ(1)−1 e2τ(1) . . . e2τ(m)−1 e2τ(m)

)
,

where ei is the i-th standard column vector in F2m.

Let d = diag(a1, . . . , am) and d′ = σ2m( d d )σ
−1
2m. Then

d′ = diag(a1, a1, a2, a2, . . . , am, am).

Let

UX = σ2m

(
Im X

Im

)
σ−1
2m.

Since X = (xij) is a lower triangular nilpotent matrix, UX is a lower triangular

unipotent matrix, and its columns are given by column2j−1(UX) = e2j−1 and

column2j(UX) = e2j +

m∑
i=j+1

xije2i−1.

Let

Z = σ2m

(
Im X

Im

)(
wd

wd

)
σ−1
2m = UXw

′d′.

We get that column2j−1(Z) = aje2τ(j)−1 and

column2j(Z) = aje2τ(j) +
m∑

i=τ(j)+1

ajxiτ(j)e2i−1.

We claim that Z has the form

Z =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 . . . 0 λ1I2m1

0 0 . . . λ2I2m2 ∗
0 0 . .

. ∗ ∗
0 λr−1I2mr−1 · · · ∗ ∗

λrI2mr ∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 2mi = ni, for every 1 ≤ i ≤ r.
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The proof of the claim is by applying row and column reduction carefully,

in order to obtain the diagonal and permutation matrices that are involved

in the Bruhat decomposition of Z. Every h ∈ GLn(F) has a Bruhat decom-

position h = u1whdhu2, where u1, u2 ∈ Nn(F), wh is a permutation matrix

and dh is a diagonal matrix. Such wh and dh are unique. Throughout the text,

we refer to the uniqueness of wh and dh as the uniqueness of the Bruhat

decomposition. We will first show that Z is of the form

Z =

(
0 ∗

λrI2mr ∗

)
.

By the above description of the columns of Z, we have that the first column

of Z is a1 · e2τ(1)−1. Let 2m− 2τ(1)+ 2 = 2mr. We show by induction that for

every 1 ≤ l ≤ 2mr,

columnl(Z) = λre2m−2mr+l.

For l = 1, we have column1(Z) = a1e2m−2mr+1. By assumption

Z ∈ N2m antidiag(λ1In1 , . . . , λrInr )N2m

and therefore by the uniqueness of the Bruhat decomposition of Z, we must

have a1 = λr. Assume that the claim is true for all columns before l, that is to

say, columni(Z) = λre2m−2mr+i for 1 ≤ i < l. Since

columnl−1(Z) = λre2m−2mr+l−1,

we expect columnl(Z) = λre2m−2mr+l.

If l = 2j− 1 is odd, then since column2j−1(Z) = aje2τ(j)−1, in order for Z to

have the required Bruhat decomposition Z = u1 antidiag(λ1In1 , . . . , λrInr )u2

for some u1, u2 ∈ N2m(F), we must have that

aj = λr and 2τ(j)− 1 = 2m− 2mr + 2j − 1,

i.e., τ(j) = m−mr + j.

If l = 2j is even, then we have that

column2j(Z) = λre2m−2mr+2j +

m∑
i=m−mr+j+1

λrxi,m−mr+je2i−1.

If any of the xi,m−mr+j is non-zero, then by applying row reduction (by mul-

tiplying from the left by an upper triangular unipotent matrix that annihilates

all the elements above the lowest element of column2j(Z)), we get that the

Bruhat decomposition of Z is not of the required form. Therefore we get that

column2j(Z) = λre2m−2mr+2j , as required.
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We have shown that for every 1 ≤ l ≤ 2mr, columnl(Z) = λre2m−2mr+l. By

the uniqueness of the Bruhat decomposition of Z, we must have nr = 2mr.

We now have that

Z =

(
0 Z ′

λrI2mr A

)
,

where Z ′ ∈ GL2m−2mr(F) and A ∈M2mr×(2m−2mr)(F). We have that

Z ·
(
I2mr −λ−1

r A

0 I2m−2mr

)
=

(
0 Z ′

λrI2mr 0

)
.

By uniqueness of the Bruhat decomposition of Z, we must have that

Z ′ ∈ N2m−2mr antidiag(λ1In1 , . . . , λnr−1Inr−1)N2m−2mr .

Since Z ′ inherits an analogous column description from Z but is of smaller size

than that of Z, we get by induction on the size of the matrix, i.e., by repeating

the above steps applied to Z, that

Z ′ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 . . . 0 λ1I2m1

0 0 . . . λ2I2m2 ∗
0 0 . .

. ∗ ∗
0 λr−2I2mr−2 · · · ∗ ∗

λr−1I2mr−1 ∗ · · · ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and that ni = 2mi for every 1 ≤ i ≤ r − 1, and therefore Z has the desired

form.

By the above claim, we get that the Bruhat decomposition of Z

is Z = wZdZuZ , where wZdZ = antidiag(λ1I2m1 , . . . , λrI2mr ) (wZ is a permu-

tation matrix, dZ is a diagonal matrix, and uZ is an upper triangular unipotent

matrix). We conclude from σ2m(wd wd )σ
−1
2m = wZdZ that

wd = antidiag(λ1Im1 , . . . , λrImr ),

which is the first part of the lemma. We also conclude from the induction process

of the above claim that xτ(i)τ(j) = 0 for every i > j with τ ′(2i − 1) > τ ′(2j),
which is equivalent to xij = 0 for every i > j with τ−1(i) > τ−1(j). This

finishes the second part of the lemma.

Finally, we write Z = w′d′(d′−1w′−1UXw
′d′). We claim that w′−1UXw

′ is
an upper triangular matrix with zeros right above its diagonal: the only non-

zero non-diagonal components of UX are located in the positions of the form

(2i−1, 2j) with values xij for j < i, and these move in the conjugation w′−1UXw
′
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to (τ ′−1(2i − 1), τ ′−1(2j)) = (2τ−1(i) − 1, 2τ−1(j)). If 2τ−1(j) < 2τ−1(i) − 1,

then we get that xij = 0, and therefore d′−1w′−1UXw
′d′ is an upper unipotent

matrix with zeros right above its diagonal. Since

σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m = Zσ2m

(
u

u

)
σ−1
2m,

and since σ2m( u u )σ
−1
2m is an upper triangular unipotent matrix with zeros right

above its diagonal, it follows that

σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m = antidiag(λ1I2m1 , . . . , λrI2mr ) · v,

for some upper triangular unipotent matrix v ∈ N2m(F) with zeros right above

its diagonal.

We need one more lemma, regarding the number of elements involved in

the Jacquet–Shalika integral, such that g has a given Bruhat decomposition.

As we’ll see in the proofs of Theorem 2.26 and Theorem 2.27, in order for a

coset g ∈ N\G to contribute to the Jacquet–Shalika integral, we must have

g ∈ N antidiag(λ1Im1 , . . . , λrImr )N . Let wd = antidiag(λ1Im1 , . . . , λrImr ).

Given g ∈ NwdN and X ∈ N− as in Lemma 2.28, we’ll see in the following

proofs that the summand of the Jacquet–Shalika integral on a special choice of

functions, depends only on wd. To evaluate the Jacquet–Shalika integral, we

should count the number of cosets in the set {Nwdu | u ∈ N} ⊆ N\G and the

number of options for a matrix X ∈ N− satisfying the condition of Lemma 2.28.

Lemma 2.29: Let g = wd = antidiag(λ1Im1 , . . . , λrImr ), where

w = antidiag(Im1 , . . . , Imr )

is a permutation matrix, d = diag(λrImr , . . . , λ1Im1) is a diagonal matrix,

m1 + · · ·+mr = m, and λ1, . . . , λr ∈ F
∗.

(1) Consider the right action of the upper triangular unipotent subgroup

N = Nm on N\G, where G = GLm(F). Then the orbit of Ng is of size

q(
m
2 )−

∑r
i=1 (

mi
2 ).

(2) Let τ be the permutation corresponding to columns of w. Then the set

{X ∈ N−
m | xij = 0, ∀1 ≤ j < i ≤ m, s.t. τ−1(j) < τ−1(i)}

is of cardinality q(
m
2 )−

∑r
i=1 (

mi
2 ).
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Proof. By the orbit-stabilizer theorem, we have that the orbit of Nwd is of size

[N : stabN (Nwd)]. We have that

stabN (Nwd) = N ∩ w−1Nw

= {(uij) ∈ N | uij = 0, ∀i < j s.t. τ−1(i) > τ−1(j)}.
Therefore

logq |stabN (Nwd)| = |{(i, j) | i < j and τ−1(i) < τ−1(j)}| =
r∑
i=1

(
mi

2

)
,

and the first part is proved. The second part follows from the fact that

|{(i, j) | j < i and τ−1(j) < τ−1(i)}| =
r∑
i=1

(
mi

2

)
.

We are now ready to prove Theorem 2.26.

Proof of Theorem 2.26. We have Fψδ−ε1(x) = q−
m
2 ψ(〈−x, ε1〉) = q−

m
2 ψ(−x1)

and therefore by the Fourier inversion formula, if φ(x) = ψ(−x1), then
Fψφ = q

m
2 δε1 .

We compute J̃π,ψ(W,φ), forW =[G :N ][M :B]π(σ−1
2m)Bπ,ψ and φ(x)=ψ(−x1).

We have from Proposition 2.3 that

q−
m
2 J̃π,ψ(W,φ)

=
∑

X∈B\M

∑
g∈N\G

Bπ,ψ
(
σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m

)
ψ(−trX)δε1(ε1g

ι).

Notice that ε1g
ι = ε1 if and only if g has e1 = tε1 as its first column. It

follows now (similarly to the proof of Proposition 2.4) that J̃π,ψ(W,φ) = q
m
2 ,

and therefore

(2.2)

q
m
2 · γ(π,∧2, ψ)−1 = Jπ,ψ(W,φ)

=
∑

g∈N\G

∑
X∈B\M

Bπ,ψ
(
σ2m

(
Im X

Im

)(
g

g

)
σ−1
2m

)
ψ(−trX)ψ(−gm1).

Since the Jacquet–Shalika integral sums over cosets of the form g ∈ N\G (and

is constant on these), it follows from the Bruhat decomposition that it suffices to

consider elements of the form g = wdu, where w is a permutation matrix, d is a

diagonal matrix and u is an upper triangular unipotent matrix. By Lemma 2.28,

we only need to consider w, d such that wd = antidiag(λ1Im1 , . . . , λrImr ).
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We get from Lemma 2.28 that

Bπ,ψ
(
σ2m

(
Im X

Im

)(
wdu

wdu

)
σ−1
2m

)
= Bπ,ψ(antidiag(λ1I2m1 , . . . , λrI2mr )).

Implicitly, we see that it does not depend on X and u. By Lemma 2.29, given

such wd, we have q(
m
2 )−

∑r
i=1 (

mi
2 ) options for u ∈ N , and the same number of

options for X ∈ N−.
Therefore we get the following formula:

Jπ,ψ(W,φ) =
∑

m1,...,mr≥1
m1+···+mr=m
λ1,...,λr ∈F

∗

q2((
m
2 )−

∑r
i=1 (

mi
2 ))·

· Bπ,ψ(antidiag(λ1I2m1 , . . . , λrI2mr )) · ψ(−λr · δmr ,1).

The theorem now follows from Equation (2.2), [13, Proposition 2.15], and Re-

mark 2.17.

Remark 2.30: Let

S0 =
∑
m0>1

m1,...,mr−1≥1
m0+···+mr−1=m
λ0,...,λr−1 ∈F

∗

q−2
∑r−1

i=0 (
mi
2 ) · Bπ,ψ(antidiag(λ0I2m0 , . . . , λr−1I2mr−1)).

Then for every a ∈ F ∗, S0 = ωπ(a) · S0, and therefore if π has a non-trivial

central character, then S0 = 0.

Also let

S1 =
∑

m1,...,mr−1≥1
m1+···+mr−1=m−1
λ1,...,λr−1 ∈F

∗

q−2
∑r−1

i=1 (
mi
2 )·Bπ,ψ(antidiag(I2, λ1I2m1 , . . . , λr−1I2mr−1 )).

Then by a change of variables, we have that

γ(π,∧2, ψ) = q−
m
2 +2(m2 )

(
S0 + S1 ·

∑
a∈F∗

ωπ(a
−1)ψ(a)

)
.
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3. The relation with the Jacquet–Shalika integral over a local field

In this section we relate our theory of the Jacquet–Shalika integral over a finite

field, to the theory of the Jacquet–Shalika integral over a local non-archimedean

field, via level-zero representations.

3.1. Preliminaries and notations.

3.1.1. Notations. Let F be a local non-archimedean field. Denote by o the ring

of integers of F , by p the unique prime ideal of o. Let � be a uniformizer of F ,

a generator of p. Denote by f = o/p the residue field of F and q = |f|. We use

the standard normalization for the absolute value, so that |�| = 1
q .

Denote by ν : o → f the quotient map. We continue to denote by ν the

maps induced by ν from om → fm, Mm(o) → Mm(f), GLm(o) → GLm(f), etc.

Let ψ : F → C∗ be a non-trivial additive character, with conductor p, i.e., ψ

is trivial on p but not on o. Then ψ defines a non-trivial additive character

ψ0 : f → C∗ by

ψ0 ◦ ν = ψ �o .

We denote by S(Fm) the space of Schwartz functions f : Fm → C—locally

constant and compactly supported functions. We choose the standard normal-

izations for the Haar measures on F and F ∗, i.e.,
∫
o
dx = 1 and

∫
o∗ d

×x = 1.

For f ∈ S(Fm), we denote its Fourier transform

Fψf(y) = q
m
2

∫
Fm

f(x) · ψ(〈x, y〉)dx,

where 〈x, y〉 is the standard bilinear form on Fm. The Fourier inversion formulas

for this normalization are given by

Fψ−1Fψf(x) = f(x) and FψFψf(x) = f(−x).
If (π, Vπ) is an irreducible generic representation of GLn(F ), we denote

by W(π, ψ), as in Section 2.1, its Whittaker model with respect to the charac-

ter ψ. We also denote for an elementW ∈ W(π, ψ), an element W̃ ∈ W(π̃, ψ−1),

defined by W̃ (g) =W (wng
ι), where

gι = tg−1 and wn =

⎛⎜⎜⎝
1

. .
.

1

⎞⎟⎟⎠ .
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3.1.2. The local Jacquet–Shalika integral. We briefly review the theory of the

local Jacquet–Shalika integral.

Let (π, Vπ) be a generic irreducible representation of GLn(F ). We first give

the formal formulas for the Jacquet–Shalika integral and its dual. These should

initially be treated as formal expressions. Theorem 3.1 and the discussion af-

terwards explain how to interpret these integrals for general s ∈ C.

Suppose n = 2m. The Jacquet–Shalika integral of π with respect to the

character ψ is defined as follows: for every s ∈ C, W ∈ W(π, ψ), φ ∈ S(Fm),

Jπ,ψ(s,W, φ) =

∫
N\G

∫
B\M

W

(
σ2m

(
Im X

Im

)(
g

g

))

× ψ(−trX)dX · | det g|sφ(εg)d×g,

where the notations are the same as in Section 2.2, this time defined over F .

We define the dual Jacquet–Shalika integral as

J̃π,ψ(s,W, φ) = Jπ̃,ψ−1

(
1− s, π̃

(
Im

Im

)
W̃ ,Fψφ

)
.

Now suppose n = 2m+1. In this case, the Jacquet–Shalika integral of π with

respect to the character ψ is defined as

Jπ,ψ(s,W, φ)

=

∫
N\G

∫
B\M

∫
M1×m(F )

W

⎛⎜⎝σ2m+1

⎛⎜⎝Im X

Im

1

⎞⎟⎠
⎛⎜⎝g g

1

⎞⎟⎠
⎛⎜⎝Im Im

Z 1

⎞⎟⎠
⎞⎟⎠

× ψ(−trX)φ(Z)| det g|s−1dZ dX d×g.

In this case, we define the dual Jacquet–Shalika integral as

J̃π,ψ(s,W, φ) = Jπ̃,ψ−1

⎛⎜⎝1− s, π̃

⎛⎜⎝ Im

Im

1

⎞⎟⎠ W̃ ,Fψφ

⎞⎟⎠ .

These Jacquet–Shalika integrals converge in suitable half planes. From [7],

we have the following theorems (for n = 2m or n = 2m + 1) regarding their

convergence:
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Theorem 3.1 ([7, Section 7, Proposition 1; Section 9, Proposition 3]): There

exists rπ,∧2 ∈ R, such that for every s ∈ C with Re(s) > rπ,∧2 , the integral

Jπ,ψ(s,W, φ) converges, for every W ∈ W(π, ψ) and φ ∈ S(Fm).

Correspondingly, the dual Jacquet–Shalika integrals J̃π,ψ(s,W, φ) converge in

a left half plane (Re(s) < 1− rπ̃,∧2).

By [9, Proposition 2.3], [3, Lemma 3.1], for fixed W and φ, Jπ,ψ(s,W, φ)

converges (in its domain of convergence) to an element of C(q−s) (a rational

function in q−s) and therefore has a meromorphic continuation to the entire

complex plane, which we continue to denote Jπ,ψ(s,W, φ). Similarly, we con-

tinue to denote the meromorphic continuation of J̃π,ψ(s,W, φ) with the same

notation. Moreover, the set

I = spanC{Jπ,ψ(s,W, φ) |W ∈ W(π, ψ), φ ∈ S(Fm)}
is a fractional ideal of C[qs, q−s]. By a non-vanishing theorem of D. Belt

(see [1, Theorem 2.2]), there exists a unique polynomial p ∈ C[Z], such that

p(0) = 1 and I = 1
p(q−s)C[q

−s, qs]. We define the exterior square L-function

L(s, π,∧2) = 1
p(q−s) as in [10, Definition 3.4].

Similar to Proposition 2.3 and Proposition 2.10, we can express J̃π,ψ(s,W, φ)

as in the following

Proposition 3.2: (1) For n = 2m,

J̃π,ψ(s,W, φ) =

∫
N\G

∫
B\M

W

(
σ2m

(
Im X

Im

)(
g

g

))

× ψ(−trX)dX · | det g|s−1 · Fψφ(ε1gι)d×g.
(2) For n = 2m+ 1,

J̃π,ψ(s,W, φ)

=

∫
N\G

∫
B\M

∫
M1×m(F )

W

⎛⎜⎝( 1

I2m

)
σ2m+1

⎛⎜⎝Im X

Im

1

⎞⎟⎠
⎛⎜⎝g g

1

⎞⎟⎠
⎛⎜⎝Im − tZ

Im

1

⎞⎟⎠
⎞⎟⎠

× ψ(−trX)Fψφ(Z)| det g|sdZ dX d×g.
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We now introduce the important local exterior square factors γ(s, π,∧2, ψ)

and ε(s, π,∧2, ψ), relating the Jacquet–Shalika integral Jπ,ψ(s,W, φ) to its

dual J̃π,ψ(s,W, φ).

Theorem 3.3 ([12, Theorem 4.1], [3, Theorem 3.1]): There exists an element

γ(s, π,∧2, ψ) ∈ C(q−s), such that for every W ∈ W(π, ψ) and φ ∈ S(Fm),

J̃π,ψ(s,W, φ) = γ(s, π,∧2, ψ) · Jπ,ψ(s,W, φ).
Furthermore

γ(s, π,∧2, ψ) = ε(s, π,∧2, ψ) · L(1− s, π̃,∧2)

L(s, π,∧2)
,

where ε(s, π,∧2, ψ) is an invertible element of C[q−s, qs].

In the case where π is a supercuspidal representation, the following result

regrading L(s, π,∧2) is known

Theorem 3.4 ([8, Theorem 3.6]): (1) If n = 2m+ 1, then L(s, π,∧2) = 1.

(2) If n = 2m, then

L(s, π,∧2) =
1

p(q−s)
,

where p(Z) ∈ C[Z] is a polynomial dividing 1 − ωπ(�)Zm, satisfying

p(0) = 1.

Actually a more precise version of this theorem is known, in which L(s, π,∧2)

is expressed in terms of twisted Shalika functionals in the even case. This is

discussed in Section 3.4.1; see Theorem 3.19 for instance.

3.1.3. Level-zero supercuspidal representations. Let (π0, Vπ0) be an irreducible

cuspidal representation of GLn(f). Let χ : F ∗ → C∗ be a multiplicative charac-

ter, such that χ �o∗= ωπ0 ◦ ν �o∗ . Let (π0 · χ, Vπ0) be the representation of the

group F ∗ ·GLn(o), defined by the formula

π0 · χ(zk) = χ(z)π0(ν(k)),

where z ∈ F ∗ and k ∈ GLn(o).

Theorem 3.5 ([15, Theorem 6.2]): Let

π = ind
GLn(F )
F∗·GLn(o)

(π0 · χ).
Then π is an irreducible supercuspidal representation of GLn(F ), with central

character χ.
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In fact, this theorem is a special case of the construction of supercuspidal rep-

resentations using type theory, due to Bushnell and Kutzko. See [2, Chapter 6]

for details. We say that π is a level-zero supercuspidal representation of GLn(F )

constructed from the representation π0, with respect to the central character χ,

or simply a level-zero supercuspidal representation constructed from the repre-

sentation π0 (as we can recover χ via the central character ωπ). Throughout

the paper, we also use the term a level-zero representation to refer to the

term a level-zero supercuspidal representation.

3.1.4. Lifts. In order to relate Jacquet–Shalika integrals of cuspidal represen-

tations of GLn(f) to the local Jacquet–Shalika integrals of their corresponding

level-zero representations, we need to be able to lift Schwartz functions and

Whittaker functions to corresponding functions defined over the local field. We

describe here briefly the process of doing so, leaving the details to the reader.

Lifts of Schwartz functions. Denote for a function φ0 ∈ S(fm) a lift

L(φ0) ∈ S(Fm) defined by

L(φ0)(x) =
⎧⎨⎩φ0(ν(x)) x ∈ om,

0 otherwise.

It is easy to verify the following relation between the Fourier transforms and

the lifts.

Proposition 3.6: Let φ0 ∈ S(fm). Then

FψL(φ0) = L(Fψ0φ0).

Lifts of Whittaker functions. Let (π0, Vπ0) be an irreducible cuspidal rep-

resentation of GLn(f). Let π be a level-zero supercuspidal constructed from π0.

Let 0 �= T0 ∈ HomNn(f)(π0, ψ0) be a Whittaker functional of π0. The following

proposition explains how to lift T0 to a Whittaker functional of π.

Proposition 3.7 ([16, Theorem 4.3]): Denote by T : Vπ → C the functional

〈T, f〉 =
∫
Nn(o)\Nn(F )

〈T0, f(u)〉ψ−1(u)d×u,

where f ∈ Vπ (recall from Theorem 3.5 that f : GLn(F ) → Vπ0). Then this

integral converges and 0 �= T ∈ HomNn(F )(π, ψ) is a Whittaker functional.
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Proof. Let f ∈ Vπ . We have that f is supported on a set of the form

F ∗ ·GLn(o) ·Kf ,

where Kf is a compact subset of GLn(F ). Suppose that u ∈ Nn(F ) ∩ supp(f).

Then u = zkk′, where z ∈ F ∗, k ∈ GLn(o) and k
′ ∈ Kf . Taking determinants,

we get from z = u(k′)−1k−1 that |z|n = | det k′|−1. Since Kf is a compact

set, we have that there exist cf , Cf > 0, such that cf ≤ | det k′|−1 ≤ Cf for

all k′ ∈ Kf . Therefore, we have for z as above, c
1
n

f ≤ |z| ≤ C
1
n

f . This implies

that

Nn(F ) ∩ supp(f) ⊆ {z ∈ F ∗ | c 1
n

f ≤ |z| ≤ C
1
n

f } ·GLn(o) ·Kf .

The right-hand side is a compact subset of GLn(F ) as a product of compact

subsets, and the left hand side is a closed subset, and hence compact. We proved

that the integral defining T is over a compact domain, and therefore converges.

The functional T is not zero: let v0 ∈ Vπ0 . We consider the function

fv0 : GLn(F ) → Vπ0 defined by

fv0(g) =

⎧⎨⎩ωπ(z)π0(ν(k))v0 g = zk, z ∈ F ∗, k ∈ GLn(o),

0 otherwise.

Then fv0 ∈ Vπ with suppfv0 = F ∗ · GLn(o). Since suppfv0 ∩Nn(F ) = Nn(o),

we have that

〈T, fv0〉 =
∫
Nn(o)\Nn(o)

〈T0, fv0(u)〉ψ−1(u)d×u = 〈T0, fv0(In)〉 = 〈T0, v0〉.

Choosing v0 such that 〈T0, v0〉 �= 0, we get that 〈T, fv0〉 �= 0, and therefore

T �= 0, as required.

The functional T is a Whittaker functional: let f ∈ Vπ , u0 ∈ Nn(F ) and

g ∈ GLn(F ). Then (π(u0)f)(g) = f(gu0). Therefore

〈T, π(u0)f〉 =
∫
Nn(o)\Nn(F )

〈T0, f(uu0)〉ψ−1(u)d×u.

Substituting u′ = uu0, we get

〈T, π(u0)f〉 =
∫
Nn(o)\Nn(F )

〈T0, f(u′)〉ψ−1(u′u−1
0 )d×u = ψ(u0)〈T, f〉,

as required.

Using the lifted Whittaker functional T , we are now able to define a lift of a

Whittaker function.
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Definition 3.8: Let W0 ∈ W(π0, ψ0). Let vW0 ∈ Vπ0 be the unique vector such

that

W0(g) = 〈T0, π0(g)vW0〉,
for every g ∈ GLn(f). Let fW0 ∈ Vπ be defined as

fW0(g) =

⎧⎨⎩ωπ(z)π0(ν(k))vW0 , g = zk, z ∈ F ∗, k ∈ GLn(o).

0, otherwise.

We define L(W0) ∈ W(π, ψ) by

L(W0)(g) = 〈T, π(g)fW0〉

for g ∈ GLn(F ).

We have that L(W0) is given by a simple formula:

Proposition 3.9 ([16, Proposition 4.4]): L(W0) is supported on

Nn(F ) · F ∗ ·GLn(o)

and

L(W0)(u0zk) = ψ(u0) · ωπ(z) ·W0(ν(k)),

for any u0 ∈ Nn(F ), z ∈ F ∗, k ∈ GLn(o).

Proof. Let g ∈ GLn(F ) with f(g) �= 0. Then

L(W0)(g) = 〈T, π(g)fW0〉 =
∫
Nn(o)\Nn(F )

〈T0, fW0(ug)〉ψ−1(u)d×u.

Since fW0 is supported on F ∗ ·GLn(o), we must have ug ∈ F ∗ ·GLn(o) for some

u ∈ Nn(F ), i.e., g ∈ Nn(F ) · F ∗ ·GLn(o).

Write g = u0zk for u0 ∈ Nn(F ), z ∈ F ∗, k ∈ GLn(o). Then

L(W0)(u0zk) = 〈T, π(u0zk)fW0〉 = ψ(u0)ωπ(z)〈T, π(k)fW0〉,

where we used the fact that T is a Whittaker functional and thatπ(z)=ωπ(z)idVπ .

Finally, write

〈T, π(k)fW0〉 =
∫
Nn(o)\Nn(F )

〈T0, fW0(uk)〉ψ−1(u)d×u.
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This integral is supported on uk ∈ F ∗ ·GLn(o), i.e., u ∈ F ∗ ·GLn(o). We have

that u ∈ (F ∗ ·GLn(o)) ∩Nn(F ) = Nn(o), and therefore we get

〈T, π(k)fW0〉 =
∫
Nn(o)\Nn(o)

〈T0, fW0(uk)〉ψ−1(u)d×u

= 〈T0, fW0(k)〉
= 〈T0, π0(ν(k))vW0 〉 =W0(ν(k)).

Therefore we have L(W0)(u0zk) = ψ(u0)ωπ(z)W0(ν(k)), as required.

3.2. A relation between the Jacquet–Shalika integrals. In this sec-

tion, we find a relation between local Jacquet–Shalika integrals of level-zero

representations and their corresponding residue field Jacquet–Shalika integrals.

Our main result is the following:

Theorem 3.10: Let n = 2m or n = 2m + 1. Let (π0, Vπ0) be an irreducible

cuspidal representation ofGLn(f). If n is even, suppose that π0 does not admit a

Shalika vector. Let π be a level-zero supercuspidal (irreducible) representation

constructed from π0. Then for every W0 ∈ W(π0, ψ0), φ0 ∈ S(fm), s ∈ C,

Jπ,ψ(s,L(W0),L(φ0)) = Jπ0,ψ0(W0, φ0),

J̃π,ψ(s,L(W0),L(φ0)) = J̃π0,ψ0(W0, φ0).

Theorem 3.10 implies that if π0 does not admit a Shalika vector, the Jacquet–

Shalika integrals of its corresponding level-zero representation for fixed lifted

functions result in constant elements of C(q−s), i.e., they are independent of s.

In the case where n is even, we have a modified theorem that also handles the

case in which the representation π0 admits a Shalika vector:

Theorem 3.11: Let (π0, Vπ0) be an irreducible cuspidal representation of

GL2m(f). Then for every W0 ∈ W(π0, ψ0), φ0 ∈ S(fm), s ∈ C,

Jπ,ψ(s,L(W0),L(φ0))
= Jπ0,ψ0(W0, φ0) + q−msωπ(�)φ0(0)L(ms, ωπ)Jπ0,ψ0(W0, 1),

J̃π,ψ(s,L(W0),L(φ0))
= J̃π0,ψ0(W0, φ0) + q−m(1−s)ω−1

π (�)Fψ0φ0(0)L(m(1− s), ω−1
π )Jπ0,ψ0(W0, 1).
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By Theorem 2.25, we have that Theorem 3.11 implies Theorem 3.10 in the

even case. We only need to prove the odd case in Theorem 3.10 once we prove

Theorem 3.11. But the proof of the odd case of Theorem 3.10 uses similar

techniques and ideas from that of Theorem 3.11, so we will give only the proof

of Theorem 3.11, and leave the proof of Theorem 3.10 out. We will need the

following lemma in the proof.

Lemma 3.12: Suppose that σ2m( Im X
Im

)( a a ) = λ · u · k, where

a = diag(a1, . . . , am) ∈ Am

is an invertible diagonal matrix, X ∈ N−
m (F ) is a lower triangular nilpotent

matrix, λ ∈ F ∗, u ∈ N2m and k ∈ K2m = GL2m(o). Then

(1) |a1| = · · · = |am| = |λ|,
(2) X ∈Mm(o).

Proof. Denote Z = a−1Xa, and

uZ = σ2m

(
Im Z

Im

)
σ−1
2m.

Also denote

b = σ2m

(
a

a

)
σ−1
2m = diag(a1, a1, a2, a2, . . . , am, am).

Then we have that buZσ2m = λuk. Writing uZ = nZtZkZ as in [7, Section 5,

Proposition 4], we get that

λ−1btZ = (bn−1
Z b−1u) · (kσ−1

2mk
−1
Z ).

Since

A2m ∩ (N2m ·K2m) = A2m ∩K2m = (o∗)2m,

we get that λ−1btZ is a diagonal matrix having units on its diagonal. Writing

tZ = diag(t1, . . . , t2m), we have that |t2i−1| = |t2i| = |λ|
|ai| , for every 1 ≤ i ≤ m.

By [7, Section 5, Proposition 4], we get that |ti| = 1 for every 1 ≤ i ≤ 2m, and

therefore |ai| = |λ|, for every 1 ≤ i ≤ m. Finally, by [7, Section 5, Proposition

5], we get that Z ∈Mm(o). Since
|ai|
|aj | =

|λ|
|λ| = 1, for every 1 ≤ i, j ≤ m, we get

that X ∈Mm(o), as required.
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Throughout the proof of Theorem 3.11, we will use the following symbols:

W = L(W0), φ = L(φ0); A = Am is the diagonal subgroup of G; K = GLm(o);

N− = N−
m (F ) ≤Mm(F ) is the subspace consisting of lower triangular nilpotent

matrices. Let X ∈ N−. Also let g = ak, where a = diag(a1, . . . , am) ∈ A,

k ∈ K. Then by the Iwasawa decomposition of GLm(F ), we have

d×g = δ−1
Bm

(a)

m∏
i=1

d×ai · d×k,

where

δ−1
Bm

(a) =
∏

1≤i<j≤m
|aj
ai

|.

Proof of Theorem 3.11. We prove only the equation regarding Jπ,ψ. The proof

of the equation regarding J̃π,ψ is similar. It can also be deduced from the first

equation. The proof consists of two parts. In the first part we find the supports

of g, X in the Jacquet–Shalika integral. In the second part, we evaluate the

integral on the supports.

Suppose that σ2m( Im X
Im

)( a a )(
k
k ) ∈ supp(W ) ⊆ F ∗N2mK2m (see Proposi-

tion 3.9). Then by Lemma 3.12, we have that |ai| = |am|, for every 1 ≤ i ≤ m,

and X ∈ Mm(o). Therefore, we get that ai = ui · am, where ui ∈ o∗,
d×ui = d×ai, for every 1 ≤ i ≤ m−1. We also get δ−1

Bm
(a) =

∏
1≤i<j≤m |ajai | = 1.

Therefore, the Jacquet Shalika integral is integrated on X ∈ N−
m (o), g = ak,

where k ∈ K, a = am · diag(u1, . . . , um−1, 1), ui ∈ o∗ for every 1 ≤ i ≤ m− 1,

d×g = d×am ·
m−1∏
i=1

d×ui · d×k,

and by replacing the variable k with diag(u1, . . . , um−1, 1)
−1 · k, we have that

Jπ,ψ(s,W, φ) is given by∫
F∗

∫
K

∫
N−

m(o)

W

(
σ2m

(
Im X

Im

)(
k

k

))
φ(εkam)|am|msωπ(am)dXd×kd×am.

Since φ = L(φ0) is a lift of the Schwartz function φ0, we have that for a fixed

k, φ(εkam) = 0 for |am| > 1 and φ(εkam) = φ0(0) for |am| < 1. Therefore∫
F∗
φ(εkam)|am|msωπ(am)d×am =

∫
o∗
φ(εkam)ωπ(am)d×am + φ0(0)I(s),
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where

I(s) =

∞∑
i=1

∫
�i·o∗

|am|msωπ(am)d×am =

∫
o∗
ωπ(am)d×am ·

∞∑
i=1

q−imsωπ(�)
i
.

Therefore, I(s) = q−msωπ(�)L(ms, ωπ) if ωπ is unramified (i.e., ωπ �o∗ trivial,

which happens if and only if ωπ0 is trivial), and otherwise
∫
o∗ ωπ(am)d×am = 0,

so I(s) = 0. We are left to evaluate∫
o∗

∫
K

∫
N−

m(o)

W

(
σ2m

(
Im X

Im

)(
k

k

))
× ωπ(am)(φ(εkam) + φ0(0)I(s))dXd

×kd×am.

Since W , φ and ωπ are lifts of W0, φ0 and ωπ0 respectively, and the ex-

pression is constant on the quotient spaces GLm(o)/1 +�Mm(o) ∼= GLm(f),

N−(o)/N−(p) ∼= N−(f) and o∗/(1 + p) ∼= f∗, we get that this sum equals

1

|f∗|
1

|GLm(f)|
1

|N−(f)|
∑
am∈f∗

∑
k∈GLm(f)

∑
X∈N−(f)

W0

(
σ2m

(
Im X

Im

)(
k

k

))
×ωπ0(am)(φ0(εkam)+φ0(0)I(s)).

By replacing the variable k with k = k′a−1
m , we get

1

|GLm(f)|
1

|N−(f)|

×
∑

k′∈GLm(f)

∑
X∈N−(f)

W0

(
σ2m

(
Im X

Im

)(
k′

k′

))
(φ0(εk

′) + φ0(0)I(s)).

Since this expression is constant on cosets of k′ ∈ Nm(f)\GLm(f) and since

Bm(f)\Mm(f) ∼= N−
m(f), we get that

Jπ,ψ(s,W, φ) = Jπ0,ψ0(W0, φ0) + φ0(0)I(s)Jπ0,ψ0(W0, 1).

Finally, we claim that

φ0(0)I(s)Jπ0,ψ0(W0, 1) = φ0(0)q
−msωπ(�)L(ms, ωπ)Jπ0,ψ0(W0, 1).

If ωπ0 is trivial, we already saw that this is true. If ωπ0 is non-trivial, π0 does not

admit a Shalika vector, and we get from Theorem 2.25 that Jπ0,ψ0(W, 1) = 0,

and therefore the result follows.
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3.3. The modified functional equation in the even case. As a result of

Theorem 3.11, we get the following modified functional equation, a generaliza-

tion of Theorem 2.15, this time valid for all irreducible cuspidal representations

of GL2m(F), regardless whether they admit a Shalika vector.

Theorem 3.13 (The modified functional equation): Let F be a finite field

with |F| = q. Let ψ0 : F → C∗ be a non-trivial (additive) character. Let

(π0, Vπ0) be an irreducible cuspidal representation of GLm(F). Then there exists

γ(s, π0,∧2, ψ0) ∈ C(q−s), such that for every W0 ∈ W(π0, ψ0) and φ0 ∈ S(Fm),

we have

J̃π0,ψ0(W0, φ0) + q−m(1−s)Fψ0φ0(0)L(m(1 − s), 1)Jπ0,ψ0(W0, 1)

= γ(s, π0,∧2, ψ0) · (Jπ0,ψ0(W0, φ0) + q−msφ0(0)L(ms, 1)Jπ0,ψ0(W0, 1)).

Proof. If π0 does not admit a Shalika vector, then from Theorem 2.25 for every

W0 ∈ W(π0, ψ0), we have that Jπ0,ψ0(W0, 1) = 0, and therefore we get the same

functional equation as in Theorem 2.15.

Suppose that π0 admits a Shalika vector. Then by Remark 2.8, π0 has a

trivial central character. Choose any local field F with F as its residue field,

and ψ : F → C
∗, an additive character, such that ψ �o= ψ0 ◦ ν. Let (π, Vπ) be

the level-zero supercuspidal representation constructed from π0, with respect

to the trivial central character. The statement now follows from Theorem 3.11

and Theorem 3.3.

3.4. Exterior square gamma factors for level-zero supercuspidal

representations. Let (π0, Vπ0) be an irreducible cuspidal representation of

GLn(f), and let (π, Vπ) be a level-zero representation of GLn(F ) constructed

from π0.

As a corollary of Theorem 3.10 we obtain the following main theorems of the

paper.

Theorem 3.14: If π0 does not admit a Shalika vector, then γ(s, π,∧2, ψ) is an

invertible constant (i.e., independent of s), and

γ(s, π,∧2, ψ) = γ(π0,∧2, ψ0).

Furthermore,

L(s, π,∧2) = 1, ε(s, π,∧2, ψ) = γ(π0,∧2, ψ0).
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Proof. We can chooseW0 ∈ W(π0, ψ0) and φ0 ∈ S(fm), such that Jπ0,ψ0(W0, φ0)

is non-zero (for instance take the functions in Proposition 2.4, Proposition 2.11).

By Theorem 3.10, we have that

Jπ,ψ(s,L(W0),L(φ0)) =Jπ0,ψ0(W0, φ0)

and

J̃π,ψ(s,L(W0),L(φ0)) =J̃π0,ψ0(W0, φ0).

We get from the functional equations in Theorem 2.15 and Theorem 3.3 that

γ(s, π,∧2, ψ) =
J̃π,ψ(s,L(W0),L(φ0))
Jπ,ψ(s,L(W0),L(φ0)) =

J̃π0,ψ0(W0, φ0)

Jπ0,ψ0(W0, φ0)
= γ(π0,∧2, ψ0).

This proves the result regarding the gamma factors.

If n = 2m + 1, we have from Theorem 3.4 that L(s, π,∧2) = 1. Suppose

n = 2m, and denote

L(s, π,∧2) =
1

p1(q−s)
, L(s, π̃,∧2) =

1

p2(q−s)
,

where p1(Z), p2(Z) ∈ C[Z] are polynomials with p1(0) = p2(0) = 1. Since the

gamma factor γ(s, π,∧2, ψ) is a constant, by Theorem 3.3 we must have that

p1(q
−s)

p2(q−(1−s))
=
L(1− s, π̃,∧2)

L(s, π,∧2)
= c · qks,

where k ∈ Z and c ∈ C
∗. This implies that p1(Z) and p2(q

−1Z−1) have the

same non-zero roots. By Theorem 3.4, we have that p1(Z) divides 1−ωπ(�)Zm

and p2 divides 1−ωπ(�)−1Zm, and therefore p1(Z) and p2(q
−1Z−1) can’t have

mutual roots, as roots r of p1(Z) satisfy rm = ωπ(�)−1, while roots r′ of

p2(q
−1Z−1) satisfy r′m = q−mωπ(�)−1. Therefore p1(Z), p2(Z) are constants

and p1(Z) = p2(Z) = 1, which implies that L(s, π,∧2) = 1
p(q−s) = 1. The result

regarding ε(s, π,∧2, ψ) now follows from the equation in Theorem 3.3.

Theorem 3.15: If n = 2m and π0 admits a Shalika vector, then

γ(s, π,∧2, ψ) =
qms

q
m
2 ωπ(�)

· L(m(1− s), ω−1
π )

L(ms, ωπ)
.

Furthermore, L(s, π,∧2) = L(ms, ωπ), and ε(s, π,∧2, ψ) = qms

q
m
2 ωπ(�)

.

Also in this case γ(s, π,∧2, ψ) = γ(s − s0, π0,∧2, ψ0), where q
ms0 = ωπ(�)

(see also Theorem 3.13).
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Proof. By Remark 2.8, since π0 admits a Shalika vector, the central character

ωπ0 is trivial. Thus, the central character ωπ is unramified. Therefore,

L(s, ωπ) =
1

1− ωπ(�)q−s
.

By Theorem 2.25, there exists W0 ∈ W(π0, ψ0), such that Jπ0,ψ0(W0, 1) = 1.

We substitute in Theorem 2.25 such W0 and φ0 = 1, Fψ0φ0 = q
m
2 δ0 to get

(3.1) Jπ,ψ(s,L(W0),L(φ0)) = 1 + q−msωπ(�)L(ms, ωπ) = L(ms, ωπ),

and

J̃π,ψ(s,L(W0),L(φ0)) = q
m
2 q−m(1−s)ωπ(�)−1L(m(1s), ω−1

π ).

The result regarding γ(s, π,∧2, ψ) follows as

γ(s, π,∧2, ψ) =
J̃π,ψ(s,L(W0),L(φ0))
Jπ,ψ(s,L(W0),L(φ0)) .

Regarding L(s, π,∧2), denote L(s, π,∧2) = 1
p(q−s) , where p(Z) ∈ C[Z] is a

polynomial with p(0) = 1. By Theorem 3.4, we have that p(Z) | 1− ωπ(�)Zm.

From Equation (3.1), we have that

Jπ,ψ(s,L(W0),L(φ0)) = L(ms, ωπ) =
1

1− ωπ(�)q−ms
∈ 1

p(q−s)
C[qs, q−s],

so 1−ωπ(�)Zm | p(Z). Therefore we must have p(Z) = 1−ωπ(�)Zm, and the

result L(s, π,∧2) = L(ms, ωπ) follows. The result regarding ε(s, π,∧2, ψ) now

follows from the equation in Theorem 3.3.

Theorem 3.14 and Theorem 3.15 establish a connection between a cuspidal

representation π0 and its corresponding level-zero representation π via the local

exterior square factors of π. Moreover, these theorems demonstrate a close

connection between the existence of Shalika vectors and the existence of poles

of the local exterior square L-function.

Corollary 3.16: Let π be a level-zero representation constructed from an

irreducible cuspidal representation π0. Then π0 admits a Shalika vector if and

only if L(s, π,∧2) has a pole.

Proof. On one hand, if π0 admits a Shalika vector, then by Theorem 3.15,

L(s, π,∧2) = L(ms, ωπ) has a pole. On the other hand, if π0 does not admit

a Shalika vector, then by Theorem 3.14, L(s, π,∧2) = 1 does not have any

poles.
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Remark 3.17: Once we establish the connection between Shalika vectors of π0

and Shalika functionals of π in the next section, we can see that Corollary 3.16 is

a special case of a more general fact relating existence of Shalika functionals to

poles of exterior square L functions. Corollary 4.4 of [9], which is a consequence

of [9, Theorem 4.3], states that for an irreducible square integrable represen-

tation π, a sufficient condition for π to have a non-zero Shalika functional is

that L(s, π,∧2) has a pole at s = 0. Actually, it is also a necessary condition;

see [12, Proposition 6.1] or [8, Propositon 3.12].

3.4.1. Relation with Shalika functionals. Shalika vectors in Vπ0 are closely re-

lated to poles of L(s, π,∧2), which in turn are closely akin to (twisted) Shalika

functionals on W(π, ψ). After we relate Shalika vectors and Shalika periods,

we will give another explanation for the computation of L(s, π,∧2) in the case

where π0 admits a Shalika vector. We begin with the introduction of twisted

Shalika functionals Λs on W(π, ψ).

Definition 3.18: Let (π, Vπ) be a representation with an unramified central char-

acter. For any s ∈ C satisfying qms = ωπ(�), the twisted Shalika period Λs

on W(π, ψ) is defined to be the following linear functional Λs : W(π, ψ) → C,

Λs(W )=

∫
F∗N\G

∫
B\M

W

(
σ2m

(
Im X

Im

)(
g

g

))
ψ(−trX)dX | det g|sd×g.

For any s ∈ C, we set νs to be the one-dimensional representation of GL2m(F )

given by

νs(g) = | det g|s

for any g ∈ GL2m(F ). Applying [9, Lemma 4.2] to the representation π ⊗ ν
s
2 ,

we know that Λs converges absolutely. Λs is a twisted Shalika functional in the

sense that for any h ∈ S2m and any W ∈ W(π, ψ), we have

(3.2) Λs(π(h)W ) = | deth|−sΨ(h)Λs(W ).

By Equation (3.2), we have

Λs ∈ HomS2m(F )(π ⊗ ν
s
2 ,Ψ).

By [8], we have
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Theorem 3.19 ([8, Theorem 3.6]): Let (π, Vπ) be an irreducible supercuspidal

representation of GL2m(F ), with an unramified central character. Then

L(s, π,∧2) =
∏
α

(1− αq−s)−1,

where the product runs over all α = qs0 , such that αm = ωπ(�) and Λs0 �= 0.

Equivalently, the product runs over all α = qs0 such that

HomS2m(F )(π ⊗ ν
s0
2 ,Ψ) �= 0.

As before, let (π0, Vπ0) be an irreducible representation of GL2m(f) and let

(π, Vπ) be a level-zero representation constructed from π0. We recall that the

central character ωπ0 is trivial if and only if the central character ωπ is unram-

ified. Similarly to the proof of Theorem 3.11, one can show

Proposition 3.20: Suppose ωπ0 is trivial and equivalently ωπ is unramified.

For any W0 ∈ W(π0, ψ0) and any s ∈ C, such that qms = ωπ(�), we have

Λs(L(W0)) = Jπ0,ψ0(W0, 1).

We remark that the right-hand side of the equation in the above proposition

is independent of s ∈ C.

We can now use Theorem 3.19 and Proposition 3.20 to give another explana-

tion why in the case that π0 admits a Shalika vector, L(s, π,∧2) = L(ms, ωπ):

Since π0 admits a Shalika vector, we have by Remark 2.8 that the central char-

acter ωπ0 is trivial. We also have by Theorem 2.25 and Proposition 3.20 that

for any s ∈ C, with qms = ωπ(�), Λs �= 0. Therefore, the condition α = qs0

with Λs0 �= 0 is always valid. Since α in the product in Theorem 3.19 runs over

the m-th roots of ωπ(�), we get

L(s, π,∧2) =
∏
α

(1− αq−s)−1

=(1− ωπ(�)q−ms)−1 = L(ms, ωπ).

We conclude this section by giving a characterization of the existence of Sha-

lika vectors in terms of the existence of (twisted) Shalika functionals.

Proposition 3.21: The space HomS2m(f)(π0,Ψ0) is non-zero if and only if the

space HomS2m(F )(π⊗νs/2,Ψ) is non-zero for some s ∈ C. Here Ψ0 :S2m(f) → C∗

is the character on the Shalika subgroup, defined by the character ψ0 (see Def-

inition 2.5).
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Proof. With a choice of inner product on Vπ0 , with respect to which π0 is

unitary, we can show that the existence of a Shalika vector is equivalent to

HomS2m(f)(π0,Ψ0) �= 0. By Theorem 3.19, L(s, π,∧2) has a pole at s ∈ C if

and only if HomS2m(F )(π⊗νs/2,Ψ) �= 0. Therefore, the proposition now follows

from Corollary 3.16.

Appendix A. Multiplicity one theorems

In the appendix, we follow [11] in order to prove the following multiplicity one

theorems, which are keys to the proofs of the functional equation for the finite

field case (Theorem 2.15).

Let F be a finite field.

Theorem A.1: Let (π, Vπ) be an irreducible cuspidal representation

of GL2m(F). Then

dimC HomMm,m∩P2m(π, 1) ≤ 1,

where Mm,m is the Levi subgroup corresponding to the partition (m,m),

and P2m is the mirabolic subgroup.

Theorem A.2: Let (π, Vπ) be an irreducible cuspidal representation

of GL2m+1(F). Then

dimC HomL2m+1∩P2m+1(π, 1) ≤ 1,

where P2m+1 is the mirabolic subgroup and L2m+1 is the following maximal

(non-standard) Levi subgroup of GL2m+1(F) corresponding to the partition

(m+ 1,m):

L2m+1 =

⎧⎪⎨⎪⎩
⎛⎜⎝g1 u

g2

v λ

⎞⎟⎠ | g1, g2 ∈ GLm(F), u ∈Mm×1(F),

v ∈M1×m(F), λ ∈ F

⎫⎪⎬⎪⎭ ∩GL2m+1(F).

The proofs of these theorems require some preparation. For a finite group G

and a vector space V over C, denote

S(G, V ) = {f : G→ V }.
Denote by ρ and λ the right and left actions of G on S(G, V ) respectively:

(ρ(g0)f)(g) = f(gg0), (λ(g0)f)(g) = f(g0
−1g).

Let ψ : F → C be a non-trivial additive character of F.
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For every positive integer n, we denote Gn = GLn(F). In the following, we use

the convention that for k < n, Gk is embedded in Gn by mapping g → (
g
In−k

).

Suppose that p + q = n, where p ≥ q ≥ 0. Let r = p − q, and let σp,q be the

following permutation:(
1 · · · r | r + 1 r + 2 · · · p | p+ 1 p+ 2 · · · p+ q

1 · · · r | r + 1 r + 3 · · · p+ q − 1 | r + 2 r + 4 · · · p+ q

)
.

Let wp,q be the column permutation matrix corresponding to σp,q.

Let H
(n)
p,q = wp,qMp,qw

−1
p,q , where Mp,q is the Levi subgroup corresponding to

the partition (p, q). If q ≥ 1, denote

H
(n)
p,q−1 = wp,q

{(
m

1

)
| m ∈Mp,q−1

}
w−1
p,q ,

where Mp,q−1 is the Levi subgroup of GLn−1(F) corresponding to the partition

(p, q − 1). Note that since σp,q(n) = n, we have that H
(n)
p,q−1 is a subgroup

of Gn−1. If q ≥ 1, also denote

H
(n)
p−1,q−1 =

{(
h

I2

)
| h ∈ H

(n−2)
p−1,q−1

}
.

Let

Un =

{(
In−1 x

1

)
| x ∈Mn−1×1(F)

}
be the unipotent radical of Gn, corresponding to the partition (n − 1, 1). Let

Pn ≤ Gn be the mirabolic subgroup. We have that Pn = Un�Gn−1. ψ defines

a character on Un by ψ(u) = ψ(un−1,n).

Recall the definition of the following Bernstein–Zelevinsky derivative: for a

representation π of Pn−1, we define

Φ+(π) = IndPn

Pn−1Un
(π ⊗ ψ),

where (π⊗ψ)(pu) = ψ(u)·π(p), for p ∈ Pn−1 and u ∈ Un. We have the following

relation between this functor and irreducible cuspidal representations of Gn:

Theorem A.3 ([5, Theorem 2.3]): Let π be an irreducible cuspidal represen-

tation of GLn(F). Then the restriction of π to the mirabolic subgroup Pn is

isomorphic to the representation (Φ+)n−1(1).

We start with the following lemmas from [11]. These are purely algebraic

statements, which are proved exactly as in [11].
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Lemma A.4 ([11, Lemma 3.1]): Let p ≥ q ≥ 1 with p+ q = n, and let

S(n)
p,q = {g ∈ Gn−1 | ψ(gug−1) = 1, ∀u ∈ Un ∩H(n)

p,q }.
Then S

(n)
p,q = Pn−1 ·H(n)

p,q−1.

Lemma A.5 ([11, Lemma 3.2]): Let p ≥ q ≥ 1 with p+ q = n, and let

S
(n)
p,q−1 = {g ∈ Gn−2 | ψ(gug−1) = 1, ∀u ∈ Un−1 ∩H(n)

p,q−1}.
Then S

(n)
p,q−1 = Pn−2 ·H(n)

p−1,q−1.

The proofs of both multiplicity one theorems rely on the following proposi-

tions:

Proposition A.6: Suppose p ≥ q ≥ 1 with p + q = n. Let (σ, Vσ) be a

representation of Pn−1. Then there exists an embedding

Hom
Pn∩H(n)

p,q
(Φ+(σ), 1) ↪→ Hom

Pn−1∩H(n)
p,q−1

(σ, 1).

Proposition A.7: Suppose p ≥ q ≥ 1 with p + q = n. Let (σ, Vσ) be a

representation of Pn−2. Then there exists an embedding

Hom
Pn−1∩H(n)

p,q−1

(Φ+(σ), 1) ↪→ Hom
Pn−2∩H(n)

p−1,q−1

(σ, 1).

We prove only Proposition A.6. The proof of Proposition A.7 is similar.

Proof of Proposition A.6. Denote

W = Φ+(σ) = IndPn

Pn−1Un
(σ′),

where σ′ = σ ⊗ ψ.

Let A : S(Pn, Vσ) →W be the projection operator

(Af)(p) =
1

|Pn−1Un|
∑

y∈Pn−1Un

σ′(y)−1f(yp).

Let L ∈ Hom
Pn∩H(n)

p,q
(Φ+(σ), 1). We can define using A and L a distribution

T = L ◦A : S(Pn, Vσ) → C. One easily checks that this distribution satisfies

〈T, ρ(h)f〉 =〈T, f〉 ∀h ∈ Pn ∩H(n)
p,q ,(A.1)

〈T, λ(y0)f〉 =〈T, σ′(y0)−1f〉 ∀y0 ∈ Pn−1Un.(A.2)

Since A is onto, we have that the map L → L ◦ A is an injection from

Hom
Pn∩H(n)

p,q
(Φ+(σ), 1) to the space of all distributions satisfying Equation (A.1)

and Equation (A.2).
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Let Ψ : Pn → C be the function defined by Ψ(ug) = ψ(u), where u ∈ Un and

g ∈ Gn−1. It is well defined, since Un ∩Gn−1 = {In}. One has

Ψ(up) = ψ(u)Ψ(p)

for u ∈ Un and p ∈ Pn.

Let T be a distribution on S(Pn, Vσ), satisfying Equation (A.1) and Equa-

tion (A.2). We denote by Ψ ·T the distribution defined by 〈Ψ ·T, f〉 = 〈T,Ψ ·f〉.
One easily checks using Equation (A.2) that

(A.3) 〈λ(u)(Ψ · T ), f〉 = 〈Ψ · T, f〉,

for every u ∈ Un. Define for f : Pn → Vσ, f
′ : Gn−1 → Vσ by

f ′(g) =
∑
u∈Un

f(ug),

and define a distribution S on S(Gn−1, Vσ) by defining it on the basis by

〈S, δg0〉 = 〈Ψ · T, δg0〉,

for every g0 ∈ Gn−1. Then one easily checks using Equation (A.3) that 〈S, f ′〉 =
〈Ψ · T, f〉, for every f ∈ S(Gn−1, Vσ). It follows that

〈Ψ · T, ρ(u0)f〉 = 〈Ψ · T, f〉,

for every f ∈ S(Pn, Vσ) and u0 ∈ Un.

Suppose that g0 ∈ Gn−1 is in the support of S, i.e., 〈S, δg0〉 �= 0. Then for

every u0 ∈ Un ∩H(n)
p,q , we have

Ψ(g0)〈T, δg0〉 = 〈Ψ · T, δg0〉 = 〈Ψ · T, ρ(u0)δg0〉 = Ψ(g0u
−1
0 )〈T, δg0〉.

Since 〈S, δg0〉 �= 0, we get that 〈T, δg0〉 �= 0, and therefore Ψ(g0u
−1
0 ) = Ψ(g0),

which implies that ψ(g0u0g
−1
0 ) = 1. Thus we have that suppS ⊆ S

(n)
p,q , and by

Lemma A.4, suppS ⊆ Pn−1 ·H(n)
p,q−1, and hence

suppT ⊆ UnPn−1H
(n)
p,q−1 = Pn−1UnH

(n)
p,q−1.

Hence the restriction map T → T �S(Pn−1UnH
(n)
p,q−1,Vσ)

, from the space of dis-

tributions on S(Pn, Vσ) satisfying Equation (A.1) and Equation (A.2) to the

space on distributions of S(Pn−1UnH
(n)
p,q−1, Vσ) satisfying Equation (A.1) and

Equation (A.2), is injective.
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Consider the projection

B : S(Pn−1Un ×H
(n)
p,q−1, Vσ) → S(Pn−1UnH

(n)
p,q−1, Vσ)

given by

(Bf)(y−1h) =
1

|Pn−1 ∩H(n)
p,q−1|

∑
a∈Pn−1∩H(n)

p,q−1

f(ay, ah),

for y ∈ Pn−1Un, h ∈ H
(n)
p,q−1. This is well defined, and B is a projection in the

sense that if f(y, h) = g(y−1h) for g ∈ S(Pn−1UnH
(n)
p,q−1, Vσ), then Bf = g. In

particular B is onto.

Consider the linear isomorphism from S(Pn−1Un×H(n)
p,q−1, Vσ) to itself, φ → φ̃,

given by

φ̃(y, h) = σ′(y)−1φ(y, h).

Let y0 ∈ Pn−1Un, h0 ∈ H
(n)
p,q−1, φ ∈ S(Pn−1Un ×H

(n)
p,q−1, Vσ) and denote φ1 =

ρ(y0, h0)φ. One checks that

φ̃1 = σ′(y0)(ρ(y0, h0)φ̃)

and that

B(φ̃1) = ρ(h0)λ(y0)σ
′(y0)B(φ̃),

which implies for a distribution T on S(Pn−1UnH
(n)
p,q−1, Vσ) satisfying Equa-

tion (A.1) and Equation (A.2), we have

〈T,B(φ̃)〉 = 〈T,B(φ̃1)〉.
For T as above, we define a distribution DT on S(Pn−1Un ×H

(n)
p,q−1, Vσ) by

〈DT , φ〉 = 〈T,B(φ̃)〉.
The map T → DT is injective, as B is surjective and φ → φ̃ is an isomorphism.

The above discussion shows that ρ(y0, h0)DT = DT , for every y0 ∈ Pn−1Un,

h0 ∈ H
(n)
p,q−1. This means that DT is determined by the functional ξT : Vσ → C,

defined by

〈ξT , v〉 = 〈DT , v · δ(In,In)〉,
and is given by the formula

(A.4) 〈DT , φ〉 =
∑

y∈Pn−1Un

h∈H(n)
p,q−1

〈ξT , φ(y, h)〉.
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We now show that ξT ∈ Hom
Pn−1∩H(n)

p,q−1

(σ, 1). Let φ ∈ S(Pn−1Un×H(n)
p,q−1),

let b ∈ Pn−1 ∩H(n)
p,q−1, and let φ1 = λ(b, b)φ. Then an easy computation shows

that

λ(b, b)σ′(b)−1φ
�

= φ̃1.

Since B(λ(b, b)f) = B(f), for every f ∈ S(Pn−1Un ×H
(n)
p,q−1, Vσ), we get that

〈T, λ(b, b)φ〉 = 〈T, σ′(b)−1φ〉.
It follows from Equation (A.4) that

〈T, λ(b, b)φ〉 = 〈T, φ〉.
Therefore 〈ξT , v〉 = 〈ξT , σ′(b)v〉, for every v ∈ Vσ and every b ∈ Pn−1 ∩H(n)

p,q−1,

as required.

We are now able to prove Theorem A.1 and Theorem A.2.

Proof of Theorem A.1. Since

H(2m)
m,m = wm,mMm,mw

−1
m,m and P2m = wm,mP2mw

−1
m,m,

we get that

HomP2m∩Mm,m(π, 1) ∼= Hom
P2m∩H(2m)

m,m
(π, 1)

by mapping L ∈ Hom
P2m∩H(2m)

m,m
(π, 1) to Lπ(wm,m) ∈ HomP2m∩Mm,m(π, 1).

Therefore it suffices to prove that

dimC Hom
P2m∩H(2m)

m,m
(π, 1) ≤ 1.

Since π is an irreducible cuspidal representation, we have from Theorem A.3

that

π �P2m
∼= (Φ+)2m−1(1).

Using Proposition A.6 and Proposition A.7 repeatedly, and using the fact that

H
(2m)
m−1,m−1

∼= H
(2m−2)
m−1,m−1, one gets an embedding

Hom
P2m∩H(2m)

m,m
((Φ+)2m−1(1), 1) ↪→ Hom

P2∩H(2)
1,0

(1, 1).

The last space is one-dimensional, and therefore we get the required result.

Proof of Theorem A.2. Let τ be the permutation(
1 2 3 . . . m | m+ 1 | m+ 2 m+ 3 . . . 2m+ 1

1 2 3 . . . m | 2m+ 1 | m+ 1 m+ 2 . . . 2m

)
,
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and let wτ be the column permutation matrix corresponding to τ . Then

L2m+1 = wτMm+1,mw
−1
τ , where Mm+1,m is the standard Levi subgroup corre-

sponding to the partition (m+ 1,m). A simple calculation shows that

L2m+1 ∩ P2m+1 = wτ

{(
p

g

)
| p ∈ Pm+1, g ∈ GLm(F)

}
w−1
τ .

Similarly, an easy calculation shows that

H
(2m+2)
m+1,m ∩ P2m+1 = wm+1,m+1

⎧⎪⎨⎪⎩
⎛⎜⎝p g

1

⎞⎟⎠ | p ∈ Pm+1

g ∈ GLm(F)

⎫⎪⎬⎪⎭w−1
m+1,m+1.

Therefore P2m+1 ∩H(2m+2)
m+1,m and P2m+1 ∩L2m+1 are conjugate as subgroups of

GL2m+1(F) (actually even as subgroups of P2m+1), which implies that

HomP2m+1∩L2m+1(π, 1)
∼= Hom

P2m+1∩H(2m+2)
m+1,m

(π, 1).

Thus it suffices to prove that

dimC Hom
P2m+1∩H(2m+2)

m+1,m

(π, 1) ≤ 1.

As in the previous proof, by Theorem A.3, and by using Proposition A.6 and

Proposition A.7 repeatedly, we get an embedding

Hom
P2m+1∩H(2m+2)

m+1,m

(π, 1) ↪→ Hom
P2∩H(2)

1,0
(1, 1),

and the statement follows.
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Sbornik 83 (1970), 15–41.

[6] J. A. Green, The characters of the finite general linear groups, Transactions of the Amer-

ican Mathematical Society 80 (1955), 402–447. MR0072878

[7] H. Jacquet and J. Shalika, Exterior square L-functions, in Automorphic Forms, Shimura

Varieties, and L-functions, Vol. II (Ann Arbor, MI, 1988), Perspectives in Mathematics,

Vol. 11, Academic Press, Boston, MA, 1990, pp. 143–226.

[8] Y. Jo, Derivatives and exceptional poles of the local exterior square L-function for GLm,

Mathematische Zeitschrift 294 (2020), 1687–1725.

[9] P. K. Kewat, The local exterior square L-function: holomorphy, non-vanishing and Sha-

lika functionals, Journal of Algebra 347 (2011), 153–172.

[10] P. K. Kewat and R. Raghunathan, On the local and global exterior square L-functions

of GLn, Mathematical Research Letters 19 (2012), 785–804.

[11] N. Matringe, Cuspidal representations of GL(n, F ) distinguished by a maximal Levi sub-

group, with F a non-Archimedean local field, Comptes Rendus Mathématique. Académie
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