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ABSTRACT

The Lubin–Tate moduli space Xrig
0 is a p-adic analytic open unit polydisc

which parametrizes deformations of a formal group H0 of finite height de-

fined over an algebraically closed field of characteristic p. It is known that

the natural action of the automorphism group Aut(H0) on Xrig
0 gives rise

to locally analytic representations on the topological duals of the spaces

H0(Xrig
0 , (Ms

0)
rig) of global sections of certain equivariant vector bundles

(Ms
0)

rig over Xrig
0 . In this article, we show that this result holds in greater

generality. On the one hand, we work in the setting of deformations of

formal modules over the valuation ring of a finite extension of Qp. On

the other hand, we also treat the case of representations arising from the

vector bundles (Ms
m)rig over the deformation spaces Xrig

m with Drinfeld

level-m-structures. Finally, we determine the space of locally finite vectors

in H0(Xrig
m , (Ms

m)rig). Essentially, all locally finite vectors arise from the

global sections of invertible sheaves over the projective space via pullback

along the Gross–Hopkins period map.
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1. Introduction

The theory of locally analytic representations provides a suitable framework

to study continuous p-adic representations of p-adic reductive groups in the

context of the p-adic Langlands program. Introduced by Schneider–Teitelbaum

and later developed by Emerton, the notion of a locally analytic representation

V of a p-adic Lie group G is (roughly) defined by the property that, for each

vector v ∈ V , the orbit map

G −→ V, g �−→ g(v),

is locally on G given by a convergent power series with coefficients in V

(cf. [Eme17], [ST02ii]). Thus the category of locally analytic representations

encompasses classical smooth representations, finite-dimensional algebraic rep-

resentations as well as tensor products of these two, the so-called locally alge-

braic representations. A fundamental theorem of locally analytic representation

theory establishes an anti-equivalence between the category of locally analytic

representations on vector spaces of compact type and the category of continuous

D(G)-modules on nuclear Fréchet spaces via duality functor, where D(G) is the

algebra of locally analytic distributions on G (cf. [ST02ii], Corollary 3.4).

First non-trivial examples of locally analytic representations coming from

geometry were found by Morita in his investigation of the p-adic upper half

plane or Drinfeld’s upper half space of dimension 1 (cf. [Mor85]). In gen-

eral, if K is a finite extension of Qp then Drinfeld’s upper half space Y rig
0 of

dimension h−1 is obtained by deleting all K-rational hyperplanes from the pro-

jective space Ph−1
K . The natural action of GLh(K) on the projective space stabi-

lizes Y rig
0 . Restricting any GLh(K)-equivariant vector bundle F on Ph−1

K to Y rig
0

gives rise to a locally analytic GLh(K)-representation on the strong topologi-

cal dual of the nuclear Fréchet space F(Y rig
0 ) of its global sections (cf. [Orl08],

[ST02i]). The upper half space and its étale coverings give rise to Drinfeld’s

upper half space Y rig
∞ at infinity which is a moduli space parametrizing certain

EL Rapoport–Zink data. The dual space to Y rig
∞ is the Lubin–Tate mod-

uli space Xrig
∞ at infinity parametrizing the dual EL Rapoport–Zink data

(cf. [SW13], Section 7). Analogous to the general linear group action on the

upper half space, there is a natural action of another p-adic Lie group Γ on

the Lubin–Tate moduli space Xrig
0 and its étale covers. While examining this

action of Γ, Kohlhaase first showed that, in this case too, one obtains locally
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analytic representations on the dual space of the global sections of certain equi-

variant vector bundles over the Lubin–Tate moduli space provided K = Qp

(cf. [Koh14], Theorem 3.5). The aim of this article is twofold, firstly to gener-

alize Kohlhaase’s result to any finite base extension K of Qp and extend it to

the finite étale coverings of the Lubin–Tate moduli space, secondly to compute

locally finite (algebraic) vectors in the concerned representations in order to

understand their structure.

To describe our results in detail, let p be a prime number andK be a finite ex-

tension of Qp with ring of integers o, uniformizer � and residue class field k. Let

us denote by K̆ the completion of the maximal unramified extension of K and

by ŏ its ring of integers. Fix a (unique) one-dimensional formal o-module H0

over an algebraic closure k of k of finite height h. The Lubin–Tate moduli

space is a formal scheme X0 parametrizing deformations of H0 to complete

local ŏ-algebras with residue field k.1 Adding level structures to the moduli

problem, Drinfeld showed that the formal scheme Xm parametrizing deforma-

tions equipped with a level-m-structure is a finite flat covering of X0, and X0

is (non-canonically) isomorphic to the formal spectrum Spf(ŏ[[u1, . . . , uh−1]])

(cf. [Dri74], Proposition 4.2 and Proposition 4.3). Passing to the generic fibres

of the formal schemes, one obtains a tower of rigid K̆-analytic spaces (Xrig
m )m∈N0

carrying commuting actions of the covering group GLh(o) and of the automor-

phism group Γ ∼= o×Bh
of H0, where oBh

is the maximal order of the central

K-division algebra Bh of invariant 1/h. The covering group action on Xrig
m fac-

tors through the finite group GLh(o/�
mo) making Xrig

m an étale Galois cover

of the open unit polydisc Xrig
0 with Galois group GLh(o/�

mo). On the other

hand, the Γ-action on Xrig
m is much more complicated and is the one we are

interested in. These group actions are of significance, as they realize the lo-

cal Jacquet–Langlands correspondence on the l-adic étale cohomology of the

Lubin–Tate tower, as conjectured by Carayol (cf. [Car90]. [Str08ii]).

Let us consider the Γ-equivariant vector bundles over Xrig
m induced by the

s-fold tensor power of the Lie algebra of the universal formal o-module H(m) at

level m for any integer s, and denote by M s
m the global sections of these vector

bundles. The Γ-action on the nuclear K̆-Fréchet spaceM s
m is semi-linear for its

action on OXrig
m
(Xrig

m ) =M0
m. In our first main result, we prove that the strong

topological K̆-linear dual (M s
m)′b of M s

m is a locally K-analytic representation

1 We will mostly refer to the generic fibre Xrig
0 as the Lubin–Tate moduli space.
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of Γ for all s ∈ Z and m ≥ 0 (cf. Theorem 3.3.5 and Theorem 3.4.6). The proof

of local analyticity essentially follows the Kohlhaase’s approach in [Koh14] and

consists of the following two steps:

(1) The Gross–Hopkins’ p-adic period map Φ : Xrig
0 −→ Ph−1

K̆
constructed

in [GH94] can be used to explicitly find out the Γ-action on the fun-

damental domain D of Xrig
0 . We first show that the explicitly known

Γ-action on the sections M s
D over D is locally K-analytic by direct

computations.

(2) Using the structure theory of the locally Qp-analytic distribution alge-

bra D(ΓQp), we then show that the continuous Γ-action onM s
m extends

to a continuous action of D(ΓQp). Finally, to deduce that this action

factors through a continuous action of the locally K-analytic distribu-

tion algebra D(Γ), we use the step 1 and the étaleness of the covering

morphisms.

Our second main result concerns computing the subspace of (M s
m)lf of locally

finite vectors in the Γ-representationsM s
m. A locally finite vector is a vector

contained in a finite-dimensional subrepresentation of some open subgroup of Γ.

Consider the K̆-linear algebraic representation Bh ⊗Kh
K̆ on which Γ acts by

the left multiplication, and let K̆m denote the m-th Lubin–Tate extension of K̆

equipped with a smooth Γ-action via

o×Bh

Nrd−−→ o× � (o/�mo)× ∼= Gal(K̆m/K̆).

We show that there is an isomorphism

(M s
m)lf ∼= K̆m ⊗K̆ Syms(Bh ⊗Kh

K̆) ∼= K̆m ⊗K̆ OP
h−1

K̆

(s)(Ph−1

K̆
)

of Γ-representations for all m ≥ 0 and s ∈ Z (cf. Corollary 4.1.11, Theorem

4.2.5, Theorem 4.2.13). Moreover, (M s
m)lf is a finite-dimensional semi-simple

locally algebraic representation. To prove the above isomorphism, we exten-

sively use the action of the Lie algebra of Γ obtained from the Gross–Hopkins’

period map. The other key ingredients of the proof are the generic flatness

of the line bundle induced by the Lie algebra of the universal additive ex-

tension (cf. [GH94], Section 21), Strauch’s result on geometrically connected

components of Xrig
m (cf. [Str08i]) and Fargues’ cellular decomposition of the

Lubin–Tate tower (cf. [FGL08], Section I.7).
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We expect both our results to hold in much greater generality. The Γ-

equivariant vector bundles that we consider arise as the pullbacks of the in-

vertible sheaves O
P
h−1

K̆

(s) on the projective space along the Gross–Hopkins’

period map (cf. Remark 3.1.14). Given any Γ-equivariant vector bundle G over

the projective space Ph−1

K̆
, we believe that the representations realized on the

global sections over Xrig
m of its pullback along the period map are dual to lo-

cally analytic representations, and the locally algebraic part again comes from

the global sections of G. However, we don’t have a proof as of now. Another

major open question concerning the locally analytic Γ-representations (M s
m)′b

is whether they are admissible or not in the sense of [ST03], Section 6. The

similar representations in the example of Drinfeld’s upper half space and its

first étale covering are known to be admissible (cf. [PSS19]). However, the pres-

ence of the spherical Hecke algebra action on the space of global rigid analytic

functions on the Lubin–Tate moduli space raises questions on the admissibility

of (M s
m)′b (cf. [Koh13], Proposition 3.3 and Remark 3.5). We would also like

to mention the work [Lo15] of Chi Yu Lo, showing the analyticity of the action

of a certain rigid analytic group associated to Γ on a particular closed polydisc

of Xrig
0 , which will likely be relevant in further investigations of locally analytic

representations coming from the Lubin–Tate moduli space.

Acknowledgements. The results presented in this article form an integral

part of the author’s Ph.D. thesis conducted at the Fakultät für Mathematik,

Universität Duisburg-Essen, Germany under the supervision of Jan Kohlhaase.

The author is extremely grateful to his supervisor for introducing and explaining

the problem, for suggesting valuable ideas, and for many insightful discussions.

The author also thanks an anonymous referee for many thoughtful remarks and

corrections.

Notation and conventions. N and N0 denote the set of positive integers and

the set of non-negative integers respectively. If α = (α1, . . . , αr) ∈ Nr0 is an r-

tuple of non-negative integers and T = (T1, . . . , Tr) is a family of indeterminates

for some r ∈ N, then we set |α| := α1 + · · ·+αr, and T
α := Tα1

1 · · ·Tαr
r . Unless

stated otherwise, all rings are considered to be commutative with identity. A

ring extension A ⊆ B will be denoted by B|A, and its degree by [B : A] if it

is finite and free. Let p be a fixed prime number and let K be a finite field

extension of Qp with the valuation ring o. We fix a uniformizer � of K and
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let k := o/�o denote its residue class field of characteristic p and cardinality q.

The absolute value | · | of K is assumed to be normalized through |p| = p−1. We

denote by K̆ the completion of the maximal unramified extension ofK, and by ŏ

its valuation ring. We denote by σ the Frobenius automorphism of an algebraic

closure k of k, as well as its unique lift to a ring automorphism of ŏ and the

induced field automorphism of K̆. We also fix an algebraic closure K̆ of K̆ and

denote its valuation ring by ŏ. The absolute value | · | on K extends uniquely

to K̆, and to K̆. For a positive integer h, let Kh be the unramified extension

of K of degree h, oh be its valuation ring, and Bh be the central K-division

algebra of invariant 1/h. We fix an embedding Kh ↪→ Bh and a uniformizer Π

of Bh, satisfying Πh = �. Let Nrd : Bh −→ K denote the reduced norm of Bh

over K. The symbol Ph−1

K̆
always denotes the (h−1)-dimensional rigid analytic

projective space over K̆.

2. Drinfeld’s coverings of the Lubin–Tate moduli space and the group

actions

We begin with a quick introduction to the Lubin–Tate deformation problem

equipped with Drinfeld’s level structures. Then we prove the main result of

this section, namely the continuity of the Γ-action on the universal deformation

rings.

2.1. Deformations of formal o-modules with level structures. Re-

call from [GH94] that a one-dimensional formal o-module F over a local o-

algebra A is, after having fixed a formal coordinate, given by a formal power se-

ries F (X,Y )∈A[[X,Y ]], together with a ring homomorphism [ · ]F :o−→End(F )

such that [λ]A(X) ≡ iA(λ)X (mod deg 2), where iA : o −→ A is the structure

morphism. Let H0 be a one-dimensional formal o-module of finite height h

over k which is defined over k. According to [Dri74], Proposition 1.6 and 1.7,

the formal module H0 is unique up to isomorphism, and one has

(2.1.1) End(H0) ∼= oBh

where oBh
is the valuation ring of the central K-division algebra Bh of invari-

ant 1/h. Let C be the category of commutative unital complete Noetherian local

ŏ-algebras R = (R,mR) with residue class field k. The Lubin–Tate deforma-

tion problem considers liftings of H0 to the objects of C together with certain

additional data defined below.
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Definition 2.1.2: Let R be an object of C and H be a formal o-module over R,

given by a power series H(X,Y ) ∈ R[[X,Y ]].

(1) A pair (H, ρ), where ρ : H0
∼−→ H ⊗R k is an isomorphism of formal

o-modules over k, is called deformation of H0 to R.

(2) Denote by (mR,+H) the abstract o-module mR in which addition and

o-multiplication are defined as

x+H y := H(x, y) and ax := [a]H(x)

respectively for all x, y ∈ mR, a ∈ o. For a non-negative integer m, a

Drinfeld level-m-structure on H is a homomorphism

φ :
(�−mo

o

)h
−→ (mR,+H)

of abstract o-modules such that
∏
α∈(�−mo

o )h
(X − φ(α)) divides

[�m]H(X) in R[[X ]].

(3) We call the triple (H, ρ, φ) a deformation of H0 to R with level-m-

structure if (H, ρ) is a deformation of H0 to R and φ is a Drinfeld

level-m-structure on H .

Two deformations (H, ρ, φ) and (H ′, ρ′, φ′) ofH0 to R with level-m-structures

are isomorphic if there is an isomorphism f : H ∼−→ H ′ of formal o-modules

over R making the following diagrams commutative:

H ⊗R k
f⊗Rk �� H ′ ⊗R k

H0

ρ

���������� ρ′

����������

(mR,+H)
f �� (mR,+H′)

(�
−mo
o )h

φ

���������� φ′

����������

For any integer m ≥ 0, consider the set valued functor Defm : C −→ Set,

which associates to an object R of C the set of isomorphism classes of deforma-

tions of H0 to R with level-m-structures. For a morphism ϕ : R −→ R′ in C,
Defm(ϕ) is defined by sending a class [(H, ρ, φ)] to the class [(H⊗RR′, ρ, ϕ◦φ)].
Notice that

ρ : H0
∼−→ H ⊗R k ∼= (H ⊗R R′)⊗R′ k.

We denote the triple (H ⊗R R′, ρ, ϕ ◦ φ) by ϕ∗(H, ρ, φ) for simplicity.
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Theorem 2.1.3 (Lubin–Tate, Drinfeld):

(1) The functor Defm is representable by a regular local ring Rm of dimen-

sion h for all m ≥ 0.

(2) For any two integers 0 ≤ m ≤ m′, the natural transformation

Defm′ −→ Defm of functors defined by sending a class [(H, ρ, φ)] to

[(H, ρ, φ|
(�−mo

o )h
)] induces a homomorphism of local rings Rm −→ Rm′

which is finite and flat.

(3) The ring R0 is non-canonically isomorphic to the ring ŏ[[u1, . . . , uh−1]]

of formal power series in h− 1 indeterminates over ŏ.

Proof. See [Dri74], Proposition 4.2 and 4.3.

Let us denote the universal deformation of H0 to Rm with level-m-structure

by the triple (H(m), ρ(m), φ(m)). Here H(m) = H(0) ⊗R0 Rm, i.e., the universal

formal o-module H(m) over Rm is given by the base change of the universal

formal o-module H(0) over R0 under the map R0 −→ Rm induced by Part 2,

Theorem 2.1.3. We note that, since R0
∼= ŏ[[u1, . . . , uh−1]] is an integral domain,

the flatness of the map R0 −→ Rm implies R0 ↪→ Rm for all m ≥ 0.

By the universal property, given an object R of C and a deformation (H, ρ, φ)

of H0 to R with level-m-structure, there is a unique ŏ-linear local ring

homomorphism ϕ : Rm −→ R such that

Defm(ϕ)([(H(m), ρ(m), φ(m))]) = [ϕ∗(H(m), ρ(m), φ(m))] = [(H, ρ, φ)].

The unique isomorphism between the deformations ϕ∗(H(m), ρ(m), φ(m)) and

(H, ρ, φ) over R will be denoted by [ϕ] : ϕ∗(H(m), ρ(m), φ(m)) ∼−→ (H, ρ, φ)

(cf. [GH94], Proposition 12.10).

2.2. The group actions. For all m ≥ 0, the functor Defm admits natural

commuting left actions of the groups Γ := Aut(H0) and G0 := GLh(o) for which

the morphisms Defm′ −→ Defm of functors mentioned in Part 2, Theorem 2.1.3

are equivariant. On R-valued points, they are given by

[(H, ρ, φ)] �−→ [(H, ρ ◦ γ−1, φ)] and [(H, ρ, φ)] �−→ [(H, ρ, φ ◦ g−1)]

for γ ∈ Γ, g ∈ G0. Here g
−1 ∈ GLh(o) acts on the free ( o

�mo )-module (�
−mo
o )h

by considering it as an o-module via the natural reduction map o � o
�mo

.

Because of the representability, these actions give rise to commuting left actions

of Γ and G0 on the universal deformation rings Rm. We use the same letters γ
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and g to denote the automorphisms of Rm induced by γ ∈ Γ and by g ∈ G0

respectively. It is immediate from the definition that the G0-action on Rm

factors through a quotient by the m-th principal congruence subgroup

Gm := 1 +�mMh(o)

of G0. For m
′ ≥ m ≥ 0, the induced action of Gm/Gm′ makes Rm′ [ 1� ] étale and

Galois overRm[ 1� ] with Galois groupGm/Gm′ (cf. Theorem 2.1.2 (ii), [Str08ii]).

The actions of Γ and G0 on Rm induce semilinear actions of Γ and G0 on

the Lie algebra Lie(H(m)) of the universal formal o-module H(m). Recall that

the Lie algebra Lie(H(m)) of H(m) is the tangent space HomRm((X)/(X)2, Rm)

of its coordinate ring Rm[[X ]] (equipped with the trivial Lie bracket). We now

describe the Γ-action on Lie(H(m)); the G0-action is defined likewise. Given

γ ∈ Γ, extend the ring automorphism γ of Rm to Rm[[X ]] by sending X to

itself. This induces a homomorphism

γ∗ : Lie(H(m)) −→ Lie(γ∗H(m))

of additive groups. The isomorphism [γ] : γ∗H(m) ∼−→ H(m) also induces a

natural Rm-linear map

Lie([γ]) : Lie(γ∗H(m)) −→ Lie(H(m)).

We define γ : Lie(H(m)) −→ Lie(H(m)) as the composite of these two maps, i.e.,

γ := Lie([γ]) ◦ γ∗.
Given another element γ′ ∈ Γ, let γ′∗[γ] : γ′∗(γ∗H

(m)) ∼−→ γ′∗H
(m) be the

isomorphism obtained by applying γ′ to the coefficients of [γ]. Then [γ′] ◦ γ′∗[γ]
is an isomorphism between the formal o-modules (γ′γ)∗H(m) and H(m) over Rm.

Therefore by uniqueness, we have [γ′γ] = [γ′] ◦ γ′∗[γ]. One also checks easily

that the following diagram commutes:

Lie(γ∗H(m))

γ′
∗
��

Lie([γ]) �� Lie(H(m))

γ′
∗

��
Lie(γ′∗(γ∗H(m)))

Lie(γ′
∗[γ])

�� Lie(γ′∗H(m))

Then it follows that

(2.2.1)

Lie([γ′γ]) ◦ (γ′γ)∗ = Lie([γ′]) ◦ Lie(γ′∗[γ]) ◦ γ′∗ ◦ γ∗
= Lie([γ′]) ◦ (γ′∗ ◦ Lie([γ]) ◦ (γ′∗)−1) ◦ γ′∗ ◦ γ∗
= Lie([γ′]) ◦ γ′∗ ◦ Lie([γ]) ◦ γ∗.
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Thus we obtain an action of Γ (and of G0) on the additive group Lie(H(m))

which is semilinear for the action of Γ (and of G0 respectively) on Rm because γ∗
is semilinear. Given a positive integer s, we denote by Lie(H(m))⊗s the s-fold

tensor product of Lie(H(m)) over Rm with itself. This is a free Rm-module of

rank 1 with a semi-linear action of Γ defined by

γ(δ1 ⊗ · · · ⊗ δs) := γ(δ1)⊗ · · · ⊗ γ(δs).

Set

Lie(H(m))⊗0 := Rm

and

Lie(H(m))⊗s := HomRm(Lie(H(m))⊗(−s), Rm)

if s is a negative integer. In the latter case, a semi-linear action of Γ is defined

by

γ(ϕ)(δ1 ⊗ · · · ⊗ δ−s) := γ(ϕ(γ−1(δ1)⊗ · · · ⊗ γ−1(δ−s))).

The semi-linear actions of G0 on the s-fold tensor products are defined similarly.

As before, for all s ∈ Z, the G0-action on Lie(H(m))⊗s factors through G0/Gm.

Remark 2.2.2: Using that the group actions of Γ and G0 on Rm commute, one

can show that they commute on Lie(H(m))⊗s as follows. It suffices to show the

commutativity for s = 1. Since the G0-action is defined likewise, we may use

(2.2.1) for γ ∈ Γ and g ∈ G0. As a result, we get

Lie([g]) ◦ g∗ ◦ Lie([γ]) ◦ γ∗ = Lie([gγ]) ◦ (gγ)∗
= Lie([γg]) ◦ (γg)∗
= Lie([γ]) ◦ γ∗ ◦ Lie([g]) ◦ g∗.

We are primarily interested in the action of Γ, a p-adic Lie gorup, on

Lie(H(m))⊗s. Before describing the underlying Lie group structure of Γ, we

refer the reader to [Sch11], page 38, page 47 and page 89 for the definitions of

a locally analytic map, a locally analytic manifold and a locally analytic group,

respectively. By (2.1.1), we have Γ ∼= o×Bh
. Recall that the division algebra Bh is

a Kh-vector space of dimension h with basis {Πi}0≤i≤h−1 whose multiplication

is determined by the relations Πh = � and Πλ = λσΠ for all λ ∈ Kh (λ
σ denotes

the image of λ under the Frobenius automorphism σ). Thus, any γ ∈ Γ = o×Bh
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can be uniquely written as

γ =

h−1∑
i=0

λiΠ
i

with λ0 ∈ o×h and λ1, . . . , λh−1 ∈ oh. The map

ψ : Γ −→ Kh
h

h−1∑
i=0

λiΠ
i �−→ (λ0, λ1 . . . λh−1)

(2.2.3)

identifies Γ with a compact open subset o×h × oh−1
h of Kh

h making it into a

compact open locally Kh-analytic submanifold of Kh
h . The composition map

ψ(Γ)× ψ(Γ) ψ−1×ψ−1

−−−−−−→ Γ× Γ
multiplication−−−−−−−−−→ Γ

ψ−→ ψ(Γ)

from an open subset in K2h
h to Kh

h can be easily seen to be locally K-analytic

since each component of this map is a composition of a polynomial and a K-

linear Frobenius automorphism σ, both being locally K-analytic. Therefore, Γ

is a locallyK-analytic group. However, notice that Γ is not a locallyKh-analytic

group because σ : o×h −→ o×h is not locally Kh-analytic unless h = 1.

Now, being a compact and a totally disconnected Hausdorff topological

group, Γ is a profinite topological group. A basis of neighbourhoods of the

identity is given by the normal subgroups

Γi := 1 +�ioBh
= 1 +�iEnd(H0), i ≥ 1

of finite index. Let us put Γ0 := Γ. Our aim is to show that the Γ-action on

Lie(H(m))⊗s is continuous, i.e., the action map Γ×Lie(H(m))⊗s −→ Lie(H(m))⊗s

is continuous for the mRm-adic topology on Lie(H(m))⊗s, and for the product

of profinite and mRm-adic topology on the left-hand side. But, first we need a

couple of lemmas. For any two non-negative integers n and m, set

H(m)
n := H(m) ⊗Rm (Rm/m

n+1
Rm

).

We have H0
∼= H

(m)
0 via ρ(m) for all m ≥ 0.

Lemma 2.2.4: If n and m are non-negative integers, then the homomorphism

of o-algebras End(H
(m)
n+1) −→ End(H

(m)
n ), induced by reduction modulo mn+1

Rm
,

is injective.
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Proof. Let m ≥ 0 be arbitrary. We show by induction on n that the ring

homomorphism in : End(H
(m)
n ) −→ End(H

(m)
0 ), induced by reduction modulo

the maximal ideal, is injective for every n ∈ N0. The case n = 0 is trivial. Let

n ≥ 1 and assume that in−1 is injective. Since H0 is of height h, we have

[�]
H

(m)
0

(X) ≡ uXqh mod deg qh + 1

for some u ∈ R×
m. Then [�]

H
(m)
0

= in([�]
H

(m)
n

) implies that

[�]
H

(m)
n

(X) ≡ �X + b2X
2 + · · ·+ bqh−1X

qh−1 + uXqh mod deg qh + 1

for some b2, . . . , bqh−1 ∈ mRm .

Now let

f(X) =

∞∑
i=1

aiX
i ∈ End(H(m)

n )

such that in(f) = 0, i.e., ai ∈ mRm for all i ≥ 1. We need to show that ai ∈ mn+1
Rm

for all i ≥ 1. However, the induction hypothesis implies that ai ∈ mnRm
. Thus

[�]
H

(m)
n
◦f = 0. Since [�]

H
(m)
n
◦f = f ◦ [�]

H
(m)
n

, we get aiu
i ∈ mn+1

Rm
by induction

i and hence ai ∈ mn+1
Rm

for all i ≥ 1.

The above lemma allows us to consider all the o-algebras End(H
(m)
n ) as sub-

algebras of End(H
(m)
0 ).

Proposition 2.2.5: For all n ≥ 0, m ≥ 0, the subalgebra End(H
(m)
n ) of

End(H
(m)
0 ) contains �nEnd(H

(m)
0 ).

Proof. Let m ≥ 0 be arbitrary. We proceed by induction on n, the case n = 0

being trivial. Let n ≥ 1 and assume the assertion to be true for n − 1. Let

ϕ ∈ �nEnd(H
(m)
0 ). By induction hypothesis, we have ϕ ∈ �End(H

(m)
n−1). Now

for any ψ ∈ End(H
(m)
n−1), choose a power series ψ̃ ∈ (Rm/m

n+1
Rm

)[[X ]] with trivial

constant term such that ψ̃ mod mnRm
= ψ. The power series

�ψ̃ = [�]
H

(m)
n
◦ ψ̃

is a lift of

�ψ = [�]
H

(m)
n−1

◦ ψ.

We claim that�ψ̃∈End(H(m)
n ) and (�ψ �−→ �ψ̃) :�End(H

(m)
n−1)−→End(H

(m)
n )

is a well-defined injective map. The proposition then follows from the claim.
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First, let us see why �ψ̃ defines an endomorphism of H
(m)
n . Since ψ ∈

End(H
(m)
n−1), we have

0 = ψ(X +
H

(m)
n−1

Y )−
H

(m)
n−1

ψ(X)−
H

(m)
n−1

ψ(Y )

= (ψ̃(X +
H

(m)
n

Y )−
H

(m)
n

ψ̃(X)−
H

(m)
n

ψ̃(Y )) mod mnRm
.

Thus all the coefficients of the power series

(ψ̃(X +
H

(m)
n

Y )−
H

(m)
n

ψ̃(X)−
H

(m)
n

ψ̃(Y ))

lie in mnRm
/mn+1

Rm
. Since � ∈ mRm and (mnRm

)k ⊆ mn+1
Rm

for all integers k > 1,

we get [�]
H

(m)
n
◦ (ψ̃(X +

H
(m)
n

Y )−
H

(m)
n

ψ̃(X)−
H

(m)
n

ψ̃(Y )) = 0. Consequently,

�ψ̃(X +
H

(m)
n

Y ) = �ψ̃(X) +
H

(m)
n

�ψ̃(Y ).

Similarly one shows that

0 =[�]
H

(m)
n
◦ ([a]

H
(m)
n
◦ ψ̃ −

H
(m)
n

ψ̃ ◦ [a]
H

(m)
n

)

=[a]
H

(m)
n
◦�ψ̃ −

H
(m)
n

�ψ̃ ◦ [a]
H

(m)
n

for all a ∈ o. Therefore �ψ̃ ∈ End(H
(m)
n ).

To see that the above map is well-defined, take another lift ψ̃′ of ψ with trivial

constant terms. Then

(ψ̃′ −
H

(m)
n

ψ̃) mod mnRm
= ψ −

H
(m)
n−1

ψ = 0.

Thus [�]
H

(m)
n
◦ (ϕ̃′ −

H
(m)
n

ϕ̃) = 0 as above. Hence �ψ̃′ = �ψ̃. Finally, the

injectivity is clear because �ψ̃1 = �ψ̃2 implies �ψ1 = �ψ2 after reduction

modulo mnRm
.

Theorem 2.2.6: For all n ≥ 0, m ≥ 0, the induced action of Γn+m on

Rm/m
n+1
Rm

is trivial. Thus the map ((γ, f) �→ γ(f)) : Γ × Rm −→ Rm is

continuous where the left hand side carries the product topology.

Proof. Let n and m be arbitrary non-negative integers. Let γ ∈ Γn+m and

pr
(m)
n : Rm −→ Rm/m

n+1
Rm

denote the natural projection. Consider the level-m-

structure

φ(m)
n := pr(m)

n ◦ φ(m)

onH
(m)
n and consider the deformation (H

(m)
n , ρ(m)◦γ−1, φ

(m)
n ) ofH0 toRm/m

n+1
Rm

with this level-m-structure. Let γ
(m)
n : Rm −→ Rm/m

n+1
Rm

denote the unique
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ring homomorphism for which there exists an isomorphism

[γ(m)
n ] : (γ(m)

n )∗(H(m), ρ(m), φ(m)) ∼−→ (H(m)
n , ρ(m) ◦ γ−1, φ(m)

n ).

Note that also the ring homomorphism pr
(m)
n ◦ γ : Rm −→ Rm/m

n+1
m admits an

isomorphism of deformations

(pr(m)
n ◦ γ)∗(H(m), ρ(m), φ(m)) = (pr(m)

n )∗(γ∗(H(m), ρ(m), φ(m)))

∼= (H(m)
n , ρ(m) ◦ γ−1, φ(m)

n ).

Therefore by uniqueness, we have pr
(m)
n ◦γ = γ

(m)
n and [γ

(m)
n ] = [γ] mod mn+1

Rm
.

Since the map

(σ �→ ρ(m) ◦ σ ◦ (ρ(m))−1)

is an isomorphism End(H0) ∼−→ End(H
(m)
0 ) of o-algebras, Proposition 2.2.5

shows that ρ(m) ◦ γ−1 ◦ (ρ(m))−1 ∈ 1 +�mEnd(H
(m)
n ) ⊆ Aut(H

(m)
n ). We claim

that (ρ(m) ◦ γ−1 ◦ (ρ(m))−1) ◦ φ(m)
n = φ

(m)
n . Write

ρ(m) ◦ γ−1 ◦ (ρ(m))−1 = 1 + ε�m

for some ε ∈ End(H
(m)
n ) and let α ∈ (�

−mo
o

)h be arbitrary. Then

(ρ(m) ◦ γ−1 ◦ (ρ(m))−1)(φ(m)
n (α)) = (1 + ε�m)(φ(m)

n (α))

= φ(m)
n (α) +

H
(m)
n

ε(�m(φ(m)
n (α)))

= φ(m)
n (α) +

H
(m)
n

ε(φ(m)
n (�mα))

= φ(m)
n (α) +

H
(m)
n

ε(φ(m)
n (0))

= φ(m)
n (α).

Therefore, the automorphism ρ(m) ◦ γ−1 ◦ (ρ(m))−1 of H
(m)
n defines an isomor-

phism of deformations

(H(m)
n , ρ(m), φ(m)

n )

∼=(H(m)
n , (ρ(m) ◦ γ−1 ◦ (ρ(m))−1) ◦ ρ(m), (ρ(m) ◦ γ−1 ◦ (ρ(m))−1) ◦ φ(m)

n )

=(H(m)
n , ρ(m) ◦ γ−1, φ(m)

n ).

However, (H
(m)
n , ρ(m), φ

(m)
n ) = (pr(m)

n )∗(H(m), ρ(m), φ(m)). By uniqueness again,

we have pr
(m)
n = pr

(m)
n ◦ γ = γ

(m)
n . This implies that Γn+m acts trivially on

Rm/m
n+1
Rm

and [γ] mod mn+1
Rm

= ρ(m) ◦ γ−1 ◦ (ρ(m))−1.
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The Rm-module Lie(H(m))⊗s is complete and Hausdorff for the mRm-adic

topology because it is free of finite rank. By the semi-linearity of the Γ-

action, the Rm-submodules mnRm
Lie(H(m))⊗s are Γ-stable for any non-negative

integer n.

Theorem 2.2.7: Let s, n, m be integers with n ≥ 0 and m ≥ 0. The induced

action of Γ2n+m+1 on Lie(H(m))⊗s/mn+1
Rm

Lie(H(m))⊗s is trivial. Thus the map

((γ, δ) �→ γ(δ)) : Γ× Lie(H(m))⊗s −→ Lie(H(m))⊗s

is continuous where the left-hand side carries the product topology.

Proof. If we assume the assertion to be true for s = 1, then by the definition of

the action, it is easy to see that it holds for all positive s. On the other hand, let

ϕ ∈ Lie(H(m))⊗−1/mn+1
Rm

Lie(H(m))⊗−1 and γ ∈ Γ2n+m+1. Then by assumption,

γ(δ)− δ ∈ mn+1
Rm

Lie(H(m)). Write

γ−1(δ) = δ +

r∑
i=1

αiηi

with αi ∈ mn+1
Rm

and ηi ∈ Lie(H(m)). Then

(ϕ− γ(ϕ))(δ) = ϕ(δ)− γ(ϕ)(δ) = ϕ(δ) − γ(ϕ(γ−1(δ)))

= ϕ(δ) − γ
(
ϕ

(
δ +

r∑
i=1

αiηi

))

= ϕ(δ) − γ(ϕ(δ))−
r∑
i=1

γ(αi)γ(ϕ(ηi)).

Since 2n+m+ 1 ≥ n+m, by Theorem 2.2.6, we have ϕ(δ) − γ(ϕ(δ)) ∈ mn+1
Rm

.

Also γ(αi) ∈ mn+1
Rm

. Therefore (ϕ−γ(ϕ))(δ) ∈ mn+1
Rm

. If δ0 is a basis of Lie(H
(m))

over Rm, and ψ ∈ Lie(H(m))⊗−1 is defined by

ψ(δ0) = 1,

then

ϕ− γ(ϕ) = (ϕ− γ(ϕ))(δ0)ψ ∈ mn+1
Rm

Lie(H(m))⊗−1.

Thus ϕ = γ(ϕ). A similar argument like this can be used to show that the

assertion is true for all higher negative s. Hence it is sufficient to prove the

theorem for s = 1.
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Let γ ∈ Γ2n+m+1. By identifying

Lie(H(m))/mn+1
Rm

Lie(H(m)) = Lie(H(m)
n ),

Theorem 2.2.6 and its proof show that the map

γ mod mn+1
Rm

: Lie(H(m)
n ) −→ Lie(H(m)

n )

is given by Lie(ρ(m) ◦ γ−1 ◦ (ρ(m))−1) where

ρ(m) ◦ γ−1 ◦ (ρ(m))−1 ∈ 1 +�2n+m+1End(H
(m)
0 ) ⊆ 1 +�n+m+1End(H(m)

n ).

Therefore it suffices to show that the natural action of

1 +�n+m+1End(H(m)
n ) ⊂ End(H(m)

n )

on Lie(H
(m)
n ) is trivial. However, if ϕ ∈ End(H

(m)
n ) and δ ∈ Lie(H

(m)
n ), then

(Lie(1 +�n+m+1ϕ)(δ))(X) = δ((1 +�n+m+1ϕ)(X))

= δ(X +
H

(m)
n

�n+m+1ϕ(X))

= δ(X +�n+m+1ϕ(X))

= δ(X)

because �n+m+1 ∈ mn+1
Rm

.

Remark 2.2.8: The Γ-action on Lie(H(m))⊗s gives rise to an action of the

group ring ŏ[Γ] on Lie(H(m))⊗s. By Theorem 2.2.7, the induced action of ŏ[Γ]

on Lie(H(m))⊗s/mn+1
Rm

Lie(H(m))⊗s factors through (ŏ/�n+1ŏ)[Γ/Γ2n+m+1] such

that the following diagram with the horizontal action maps and the vertical re-

duction maps commutes for all n:

ŏ
(�n+1) [

Γ
Γ2n+m+1

]× Lie(H(m))⊗s

mn+1
Rm

Lie(H(m))⊗s

��

�� Lie(H(m))⊗s

mn+1
Rm

Lie(H(m))⊗s

��
ŏ

(�n) [
Γ

Γ2(n−1)+m+1
]× Lie(H(m))⊗s

mn
Rm

Lie(H(m))⊗s
�� Lie(H(m))⊗s

mn
Rm

Lie(H(m))⊗s

Taking projective limits over n, we obtain an action of the Iwasawa algebra

ŏ[[Γ]] on Lie(H(m))⊗s that extends the action of Γ.
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2.3. Rigidification and the equivariant vector bundles. Berthelot’s

rigidification functor associates to every locally Noetherian adic formal ŏ-scheme

whose reduction is a scheme locally of finite type over Spec(k), a rigid K̆-analytic

space (cf. [Jong95], Section 7). For an affine formal ŏ-scheme Spf(A), there is

a bijection between the closed points of its generic fibre Spec(A ⊗ŏ K̆) and

the points of the associated rigid analytic space. Let us denote by Xrig
m the

rigidification of the affine formal ŏ-scheme Xm = Spf(Rm) under Berthelot’s

functor, and by Rrig
m := OXrig

m
(Xrig

m ) the K̆-algebra of the global rigid analytic

functions on Xrig
m .

By functoriality, Xrig
m and Rrig

m carry commuting (left) actions of Γ and G0,

thus an action of the product group Γ×G0, and the G0-action factors through

G0/Gm. For m′ ≥ m ≥ 0, let

πm′,m : Xrig
m′ −→ Xrig

m

denote the morphism of rigid analytic spaces induced by Part 2, Theorem 2.1.3

and by functoriality. It follows from the properties of the rigidification functor

that the morphism πm′,m is a finite étale Galois covering with Galois group

Gm/Gm′ (cf. [Jong95], Section 7). Consequently, the ring extension Rrig
m′ |Rrig

m is

finite Galois with Galois group Gm/Gm′ . We note that all covering morphisms

are (Γ×G0)-equivariant.

It follows from the isomorphism R0
∼= ŏ[[u1, . . . , uh−1]] thatX

rig
0 is isomorphic

to the (h − 1)-dimensional rigid analytic open unit polydisc over K̆, and the

isomorphism R0
∼= ŏ[[u1, . . . , uh−1]] extends to an isomorphism

(2.3.1) Rrig
0
∼=
{ ∑
α∈N

h−1
0

cαu
α | cα∈K̆ and lim

|α|→∞
|cα|r|α|=0 for all 0<r<1

}

of K̆-algebras. This allows us to view Rrig
0 as a topological K̆-Fréchet algebra

whose topology is defined by the family of norms ‖ · ‖l, given by∥∥∥∥ ∑
α∈N

h−1
0

cαu
α

∥∥∥∥
l

:= sup
α∈N

h−1
0

{|cα||�||α|/l}

for any positive integer l. Let Rrig
0,l be the completion of Rrig

0 with respect to

the norm ‖ · ‖l. Then

Rrig
0,l
∼=
{ ∑
α∈N

h−1
0

cαu
α|cα ∈ K̆, lim

|α|→∞
|cα||�||α|/l = 0

}
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is the K̆-Banach algebra of rigid analytic functions on the affinoid subdomain

Bl := {x ∈ Xrig
0 | |ui(x)| ≤ |�|1/l for all 1 ≤ i ≤ h− 1}

of Xrig
0 . Further,

Rrig
0
∼= lim←−

l

Rrig
0,l

is the topological projective limit of the K̆-Banach algebras Rrig
0,l .

Since R0 is a local ring, the finite flat R0-module Rm is free by [Mat87],

Theorem 7.10, and has rank r = |G0/Gm|. Let Rrig
m,l denote the affinoid K̆-

algebra of the rigid analytic functions on the affinoid subdomain

Bm,l := π−1
m,0(Bl)

of Xrig
m . Then by [Jong95], Lemma 7.2.2, we have

(2.3.2) Rrig
m,l
∼= Rm ⊗R0 R

rig
0,l

as Rm|R0 is finite. Let us fix a basis {e1, . . . , er} of Rm over R0 and view it

as an Rrig
0,l -basis of R

rig
m,l = Rm ⊗R0 R

rig
0,l . The next lemma shows that Rrig

m,l is a

K̆-Banach algebra with respect to the norm

‖(f1e1 + · · ·+ frer)‖l := max
1≤i≤r

{‖fi‖l},

where fi ∈ Rrig
0,l for all i, by showing that it is indeed an algebra norm.

Lemma 2.3.3: Let f = f1e1 + · · ·+ frer, g = g1e1 + · · ·+ grer ∈ Rrig
m,l. Then

‖fg‖l ≤ ‖f‖l‖g‖l.
Proof. Let eiej =

∑r
k=1 aijkek for all 1 ≤ i, j ≤ r. Note that

aijk ∈ R0 = ŏ[[u1, . . . , uh−1]]

and thus ‖aijk‖l ≤ 1 for all 1 ≤ i, j, k ≤ r. Also ‖ · ‖l is multiplicative on Rrig
0,l .

Therefore

‖fg‖l = max
1≤k≤r

{∥∥∥∥ ∑
1≤i,j≤r

figjaijk

∥∥∥∥
l

}

≤ max
1≤k≤r

{ max
1≤i,j≤r

‖figjaijk‖l}

≤ max
1≤i,j≤r

{‖fi‖l‖gj‖l} ≤ ‖f‖l‖g‖l.
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It then follows from [BGR84], (6.1.3), Proposition 2 that the affinoid topology

on Rrig
m,l coincides with Banach topology given by the aforementioned norm ‖·‖l.

The natural maps Rrig
m,l+1 −→ Rrig

m,l induced from Rrig
0,l+1 −→ Rrig

0,l endow the

projective limit

Rrig
m
∼= lim←−

l

Rrig
m,l

with the structure of a K̆-Fréchet algebra. Indeed, this projective limit is iso-

morphic to the K̆-algebra of global rigid analytic functions on Xrig
m by [Jong95],

Lemma 7.2.2. Thus we have

(2.3.4) Rrig
m
∼= Rm ⊗R0 R

rig
0

as Rm is a finite free R0-module, and Rrig
m,l can be viewed as the Banach

completion of Rrig
m with respect to the norm ‖ · ‖l defined as before by

‖(f1e1 + · · ·+ frer)‖l := max1≤i≤r{‖fi‖l}, with fi ∈ Rrig
0 .

The Γ-action on Xrig
0 stabilizes the affinoid subdomains Bl for all positive

integers l. Indeed, since γ(ui) belongs to the maximal ideal (�, u1, . . . , uh−1)

of R0, ‖γ(ui)‖l ≤ |�|1/l for all 1 ≤ i ≤ h− 1. This implies that ‖γ(f)‖l ≤ ‖f‖l
for all f ∈ Rrig

0 . Thus the Γ-action on Rrig
0 extends to its completion Rrig

0,l for all

positive integers l. As a consequence, the affinoid subdomains Bm,l of X
rig
m are

stable under the (Γ×G0)-action for all m and l, and the isomorphism (2.3.2) is

(Γ×G0)-equivariant for the diagonal (Γ×G0)-action on the right. Similarly the

isomorphism (2.3.4) is also (Γ×G0)-equivariant for the diagonal (Γ×G0)-action

on the right.

Remark 2.3.5: By [BGR84], (6.1.3), Theorem 1, the K̆-algebra automorphism

of an affinoid K̆-algebra Rrig
m,l corresponding to (γ, g) ∈ Γ×G0 is automatically

continuous for its K̆-Banach topology defined by the norm ‖ · ‖l. Since the K̆-

Fréchet topology of Rrig
m is given by the family of norms ‖ · ‖l, l ∈ N, the group

Γ×G0 acts on Rrig
m by continuous K̆-algebra automorphisms for all m ≥ 0.

Now recall from [GH94], Section 15 that a Γ-equivariant vector bundleM on

the formal scheme Xm is a locally free OXm -moduleM of finite rank equipped

with a (left) Γ-action that is compatible with the Γ-action on Xm. Since Xm

is formally affine, a Γ-equivariant vector bundleM on Xm is completely deter-

mined by its global sectionsM(Xm). Hence, for all s ∈ Z and m ≥ 0, the free

Rm-module Lie(H(m))⊗s of rank 1 equipped with a semilinear Γ-action gives
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rise to a Γ-equivariant line bundle

Ms
m := Lie(H(m))⊗s

on Xm. Its rigidification (Ms
m)rig is a locally free OXrig

m
-module of rank 1 by

[Jong95], 7.1.11. Let

M s
m := (Ms

m)rig(Xrig
m )

denote its global sections. Because of the fact that Xm is affine, the natural

map

(2.3.6) Rrig
m ⊗Rm Lie(H(m))⊗s −→M s

m

is an isomorphism. By functoriality, Γ acts on (Ms
m)rig in such a way that the

map (2.3.6) is Γ-equivariant for the diagonal Γ-action on the left and for the Γ-

action induced by functoriality on the right. In particular, the Γ-action on M s
m

is semilinear for its action on Rrig
m , and thus (Ms

m)rig is a rigid Γ-equivariant

line bundle on Xrig
m . In a similar fashion, it can be seen that (Ms

m)rig is a

rigid G0-equivariant line bundle on X
rig
m , and the actions of Γ and G0 commute

(cf. Remark 2.2.2). By functoriality again, the G0-action on (Ms
m)rig factors

through the quotient group G0/Gm.

For all s,m and l, set

M s
m,l := (Ms

m)rig(Bm,l).

Then M s
m,l is a free Rrig

m,l-module of rank 1 for which the natural Rrig
m,l-linear

map

(2.3.7) Rrig
m,l ⊗Rm Lie(H(m))⊗s −→M s

m,l

is an isomorphism (cf. [Jong95], 7.1.11), and is (Γ × G0)-equivariant for the

diagonal (Γ×G0)-action on the left. EndowingM s
m and M s

m,l with the natural

topologies of finitely generated modules over Rrig
m and Rrig

m,l respectively, makes

them a K̆-Fréchet space and a K̆-Banach space respectively. One then has a

topological isomorphism

M s
m
∼= lim←−

l

M s
m,l

for the projective limit topology on the right, and the group Γ×G0 acts onM s
m

by continuous K̆-vector space automorphisms for all s and m.
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3. Locally analytic representations at higher levels

We saw in the previous section that the group Γ = Aut(H0) acts on the Fréchet

space M s
m of the global sections of the rigid Γ-equivariant line bundle (Ms

m)rig

over Xrig
m by continuous vector space automorphisms. The goal of this section

is to show that the strong topological K̆-linear dual (M s
m)′b of M s

m with the

induced Γ-action is a locally K-analytic representation of Γ for all s ∈ Z and

levels m ≥ 0.2 Recall from [ST02ii], Section 3 that a locally K-analytic rep-

resentation V of Γ (over K̆) is a barrelled Hausdorff locally convex K̆-vector

space equipped with a Γ-action by continuous linear endomorphisms such that

for each v ∈ V , the orbit map ρv = (g �→ g(v)) ∈ Can(Γ, V ), i.e., ρv is a

V -valued locally K-analytic function on Γ.

As stated in the introduction, to show the local K-analyticity, we are going

to make use of the Gross–Hopkins’ period morphism Φ and of the fundamental

domain D. The next subsection is intended to give a brief overview of these

two technical tools.

3.1. The period morphism and the Gross–Hopkins fundamental

domain. Let E(m) denote the universal additive extension of the universal

formal o-module H(m). It sits in the exact sequence

(3.1.1) 0 −→ Lie((H(m))′) α(m)−−−→ Lie(E(m))
β(m)

−−−→ Lie(H(m)) −→ 0

where

(H(m))′ = Ga ⊗Rm HomRm(Ext(H(m),Ga), Rm)

is the additive formal o-module of dimension h − 1 associated with the free

Rm-module dual to the module Ext(H(m),Ga) of extensions of H(m) by Ga

(cf. [GH94], Section 11). The universality induces commuting semi-linear ac-

tions of Γ and G0 on Lie((H(m))′) and on Lie(E(m)) for which the maps α(m)

and β(m) are equivariant, and the G0-action factors through G0/Gm. By rigid-

ification, the short exact sequence (3.1.1) gives rise to an exact sequence

0 −→ (Lie((H(m))′)⊗s)rig −→ (Lie(E(m))⊗s)rig −→ (Ms
m)rig −→ 0

of the corresponding rigid (Γ×G0)-equivariant line bundles on X
rig
m for all non-

negative s, and for negative s in the opposite direction. Since Xm is an affine

2 In the notation (Ms
m)′b, the superscript ′ indicates the continuous linear dual of the

topological vector space Ms
m, while the subscript b stands for bounded and implies that

(Ms
m)′b is equipped with the topology of bounded convergence, i.e., the strong topology.
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formal scheme, by taking global sections, we get an exact sequence

(3.1.2) 0−→Rrig
m ⊗Rm Lie((H(m))′)⊗s−→Rrig

m ⊗Rm Lie(E(m))⊗s−→M s
m−→0

of K̆-linear (Γ×G0)-representations for s ≥ 0, and in the opposite direction for

s < 0.

Proposition 3.1.3: The Γ-equivariant line bundle Lie(E(0)) is generically flat,

i.e., there exists a basis {c0, c1, . . . , ch−1} ofRrig
0 ⊗R0Lie(E

(0)) overRrig
0 such that

the K̆-subspace of Rrig
0 ⊗R0 Lie(E

(0)) spanned by ci’s is Γ-stable. Let Bh⊗Kh
K̆

be the h-dimensional K̆-linear Γ-representation where the action of Γ ∼= o×Bh
is

given by left multiplication. Then we have an isomorphism

(3.1.4) Rrig
0 ⊗R0 Lie(E

(0)) ∼= Rrig
0 ⊗K̆ (Bh ⊗Kh

K̆)

of Rrig
0 [Γ]-modules with Γ acting diagonally on both sides.

Proof. See [GH94], Proposition 21.8 and Proposition 22.4.

Corollary 3.1.5: The (Γ×G0)-equivariant line bundle Lie(E(m))⊗s is gener-
ically flat for all m ≥ 0 and s ∈ Z.

Proof. Since H(m) = H(0)⊗R0 Rm, it follows from the universality of E(m) that

E(m) = E(0) ⊗R0 Rm.

The isomorphism Lie(E(m)) ∼= Rm ⊗R0 Lie(E
(0)) of Rm[Γ × G0]-modules gives

rise to an isomorphism

Rrig
m ⊗Rm Lie(E(m)) ∼= Rrig

m ⊗R0 Lie(E
(0))

of Rrig
m [Γ×G0]-modules. Then using (2.3.4) and (3.1.4), we have an isomorphism

(3.1.6) Rrig
m ⊗Rm Lie(E(m)) ∼= Rrig

m ⊗K̆ (Bh ⊗Kh
K̆)

of Rrig
m [Γ × G0]-modules, where Γ and G0 act diagonally on both sides. The

action of G0 on Bh ⊗Kh
K̆ by convention is trivial. The corollary follows after

taking tensor powers on both sides.

Let vi denote the images of the basis elements ci under the map

Rrig
0 ⊗R0 Lie(E

(0)) −→M1
0 .

According to [GH94], Proposition 23.2, the global sections {vi}0≤i≤h−1 of the

line bundle (M1
0)

rig have no common zeros onXrig
0 , and are linearly independent

over K̆. If V denotes the K̆-subspace of M1
0 spanned by them, then V is
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Γ-stable, and is isomorphic to Bh ⊗Kh
K̆ as a Γ-representation. Let P(V) be

the projective space of all hyperplanes in V. Then the map

Φ : Xrig
0 −→ P(V)

x �−→ {v ∈ V|v(x) = 0}

is an étale surjective morphism of rigid analytic spaces, if P(V) is identified

with the (h − 1)-dimensional rigid analytic projective space Ph−1

K̆
(cf. [GH94],

Proposition 23.5). The morphism Φ : Xrig
0 −→ Ph−1

K̆
is called the period

morphism. In homogeneous projective coordinates, it is given by

Φ(x) = [ϕ0(x) : . . . : ϕh−1(x)]

where ϕ0, . . . , ϕh−1 ∈ Rrig
0 are certain global rigid analytic functions without

any common zero. These functions can be constructed from the logarithm

g0(X) =
∑
n≥0

anX
qn

of the universal formal o-module H(0) over R0 as the limits

(3.1.7)
ϕ0 := lim

n→∞�nanh

ϕi := lim
n→∞�n+1anh+i, if 1 ≤ i ≤ h− 1

in the Fréchet topology of Rrig
0 (cf. [GH94], (21.6) and (21.13)).

An important property of the period morphism Φ is that it is Γ-equivariant

for the Γ-action on Ph−1

K̆
by fractional linear transformations via the following

injective group homomorphism (cf. [Koh13], Remark 1.4):

(3.1.8)

j : Γ ↪→GLh(Kh)

h−1∑
i=0

λiΠ
i �−→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ0 �λ1 �λ2 · · · · · · �λh−1

λσh−1 λσ0 λσ1 · · · · · · λσh−2

λσ
2

h−2 �λσ
2

h−1 λσ
2

0 · · · · · · λσ
2

h−3
...

...
. . .

. . .
...

...
...

. . .
. . .

...

λσ
h−1

1 �λσ
h−1

2 · · · · · · �λσ
h−1

h−1 λσ
h−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The Gross–Hopkins fundamental domain D is the affinoid subdomain of Xrig
0

defined as follows:

(3.1.9) D := {x ∈ Xrig
0

∣∣∣|ui(x)| ≤ |�|(1− i
h ) for all 1 ≤ i ≤ h− 1}.

According to [GH94], Lemma 23.14, the function ϕ0 does not have any zeroes

on D, hence is a unit in OXrig
0
(D). Setting wi :=

ϕi

ϕ0
for 1 ≤ i ≤ h− 1, [GH94],

Lemma 23.14 implies that the affinoid K̆-algebra OXrig
0
(D) is isomorphic to the

generalized Tate algebra:

(3.1.10)

OXrig
0
(D)

∼= K̆〈�−(1− 1
h )w1, . . . , �

−(1−h−1
h )wh−1〉

:=

{ ∑
α∈N

h−1
0

cαw
α∈K̆[[w1, . . . , wh−1]]

∣∣∣ lim
|α|→∞

|cα||�|
∑h−1

i=1 αi(1− i
h )=0

}

It follows from [FGL08], Remarque I.3.2 that D is stable under the Γ-action

on Xrig
0 . Also, the Γ-equivariant period morphism Φ restricts to an isomorphism

Φ : D ∼−→ Φ(D) over D (cf. [GH94], Corollary 23.15). As a result, we have an

explicit formula for the Γ-action on OXrig
0
(D) similar to the one of Devinatz–

Hopkins (cf. [Koh13], Proposition 1.3):

Proposition 3.1.11: Fix i with 1 ≤ i ≤ h − 1, and let γ =
∑h−1

j=0 λjΠ
j ∈ Γ.

Then

(3.1.12) γ(wi) =

∑i
j=1 λ

σj

i−jwj +
∑h
j=i+1�λ

σj

h+i−jwj

λ0 +
∑h−1

j=1 λ
σj

h−jwj
.

The group Γ acts on OXrig
0
(D) by continuous K̆-algebra endomorphisms ex-

tending its action on Rrig
0 .

Proof. This is straightforward since γ acts on the projective homogeneous co-

ordinates [ϕ0 : . . . : ϕh−1] through right multiplication with the matrix j(γ)

in (3.1.8). By [BGR84], (6.1.3), Theorem 1, the induced K̆-algebra endomor-

phism γ of the affinoid K̆-algebra OXrig
0
(D) is automatically continuous.

Remark 3.1.13: A rigidified extension (E, s) of H(0) by Ga is an exten-

sion E of H(0) by Ga together with a section s : Lie(H(0)) −→ Lie(E). The

set RigExt(H(0),Ga) of isomorphism classes of rigidified extensions of H(0)

by Ga is a free R0-module of rank h, and has a basis {g0, g1, . . . , gh−1} where
g0 ∈ R0[[X ]] is the logarithm of H(0), and gi := ∂g0

∂ui
for 1 ≤ i ≤ h − 1
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(cf. [GH94], Proposition 9.8). Moreover, the R0-module ω(E(0)) of invariant dif-

ferentials on the universal additive extension is isomorphic to RigExt(H(0),Ga)

(cf. [GH94], (11.4)). Thus,

Rrig
0 ⊗R0 Lie(E

(0)) ∼= HomR0(RigExt(H
(0),Ga), R

rig
0 ).

The functions ϕi in (3.1.7) are precisely ci(g0), and the basis dg0 of ω(H(0))

is mapped to g0 under the natural map ω(H(0)) −→ ω(E(0)). As a result,

the global sections vi and vj of the line bundle (M1
0)

rig (see paragraph after

Corollary 3.1.5) are related by the relation ϕjvi = ϕivj for all 0 ≤ i, j ≤ h− 1.

Consequently, we have ϕsjv
s
i = ϕsi v

s
j in M s

0 . Let Ui ⊂ Xrig
0 be the non-vanishing

locus of ϕi; then on Ui ∩ Uj , we get vsi =
ϕs

i

ϕs
j
vsj and vsj =

ϕs
j

ϕs
i
vsi . The Ui’s cover

Xrig
0 as the functions ϕi’s do not vanish simultaneously at any point on Xrig

0 .

This means that

(Ms
0)

rig|Ui
∼= OXrig

0
|Uiϕ

s
i for all 0 ≤ i ≤ h− 1.

In particular, for i = 0, we have an isomorphism

M s
D := (Ms

0)
rig(D) ∼= OXrig

0
(D)ϕs0

of OXrig
0
(D)-modules which is also Γ-equivariant. The Γ-action on M s

D is semi-

linear for its action on OXrig
0
(D).

Remark 3.1.14: The discussion in Remark 3.1.13 shows that the generating

global sections vi’s of the line bundle (M1
0)

rig are the pullbacks Φ∗(ϕi) of ϕi’s
along the period morphism Φ for all 0 ≤ i ≤ h− 1. As a consequence, it follows

that

(M1
0)

rig ∼= Φ∗O
P
h−1

K̆

(1).

By the general properties of the inverse image functor, we then have

(Ms
0)

rig ∼= Φ∗O
P
h−1

K̆

(s) for all s ∈ Z.

3.2. Local analyticity of the Γ-action on M s
D. In this subsection, we

show that the orbit map (γ �→ γ(fϕs0)) : Γ −→ M s
D explicitly given by Propo-

sition 3.1.11 and Remark 3.1.13 is locally K-analytic for all fϕs0 ∈M s
D.

LetMh(Kh) denote the ring of h×h matrices with entries from Kh. It carries

an induced topology from the identification with Kh2

h , which endows it with a

structure of a locally analytic Kh-manifold. The subset GLh(Kh) of invertible
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matrices is open and forms a locally Kh-analytic group. Consider the subgroup

P of GLh(Kh) defined as follows:

P := {a = (aij)0≤i,j≤h−1 ∈ GLh(oh) |aij , a0k ∈ �oh

for all 1 ≤ i, j, k ≤ h− 1 with i > j}

It is conjugate to a standard Iwahori subgroup of GLh(Kh). The conditions on

the entries of a matrix in P force all of its diagonal entries to lie in o×h . Since P
contains the ball of radius |�2| around a for any a ∈ P , P is open in GLh(Kh).

Thus, P is a locally Kh-analytic subgroup of GLh(Kh). The inclusion map

j : Γ ↪→ GLh(Kh) mentioned in (3.1.8) has image in P .

Lemma 3.2.1: The inclusion map j : Γ ↪→ P in (3.1.8) is locally K-analytic.

Proof. The global chart for P induced from that for Mh(Kh) sends a in P to

(a00, a01, . . . a0(h−1), a10, a11, . . . , a(h−1)(h−2), a(h−1)(h−1))

in Kh2

h . Recall the global chart ψ for Γ from (2.2.3). Using the global charts

for both groups, it is easy to see that the corresponding map from the open

subset ψ(Γ) in Kh
h to Kh2

h is locally K-analytic since each component of this

map is either a linear polynomial or a K-linear Frobenius automorphism σ

or a composition of both, all being locally K-analytic. As before, we remark

that j is generally not locally Kh-analytic because σ : o×h −→ o×h is not locally

Kh-analytic unless h = 1.

The algebra OXrig
0
(D) is a K̆-Banach algebra with respect to the multiplica-

tive norm ‖ · ‖D defined as follows: for f =
∑
α∈N

h−1
0

cαw
α ∈ OXrig

0
(D),

‖f‖D := sup
α∈N

h−1
0

|cα||�|
∑h−1

i=1 αi(1− i
h )

(cf. [BGR84], Section 6.1.5, Proposition 1 and 2). Let P act on OXrig
0
(D) by

K̆-linear ring automorphisms by defining

(3.2.2) a(wi) :=
a0i +

∑h−1
j=1 ajiwj

a00 +
∑h−1

j=1 aj0wj

for a ∈ P and for 1 ≤ i ≤ h − 1. This gives an action of P on OXrig
0
(D)

by continuous K̆-linear ring automorphisms which, when restricted to Γ via j,
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coincides with the Γ-action on OXrig
0
(D) (cf. Proposition 3.1.11). Indeed, note

that

a00 +

h−1∑
j=1

aj0wj = a00

(
1 +

h−1∑
j=1

a−1
00 aj0wj

)
∈ (OXrig

0
(D))×

is a unit of norm 1, and ∥∥∥∥a0i +
h−1∑
j=1

ajiwj

∥∥∥∥
D

= ‖wi‖D

by the strict triangle inequality. Altogether, ‖a(wi)‖D = ‖wi‖D which ensures

that P acts on OXrig
0
(D) via∑

α∈N
h−1
0

cαw
α �−→

∑
α∈N

h−1
0

cαa(w1)
α1 · · · a(wh−1)

αh−1

in a well-defined way.

We now show that the above action is locally K-analytic.

Lemma 3.2.3: The map ι : P −→ P , (aij)0≤i,j≤h−1 �−→ (ι(a)ij)0≤i,j≤h−1

defined by

ι(a)ij =

⎧⎨
⎩a

−1
ij , if i = j = 0;

aij , otherwise

is locally Kh-analytic, and thus locally K-analytic.

Proof. This follows from [Sch11], Proposition 13.6, and the fact that K×
h is a

locally Kh-analytic group. The localK-analyticity of ι follows due to restriction

of scalars.

Proposition 3.2.4: The action of P on OXrig
0
(D) is locally Kh-analytic, and

thus locally K-analytic, i.e., the orbit maps of the action are locally K-analytic.

Proof. By Lemma 3.2.3, it is enough to show that, for each f ∈ OXrig
0
(D), the

map ι(a) �−→ a(f) from P to OXrig
0
(D) is locally Kh-analytic. Consider the

open neighbourhood U of 0 in Kh2

h defined as follows:

U := {x = (x1, x2, . . . , xh2) ∈ oh
2

h |xi, xqh+r ∈ �oh for all 2 ≤ i ≤ h
and for all q ≥ r with q, r > 1}.

Let T = (T1, T2, . . . , Th2), and let FU (Kh2

h ,OXrig
0
(D)) denote the set of

power series in T with coefficients from OXrig
0
(D) which converge on U .



396 M. SHETH Isr. J. Math.

Like OXrig
0
(D), FU (Kh2

h ,OXrig
0
(D)) is also a K̆-Banach algebra with respect

to the multiplicative norm∥∥∥∥ ∑
α∈Nh2

0

fαT
α

∥∥∥∥
U

:= sup
α∈Nh2

0

‖fα‖D|�|(α2+α3+···+αh+α2h+2+α3h+2+α3h+3+···+α(h−1)h+h−1)

(cf. [Sch11], Proposition 5.3). Under the global chart of P in the proof of Lemma

3.2.1, we now show that, for a monomial wα∈OXrig
0
(D), the map ι(a) �−→ a(wα)

belongs to FU (Kh2

h ,OXrig
0
(D)) for every α ∈ Nh−1

0 .

By (3.2.2), we have

(3.2.5)

a(wα)=a(w1)
α1 . . . a(wh−1)

αh−1

=

(
a01 +

∑h−1
j=1 aj1wj

a00 +
∑h−1

j=1 aj0wj

)α1

· · ·
(
a0(h−1) +

∑h−1
j=1 aj(h−1)wj

a00 +
∑h−1

j=1 aj0wj

)αh−1

=

( h−1∏
i=1

(
a0i+

h−1∑
j=1

ajiwj

)αi
)
(a−1

00 )
|α|
(
1+a−1

00

h−1∑
j=1

aj0wj

)−|α|

=

( h−1∏
i=1

(
a0i+

h−1∑
j=1

ajiwj

)αi
)
(a−1

00 )
|α|
( ∞∑
l=0

(
−a−1

00

h−1∑
j=1

aj0wj

)l)|α|
.

Thus the expression of a(wα) is a product of (a−1
00 )

|α| and two big brackets.

The first big bracket in (3.2.5) is a product of polynomials in aij ’s with co-

efficients from OXrig
0
(D), and hence is the evaluation at ι(a) of an element in

FU (Kh2

h ,OXrig
0
(D)). Similarly, (a−1

00 )
|α| is the evaluation at ι(a) of the mono-

mial T
|α|
1 which belongs to FU (Kh2

h ,OXrig
0
(D)). The second big bracket is the

|α|-th power of a certain geometric series. The l-th term in that series is the

evaluation of the polynomial (−T1
∑h−1

j=1 Tjh+1wj)
l at ι(a), and

∥∥∥∥
(
− T1

h−1∑
j=1

Tjh+1wj

)l∥∥∥∥
U

=

(∥∥∥∥− T1
h−1∑
j=1

Tjh+1wj

∥∥∥∥
U

)l
= |�| lh .

Hence, the series
∑∞

l=0(−T1
∑h−1
j=1 Tjh+1wj)

l converges in FU (Kh2

h ,OXrig
0
(D)),

and the map ι(a) �−→ a(wα) ∈ FU (Kh2

h ,OXrig
0
(D)) for every α ∈ Nh−1

0 .
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Let us calculate the norms ‖ · ‖U of the above power series corresponding

to the terms in the expression (3.2.5) or find an upper bound for them. First,

‖T |α|
1 ‖U = 1. Since∥∥∥∥
∞∑
l=0

(
− T1

h−1∑
j=1

Tjh+1wj

)l∥∥∥∥
U

≤ sup
l≥0

∥∥∥∥
(
− T1

h−1∑
j=1

Tjh+1wj

)l∥∥∥∥
U

= sup
l≥0
|�| lh = 1,

the power series corresponding to the second big bracket in (3.2.5) has the norm

≤ 1. The first big bracket is obtained by evaluating

h−1∏
i=1

(
Ti+1 +

h−1∑
j=1

Tjh+i+1wj

)αi

at ι(a), and∥∥∥∥
h−1∏
i=1

(
Ti+1 +

h−1∑
j=1

Tjh+i+1wj

)αi
∥∥∥∥
U

=

h−1∏
i=1

∥∥∥∥
(
Ti+1 +

h−1∑
j=1

Tjh+i+1wj

)∥∥∥∥
αi

U

=

h−1∏
i=1

|�|αi(1− i
h ).

Therefore, the power series corresponding to the first big bracket has the norm

|�|
∑h−1

i=1 αi(1− i
h ). So, for every α ∈ Nh−1

0 , the map ι(a) �−→ a(wα) is given by an

element inFU (Kh2

h ,OXrig
0
(D)) whose norm is bounded above by |�|

∑h−1
i=1 αi(1− i

h ).

Now given f =
∑
α∈N

h−1
0

cαw
α ∈ OXrig

0
(D),

a(f) =
∑

α∈N
h−1
0

cα(a(w
α)),

and for every α ∈ Nh−1
0 , the map ι(a) �−→ cα(a(w

α)) is represented by a power

series in FU (Kh2

h ,OXrig
0
(D)) having norm ≤ |cα||�|

∑h−1
i=1 αi(1− i

h ). Since

lim
|α|→∞

|cα||�|
∑h−1

i=1 αi(1− i
h ) = 0,

we see that the map ι(a) �−→ a(f) from P to OXrig
0
(D) is given by a convergent

power series in FU (Kh2

h ,OXrig
0
(D)). As a is arbitrary, this implies that the

action of P on OXrig
0
(D) is locally Kh-analytic, and thus locally K-analytic by

the restriction of scalars.

Proposition 3.2.6: The K̆-Banach space OXrig
0
(D) is a locally K-analytic

representation of Γ.
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Proof. This follows from Lemma 3.2.1 and Proposition 3.2.4.

Theorem 3.2.7: Let s be any integer. Then the K̆-Banach space M s
D is a

locally K-analytic representation of Γ.

Proof. Due to Remark 3.1.13, we have a Γ-equivariant, OXrig
0
(D)-linear iso-

morphism M s
D
∼= OXrig

0
(D).ϕs0 of free OXrig

0
(D)-modules of rank 1. Then M s

D

obtains a structure of a K̆-Banach space with respect to the norm defined as

‖fϕs0‖Ms
D
:= ‖f‖D.

Since the Γ-action on M s
D is semilinear for its action on OXrig

0
(D), we have

γ(fϕs0) = γ(f)γ(ϕs0) for all γ ∈ Γ and f ∈ OXrig
0
(D). Now, as mentioned in the

proof of Proposition 3.1.11,

γ(ϕs0) =γ(ϕ0)
s = (λ0ϕ0 + λσh−1ϕ1 + · · ·+ λσ

h−1

1 ϕh−1)
s

=(λ0 + λσh−1w1 + · · ·+ λσ
h−1

1 wh−1)
sϕs0.

So the orbit map from Γ to M s
D is given by sending γ to

γ(fϕs0) = γ(f)(λ0 + λσh−1w1 + · · ·+ λσ
h−1

1 wh−1)
sϕs0.

The map γ �→ γ(f) is locally K-analytic by Proposition 3.2.6, and the map

γ �→ (λ0 + λσh−1w1 + · · ·+ λσ
h−1

1 wh−1)
sϕs0 is also locally K-analytic since it is

given by a linear polynomial in the coordinates of γ. Thus, the orbit map, being

a product of these two maps, is locally K-analytic. Therefore, M s
D is a locally

analytic Γ-representation for all integers s.

3.3. Local analyticity of the Γ-action on M s
0 . Let D(Γ) denote the al-

gebra of K̆-valued locally K-analytic distributions on Γ (cf. [ST02ii], Section 2).

The strong topological duality induces an anti-equivalence between the category

of locally K-analytic representations of Γ on the K̆-vector spaces of compact

type and the category of continuous D(Γ)-modules on the nuclear K̆-Fréchet

spaces (cf. [ST02ii], Corollary 3.4). Using the local K-analyticity of the Γ-

action on M s
D obtained in the previous subsection, we now show that, at level

m = 0, the induced Γ-action on the vector space (M s
0 )

′
b of compact type is lo-

cally K-analytic by showing that its strong topological dualM s
0 is a continuous

D(Γ)-module.
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The continuity of the Γ-action on the universal deformation ring R0 (cf. The-

orem 2.2.6) leads to a continuous Γ-action on Rrig
0 . This is implied by the next

proposition.

Proposition 3.3.1: Let n and l be integers with n ≥ 0 and l ≥ 1. If γ ∈ Γn,

and if f ∈ Rrig
0 , then

‖γ(f)− f‖l ≤ |�|n/l‖f‖l.
Proof. Note that Rrig

0,l is a generalized Tate algebra over K̆ in the variables

(�−1/lui)1≤i≤h−1. Then by [BGR84], (6.1.5), Proposition 5, we have

‖g‖l = sup{|g(x)||x ∈ Bl(K̆)}for anyg ∈ Rrig
0,l ,

where

Bl(K̆) = {x ∈ (K̆)h−1||xi| ≤ |�|1/l for all 1 ≤ i ≤ h− 1}.
Let us first prove the assertion for f = ui for some 1 ≤ i ≤ h− 1. If x ∈ Bl(K̆)

and y = (yj) := (γ(uj)(x)), then we need to show that |xi − yi| ≤ |�|(n+1)/l

because ‖ui‖l = |�|1/l. Consider the commutating diagram

R0

f �→f(y) ���
��

��
��

�
γ �� R0

f �→f(x)		��
��
��
��

ŏ

of homomorphisms of ŏ-algebras. Choosing z ∈ ŏ with |z| = |�|1/l, we have

xj ∈ zŏ for all j. Further, � ∈ zŏ because l ≥ 1. As a consequence, the right

oblique arrow of the above diagram maps mR0 = (�, u1, . . . , uh−1) to zŏ. Note

that γ(uj) ∈ mR0 so we obtain yj ∈ zŏ as well. Therefore, also the left oblique

arrow maps mR0 to zŏ. Now consider the induced diagram

R0/m
n+1
R0



��
���

���
�

γ �� R0/m
n+1
R0

��			
			

			

ŏ/(zn+1)

According to Theorem 2.2.6, the upper horizontal arrow is the identity. It

follows that xi − yi ∈ zn+1ŏ, i.e.,

|xi − yi| ≤ |�|(n+1)/l.
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We now prove the assertion for f = uα by induction on |α|. The case |α| = 0

is trivial. Let |α| > 0. Choose an index i with αi > 0. Define βj := αj if j �= i,

and βi := αi − 1. Then for x ∈ Bl(K̆),

|γ(uα)(x) − uα(x)| =|yα − xα| = |yiyβ − xixβ |
≤max{|yi||yβ − xβ |, |yi − xi||xβ |}.

Now |yi||yβ − xβ | ≤ |�|1/l‖γ(uβ) − uβ‖l ≤ |�|(n+1)/l‖uβ‖l = |�|n/l‖uα‖l by
the induction hypothesis and |yi − xi||xβ | ≤ |�|(n+1)/l|�||β|/l = |�|n/l‖uα‖l as
seen above. Thus we obtain |γ(uα)(x)−uα(x)| ≤ |�|n/l‖uα‖l for all x ∈ Bl(K̆)

as required.

Therefore if f =
∑

α∈N
h−1
0

cαu
α ∈ Rrig

0 , then by continuity of γ, we get

‖γ(f)− f‖l =
∥∥∥∥ ∑
α∈N

h−1
0

cα(γ(u
α)− uα)

∥∥∥∥
l

≤ sup
α∈N

h−1
0

|cα|‖γ(uα)− uα‖l

≤ sup
α∈N

h−1
0

|cα||�|n/l‖uα‖l

=|�|n/l‖f‖l.

We write ΓQp for Γ when viewed as a locallyQp-analytic group, and gQp for its

Lie algebra g when considered as aQp-vector space. Let d := [K : Qp]. Since ΓQp

is a compact locally Qp-analytic group of dimension t := dh2, it contains an

open subgroup Γo which is a uniform pro-p group of rank t (cf. [DDMS03],

Theorem 8.32). The subgroups in its lower p-series Pi(Γo) (i ≥ 1) form a basis

of open neighbourhoods of the identity in Γo and are also uniform pro-p groups

of rank t (cf. [DDMS03], Proposition 1.7, Proposition 1.11 (i), Theorem 3.6 (i)

and Proposition 4.4). Let n be a positive integer such that Γn ⊆ Γo. As Γn is

open in Γo, it contains Γ∗ := Pi(Γo) for some i ≥ 1. In what follows, we view Γ∗
as a locally Qp-analytic group.

Let us denote by Λ(Γ∗) := ŏ[[Γ∗]] the Iwasawa algebra of Γ∗ over ŏ. Set

bi := γi − 1 ∈ Λ(Γ∗) and bα := bα1
1 · · · bαt

t

for any α ∈ Nt0 where {γ1, . . . , γt} is a minimal topological generating set of

Γ∗. By [DDMS03], Theorem 7.20, any element μ ∈ Λ(Γ∗) admits a unique
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expansion of the form

μ =
∑
α∈Nt

0

dαb
α with dα ∈ ŏ∀α ∈ Nt0.

For any l ≥ 1, this allows us to define the K̆-norm ‖ · ‖l on the algebra

Λ(Γ∗)K̆ := Λ(Γ∗)⊗ŏ K̆ through

(3.3.2)

∥∥∥∥ ∑
α∈Nt

0

dαb
α

∥∥∥∥
l

:= sup
α∈Nt

0

{|dα||�||α|/l}.

By [ST03], Proposition 4.2, the norm ‖ · ‖l on Λ(Γ∗)K̆ is submultiplicative. As

a consequence, the completion

Λ(Γ∗)K̆,l =
{ ∑
α∈Nt

0

dαb
α | dα ∈ K̆, lim

|α|→∞
|dα||�||α|/l = 0

}

of Λ(Γ∗)K̆ with respect to ‖ · ‖l is a K̆-Banach algebra. The natural inclusions

Λ(Γ∗)K̆,l+1 ↪→ Λ(Γ∗)K̆,l endow the projective limit

D(Γ∗) = lim←−
l

Λ(Γ∗)K̆,l

with the structure of a K̆-Fréchet algebra. By Amice’s theorem, the above

projective limit is indeed equal to the algebra of K̆-valued locally Qp-analytic

distributions on Γ∗ (cf. [ST03], Section 4). By fixing coset representatives

{γ′1 = 1, γ′2, . . . , γ
′
s} of Γ∗ in ΓQp , the natural topological isomorphism

Can(ΓQp , K̆) ∼=
s∏
i=1

Can(γ′iΓ∗, K̆)

of locally convex K̆-vector spaces induces a topological isomorphism

(3.3.3) D(ΓQp)
∼=

s⊕
i=1

δγ′
i
D(Γ∗) (δγ′

i
’s are Dirac distributions)

by dualizing (cf. [Fé99], Korollar 2.2.4). This defines a K̆-Fréchet algebra struc-

ture on D(ΓQp) given by the family of norms

‖δγ′
1
μ1 + · · ·+ δγ′

s
μs‖l := s

max
i=1
{‖μi‖l} with l ≥ 1

(cf. [ST03], Theorem 5.1).

Note that D(ΓQp) is not the same as the distribution algebra D(Γ) of K̆-

valued locally K-analytic distributions on Γ. In fact, the natural embedding

Can(Γ, K̆) ↪→ Can(ΓQp , K̆) induces a map D(ΓQp) −→ D(Γ) which is a strict
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surjection and a homomorphism of K̆-algebras by [Koh07], Lemma 1.3.1. Ac-

cording to [Koh07], Lemma 1.3.2 and Lemma 1.3.3, the kernel I of the surjection

D(ΓQp) � D(Γ) is the closure of the ideal generated by all elements of the form

i(λx) − λi(x) with x ∈ gQp , λ ∈ K and i : gQp ↪→ D(ΓQp) denoting the natural

inclusion as explained on page 450 of [ST02ii].

Theorem 3.3.4: The action of ΓQp on Rrig
0 extends to a continuous action of

the K̆-Fréchet algebra D(ΓQp), which then factors through a continuous action

of D(Γ) on Rrig
0 . Hence the action of Γ on the strong continuous K̆-linear dual

(Rrig
0 )′b of R

rig
0 is locally K-analytic.

Proof. First, we show that Rrig
0,l is a topological Banach module over the K̆-

Banach algebra Λ(Γ∗)K̆,l for all l ≥ 1. To show this, let us prove by induction

on |α| that ‖bα(f)‖l ≤ ‖bα‖l‖f‖l for any f ∈ Rrig
0 . This is clear if |α| = 0. Let

|α| > 0 and let i be the minimal index such that αi > 0. Define βj := αj if

j �= i, and βi := αi − 1. Since Γ∗ ⊆ Γn, Proposition 3.3.1 and the induction

hypothesis imply

‖bα(f)‖l =‖((γi − 1)bβ)(f)‖l = ‖(γi − 1)(bβ(f))‖l ≤ |�|n/l‖bβ(f)‖l
≤|�|1/l‖bβ‖l‖f‖l ≤ |�|1/l|�||β|/l‖f‖l
=|�|(|β|+1)/l‖f‖l = ‖bα‖l‖f‖l

as required.

By Remark 2.2.8, we then have

‖μ(f)‖l ≤ ‖μ‖l‖f‖l
for all μ ∈ Λ(Γ∗)K̆ and f ∈ R0[

1
� ] = R0 ⊗ŏ K̆. Hence the map

Λ(Γ∗)K̆ ×R0

[ 1
�

]
−→ R0

[ 1
�

]
((μ, f) �→ μ(f))

is continuous if Λ(Γ∗)K̆ and R0[
1
� ] are endowed with the respective ‖ · ‖l-

topologies, and if the left-hand side carries the product topology. Since R0[
1
� ]

is dense in Rrig
0,l , we obtain a map Λ(Γ∗)K̆,l×Rrig

0,l −→ Rrig
0,l by passing to comple-

tions. By continuity, it gives Rrig
0,l the structure of a topological Banach module

over the K̆-Banach algebra Λ(Γ∗)K̆,l. Taking projective limits over l, we obtain

a continuous map D(Γ∗) × Rrig
0 −→ Rrig

0 giving Rrig
0 the structure of a contin-

uous module over D(Γ∗). Because of the topological isomorphism (3.3.3), Rrig
0

becomes a continuous module over D(ΓQp).
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To see that the D(ΓQp)-action on Rrig
0 factors through a continuous ac-

tion of D(Γ), it suffices to check that i(λx)(f) = λi(x)(f) for all λ ∈ K,

x ∈ gQp ⊆ D(ΓQp) and f ∈ Rrig
0 . Here we make use of Theorem 3.2.7.

Being a locally K-analytic Γ-representation, OXrig
0
(D) is a D(Γ)-module and

thus carries an action of the Lie algebra g (cf. [ST02ii], Proposition 3.2).

Thus, i(λx)(f) = λi(x)(f) holds for all f ∈ OXrig
0
(D). As the K-linear inclu-

sion Rrig
0 ↪→ OXrig

0
(D) is continuous, it is gQp -equivariant. Hence the equality

i(λx)(f) = λi(x)(f) is also true for all f ∈ Rrig
0 .

Now it follows from [Sch02], Proposition 19.9 and the arguments proving

the claim on page 98, that the K̆-Fréchet space Rrig
0 is nuclear. Therefore,

[ST02ii], Corollary 3.4 implies that the locally convex K̆-vector space (Rrig
0 )′b

is of compact type and that the action of Γ obtained by dualizing is locally

K-analytic.

The preceding theorem can be generalized as follows. Let Γ∗ be a uniform

pro-p group contained in Γ2n+1 for some positive integer n.

Theorem 3.3.5: The action of ΓQp on M s
0 extends to a continuous action of

the K̆-Fréchet algebra D(ΓQp), which then factors through a continuous action

of D(Γ) on M s
0 . Hence the action of Γ on the strong continuous K̆-linear dual

(M s
0 )

′
b of M

s
0 is locally K-analytic for any s ∈ Z.

Proof. Choose a generator δ of the R0-module Lie(H(0))⊗s. Then by (2.3.6)

and (2.3.7), M s
0 = Rrig

0 δ and M s
0,l = Rrig

0,lδ. The topology on M s
0,l is defined

by the norm ‖fδ‖l := ‖f‖l. Let γ(δ) = f0δ; then by Γ-equivariance, we have

γ(fδ) = γ(f)γ(δ) = γ(f)f0δ for all fδ ∈M s
0 . Hence

(3.3.6)
γ(fδ)− fδ = (γ(f)f0 − f)δ = (γ(f)f0 − ff0 + ff0 − f)δ

= ((γ(f)− f)f0 + f(f0 − 1))δ.

Now if γ ∈ Γ∗ ⊆ Γ2n+1 and if fδ ∈M s
0 , then

‖γ(f)− f‖l ≤ |�| 2n+1
l ‖f‖l

by Proposition 3.3.1 and

γ(δ)− δ = (f0 − 1)δ ∈ mn+1
R0

Lie(H(0))⊗s

by Theorem 2.2.7, i.e.,

f0 − 1 ∈ mn+1
R0

.
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Since ‖y‖l ≤ |�|1/l for any y ∈ mR0 = (�, u1, . . . , uh−1), ‖f0 − 1‖l ≤ |�|n+1
l

and ‖f0‖l ≤ max{‖f0 − 1‖l, 1} = 1. Thus by the multiplicativity of the norm

‖ · ‖l on Rrig
0 and by (3.3.6), we have

‖γ(fδ)− fδ‖l = ‖(γ(f)− f)f0 + f(f0 − 1)‖l
≤ max{‖(γ(f)− f)‖l‖f0‖l, ‖f‖l‖(f0 − 1)‖l}
≤ max{|�| 2n+1

l ‖f‖l, |�|n+1
l ‖f‖l}

= |�|n+1
l ‖f‖l = |�|n+1

l ‖fδ‖l.
The rest of the proof now proceeds along the same lines as in the proof of

Theorem 3.3.4.

3.4. Local analyticity of the Γ-action on M s
m with m > 0. In this sub-

section, as the title indicates, we extend the theorems of the previous subsection

to higher levels m > 0. The following observation together with the continuity

of the Γ-action on Rm and on Rrig
0 (cf. Theorem 2.2.6 and Proposition 3.3.1

respectively) allows us to show the continuity of the Γ-action on Rrig
m for m > 0.

Lemma 3.4.1: For every m ≥ 0, there exists a positive integer km such that

mnRm
⊆ mR0Rm for all n ≥ km.

Proof. Since Rm is a finite free module over R0, Rm/mR0Rm is a finite-di-

mensional vector space over R0/mR0 = k. Moreover, Rm/mR0Rm is still

a Noetherian local ring with the maximal ideal mRm/mR0Rm. The powers

(mRm/mR0Rm)n, n ∈ N, of the ideal mRm/mR0Rm form a descending se-

quence of finite-dimensional subspaces which eventually must become station-

ary. Let km be a positive integer such that

(mRm/mR0Rm)n+1 = (mRm/mR0Rm)n

for all n ≥ km. Then by Nakayama’s lemma, for all n ≥ km,

(mRm/mR0Rm)n = 0,

in other words, mnRm
⊆ mR0Rm.

Proposition 3.4.2: Let m, n and l be integers with m ≥ 1, l ≥ 1 and

n ≥ km − 1 where km is as stated in Lemma 3.4.1. If γ ∈ Γn+m and if f ∈ Rrig
m ,

then

‖γ(f)− f‖l ≤ |�|1/l‖f‖l.
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Proof. Write f = f1e1 + · · ·+ frer where {e1, . . . , er} is a basis of Rm over R0

and fi ∈ Rrig
0 for all 1 ≤ i ≤ r. Let xi := γ(ei) − ei. Then xi ∈ mn+1

Rm

for all 1 ≤ i ≤ r by Theorem 2.2.6 and thus by Lemma 3.4.1, xi ∈ mR0Rm

for all 1 ≤ i ≤ r. Since ‖y‖l ≤ |�|1/l for any y ∈ mR0 = (�, u1, . . . , uh−1),

‖xi‖l ≤ |�|1/l for all 1 ≤ i ≤ r. Now note that

‖γ(f)− f‖l ≤ max
1≤i≤r

{‖γ(fiei)− fiei‖l} = max
1≤i≤r

{‖γ(fi)γ(ei)− fiei‖l}
= max

1≤i≤r
{‖γ(fi)γ(ei)− fiγ(ei) + fiγ(ei)− fiei‖l}

= max
1≤i≤r

{‖(γ(fi)− fi)γ(ei) + (γ(ei)− ei)fi‖l}
= max

1≤i≤r
{‖(γ(fi)− fi)(ei + xi) + xifi‖l}.

Then Lemma 2.3.3 and Proposition 3.3.1 imply that for every 1 ≤ i ≤ r,
‖(γ(fi)− fi)(ei + xi) + xifi‖l ≤ max{‖(γ(fi)− fi)(ei + xi)‖l, ‖xifi‖l}

≤ max{‖(γ(fi)− fi)‖l, ‖xi‖l‖fi‖l}
≤ max{|�|(n+m)/l‖fi‖l, |�|1/l‖fi‖l}
= |�|1/l‖fi‖l

where we use that ei + xi = γ(ei) ∈ Rm has ‖ · ‖l-norm less than or equal to 1.

Therefore, ‖γ(f)− f‖l ≤ max1≤i≤r{|�|1/l‖fi‖l} = |�|1/l‖f‖l.

We now arbitrarily fix a level m ≥ 1. As before, we have a uniform pro-p

group Γo of rank t as an open subgroup of ΓQp . We also fix a positive inte-

ger n ≥ km − 1 such that Γn+m ⊆ Γo. Then Γn+m contains Γ∗ := Pi(Γo) for

some i ≥ 1 which is also a uniform pro-p group of rank t.

Let {γ1, . . . , γt} be an ordered basis of Γ∗ and let bi := γi − 1 ∈ Λ(Γ∗).
Then as before, we equip the K̆-algebra Λ(Γ∗)K̆ with the sub-multiplicative

norm ‖ · ‖l defined in (3.3.2) for every positive integer l. The natural inclu-

sions Λ(Γ∗)K̆,l+1 ↪→ Λ(Γ∗)K̆,l of K̆-Banach completions endow the projective

limit D(Γ∗) = lim←−l Λ(Γ∗)K̆,l with the structure of a K̆-Fréchet algebra which is

equal to the algebra of K̆-valued locally K-analytic distributions on Γ∗.

Proposition 3.4.3: For any integer l ≥ 1, the action of Γ∗ on Rrig
m extends

to Rrig
m,l and makes Rrig

m,l a topological Banach module over the K̆-Banach al-

gebra Λ(Γ∗)K̆,l. The action of ΓQp on Rrig
m extends to a continuous action of

the K̆-Fréchet algebra D(ΓQp).



406 M. SHETH Isr. J. Math.

Proof. The proof is similar to that of Theorem 3.3.4. First, we prove by induc-

tion on |α| that ‖bα(f)‖l ≤ ‖bα‖l‖f‖l for any f ∈ Rrig
m . This is clear if |α| = 0.

Let |α| > 0 and let i be the minimal index such that αi > 0. Define βj := αj

if j �= i and βi := αi − 1. Then Proposition 3.4.2 and the induction hypothesis

imply

‖bα(f)‖l =‖((γi − 1)bβ)(f)‖l = ‖(γi − 1)(bβ(f))‖l ≤ |�|1/l‖bβ(f)‖l
≤|�|1/l‖bβ‖l‖f‖l ≤ |�|1/l|�||β|/l‖f‖l
=|�|(|β|+1)/l‖f‖l = ‖bα‖l‖f‖l

as required. By Remark 2.2.8, this immediately gives ‖μ(f)‖l ≤ ‖μ‖l‖f‖l for
all μ ∈ Λ(Γ∗)K̆ and f ∈ Rm[ 1� ] = Rm ⊗ŏ K̆. Hence the map

Λ(Γ∗)K̆ ×Rm
[ 1
�

]
−→ Rm

[ 1
�

]
((μ, f) �→ μ(f))

is continuous if Λ(Γ∗)K̆ and Rm[ 1� ] are endowed with the respective ‖ · ‖l-
topologies and if the left hand side carries the product topology. Since Rm[ 1� ]

is dense in Rrig
m,l, we obtain a map Λ(Γ∗)K̆,l × Rrig

m,l −→ Rrig
m,l by passing to

completions. By continuity, it gives Rrig
m,l the structure of a topological Banach

module over the K̆-Banach algebra Λ(Γ∗)K̆,l.
Taking projective limits over l, we obtain a continuous map

D(Γ∗)×Rrig
m −→ Rrig

m

giving Rrig
m the structure of a continuous module over D(Γ∗). As D(ΓQp) is

topologically isomorphic to the locally convex direct sum
⊕

γΓ∗∈ΓQp/Γ∗ δγD(Γ∗),

Rrig
m is a continuous module over D(ΓQp).

We want to show that the D(ΓQp)-action on Rrig
m factors through a continuous

D(Γ)-action. As mentioned in the introduction, the idea is to use the local K-

analyticity of the Γ-action at level m = 0 obtained in Theorem 3.3.4 and the

étaleness property of the extension Rrig
m |Rrig

0 .

For a ring homomorphismA→ B of commutative unital rings, let DerA(B,B)

denote the B-module of A-linear derivations from B to B, and let ΩB/A denote

the B-module of differentials of B over A.

Lemma 3.4.4: Any K̆-linear derivation from Rrig
0 to Rrig

0 extends uniquely to

a K̆-linear derivation from Rrig
m to Rrig

m .
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Proof. Since Rm[ 1� ] is étale over R0[
1
� ] (cf. Theorem 2.1.2 (ii), [Str08ii]),

Rrig
m
∼= Rm

[ 1
�

]
⊗R0[

1
� ] R

rig
0

is étale over Rrig
0 by [Sta, Tag 00U0], and so is formally étale by [Sta, Tag 00UR].

Then, using [Sta, Tag 031K] and [Sta, Tag 00UO], we get that

ΩRrig
m /K̆

∼= ΩRrig
0 /K̆ ⊗Rrig

0
Rrig
m .

Therefore

DerK̆(Rrig
0 , Rrig

0 ) ∼= HomRrig
0
(ΩRrig

0 /K̆ , R
rig
0 )

↪→ HomRrig
0
(ΩRrig

0 /K̆ , R
rig
m )

∼= HomRrig
m
(ΩRrig

0 /K̆ ⊗Rrig
0
Rrig
m , Rrig

m )

∼= HomRrig
m
(ΩRrig

m /K̆ , R
rig
m )

∼= DerK̆(Rrig
m , Rrig

m ).

Theorem 3.4.5: The action of D(ΓQp) on Rrig
m factors through a continuous

action of D(Γ) on Rrig
m . Hence the action of Γ on the strong continuous K̆-linear

dual (Rrig
m )′b of R

rig
m is locally K-analytic.

Proof. Recall the inclusion map i : gQp ↪→ D(ΓQp) from the discussion before

Theorem 3.3.4. For every x ∈ gQp , i(x) ∈ D(ΓQp) acts on Rrig
m as a K̆-linear

derivation from Rrig
m to Rrig

m . Let λ ∈ K and x ∈ gQp be arbitrary, and consider

the distribution

i(λx)− λi(x) ∈ D(ΓQp).

It gives rise to a zero derivation on Rrig
0 by Theorem 3.3.4 and thus by Lemma

3.4.4, it is also zero on Rrig
m . This means that the action of D(ΓQp) on Rrig

m

factors through a continuous action of D(Γ) on Rrig
m .

As the K̆-Fréchet space Rrig
m is topologically isomorphic to

⊕r
i=1R

rig
0 , it

follows from [Sch02], Proposition 19.7, that Rrig
m is nuclear. Therefore, [ST02ii],

Corollary 3.4 implies that the locally convex K̆-vector space (Rrig
m )′b is of

compact type and that the action of Γ obtained by dualizing is locally

K-analytic.

Similar to the above, Theorem 3.4.5 can be generalized as follows. Fix m ≥ 1,

n ≥ km−1 and a uniform pro-p group Γ∗ ⊆ Γ2n+m+1 with km as in Lemma 3.4.1.



408 M. SHETH Isr. J. Math.

Theorem 3.4.6: The action of ΓQp on M s
m extends to a continuous action of

the K̆-Fréchet algebra D(ΓQp), which then factors through a continuous action

of D(Γ) on M s
m. Hence the action of Γ on the strong continuous K̆-linear dual

(M s
m)′b of M

s
m is locally K-analytic for any s ∈ Z.

Proof. Using Theorem 2.2.7, Lemma 3.4.1 and Proposition 3.4.2, the proof of

the first part of the assertion is similar to that of Theorem 3.3.5.

Observe that the isomorphism Lie(H(m)) ∼= Lie(H(0))⊗R0Rm is Γ-equivariant

for the diagonal Γ-action on the right. Therefore, we have the following

Γ-equivariant isomorphisms by (2.3.6):

M s
m
∼= Rrig

m ⊗Rm Lie(H(m))

∼= Rrig
m ⊗R0 Lie(H

(0))

∼= Rrig
m ⊗Rrig

0
Rrig

0 ⊗R0 Lie(H
(0))

∼= Rrig
m ⊗Rrig

0
M s

0

with Γ-acting diagonally on all the tensor products. As a consequence,

the gQp -action on f ⊗ δ ∈M s
m is given by

x(f ⊗ δ) = x(f)⊗ δ + f ⊗ x(δ).

However, by Theorem 3.3.5 and Theorem 3.4.5, M s
0 and Rrig

m are not

only gQp -modules but also g-modules. Thus, it follows that the D(ΓQp)-action

on M s
m factors through a continuous D(Γ)-action as required.

Remark 3.4.7: The method described above can also be used to show the lo-

cal analyticity of the Γ-action on the dual space of the global sections of a

large class of Drinfeld bundles over the Lubin–Tate moduli space (cf. [Koh11],

Section 3). If V is a finite-dimensional K̆-linear smooth representation of Γ

then, for any m ≥ 0, the free Rrig
m -module Rrig

m ⊗K̆ V with the diagonal Γ-action

induces a Γ-equivariant vector bundle over Xrig
m whose Fréchet space of global

sections is Rrig
m ⊗K̆V (cf. [Koh11], Theorem 1.2 and Corollary A.3). By choosing

a basis {b1, b2, . . . , bd} of V over K̆, the Fréchet topology of Rrig
m ⊗K̆ V can be

given by the family of the norms ‖f1b1+f2b2+ · · ·+fdbd‖l := max1≤i≤d{‖fi‖l}
with l ∈ N, where the l-norms on Rrig

m are as defined in Section 2.3. It then

follows from Proposition 3.3.1 and Proposition 3.4.2 that if γ belongs to a small
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enough open subgroup of Γ (⊆ intersection of stabilizers of bi’s) then

‖γ(f1b1 + f2b2 + · · ·+ fdbd)− (f1b1 + f2b2 + · · ·+ fdbd)‖l
= ‖(γ(f1)− f1)b1 + (γ(f2)− f2)b2 + · · ·+ (γ(fd)− fd)bd‖l
= max

1≤i≤d
{‖γ(fi)− fi‖l}

≤ |�|1/l max
1≤i≤d

{‖fi‖l}

= |�|1/l‖f1b1 + f2b2 + · · ·+ fdbd‖l.
Therefore, similar to the the proof of Theorem 3.3.4, the Γ-action on Rrig

m ⊗K̆ V
extends to a continuous action of the Fréchet algebra D(ΓQp). Since Rrig

m is a

g-module and V is annihilated by g, the D(ΓQp)-action on Rrig
m ⊗K̆ V factors

through a continuous action ofD(Γ) making its strong topological dual a locally

K-analytic Γ-representation.

4. Locally finite vectors in the global sections of equivariant vector

bundles

This section is devoted to studying representation-theoretic aspects of the Γ-

representations M s
m which include a complete description of the Γ-locally finite

(algebraic) vectors in M s
m for all s ∈ Z and m ≥ 0.

4.1. Locally finite vectors in the Γ-representations M s
0 .

Definition 4.1.1: Let G be a topological group and V be a vector space over

a field F equipped with an F -linear G-action. We say that a vector v ∈ V is

locally finite (or G-locally finite) if there is an open subgroup H of G and

a finite-dimensional H-stable subspace W of V containing v.3 It follows easily

that the set Vlf of all locally finite vectors of V forms a G-stable subspace. We

call V a locally finite representation of G if Vlf = V . If V and W are F -linear

G-representations, and if f : V −→ W is an F -linear G-equivariant map, then

clearly f(Vlf) ⊆Wlf.

3 In [Eme17], Proposition-Definition 4.1.8, the notion of a locally finite vector is defined

for the vector spaces over a complete non-archimedean field F , and requires locally fi-

nite vector v to be contained in a continuous finite-dimensional H-representation W for

its natural Hausdorff topology as a finite-dimensional F -vector space. Since all the Γ-

representations we are concerned with in this section are continuous representations on

K̆-Fréchet spaces, the continuity condition is automatically satisfied.
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To calculate locally finite vectors, we make extensive use of the Lie alge-

bra action. Let U(g) be the universal enveloping algebra of the Lie algebra g

of Γ over K. Note that g is isomorphic to the Lie algebra associated with the

associative K-algebra Bh. Thus,

g ↪→ g⊗K Kh
∼= glh(Kh).

Denote by xij ∈ glh(Kh) the matrix with entry 1 at the place (i, j) and zero

everywhere else. By Theorem 3.2.7, the Γ-representation

M s
D
∼= OXrig

0
(D)ϕs0

carries a continuous linear action of

U(g)⊗K K̆ ∼= U(glh(Kh))⊗Kh
K̆ ↪→ D(Γ).

Since GLh(Kh) acts on the projective coordinates ϕ0, . . . , ϕh−1 by fractional

linear transformations, one can explicitly determine this Lie algebra action using

the formula

x(f) =
d

dt
exp(tx)(f)|t=0.

Lemma 4.1.2: Let i, j and s be integers with 0 ≤ i, j ≤ h− 1. Put w0 := 1. If

f ∈ OXrig
0
(D) then

(4.1.3) xij(fϕ
s
0) =

⎧⎪⎪⎨
⎪⎪⎩
wi

∂f
∂wj

ϕs0, if j �= 0;

(sf −∑h−1
l=1 wl

∂f
∂wl

)ϕs0, if i = j = 0;

wi(sf −
∑h−1

l=1 wl
∂f
∂wl

)ϕs0, if i > j = 0.

Proof. This is exactly the same as [Koh14], Lemma 4.1, which treats the case

K = Qp.

Given a Lie subalgebra h⊆glh(Kh), and a K̆-linear glh(Kh)-representationW,

the K̆-subspace of h-invariants of W is the subspace

{w ∈W |x(w) = 0 for all x ∈ h}
of W . Let us denote by n the Lie subalgebra of glh(Kh) consisting of strictly

upper triangular matrices. For later use, we calculate the g-invariants and the

n-invariants of OXrig
0
(D) in the next lemma using the formulae (4.1.3).

Lemma 4.1.4: OXrig
0
(D)g=0 = OXrig

0
(D)n=0 = K̆.
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Proof. Since K̆ ⊆ OXrig
0
(D)g=0 ⊆ OXrig

0
(D)n=0, it suffices to show that the

latter is K̆. Now if f ∈ OXrig
0
(D)n=0, then applying the formulae (4.1.3) we get

x0j(f) =
∂f

∂wj
= 0

for all 1 ≤ j ≤ h− 1. Therefore, f must be a constant power series.

We now compute the space (M s
D)lf of locally finite vectors in the Γ-represen-

tation M s
D. The key step is the following lemma based on Lemma 4.1.2:

Lemma 4.1.5: The subspace K̆[w1, . . . , wh−1]ϕ
s
0 of M s

D is contained in

(U(g)⊗K K̆)(fϕs0) for any non-zero homogeneous polynomial

f ∈ K̆[w1, . . . , wh−1]

of total degree d > s.

Proof. Using (4.1.3), we have for all 0 < i, j ≤ h− 1

x0j(fϕ
s
0) =

∂f

∂wj
ϕs0,

xi0(fϕ
s
0) = (s− d)wifϕs0.

To obtain gϕs0 with a monomial g of total degree ≤ s, first reduce fϕs0 to ϕs0
by applying suitable x0j (j �= 0) to it iteratively and then apply appropriate xi0

(i > 0) to ϕs0 to get the desired element gϕs0. To obtain gϕ
s
0 with a monomial g of

total degree > s, reverse the procedure, i.e., first apply appropriate xi0 (i > 0)

to fϕs0 and then reduce the result to gϕs0 by applying suitable x0j (j �= 0)

to it.

For any s ∈ Z, we define the K̆-subspace of M s
D by

Vs :=
∑
|α|≤s

K̆wαϕs0.

Note that we have Vs = 0 if s < 0. For s ≥ 0, it is easy to see that Vs is stable

under the action of Γ. To see this, it is sufficient to prove that γ(wαϕs0) ∈ Vs
for any wαϕs0 with |α| ≤ s and for any γ =

∑h−1
i=0 λiΠ

i ∈ Γ. In this case, using

the action of the matrix (3.1.8) on the projective coordinates [ϕ0 : . . . : ϕh−1],
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we find

γ(wαϕs0) =γ(w
α1
1 . . . w

αh−1

h−1 ϕ
s
0)

=γ(ϕα1

1 . . . ϕ
αh−1

h−1 ϕ
s−|α|
0 )

=γ(ϕ1)
α1 . . . γ(ϕh−1)

αh−1γ(ϕ0)
s−|α|

=(�λ1ϕ0+ · · ·+�λσh−1

2 ϕh−1)
α1 · · · (�λh−1ϕ0+ · · ·+λσh−1

0 ϕh−1)
αh−1

× (λ0ϕ0 + · · ·+ λσ
h−1

1 ϕh−1)
s−|α|

=(�λ1 + · · ·+�λσ
h−1

2 wh−1)
α1 · · · (�λh−1 + · · ·+ λσ

h−1

0 wh−1)
αh−1

× (λ0 + · · ·+ λσ
h−1

1 wh−1)
s−|α|ϕs0 ∈ Vs.

Theorem 4.1.6: The Γ-representationM s
D is topologically irreducible if s < 0,

and if s ≥ 0 then Vs is a topologically irreducible sub-representation ofM s
D with

topologically irreducible quotient M s
D/Vs.

Proof. Case s < 0: Let V be a non-zero closed Γ-stable subspace of M s
D. Let

f0ϕ
s
0 ∈ V where

f0 =
∑

α∈N
h−1
0

cαw
α �= 0

and d (≥ 0) be the smallest natural number such that cα �= 0 for some α ∈ Nh−1
0

with |α| = d. Thus,

f0ϕ
s
0 =

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

cαw
α

)
ϕs0 ∈ V

where ∑
|α|=d

cαw
α �= 0.

For n > 0, define a sequence of elements of M s
D inductively as follows:

fnϕ
s
0 :=

1

n
((d+ n− s)fn−1ϕ

s
0 + x00(fn−1ϕ

s
0)).

Since V is closed and Γ-stable, V is stable under the action of the Lie algebra

and thus fn ∈ V for all n ∈ N0.

We prove by induction on n that

(4.1.7) fnϕ
s
0 =

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(−1)n
(
i− 1

n

)
cαw

α

)
ϕs0.
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Here the generalized binomial coefficients are defined by(
x

n

)
:=

x(x− 1) · · · (x− n+ 1)

n!

for any x ∈ Z and n ∈ N0. The case n = 0 is true by definition. Assuming

that (4.1.7) holds for n− 1, we compute using Lemma 4.1.2 that

fnϕ
s
0=

1

n
((d + n− s)fn−1ϕ

s
0 + x00(fn−1ϕ

s
0))

=
1

n

(
(d+ n− s)

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(−1)n−1

(
i− 1

n− 1

)
cαw

α

)
ϕs0

+ x00

(( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(−1)n−1

(
i− 1

n− 1

)
cαw

α

)
ϕs0

))

=
1

n

(
(d+ n− s)

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(−1)n−1

(
i− 1

n− 1

)
cαw

α

)
ϕs0

+

( ∑
|α|=d

(s−d)cαwα+
∞∑
i=1

∑
|α|=d+i

(s−(d+i))(−1)n−1

(
i−1
n−1

)
cαw

α

)
ϕs0

)

=

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(n− i)(−1)n−1 1

n

(
i− 1

n− 1

)
cαw

α

)
ϕs0

=

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

(−1)n
(
i− 1

n

)
cαw

α

)
ϕs0.

We now claim that the sequence fnϕ
s
0 converges to( ∑

|α|=d
cαw

α

)
ϕs0

as n tends to∞ with respect to the norm ‖·‖Ms
D
defined in the proof of Theorem

3.2.7. As f0 ∈ OXrig
0
(D), we know that given ε > 0, there exists Nε ∈ N such

that for all α ∈ Nh−1
0 with |α| > Nε, we have

|cα||�|
∑h−1

i=1 αi(1− i
h ) < ε.

Therefore,

sup
|α|>Nε

|cα||�|
∑h−1

i=1 αi(1− i
h ) < ε.
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Now for all n > Nε − d, using (4.1.7), we have

∥∥∥∥fnϕs0 −
( ∑

|α|=d
cαw

α

)
ϕs0

∥∥∥∥
Ms

D

=

∥∥∥∥
( ∞∑
i=1

∑
|α|=d+i

(−1)n
(
i− 1

n

)
cαw

α

)
ϕs0

∥∥∥∥
Ms

D

=

∥∥∥∥
∞∑
i=1

∑
|α|=d+i

(−1)n
(
i− 1

n

)
cαw

α

∥∥∥∥
D

=

∥∥∥∥
∞∑

i=n+1

∑
|α|=d+i

(−1)n
(
i− 1

n

)
cαw

α

∥∥∥∥
D

≤
∥∥∥∥ ∑

|α|>d+n
cαw

α

∥∥∥∥
D

= sup
|α|>d+n

|cα||�|
∑h−1

i=1 αi(1− i
h )

≤ sup
|α|>Nε

|cα||�|
∑h−1

i=1 αi(1− i
h ) < ε.

Hence, fnϕ
s
0 converges to (

∑
|α|=d cαw

α)ϕs0 as n→∞ and (
∑

|α|=d cαw
α)ϕs0∈V

because V is closed. Since
∑

|α|=d cαw
α is a non-zero homogeneous polynomial

of total degree d ≥ 0 > s, Lemma 4.1.5 implies that K̆[w1, . . . , wh−1]ϕ
s
0 ⊆ V .

Since K̆[w1, . . . , wh−1]ϕ
s
0 is dense in M s

D = OXrig
0
(D)ϕs0 and V is closed, it fol-

lows that V =M s
D. Hence, M

s
D is topologically irreducible for all s < 0.

Case s ≥ 0: Let V be a non-zero closed Γ-stable subspace of Vs. Then V

is stable under the action of the Lie algebra g and thus it becomes a module

over U(g) ⊗K K̆. As mentioned in the proof of Lemma 4.1.5, any non-zero

element fϕs0 of V can be reduced to ϕs0 by applying suitable x0j (j �= 0) to it

iteratively and then ϕs0 can be converted into any monomial of total degree ≤ s
multiplied with ϕs0 by applying appropriate xi0 (i > 0) to it. Therefore V = Vs

and Vs is topologically irreducible.

Now let φ :M s
D−→M s

D/Vs be the canonical surjective map and letW⊂M s
D/Vs

be a non-zero, closed Γ-stable subspace. Then φ−1(W ) is a non-zero, closed Γ-

stable subspace of M s
D not equal to Vs. Let (

∑
α∈N

h−1
0

cαw
α)ϕs0 + Vs be a

non-zero element of W . Then

f0ϕ
s
0 :=

( ∑
|α|>s

cαw
α

)
ϕs0 �= 0 ∈ φ−1(W ).
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Let d > s be the smallest natural number such that cα �= 0 for some α ∈ Nh−1
0

with |α| = d. Thus,

f0ϕ
s
0 =

( ∑
|α|=d

cαw
α +

∞∑
i=1

∑
|α|=d+i

cαw
α

)
ϕs0 ∈ φ−1(W )

where
∑

|α|=d cαw
α �= 0.

As in the case of s < 0, we define a sequence of elements in φ−1(W ) induc-

tively for n > 0 as follows:

fnϕ
s
0 :=

1

n
((d+ n− s)fn−1ϕ

s
0 + x00(fn−1ϕ

s
0)).

Using exactly the same proof in the previous case of s < 0, it can be shown that

fnϕ
s
0 converges to (

∑
|α|=d cαw

α)ϕs0 as n→∞ and (
∑

|α|=d cαw
α)ϕs0 ∈ φ−1(W )

because φ−1(W ) is closed. Since
∑

|α|=d cαw
α is a non-zero homogeneous poly-

nomial of total degree d > s, it follows from Lemma 4.1.5 that

K̆[w1, . . . , wh−1].ϕ
s
0 ⊆ φ−1(W ).

Since K̆[w1, . . . , wh−1]ϕ
s
0 is dense in M s

D = OXrig
0
(D)ϕs0 and φ−1(W ) is closed,

it follows that φ−1(W ) =M s
D. Hence W = φ(M s

D) = M s
D/Vs. Thus M s

D/Vs is

topologically irreducible.

Corollary 4.1.8: For all s ∈ Z, we have

(M s
D)lf = Vs.

Thus, (M s
D)lf is zero if s < 0 and is a finite-dimensional irreducible representa-

tion of Γ if s ≥ 0.

Proof. Since Γ is compact, any v ∈ (M s
D)lf is contained in a finite-dimensional Γ-

subrepresentation ofM s
D. Now the corollary immediately follows from Theorem

4.1.6 and the fact that M s
D is not a finite-dimensional K̆-vector space.

Remark 4.1.9: For s ≥ 0, the finite-dimensional Γ-representation Vs is also

a gl(Kh)-module. Let t ⊂ slh(Kh) be the Cartan subalgebra of slh(Kh) consist-

ing of diagonal matrices, and let {ε1, . . . , εh−1} be the basis of the root system

(slh(Kh), t) given by εi(diag(t0, . . . , th−1)) := ti−1− ti. Define the fundamental

dominant weight

χ0 :=
1

h

h−1∑
i=1

(h− i)εi ∈ t∗.
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Then, by the same proof as in [Koh14], Proposition 4.3, it follows that Vs is

an irreducible slh(Kh)-representation of highest weight sχ0. Although this is

stronger than saying that Vs is an irreducible Γ-representation, our result (The-

orem 4.1.6) also gives information about the Γ-representation M s
D when s < 0,

and about the quotient M s
D/Vs when s ≥ 0.

Corollary 4.1.8 leads us to calculate locally finite vectors in the global

sections M s
0 over Xrig

0 . Recall from [BGR84], (9.3.4), Example 3, that the

rigid analytic projective space Ph−1

K̆
has a finite admissible covering by the

(h− 1)-dimensional closed unit polydiscs

Vi := Sp
(
K̆
〈ϕ0

ϕi
, . . . ,

ϕh−1

ϕi

〉)
, 0 ≤ i ≤ h− 1.

If

Vij := Sp
(
K̆
〈ϕ0

ϕi
, . . . ,

ϕh−1

ϕi
,
(ϕj
ϕi

)−1〉)
for 0 ≤ i, j ≤ h− 1,

then gluing the Vi’s along the identification Vij ∼= Vji of affinoid subdomains

via K̆〈ϕ0

ϕi
, . . . , ϕh−1

ϕi
, (
ϕj

ϕi
)−1〉 = K̆〈ϕ0

ϕj
, . . . , ϕh−1

ϕj
, (ϕi

ϕj
)−1〉 gives the rigid analytic

projective space Ph−1

K̆
. The affinoid covering {Vi}0≤i≤h−1 allows us to describe

the construction of the line bundles O
P
h−1

K̆

(s) on the rigid analytic projective

space in a way analogous to the classical construction. For s ≥ 0, define its

sections over the affinoid space Vi

O
P
h−1

K̆

(s)(Vi) := K̆
〈ϕ0

ϕi
, . . . ,

ϕh−1

ϕi

〉
ϕsi

to be a free module of rank 1 generated by ϕsi overOP
h−1

K̆

(Vi) = K̆〈ϕ0

ϕi
, . . . , ϕh−1

ϕi
〉,

and the transition functions ψij : Vij ∼−→ Vji induced by the homomorphisms

of affinoid K̆-algebras

K̆
〈ϕ0

ϕj
, . . . ,

ϕh−1

ϕj
,
(ϕi
ϕj

)−1〉
ϕsj

multiply by
ϕs
i

ϕs
j−−−−−−−−−→ K̆

〈ϕ0

ϕi
, . . . ,

ϕh−1

ϕi
,
(ϕj
ϕi

)−1〉
ϕsi

for all 0 ≤ i, j ≤ h − 1. The above datum gives rise to a locally free O
P
h−1

k̆

-

module O
P
h−1

K̆

(s) of rank 1. For s < 0, O
P
h−1

K̆

(s) turns out to be the O
P
h−1

k̆

-linear

dual of O
P
h−1

K̆

(−s). It then follows easily from the above description that the

global sections of O
P
h−1

K̆

(s) are the K̆-vector space of homogeneous polynomials

of degree s in the variables ϕi’s if s ≥ 0, and are 0 otherwise. The line bundles

O
P
h−1

K̆

(s) carry a canonical action of Γ induced by its action on the projective

space Ph−1

K̆
.
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Now for any OXrig
0
-module F and O

P
h−1

K̆

-module G, there is a canonical bi-

jection

HomO
X

rig
0

−mod(Φ
∗G,F) ∼−→ HomO

P
h−1

K̆

−mod(G,Φ∗F),

where Φ : Xrig
0 −→ Ph−1

K̆
is the Gross–Hopkins’ period morphism. The mor-

phism idΦ∗G corresponds to the adjunction morphism ad : G −→ Φ∗Φ∗G. Let

G = O
P
h−1

K̆

(s) with s ∈ Z. The period morphism Φ is constructed in such a way

that

Φ∗O
P
h−1

K̆

(s) ∼= (Ms
0)

rig

(cf. Remark 3.1.14). This gives us a map ad : O
P
h−1

K̆

(s) −→ Φ∗(Ms
0)

rig ofO
P
h−1

K̆

-

modules. Taking global sections, we get a homomorphism of Γ-representations

ad
P
h−1

K̆

: O
P
h−1

K̆

(s)(Ph−1

K̆
) −→ Φ∗(Ms

0)
rig(Ph−1

K̆
) = (Ms

0)
rig(Φ−1(Ph−1

K̆
))

= (Ms
0)

rig(Xrig
0 )

=M s
0 .

Lemma 4.1.10: The map ad
P
h−1

K̆

is injective.

Proof. The period morphism Φ, when restricted to the affinoid subdomain D,

is an isomorphism. Thus

(Ms
0)

rig(D) ∼= Φ∗O
P
h−1

K̆

(s)(D) ∼= OP
h−1

K̆

(s)(Φ(D)).

Also we have

(Ms
0)

rig(D) ∼= OXrig
0
(D)ϕs0

∼= OP
h−1

K̆

(Φ(D))ϕs0.

As a result, it follows from the preceding discussion on the line bundles that

O
P
h−1

K̆

(s)(Ph−1

K̆
) maps bijectively onto Vs ⊂ OP

h−1

K̆

(s)(Φ(D)) under the restric-

tion map. The lemma now follows from the following commutative diagram

with vertical restriction maps:

O
P
h−1

K̆

(s)(Ph−1

K̆
)

ad
P
h−1

K̆ ��
� �

��

Φ∗(Ms
0)

rig(Ph−1

K̆
) =M s

0

��
O

P
h−1

K̆

(s)(Φ(D))
adΦ(D)

∼= �� Φ∗(Ms
0)

rig(Φ(D)) =M s
D
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Corollary 4.1.11: For all s ∈ Z, we have an isomorphism of Γ-representations

(M s
0 )lf = OP

h−1

K̆

(s)(Ph−1

K̆
) ∼= Vs.

Thus, (M s
0 )lf is zero if s < 0 and is a finite-dimensional irreducible representa-

tion of Γ if s ≥ 0.

Proof. The inclusion Rrig
0 ↪→ OXrig

0
(D) gives rise to a Γ-equivariant inclusion

M s
0 ↪→ M s

D
∼= OXrig

0
(D) ⊗R0 Lie(H(0))⊗s using (2.3.6) and the freeness of

Lie(H(0))⊗s as an R0-module. As O
P
h−1

K̆

(s)(Ph−1

K̆
) is a finite-dimensional K̆-

vector space, we have for s ≥ 0, O
P
h−1

K̆

(s)(Ph−1

K̆
) ⊆ (M s

0 )lf ⊆ (M s
D)lf = Vs,

where the first and the last K̆-vector spaces are isomorphic as mentioned in the

proof of the previous lemma.

Remark 4.1.12: From now on, we identify the subrepresentationO
P
h−1

K̆

(s)(Ph−1

K̆
)

of M s
0 with Vs. For s = 1, the Γ-locally finite subrepresentation V1 of M1

0 is

the representation V mentioned in the construction of the period morphism Φ

(cf. the paragraph after Corollary 3.1.5), and thus is isomorphic to the h-

dimensional Γ-representation Bh ⊗Kh
K̆. Since O

P
h−1

K̆

(s)(Ph−1

K̆
) is same as the

s-th symmetric power Syms(O
P
h−1

K̆

(1)(Ph−1

K̆
)) of O

P
h−1

K̆

(1)(Ph−1

K̆
), we obtain the

isomorphism

(M s
0 )lf = Vs ∼= Syms(Bh ⊗Kh

K̆)

of Γ-representations for all s ≥ 0.

4.2. Locally finite vectors in the Γ-representations M s
m with m > 0.

We compute the locally finite vectors in two parts: s ≤ 0 and s > 0. The idea

here is to use the commuting actions of Γ and the finite group G0/Gm on M s
m.

Part I : s ≤ 0

Lemma 4.2.1: Let G be a finite group acting on an integral domain R by ring

automorphisms such that the subring of G-invariants RG is a perfect field F .

Then R is a field and the extension R/F is finite.

Proof. If α ∈ R then
∏
σ∈G(t− σ(α)) is a monic polynomial of degree |G| with

coefficients in RG = F , and has α as a root. This implies that every nonzero α

has a unique inverse, since R is an integral domain. The second assertion now

follows from [Lang02], Chapter VI, Lemma 1.7.
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Let K̆m denote the m-th Lubin–Tate extension of K̆. This is a finite Galois

extension of K̆ obtained by adjoining �m-torsion points of any Lubin–Tate

formal o-module over o to it. It is a non-trivial result of M. Strauch (cf. [Str08i],

Corollary 3.4 (ii)) that K̆m ⊂ Rrig
m . In fact, K̆m is stable under the actions of

G0/Gm and Γ on Rrig
m . For g ∈ G0/Gm, γ ∈ Γ and α ∈ K̆m, these actions are

given by

g(α) = det(g)−1(α) and γ(α) = Nrd(γ)(α)

viewing K̆ as a left o×-module via the map o× � (o/�mo)× ∼= Gal(K̆m/K̆)

(cf. [Str08i], Theorem 4.4).

Theorem 4.2.2: For all m ≥ 0, (M0
m)lf = (Rrig

m )lf = K̆m.

Proof. The kernel of the composition map Γ
Nrd−−→ o× −→ (o/�mo)× is an open

subgroup of Γ which acts trivially on K̆m. Thus K̆m ⊆ (Rrig
m )lf. Notice that

(Rrig
m )lf is a subring of Rrig

m and is stable under the action of G0/Gm. To see

the stability, let f ∈ (Rrig
m )lf and V be a finite-dimensional H-subrepresentation

of Rrig
m containing f for some open subgroup H of Γ. Let g ∈ G0/Gm. Then

the K̆-vector space gV is H-stable since the actions of H and G0/Gm on V

commute. Thus gV is a finite-dimensional H-subrepresentation of Rrig
m contain-

ing gf implying that gf is locally finite. Now it follows from [Koh11] Theorem

1.4(i) and Corollary 4.1.11 that

(Rrig
m )

G0/Gm

lf = ((Rrig
m )G0/Gm)lf = (Rrig

0 )lf = K̆.

As (Rrig
m )lf is an integral domain due to [Koh11], Theorem 1.2 (i) and G0/Gm

is finite, (Rrig
m )lf is a finite field extension of K̆ by Lemma 4.2.1. So it is also

finite over K̆m. However, Strauch’s result that X
rig
m is geometrically connected

over K̆m implies that K̆m is separably closed in Rrig
m (cf. [Koh11], Theorem 1.4).

Therefore (Rrig
m )lf = K̆m.

Remark 4.2.3: By Theorem 3.4.5, we have a g-action on Rrig
m . The subspace of

g-invariants (Rrig
m )g=0 forms a subring of Rrig

m , and is stable under the action of

G0/Gm because the G0/Gm-action on Rrig
m is continuous and commutes with

that of Γ. As mentioned in the proof of Theorem 4.2.2, the kernel of the

composition map Γ
Nrd−−→ o× −→ (o/�mo)× is an open subgroup of Γ which acts

trivially on K̆m. Thus, K̆m ⊆ (Rrig
m )g=0. Proceeding similarly to the above, we

have ((Rrig
m )g=0)G0/Gm = ((Rrig

m )G0/Gm)g=0 = (Rrig
0 )g=0 = K̆ (cf. Lemma 4.1.4).

Then by the same arguments as above, we get (Rrig
m )g=0 = K̆m.
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For all integers s, the Γ-equivariant isomorphism

M s
m
∼= Rrig

m ⊗Rrig
0
M s

0

(cf. proof of Theorem 3.4.6) and the freeness of the Rrig
0 -module M s

0 give rise

to a Γ-equivariant inclusion M s
0 ⊂ M s

m of K̆-vector spaces. Consequently, we

have (M s
0 )lf ⊆ (M s

m)lf. Using the above theorem, we see that (M s
m)lf is a module

over (Rrig
m )lf = K̆m, and thus we obtain a natural map

K̆m ⊗K̆ (M s
0 )lf −→ (M s

m)lf

of K̆-vector spaces. Our objective is to show that this map is an isomorphism

of K̆[Γ]-modules for all s.

Lemma 4.2.4: Suppose V and W are two representations of a topological

group G over a field F such that one of them, say W , is finite-dimensional.

Consider the representation V ⊗F W with diagonal G-action. Then

(V ⊗F W )lf = Vlf ⊗F W.
Proof. We omit the subscript F in ⊗F , as all the tensor products are over F .

The inclusion Vlf ⊗W ⊆ (V ⊗W )lf is clear. Let W ∗ be the F -linear dual of

W equipped with the contragredient G-action, i.e., (gf)(w) = f(g−1w) for all

g ∈ G,w ∈ W and f ∈ W ∗. Choose an F -basis {w1, . . . , wd} of W , and let

{f1, . . . , fd} be the dual basis of W ∗ (i.e., fi(wj) = δij). Then the natural

evaluation map

W ⊗W ∗ −→ F (w ⊗ f �→ f(w))

is G-equivariant for the diagonal G-action on the left and for the trivial G-

action on the right. Tensoring both sides with V , we get a G-equivariant map

φ : V ⊗W ⊗W ∗ −→ V for the diagonal G-action on the left, sending v ⊗ w ⊗ f
to f(w)v. Because of its G-equivariance, φ maps locally finite vectors to locally

finite vectors. Now let x ∈ (V ⊗W )lf. Then x can be uniquely written as

x =

d∑
i=1

xi ⊗ wi

for some x1, . . . , xd ∈ V . Since W ∗ is finite-dimensional,

x⊗ fi ∈ (V ⊗W )lf ⊗ (W ∗)lf ⊆ (V ⊗W ⊗W ∗)lf

for all 1 ≤ i ≤ d. Hence, φ(x ⊗ fi) = xi ∈ Vlf for all 1 ≤ i ≤ d. Therefore,

x ∈ Vlf ⊗W .
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Theorem 4.2.5: For all s < 0 and for all m ≥ 0, (M s
m)lf ∼= K̆m⊗K̆ (M s

0 )lf = 0.

Proof. Recall from Corollary 3.1.5 that we have an isomorphism

Rrig
m ⊗Rm Lie(E(m))⊗s ∼= Rrig

m ⊗K̆ (Bh ⊗Kh
K̆)⊗s

of Γ-representations. As a result, using Lemma 4.2.4 together with Theorem

4.2.2, we obtain locally finite vectors in the global sections of Lie(E(m))⊗s,

(Rrig
m ⊗Rm Lie(E(m))⊗s)lf ∼= K̆m ⊗K̆ (Bh ⊗Kh

K̆)⊗s.

Then, since s < 0, the (Γ× (G0/Gm))-equivariant inclusion

M s
m ⊂ Rrig

m ⊗Rm Lie(E(m))⊗s

from (3.1.2) gives rise to a (Γ× (G0/Gm))-equivariant inclusion

(M s
m)lf ⊆ K̆m ⊗K̆ (Bh ⊗Kh

K̆)⊗s

of K̆-vector spaces. As the action of SLh(o/�
mo) ⊂ G0/Gm on the right-hand

side above is trivial, we get

(M s
m)lf = (M s

m)
SLh(o/�

mo)
lf = ((M s

m)SLh(o/�
mo))lf,

where the latter equality is due to the fact that both group actions on M s
m

commute. Therefore,

(M s
m)lf =((M s

m)SLh(o/�
mo))lf ∼= ((Rrig

m ⊗Rrig
0
M s

0 )
SLh(o/�

mo))lf

∼=((Rrig
m )SLh(o/�

mo) ⊗Rrig
0
M s

0 )lf

∼=((K̆m ⊗K̆ Rrig
0 )⊗Rrig

0
M s

0 )lf

∼=(K̆m ⊗K̆ M s
0 )lf = K̆m ⊗K̆ (M s

0 )lf = 0

where the second isomorphism holds because M s
0 is free over Rrig

0 with trivial

G0/Gm-action, and the third isomorphism holds because (Rrig
m )SLh(o/�

mo) is

Galois over Rrig
0 with the Galois group isomorphic to

G0/Gm
SLh(o/�mo)

∼= (o/�mo)× ∼= Gal(K̆m/K̆)

and K̆m ⊆ Rrig
m . For the second last equality in the above, we use Lemma 4.2.4

again. The final result then follows from Corollary 4.1.11.
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Part II : s > 0

To compute the locally finite vectors in M s
m for s > 0, we make use of the

action of the group

G0 := {g ∈ GLh(K)| det(g) ∈ o×}
on the Lubin–Tate tower (Xrig

m )m∈N0 described in [Str08ii], Section 2.2.2. Given

g ∈ G0 and m ≥ 0, for every m′ ≥ m sufficiently large (depending on g), there

is a morphism gm′,m : Xrig
m′ −→ Xrig

m of rigid analytic spaces satisfying the

following properties:

(1) For all g ∈ G0 and for all n ≥ m′′ ≥ m′ ≥ m, we have

gn,m = πm′,m ◦ gm′′,m′ ◦ πn,m′′ ,

where recall that πm′,m : Xrig
m′ −→ Xrig

m denotes the covering morphism.

In particular, if g = e, and if m = m′ = m′′, then we get en,m = πn,m

for all n ≥ m because em,m = idXrig
m

by definition (cf. [Str08ii], Section

2.2.2).

(2) (gh)m′′,m = gm′,m ◦ hm′′,m for all g, h ∈ G0 and for all m′′ ≥ m′ ≥ m.

(3) Set Φm := Φ ◦ πm,0 : Xrig
m −→ Ph−1

K̆
. Then Φm′ = Φm ◦ gm′,m for all

g ∈ G0, m′ ≥ m.

(4) All gm′,m are Γ-equivariant morphisms.

(5) For g ∈ GLh(o) and m ≥ 0, gm,m is defined. The gives an action of

GLh(o) on Xrig
m which factors through GLh(o/�

mo) = G0/Gm. The

induced G0/Gm-action coincides with the G0/Gm-action introduced in

Section 2.2.

Let Dm := π−1
m,0(D) where D is the Gross–Hopkins fundamental domain D

in Xrig
0 . The admissible open Dm is a Γ-stable affinoid subdomain because πm,0

is a finite, Γ-equivariant morphism, and D is Γ-stable. For every g ∈ G0 and

m≥0, we define a g-translate of Dm as gDm :=gm′,m(Dm′) by choosing m′≥m
large enough. Note that this definition is independent of the choice of m′, since
by property (1), for m′′ ≥ m′ ≥ m,

gm′′,m(Dm′′) =gm′,m(πm′′,m′(Dm′′))

=gm′,m(πm′′,m′(π−1
m′′,0(D)))

=gm′,m(πm′′,m′(π−1
m′′,m′(π

−1
m′,0(D)))) = gm′,m(Dm′),

using that πm′′,m′ is surjective.
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Proposition 4.2.6: The set {gDm}g∈G0 forms an admissible affinoid covering

of Φ−1
m (Φ(D)) consisting of Γ-stable affinoid subdomains.

Proof. This is a part of the cellular decomposition of the Lubin–Tate tower in

[FGL08], Proposition I.7.1 relying on [GH94], Corollary 23.26. The Γ-stability

of gDm follows from (iv) and that of Dm′ .

Lemma 4.2.7: For all g ∈ G0 and m′ ≥ m, the maps

O
P
h−1

K̆

(Φ(D)) −→ OXrig
m
(gDm) −→ OXrig

m′
(Dm′)

of affinoid K̆-algebras induced by the morphisms Dm′
gm′,m−−−−→ gDm

Φm−−→ Φ(D)

are injective.

Proof. By property (3), the composition

Φm ◦ gm′,m = Φm′ = Φ ◦ πm′,0

is flat because Φ and πm′,0 are flat. Hence the composition map

O
P
h−1

K̆

(Φ(D)) −→ OXrig

m′
(Dm′)

of affinoid K̆-algebras is flat. Since

O
P
h−1

K̆

(Φ(D)) ∼= OXrig
0
(D)

is an integral domain (cf. [BGR84], (6.1.5), Proposition 2), we have that the map

O
P
h−1

K̆

(Φ(D)) −→ OXrig

m′
(Dm′) is injective.

To show that the other map OXrig
m
(gDm) −→ OXrig

m′
(Dm′) is injective, choose

m′′ ≥ m′ large enough so that g−1
m′′,m′ : Xrig

m′′ −→ Xrig
m′ is defined. Using

properties (1) and (2), we have

g−1
m′′,m′(gDm′′) = g−1

m′′,m′(gn,m′′(Dn)) = en,m′(Dn) = πn,m′(Dn) = Dm′

and thus

gDm = gm′,m(Dm′) = gm′,m(g
−1
m′′,m′(gDm′′))=em′′,m(gDm′′) = πm′′,m(gDm′′).

In other words,

(gm′,m ◦ g−1
m′′,m′)|gDm′′ = πm′′,m.

Hence the induced compositionOXrig
m
(gDm) −→ OXrig

m′
(Dm′) −→ OXrig

m′′
(gDm′′)

of the maps of affinoid K̆-algebras is flat. Now it is not clear if the alge-

bra OXrig
m
(gDm) is an integral domain. However, we can decompose gDm



424 M. SHETH Isr. J. Math.

into its finitely many disjoint connected components gDm =
⊔r
i=1 Ui so that

each OXrig
m
(Ui) is an integral domain (cf. discussion after [BGR84], (9.1.4),

Proposition 8 as well as [Con99], Lemma 2.1.4). This decomposition also gives

a decomposition gDm′′ =
⊔r
i=1(πm′′,m|gDm′′ )

−1(Ui) of gDm′′ into disjoint ad-

missible open subsets. By the same argument as in the first paragraph, each

map OXrig
m
(Ui) −→ OXrig

m′′
((πm′′,m|gDm′′ )

−1(Ui)) is injective. As a consequence,

the composition OXrig
m
(gDm) −→ OXrig

m′′
(gDm′′) is injective since it is the finite

direct product of all these maps.

Remark 4.2.8: The affinoid subdomain Dm, by definition, is the same as the

fibre product Xrig
m ×Xrig

0
D for the maps

πm,0 : Xrig
m −→ Xrig

0 and D ↪→ Xrig
0 .

Thus, we have an isomorphism

OXrig
m
(Dm) ∼= Rrig

m ⊗Rrig
0
OXrig

0
(D)

because Rrig
m |Rrig

0 is finite. The Galois group G0/Gm = Gal(Rrig
m |Rrig

0 ) acts on

OXrig
m
(Dm) via

r∑
i=1

fi ⊗ f ′
i �→

r∑
i=1

g(fi)⊗ f ′
i

for g ∈ G0/Gm, which gives an action on OXrig
m
(Dm) by OXrig

0
(D)-linear auto-

morphisms. Hence the extension OXrig
m
(Dm)|OXrig

0
(D) is finite Galois with the

Galois group G0/Gm. Consequently, for all m ≥ 0, the extension of coordinate

rings OXrig
m
(Dm)|O

P
h−1

K̆

(Φ(D)) induced by the map Φm is finite Galois with the

same Galois group.

Remark 4.2.9: As both Rrig
m and OXrig

0
(D) are g-modules (cf. Proposition 3.2.6,

Theorem 3.4.5), we have a g-action on OXrig
m
(Dm) ∼= Rrig

m ⊗Rrig
0
OXrig

0
(D).

Namely, if x ∈ g then on simple tensors,

x(f ⊗ f ′) = x(f)⊗ f ′ + f ⊗ x(f ′).

The g-action on OXrig

m′
(Dm′) restricts to the subalgebra OXrig

m
(gDm), because

by Remark 4.2.8, OXrig
m
(gDm) is a Γ-stable submodule of the finitely gen-

erated O
P
h−1

K̆

(Φ(D))-module OXrig

m′
(Dm′) and hence is closed in OXrig

m′
(Dm′)

by [BGR84], (3.7.3), Proposition 1. Denoting by Adγ the adjoint automor-

phism of g corresponding to γ ∈ Γ, we remark that the actions of Γ and g



Vol. 239, 2020 LOCALLY ANALYTIC REPRESENTATIONS 425

on OXrig
m
(gDm) are compatible in the sense that γ(x(f)) = Adγ(x)(γ(f)), since

the Lie algebra action comes from the action of the distribution algebra D(Γ)

on Rrig
m and OXrig

0
(D). Using the isomorphism

(Ms
m)rig(gDm) ∼= OXrig

m
(gDm)⊗Rrig

m
M s
m

and Theorem 3.4.6, one obtains that (Ms
m)rig(gDm) carries compatible actions

of Γ and g for all s ∈ Z.

Proposition 4.2.10: For all g ∈ G0 and for all m ≥ 0,

OXrig
m
(gDm)lf = OXrig

m
(gDm)g=0 = OXrig

m
(gDm)n=0.

All these K̆-vector spaces are finite-dimensional.

Proof. Let g ∈ G0,m ≥ 0 be arbitrary, and m′ ≥ m so that gm′,m is defined.

As seen in the proof of Lemma 4.2.7, the composition

O
P
h−1

K̆

(Φ(D)) ↪→ OXrig
m
(gDm) ↪→ OXrig

m′
(Dm′)

is induced by Φm′ . The Γ-equivariance of gm′,m and of Φm yields the inclusions

O
P
h−1

K̆

(Φ(D))lf ↪→ OXrig
m
(gDm)lf ↪→ OXrig

m′
(Dm′)lf of K̆-algebras. The Galois

action on OXrig

m′
(Dm′) commutes with the Γ-action. As a result, OXrig

m′
(Dm′)lf

is stable under the Galois action and

(OXrig

m′
(Dm′)lf)

G0/Gm′ =(OXrig

m′
(Dm′)G0/Gm′ )lf

=O
P
h−1

K̆

(Φ(D))lf = OXrig
0
(D)lf = K̆

(cf. Corollary 4.1.8). Since G0/Gm′ is finite, OXrig

m′
(Dm′)lf is integral over K̆,

and thus OXrig
m
(gDm)lf is integral over K̆. As before, we write gDm =

⊔r
i=1 Ui

where Uis are the connected components of gDm. Let Γi be the stabilizer of Ui

in Γ; then each Γi has a finite index in Γ. Let Γo ⊆ Γ be an open subgroup

which is a uniform pro-p group. Then for every i, the intersection Γi ∩ Γo has

a finite index in Γo, and thus is open in Γo by [DDMS03], Theorem 1.17. As a

result, Γi ∩ Γo is open in Γ, and

Γi =
⋃

γ̄∈Γi/Γi∩Γo

γ(Γi ∩ Γo)

implies that Γi is open in Γ for all i. Hence their intersection

Γ′ :=
r⋂
i=1

Γi

is again an open subgroup of Γ.
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Now the decomposition OXrig
m
(gDm) ∼=

∏r
i=1OXrig

m
(Ui) of K̆-algebras is Γ′-

equivariant for the componentwise Γ′-action on the right. Thus the compactness

of Γ gives the decomposition

OXrig
m
(gDm)lf = OXrig

m
(gDm)Γ′−lf

∼=
r∏
i=1

OXrig
m
(Ui)Γ′−lf

of locally finite vectors. Denote by Ki the integral closure of K̆ in the in-

tegral domain OXrig
m
(Ui) for each i. It then follows that Ki is a field exten-

sion of K̆. Since every projection OXrig
m
(gDm)lf −→ OXrig

m
(Ui)Γ′−lf is a surjec-

tive K̆-algebra homomorphism, the integrality of OXrig
m
(gDm)lf over K̆ implies

that OXrig
m
(Ui)Γ′−lf is integral over K̆ for all i. Therefore, OXrig

m
(Ui)Γ′−lf ⊆ Ki

for all i. On the other hand, for each i, Ki is Γ′-stable as Γ′ acts K̆-linearly

on OXrig
m
(Ui). Now for any classical point x ∈ Ui, the composition map

Ki ↪→ OXrig
m
(Ui) � κ(x)

is injective, and because κ(x)|K̆ is finite, Ki|K̆ is a finite extension. This gives

the other inclusion Ki ⊆ OXrig
m
(Ui)Γ′−lf for all i. Thus we have

OXrig
m
(gDm)lf =

r∏
i=1

Ki

with each Ki a finite field extension of K̆.

We now claim that

OXrig
m
(gDm)g=0 = OXrig

m
(gDm)n=0 =

r∏
i=1

Ki.

Note that OXrig
m
(Ui) is g-stable for all i because the projection map

OXrig
m
(gDm) � OXrig

m
(Ui)

of affinoid K̆-algebras is surjective, continuous and Γ′-equivariant. Then all

arguments in the last two paragraphs carry over to these cases since

O
P
h−1

K̆

(Φ(D))g=0 = O
P
h−1

K̆

(Φ(D))n=0 = K̆

(cf. Lemma 4.1.4). The only thing that remains to be shown isKi⊆OXrig
m
(Ui)

g=0

for all i : Write Ki = K̆[αi]. Then the set {γ(αi)}γ∈Γ′ is finite as Γ′ takes αi to
its conjugates. Therefore, the stabilizer Γ′

i of αi in Γ′ has a finite index in Γ′,
and thus we obtain the open subgroup Γ′

i of Γ which acts trivially on Ki.
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The embedding Γ ↪→ GLh(Kh) in (3.1.8) extends to an embedding

B×
h ↪→ GLh(Kh) of locally K-analytic groups via the same map. This yields an

action of B×
h on Ph−1

K̆
. The Γ-action on Xrig

m is extended to the full group B×
h by

letting b ∈ B×
h act by the action of (1, b, σ̃−val(Nrd(b))) ∈ GLh(K) × B×

h ×WK

given on page 20 of [Car90]. Here σ̃ denotes a lift of the Frobenius in the

Weil group WK and val is the normalized valuation of K. The maps Φm are

equivariant for the extended B×
h -action for all m.

Lemma 4.2.11:The set {ΠiΦ(D)}0≤i≤h−1 forms an admissible covering of Ph−1

K̆
.

Thus, Xrig
m has an admissible covering {ΠiΦ−1

m (Φ(D))}0≤i≤h−1 for all m ≥ 0.

Proof. This is proved as a part of [GH94], Corollary 23.21.

For 0 ≤ i ≤ h− 1, s ≥ 0, m ≥ 0, define

Ns
m(i) :=(Ms

m)rig(ΠiΦ−1
m (Φ(D)))

and

Am(i) :=N0
m(i) = OXrig

m
(ΠiΦ−1

m (Φ(D))).

Note that each ΠiΦ−1
m (Φ(D)) is Γ-stable because the conjugation by

Π−i (γ �→ Π−iγΠi)

is an automorphism of Γ. Therefore, all Am(i) and Ns
m(i) are Γ-representations.

Moreover, they are also g-modules as explained below.

Because of Proposition 4.2.6, we have the exact diagram

Am(0)
r �� ∏

g∈G0 OXrig
m
(gDm)

r2
��

r1 �� ∏
g,g′∈G0 OXrig

m
(gDm ∩ g′Dm)

with maps given by r(f) = (f |gDm)g∈G0 , r1((fg)g∈G0) = (fg|gDm∩g′Dm)g,g′∈G0 ,

and r2((fg)g∈G0) = (fg′ |gDm∩g′Dm)g,g′∈G0 . The continuity of the restriction

maps OXrig
m
(gDm) −→ OXrig

m
(gDm∩g′Dm) between affinoid K̆-algebras implies

that the maps r1 and r2 are continuous for the product topology on their source

and target. Remark 4.2.9 allows us to view
∏
g∈G0 OXrig

m
(gDm) as a g-module

with the componentwise g-action. Now, Am(0) can be identified with the kernel

of the continuous map

r1 − r2 :
∏
g∈G0

OXrig
m
(gDm) −→

∏
g,g′∈G0

OXrig
m
(gDm ∩ g′Dm)

(fg)g∈G0 �−→ r1((fg)g∈G0)− r2((fg)g∈G0).
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Hence, Am(0) is a closed Γ-stable subspace of
∏
g∈G0 OXrig

m
(gDm) as r is Γ-

equivariant. Consequently, Am(0) is stable under the induced g-action.

Observe that the isomorphism

(Ms
m)rig(gDm ∩ g′Dm) ∼= OXrig

m
(gDm ∩ g′Dm)⊗Rrig

m
M s
m

yields a g-action on (Ms
m)rig(gDm ∩ g′Dm) (cf. Theorem 3.4.6 and Remark

4.2.9). The restriction maps (Ms
m)rig(gDm) −→ (Ms

m)rig(gDm ∩ g′Dm) are

continuous for the topology of finitely generated Banach modules. Then by the

similar argument as in the last paragraph, Ns
m(0) carries a g-module structure.

The g-action and the Γ-action on Am(0) and on Ns
m(0) are compatible with

each other (cf. Remark 4.2.9). The action of Πi on Φ−1
m (Φ(D)) induces an

isomorphism Πi : Ns
m(i) ∼−→ Ns

m(0) of the sections of (Ms
m)rig. The g-action

on Ns
m(i) is then given by x(n) = Π−i(AdΠi(x)(Πi(n))) for x ∈ g, n ∈ Ns

m(i) and

1 ≤ i ≤ h− 1.

Now since M s
m is generated over Rrig

m by Vs (cf. (3.1.2), Proposition 3.1.3),

Ns
m(i) is generated by Vs as anAm(i)-module for all 0≤ i≤h−1. LetAm(i)g=0Vs

and Am(i)g=0ϕs0 denote the Am(i)g=0-submodules of Ns
m(i) generated by Vs

and ϕs0 respectively.

Proposition 4.2.12: For all 0 ≤ i ≤ h− 1, s ≥ 0, m ≥ 0, we have

Ns
m(i)lf ⊆ Am(i)g=0Vs and (Ns

m(i)lf)
n=0 ⊆ Am(i)g=0ϕs0.

Proof. We first show that Ns
m(0)lf ⊆ Am(0)g=0Vs. Noticing

ϕ0 ∈ OP
h−1

K̆

(Φ(D))× ↪→ Am(0)×

implies that ϕs0 alone generates Ns
m(0) as a free Am(0)-module of rank one.

Now let W ⊆ Ns
m(0) be a finite-dimensional Γ-stable subspace. As an slh(Kh)-

representation, W decomposes as a direct sum of simple slh(Kh)-modules by

Weyl’s complete reducibility theorem. From highest weight theory, we know

that each simple module in the decomposition is generated by an element an-

nihilated by the subalgebra n of strictly upper triangular matrices. Now

W n=0 ⊆ Ns
m(0)n=0 = (Am(0)ϕs0)

n=0 = Am(0)n=0ϕs0

because nϕs0 = 0 (cf. Lemma 4.1.2). Let f ∈ Am(0)n=0; then

f |gDm ∈ OXrig
m
(gDm)n=0 = OXrig

m
(gDm)g=0 for all g ∈ G0
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by Proposition 4.2.10. The g-linear injection Am(0) ↪→ ∏
g∈G0 OXrig

m
(gDm)

of K̆-algebras induces an equality

Am(0)g=0 = Am(0) ∩
∏
g∈G0

OXrig
m
(gDm)g=0.

Therefore, f ∈ Am(0)g=0, and hence

Am(0)g=0 = Am(0)n=0.

This gives us (Ns
m(0)lf)

n=0 ⊆ Am(0)g=0ϕs0. As explained earlier, Ns
m(0)lf is

generated as an slh(Kh)-module by its n-invariants (Ns
m(0)lf)

n=0. Thus

Ns
m(0)lf = slh(Kh).(N

s
m(0)lf)

n=0 ⊆ slh(Kh).(Am(0)g=0ϕs0) = Am(0)g=0Vs.

The last equality follows from the fact that ϕs0 is a highest weight vector in Vs

(cf. Remark 4.1.9).

If the Γ-action on Φ−1
m (Φ(D)) is changed via the automorphism γ �→ Π−iγΠi,

then the map Πi : Φ−1
m (Φ(D)) ∼−→ ΠiΦ−1

m (Φ(D)) is a Γ-equivariant isomor-

phism. We note that the new Γ-action does not change the locally finite vectors

in Ns
m(0). Writing ϕh := ϕ0 formally, we have an induced isomorphism

Πi : (Ns
m(i))lf ∼−→ (Ns

m(0))lf

mapping ϕs0 to ϕsh−i, and the n-invariants onto the ni := AdΠi(n)-invariants for

all 0 ≤ i ≤ h− 1. Therefore,

(Ns
m(i)lf)

n=0 = (Πi)−1((Ns
m(0)lf)

ni=0) ⊆(Πi)−1((Am(0)g=0Vs)
ni=0)

=(Πi)−1(Am(0)g=0V ni=0
s )

=(Πi)−1(Am(0)g=0ϕsh−i)

=Am(i)g=0ϕs0.

As before, this also implies Ns
m(i)lf ⊆ Am(i)g=0Vs for all 0 ≤ i ≤ h− 1.

Theorem 4.2.13: For all s ≥ 0, m ≥ 0, we have an isomorphism

(M s
m)lf ∼=K̆m ⊗K̆ Vs ∼= K̆m ⊗K̆ OP

h−1

K̆

(s)(Ph−1

K̆
)

∼=K̆m ⊗K̆ Syms(Bh ⊗Kh
K̆)

of Γ-representations for the diagonal Γ-action on the tensor products. The

representation (M s
m)lf is a finite-dimensional semi-simple locally algebraic rep-

resentation of Γ.
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Proof. As before, (M s
m)lf is generated as an slh(Kh)-module by its n-invariants.

Let x ∈ ((M s
m)lf)

n=0. Then, using the preceding proposition,

x|ΠiΦ−1
m (Φ(D)) ∈ (Ns

m(i)lf)
n=0 ⊆ Am(i)g=0ϕs0 for all 0 ≤ i ≤ h− 1.

Let Yi := ΠiΦ−1
m (Φ(D)), and write x|Yi = fiϕ

s
0 with fi ∈ Am(i)g=0.

For all 0 ≤ i, j ≤ h− 1, we have

(fi|Yi∩Yj − fj |Yi∩Yj )ϕ
s
0 = x|Yi∩Yj − x|Yi∩Yj = 0.

Now M s
m is free over the integral domain Rrig

m , and contains ϕs0 �= 0. Hence the

map (r �→ rϕs0) from Rrig
m to M s

m is injective and remains injective after any flat

base change. In particular, the map

(r �→ rϕs0) : OXrig
m
(Yi ∩ Yj) −→ (Ms

m)rig(Yi ∩ Yj)
is injective, and thus fi|Yi∩Yj = fj|Yi∩Yj for all 0 ≤ i, j ≤ h − 1. There-

fore, by the sheaf axioms, the functions (fi)i glue together to a global sec-

tion f ∈ Rrig
m and x = fϕs0. Since f |Yi = fi ∈ Am(i)g=0 for all i, and the

map Rrig
m ↪→ ∏h−1

i=0 Am(i) is g-equivariant, f ∈ (Rrig
m )g=0 = K̆m (cf. Remark

4.2.3). Hence x ∈ K̆mϕ
s
0. As a result, (M s

m)lf ⊆ slh(Kh).(K̆mϕ
s
0) = K̆mVs.

The other inclusion K̆mVs ⊆ (M s
m)lf is easy to see as (M s

m)lf is a module over

(Rrig
m )lf = K̆m, and Vs = (M s

0 )lf ⊆ (M s
m)lf.

Now to justify the isomorphism K̆m ⊗K̆ Vs ∼= K̆mVs, it is enough to show

that the natural map

K̆m ⊗K̆ Vs −→K̆mVs∑
0≤|α|≤s

cα(1⊗ wαϕs0) �−→
∑

0≤|α|≤s
cαw

αϕs0

is injective. Here the set {1 ⊗ wαϕs0}0≤|α|≤s forms a K̆m-basis of K̆m ⊗K̆ Vs.

By Lemma 4.1.2, we have

x00(w
αϕs0) = (s− |α|)wαϕs0 and xii(w

αϕs0) = αiw
αϕs0

for all 1 ≤ i ≤ h− 1. Since g annihilates K̆m, if∑
0≤|α|≤s

cαw
αϕs0 = 0,

one can use the above actions of the diagonal matrices iteratively to deduce

that each summand cαw
αϕs0 is zero, and therefore cα = 0 for all 0 ≤ |α| ≤ s.
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Unlike (M s
0 )lf = Vs, the space of locally finite vectors (M s

m)lf ∼= K̆m ⊗K̆ Vs

at level m > 0 is not an irreducible Γ-representation as it properly contains the

representation Vs. However, it is semi-simple and this can be seen as follows.

The action of Γ on K̆m factors through a finite group. As a result, K̆m decom-

poses into a direct sum K̆m
∼= ⊕n

i=1Wi of irreducible representations. This

gives us a decomposition

(4.2.14) K̆m ⊗K̆ Vs ∼=
n⊕
i=1

(Wi ⊗K̆ Vs).

Now we note that

Vs ∼= Syms(Bh ⊗Kh
K̆)

is an irreducible algebraic representation of Γ ∼= o×Bh
(cf. Theorem 4.1.6 and

[Koh14], Remark 4.4), and K̆m is a smooth representation of Γ by Remark

4.2.3. Thus every direct summand in (4.2.14) is a tensor product of a smooth

irreducible representation and an irreducible algebraic representation of Γ. Such

a product is an irreducible locally algebraic representation by [ST01], Appendix

by Dipendra Prasad, Theorem 1. As a consequence, (M s
m)lf is a semi-simple

locally algebraic representation of Γ and exhausts all locally algebraic vectors

inM s
m as every locally algebraic vector is locally finite by definition (cf. [Eme17],

paragraph after Definition 4.2.1).
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