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ABSTRACT

The Lubin—Tate moduli space X, (r)ig is a p-adic analytic open unit polydisc
which parametrizes deformations of a formal group Ho of finite height de-
fined over an algebraically closed field of characteristic p. It is known that
the natural action of the automorphism group Aut(Hp) on Xéig gives rise
to locally analytic representations on the topological duals of the spaces
HO (X(r)ig7 (M§)re) of global sections of certain equivariant vector bundles
(/\/18)1"ig over Xsig. In this article, we show that this result holds in greater
generality. On the one hand, we work in the setting of deformations of
formal modules over the valuation ring of a finite extension of Qp. On
the other hand, we also treat the case of representations arising from the
vector bundles (M3$,)*& over the deformation spaces X518 with Drinfeld
level-m-structures. Finally, we determine the space of locally finite vectors
in HO(X[# (Ms,)™i8). Essentially, all locally finite vectors arise from the
global sections of invertible sheaves over the projective space via pullback
along the Gross—Hopkins period map.
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1. Introduction

The theory of locally analytic representations provides a suitable framework
to study continuous p-adic representations of p-adic reductive groups in the
context of the p-adic Langlands program. Introduced by Schneider—Teitelbaum
and later developed by Emerton, the notion of a locally analytic representation
V of a p-adic Lie group G is (roughly) defined by the property that, for each
vector v € V, the orbit map

G—>‘/7 g’—>g(v)a

is locally on G given by a convergent power series with coeflicients in V
(cf. [Emel7], [ST02ii]). Thus the category of locally analytic representations
encompasses classical smooth representations, finite-dimensional algebraic rep-
resentations as well as tensor products of these two, the so-called locally alge-
braic representations. A fundamental theorem of locally analytic representation
theory establishes an anti-equivalence between the category of locally analytic
representations on vector spaces of compact type and the category of continuous
D(G)-modules on nuclear Fréchet spaces via duality functor, where D(G) is the
algebra of locally analytic distributions on G (cf. [ST02ii], Corollary 3.4).
First non-trivial examples of locally analytic representations coming from
geometry were found by Morita in his investigation of the p-adic upper half
plane or Drinfeld’s upper half space of dimension 1 (cf. [Mor85]). In gen-
eral, if K is a finite extension of @, then Drinfeld’s upper half space Y g of
dimension h—1 is obtained by deleting all K-rational hyperplanes from the pro-
jective space ]P’}}(_l. The natural action of GLy (K) on the projective space stabi-
lizes Yorig . Restricting any GLj,(K)-equivariant vector bundle F on P’}{l to Yorig
gives rise to a locally analytic GLj, (K )-representation on the strong topologi-
cal dual of the nuclear Fréchet space F (Y 8) of its global sections (cf. [Orl08],
[ST02i]). The upper half space and its étale coverings give rise to Drinfeld’s
upper half space Y2 at infinity which is a moduli space parametrizing certain
EL Rapoport-Zink data. The dual space to Y is the Lubin—Tate mod-
uli space X!'2 at infinity parametrizing the dual EL Rapoport-Zink data
(cf. [SW13], Section 7). Analogous to the general linear group action on the
upper half space, there is a natural action of another p-adic Lie group I' on
the Lubin-Tate moduli space Xsig and its étale covers. While examining this
action of I', Kohlhaase first showed that, in this case too, one obtains locally
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analytic representations on the dual space of the global sections of certain equi-
variant vector bundles over the Lubin-Tate moduli space provided K = Q,
(cf. [Koh14], Theorem 3.5). The aim of this article is twofold, firstly to gener-
alize Kohlhaase’s result to any finite base extension K of @, and extend it to
the finite étale coverings of the Lubin-Tate moduli space, secondly to compute
locally finite (algebraic) vectors in the concerned representations in order to
understand their structure.

To describe our results in detail, let p be a prime number and K be a finite ex-
tension of @, with ring of integers o, uniformizer w and residue class field k. Let
us denote by K the completion of the maximal unramified extension of K and
by o its ring of integers. Fix a (unique) one-dimensional formal o-module H
over an algebraic closure k of k of finite height h. The Lubin-Tate moduli
space is a formal scheme X, parametrizing deformations of Hy to complete
local 6-algebras with residue field k.! Adding level structures to the moduli
problem, Drinfeld showed that the formal scheme X,, parametrizing deforma-
tions equipped with a level-m-structure is a finite flat covering of Xg, and X
is (non-canonically) isomorphic to the formal spectrum Spf(6[[uy,...,un—1]])
(cf. [Dri74], Proposition 4.2 and Proposition 4.3). Passing to the generic fibres
of the formal schemes, one obtains a tower of rigid K-analytic spaces (Xrig),  en,
carrying commuting actions of the covering group GLj,(0) and of the automor-
phism group I' & oéh’ of Hy, where op, is the maximal order of the central
K-division algebra By, of invariant 1/h. The covering group action on X1 fac-
tors through the finite group GLj,(0/@™0) making X'# an étale Galois cover
of the open unit polydisc Xéig with Galois group GLp(0/w™0). On the other
hand, the I'-action on X'8 is much more complicated and is the one we are
interested in. These group actions are of significance, as they realize the lo-
cal Jacquet—Langlands correspondence on the [-adic étale cohomology of the
Lubin-Tate tower, as conjectured by Carayol (cf. [Car90]. [Str08ii]).

Let us consider the I'-equivariant vector bundles over X' induced by the
s-fold tensor power of the Lie algebra of the universal formal o-module H(™ at
level m for any integer s, and denote by M, the global sections of these vector
bundles. The I-action on the nuclear K-Fréchet space M, is semi-linear for its
action on O yrie (XHe) = MO . In our first main result, we prove that the strong

topological K-linear dual (M});, of M7, is a locally K-analytic representation

L We will mostly refer to the generic fibre Xéig as the Lubin—Tate moduli space.
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of I for all s € Z and m > 0 (cf. Theorem 3.3.5 and Theorem 3.4.6). The proof
of local analyticity essentially follows the Kohlhaase’s approach in [Koh14] and
consists of the following two steps:

(1) The Gross—Hopkins’ p-adic period map ® : Xéig — ]P’};{l constructed
in [GH94] can be used to explicitly find out the I'-action on the fun-
damental domain D of X}, We first show that the explicitly known
I'-action on the sections M7, over D is locally K-analytic by direct
computations.

(2) Using the structure theory of the locally Q,-analytic distribution alge-
bra D(I'g, ), we then show that the continuous I'-action on M, extends
to a continuous action of D(I'g,). Finally, to deduce that this action
factors through a continuous action of the locally K-analytic distribu-
tion algebra D(I"), we use the step 1 and the étaleness of the covering

morphisms.

Our second main result concerns computing the subspace of (M}, )i of locally
finite vectors in the I'-representations M. A locally finite vector is a vector
contained in a finite-dimensional subrepresentation of some open subgroup of I'.
Consider the K-linear algebraic representation By ®k,, K on which I acts by
the left multiplication, and let K,, denote the m-th Lubin-Tate extension of K
equipped with a smooth I'-action via

0%, % 0% = (0/w™0)* = Gal(Ky/K).

We show that there is an isomorphism
(M) = Km Qp Sym?®(Bp, ®k, K) = Km Qp OIP’;’;:I(S)(P};“(_l)

of T'-representations for all m > 0 and s € Z (cf. Corollary 4.1.11, Theorem
4.2.5, Theorem 4.2.13). Moreover, (M} )i is a finite-dimensional semi-simple
locally algebraic representation. To prove the above isomorphism, we exten-
sively use the action of the Lie algebra of I' obtained from the Gross—Hopkins’
period map. The other key ingredients of the proof are the generic flatness
of the line bundle induced by the Lie algebra of the universal additive ex-
tension (cf. [GH94], Section 21), Strauch’s result on geometrically connected
components of X'& (cf. [Str08i]) and Fargues’ cellular decomposition of the
Lubin-Tate tower (cf. [FGLOS§]|, Section 1.7).
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We expect both our results to hold in much greater generality. The I'-
equivariant vector bundles that we consider arise as the pullbacks of the in-
vertible sheaves Opn-1(s) on the projective space along the Gross-Hopkins’
period map (cf. Remark 3.1.14). Given any I'-equivariant vector bundle G over
the projective space P}Iﬁ(_l, we believe that the representations realized on the
global sections over X!& of its pullback along the period map are dual to lo-
cally analytic representations, and the locally algebraic part again comes from
the global sections of G. However, we don’t have a proof as of now. Another
major open question concerning the locally analytic I'-representations (M},);
is whether they are admissible or not in the sense of [ST03], Section 6. The
similar representations in the example of Drinfeld’s upper half space and its
first étale covering are known to be admissible (cf. [PSS19]). However, the pres-
ence of the spherical Hecke algebra action on the space of global rigid analytic
functions on the Lubin—-Tate moduli space raises questions on the admissibility
of (Mg,); (cf. [Kohl3], Proposition 3.3 and Remark 3.5). We would also like
to mention the work [Lol5] of Chi Yu Lo, showing the analyticity of the action
of a certain rigid analytic group associated to I' on a particular closed polydisc
of Xsig, which will likely be relevant in further investigations of locally analytic
representations coming from the Lubin—Tate moduli space.

ACKNOWLEDGEMENTS. The results presented in this article form an integral
part of the author’s Ph.D. thesis conducted at the Fakultit fiir Mathematik,
Universitat Duisburg-Essen, Germany under the supervision of Jan Kohlhaase.
The author is extremely grateful to his supervisor for introducing and explaining
the problem, for suggesting valuable ideas, and for many insightful discussions.
The author also thanks an anonymous referee for many thoughtful remarks and
corrections.

NOTATION AND CONVENTIONS. N and Ny denote the set of positive integers and

the set of non-negative integers respectively. If o = (ay,..., ) € Nj is an 7-
tuple of non-negative integers and T' = (71, . .., T}.) is a family of indeterminates
for some r € N, then we set |a| ;== aq + -+ a,, and T := Ty - - - T*". Unless

stated otherwise, all rings are considered to be commutative with identity. A
ring extension A C B will be denoted by B|A, and its degree by [B : A] if it
is finite and free. Let p be a fixed prime number and let K be a finite field
extension of @, with the valuation ring 0. We fix a uniformizer @ of K and
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let k := 0/wo denote its residue class field of characteristic p and cardinality g.
The absolute value |- | of K is assumed to be normalized through |p| = p~!. We
denote by K the completion of the maximal unramified extension of K, and by 6
its valuation ring. We denote by o the Frobenius automorphism of an algebraic
closure k of k, as well as its unique lift to a ring automorphism of ¢ and the
induced field automorphism of K. We also fix an algebraic closure K of K and
denote its valuation ring by 6. The absolute value |- | on K extends uniquely
to K , and to K. For a positive integer h, let K} be the unramified extension
of K of degree h, oj be its valuation ring, and Bj be the central K-division
algebra of invariant 1/h. We fix an embedding K} < Bp, and a uniformizer IT
of By, satisfying II" = w. Let Nrd : B, — K denote the reduced norm of By,
over K. The symbol P’};l always denotes the (h — 1)-dimensional rigid analytic

projective space over K.

2. Drinfeld’s coverings of the Lubin—Tate moduli space and the group

actions

We begin with a quick introduction to the Lubin—Tate deformation problem
equipped with Drinfeld’s level structures. Then we prove the main result of
this section, namely the continuity of the I'-action on the universal deformation
rings.

2.1. DEFORMATIONS OF FORMAL 0-MODULES WITH LEVEL STRUCTURES. Re-
call from [GH94] that a one-dimensional formal o-module F over a local o-
algebra A is, after having fixed a formal coordinate, given by a formal power se-
ries FI(X,Y) € A[[X, Y]], together with a ring homomorphism |- ]|p:0— End(F)
such that [A\4(X) = i4(A)X (mod deg 2), where ig : 0 — A is the structure
morphism. Let Hy be a one-dimensional formal o-module of finite height A
over k which is defined over k. According to [Dri74], Proposition 1.6 and 1.7,
the formal module Hj is unique up to isomorphism, and one has

(2.1.1) End(Ho) = o5,

where op, is the valuation ring of the central K-division algebra By, of invari-
ant 1/h. Let C be the category of commutative unital complete Noetherian local
o-algebras R = (R, mp) with residue class field k. The Lubin—Tate deforma-
tion problem considers liftings of Hy to the objects of C together with certain
additional data defined below.
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Definition 2.1.2: Let R be an object of C and H be a formal o-module over R,
given by a power series H(X,Y) € R[[X,Y]].
(1) A pair (H,p), where p : Hy = H ®p k is an isomorphism of formal
o-modules over k, is called deformation of Hj to R.
(2) Denote by (mpg,+p) the abstract o-module mp in which addition and
o-multiplication are defined as

x+pgy:=H(z,y) and ax:=[a]g(x)

respectively for all z,y € mp, a € 0. For a non-negative integer m, a
Drinfeld level-m-structure on H is a homomorphism

o: (7

of abstract o-modules such that []
[@™]m (X) in R[[X]].

(3) We call the triple (H, p,$) a deformation of Hy to R with level-m-
structure if (H,p) is a deformation of Hy to R and ¢ is a Drinfeld

—mg

h
. ) — (mp,+5)

ae(’f’”“)h(X — ¢(a)) divides

level-m-structure on H.

Two deformations (H, p, ¢) and (H', o/, ¢') of Hy to R with level-m-structures
are isomorphic if there is an isomorphism f : H == H’ of formal o-modules
over R making the following diagrams commutative:

Qrk

H®grk >H ®rk (mg,+5) > (Mg, +a)

\ / ¢ ¢’
(w;mO)h

For any integer m > 0, consider the set valued functor Def,, : C — Set,
which associates to an object R of C the set of isomorphism classes of deforma-
tions of Hy to R with level-m-structures. For a morphism ¢ : R — R’ in C,
Def,, () is defined by sending a class [(H, p, ¢)] to the class [(H®gr R', p, pod)].
Notice that

p:Hy =5 H®pk=(H®rR)p k.

We denote the triple (H ®g R, p, ¢ o ¢) by @.(H, p, ¢) for simplicity.
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THEOREM 2.1.3 (Lubin—Tate, Drinfeld):

(1) The functor Def,, is representable by a regular local ring R,, of dimen-
sion h for all m > 0.

(2) For any two integers 0 < m < m/, the natural transformation
Def,,, — Def,, of functors defined by sending a class [(H, p,®)] to
[(H, p, ¢|(Wfomﬂ o )] induces a homomorphism of local rings Ry, — Ry,
which is finite and flat.

(3) The ring Ry is non-canonically isomorphic to the ring o[[u1, ..., un—1]]

of formal power series in h — 1 indeterminates over 6.
Proof. See [Dri74], Proposition 4.2 and 4.3.

Let us denote the universal deformation of Hy to R, with level-m-structure
by the triple (H™, p(™) $(™). Here H™ = H® ®z, R,,, i.e., the universal
formal o-module H(™ over R,, is given by the base change of the universal
formal o-module H(® over Ry under the map Ry — R,, induced by Part 2,
Theorem 2.1.3. We note that, since Ry = o[[u1, . .., un—1]] is an integral domain,
the flatness of the map Ry — R,, implies Ry — R,, for all m > 0.

By the universal property, given an object R of C and a deformation (H, p, ¢)
of Hy to R with level-m-structure, there is a unique o-linear local ring
homomorphism ¢ : R,, — R such that

Def,,, (@) ([(H™), o™, ¢(™))]) = [0, (H™, pt™) 6™ = [(H, p, $)].

The unique isomorphism between the deformations . (H(m), ™ (M) and
(H,p,¢) over R will be denoted by [¢] : ¢, (H™ p(m) (M) =5 (H p, ¢)
(cf. [GH94], Proposition 12.10).

2.2. THE GROUP ACTIONS. For all m > 0, the functor Def,, admits natural
commuting left actions of the groups I' := Aut(Hy) and G := GL(0) for which
the morphisms Def,,, — Def,, of functors mentioned in Part 2, Theorem 2.1.3
are equivariant. On R-valued points, they are given by

[(H,p,0)] — [(H,poy™",¢)] and [(H,p,)] — [(H,p,d0g7")]

—m

for y €T, g € Go. Here g=! € GLy,(0) acts on the free (5, )-module (¥ ~°)"

wmo
o

wmo "

by considering it as an o-module via the natural reduction map o —
Because of the representability, these actions give rise to commuting left actions
of I and Gg on the universal deformation rings R,,,. We use the same letters v
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and g to denote the automorphisms of R, induced by v € " and by g € Gyg
respectively. It is immediate from the definition that the Gg-action on R,
factors through a quotient by the m-th principal congruence subgroup

G =14 @™ Mp(0)

of Go. For m" > m > 0, the induced action of G,,, /G,y makes R,/ [;] étale and
Galois over Ry,[ 1] with Galois group G, /Gy (cf. Theorem 2.1.2 (i), [Str08ii]).

The actions of I' and Gy on R,, induce semilinear actions of I' and Gy on
the Lie algebra Lie(H(™)) of the universal formal o-module H™). Recall that
the Lie algebra Lie(H(™) of H(™ is the tangent space Hompg,, ((X)/(X)?, R)
of its coordinate ring R,,[[X]] (equipped with the trivial Lie bracket). We now
describe the T-action on Lie(H(™); the Go-action is defined likewise. Given
v € T, extend the ring automorphism ~ of R,, to R,,[[X]] by sending X to

itself. This induces a homomorphism
Yy : Lie(H™)) —s Lie(,H™)

of additive groups. The isomorphism [y] : v H™ =~ H™) also induces a
natural R,,-linear map

Lie([7]) : Lie(v.H™)) —s Lie(H™).
We define + : Lie(H(™) — Lie(H(™)) as the composite of these two maps, i.e.,
v = Lie([7]) o 7.

Given another element 7/ € T, let v.[y] : 7.(v.H™) =5 ~/H™) be the
isomorphism obtained by applying v’ to the coefficients of [y]. Then [y/] o v.[v]
is an isomorphism between the formal o-modules (/7). H) and H™ over R,,,.
Therefore by uniqueness, we have [y'y] = [7'] o 7.[7]. One also checks easily
that the following diagram commutes:

Lie
Lie(y, H(™) O Liegrtm)
Va Va
Y \
Lie(y, (v.H™))) > Lie(y,H(™)
Lie(v4[])

Then it follows that
Lie([y'7]) o (v"7)« = Lie([y']) o Lie(v.[+]) © 7% 0 7
(2:2.1) = Lie([y']) o (7 o Lie([y]) o (v.) ™) o7l 074
= Lie([y']) o7, o Lie([7]) © 7.
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Thus we obtain an action of T' (and of G) on the additive group Lie(H(™))
which is semilinear for the action of ' (and of Gy respectively) on R,, because 7.
is semilinear. Given a positive integer s, we denote by Lie(H("™)®* the s-fold
tensor product of Lie(H(™)) over R,, with itself. This is a free R,,-module of
rank 1 with a semi-linear action of I' defined by

Y @ ®d5) i=7(01) ® - @ y(ds).

Set
Lie(H(m))®O =R,
and
Lie(H(™)®* := Homp,, (Lie(H™)®() R,,)

if s is a negative integer. In the latter case, a semi-linear action of I' is defined
by

V@) (01 @+ @_s) i=(p(y H(61) @ @7 (0-5))).

The semi-linear actions of Gy on the s-fold tensor products are defined similarly.
As before, for all s € Z, the Gg-action on Lie(H™))®* factors through Go/Gp,.

Remark 2.2.2: Using that the group actions of I' and Gy on R,,, commute, one
can show that they commute on Lie(H(™)®s as follows. It suffices to show the
commutativity for s = 1. Since the Gp-action is defined likewise, we may use
(2.2.1) for vy € T" and g € Gy. As a result, we get

Lie([g]) © g« o Lie([y]) o 7. = Lie([g7]) o (97)«
= Lie([yg]) o (v9)«
= Lie([y]) o v« o Lie([g]) o gx-

We are primarily interested in the action of I', a p-adic Lie gorup, on
Lie(H(™))®s. Before describing the underlying Lie group structure of I', we
refer the reader to [Schll], page 38, page 47 and page 89 for the definitions of
a locally analytic map, a locally analytic manifold and a locally analytic group,
respectively. By (2.1.1), we have I' & ogh. Recall that the division algebra By, is
a Kjp-vector space of dimension h with basis {II' }g<;<p—1 whose multiplication
is determined by the relations I1" = o and II\ = A\°II for all A € K}, (A denotes
the image of A under the Frobenius automorphism o). Thus, any v € I = ogh
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can be uniquely written as

h—1
i=0
with Ao € 0; and A1,..., A\p—1 € 05. The map

Y:T — K}

(2.2.3) el
Z Azﬂl — (Ao, )\1 . )\hfl)
=0

identifies I' with a compact open subset 0, x 02_1 of K" making it into a

compact open locally Kp-analytic submanifold of K ,}; The composition map

w(r) « Q/J(F) PpTlxy Tt CxT multiplication r i> Q/J(F)
from an open subset in K,%h to K ,’L‘ can be easily seen to be locally K-analytic
since each component of this map is a composition of a polynomial and a K-
linear Frobenius automorphism o, both being locally K-analytic. Therefore, I'
is a locally K-analytic group. However, notice that I is not a locally Kj-analytic
group because o : 0, — 0, is not locally Kj-analytic unless h = 1.

Now, being a compact and a totally disconnected Hausdorff topological
group, ' is a profinite topological group. A basis of neighbourhoods of the
identity is given by the normal subgroups

Ii:=1+wop, =1+ wEnd(Hy), i>1

of finite index. Let us put I'g := I'. Our aim is to show that the I'-action on
Lie(H(™))®* is continuous, i.e., the action map I' x Lie(H("™))®$ —; Lie(H(™))®s
is continuous for the mp,, -adic topology on Lie(H(™)®s  and for the product
of profinite and mp,_ -adic topology on the left-hand side. But, first we need a
couple of lemmas. For any two non-negative integers n and m, set

ngm) = Hm R, (Rm/m?%j;l)'
We have Hjy = Hém) via p(m) for all m > 0.

LEMMA 2.2.4: If n and m are non-negative integers, then the homomorphism
of o-algebras End(H,(ﬁ_)l) — End(H,(zm)), induced by reduction modulo m;’grnl,
is injective.
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Proof. Let m > 0 be arbitrary. We show by induction on n that the ring
homomorphism 4, : End(H{™) — End(H{™), induced by reduction modulo
the maximal ideal, is injective for every n € Ny. The case n = 0 is trivial. Let
n > 1 and assume that i, is injective. Since Hy is of height h, we have

[W]Hgm (X) = uX?  mod degg" +1

for some u € R}Y,. Then [w] (m) = in([@]yem) ) implies that
0 n

(@] (X) = @X + b X2+ -+ b 1 X7 1 4 uX?  mod degq + 1

for some ba,...,byn_q € mpg,,.
Now let

ZaZXl € End(H(™)

=1
such that i,,(f) = 0, i.e., a; € mp,, foralli > 1. We need to show that a; € m}?l
for all ¢+ > 1. However, the induction hypothesis implies that a; € mp . Thus
[w]Hﬁf’” of = 0. Since [@ ]HSZ’”‘) of = fo [w]H;@, we get a;u’ € m}?l
7 and hence a; € m’];rl for all i > 1.

by induction

The above lemma allows us to consider all the o-algebras End(H,(zm)) as sub-
algebras of End(H{™).

PROPOSITION 2.2.5: For all n > 0, m > 0, the subalgebra End(H%m)) of
End(H((Jm)) contains w"End(H((Jm)).

Proof. Let m > 0 be arbitrary. We proceed by induction on n, the case n =0
being trivial. Let n > 1 and assume the assertion to be true for n — 1. Let
¢ € @"End(H{™). By induction hypothesis, we have ¢ € wEnd(H™,). Now
for any ¢ € End(H(m) ), choose a power series 1) € (R m/m”“)[[X]] with trivial
constant term such that 7,/) mod m% = 1. The power series

@ = [@]yom 0P
is a lift of
wtp = [@]gem °P.

n—1

We claim that @ € End(H™) and (1) — @) : wEnd(H"™, ) — End (H{™)
is a well-defined injective map. The proposition then follows from the claim.
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First, let us see why wz/; defines an endomorphism of H,(zm). Since v €
End(H,(ﬁ)l), we have
0= (X 4y Y) —gom P(X) —pom (V)
= (DX +y0m Y) —om (X)) —yon $(Y)) mod mp .
Thus all the coefficients of the power series
(1/;(X +H$Lm) Y) 7H£Lm) 1/;(X) 7H(m) 1/;(}/))

lie in mfp, - /m’hLl Since w € mp,, and (mp )* C m"Jrl for all integers k > 1,
we get [@]om o (DX +yom V) —pom (X)) —yom PV ) = 0. Consequently,

TY(X +yom ¥) = TP(X) +om @H(Y).
Similarly one shows that
0 =[@]yom © ([alyom © ¥ —om B o [alzom)
=[algim © @Y —gomw @Y o [alyem

for all a € o. Therefore wy) € End(H{™).
To see that the above map is well-defined, take another lift ¢ of 1 with trivial
constant terms. Then

T 7 no_ o _
(" —pem ¥) mod mp =4 —yem P =0.

Thus [@]yem o (@' —yom @) = 0 as above. Hence wi)/ = wip. Finally, the
injectivity is clear because ww~1 = ww} implies w1 = wy after reduction

n
modulo m T, -

THEOREM 2.2.6: For all n > 0, m > 0, the induced action of I';,, on
m/m"Jrl is trivial. Thus the map ((v,f) — ~(f)) : I' Xx Ry, — Ry, is
continuous where the left hand side carries the product topology.

Proof. Let n and m be arbitrary non-negative integers. Let v € 'y, and

pr%m) R, — R, /m%i} denote the natural projection. Consider the level-m-
structure

o = pri o g™

on H{™ and consider the deformation (H™ , p™on=1, ™) of Hy to R /mptt

with this level-m-structure. Let ”yflm) R, — R, /m"Jrl denote the unique
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ring homomorphism for which there exists an isomorphism

™ 5 (™)< (B, 9, g1m) =5 (B, o™ 0571, 6.
(m)

Note that also the ring homomorphism pry, "’ 05 : R,y — Ry, /mH admits an

isomorphism of deformations

(pr{™ o)L (H™, p(m) | ¢(m)) = (pr(™), (v, (H™), ptm), g(m™)))
(™, pm) oy~ glm).

IR

(m) (

Therefore by uniqueness, we have pry, ’ oy = vnm) and [w(Lm)] = [y] mod m"+1

Since the map
(0= p™ogo(p™))
is an isomorphism End(H,) == End(H((Jm)) of o-algebras, Proposition 2.2.5
shows that p(™ o y~1o (p(™)=1 € 1 + wmEnd(H™) C Aut(H™). We claim
that (p™ oy~ o (p(™)~1)o ¢£Lm) = ¢$lm). Write
p™ oy o (pim) Tt =14 e
for some ¢ € End(H(m)) and let a € (¥ "°)" be arbitrary. Then

(0™ 0y o ()TN () = (1 + ™) (6™ ()
= o™ (@) +yom £(@™ (BT (@)))
= ¢ (@) +yyem (G5 (@™ )
= o™ (@) +yyom €(65™(0))
= ¢ (a).

Therefore, the automorphism p(™ oy~ o (p(™)~1 of H{™ defines an isomor-
phism of deformations

(HO™, () gm)
=(HG™, (0™ 0y o (™)) 0 pl™, (o™ 077 o (p™M) ) 0 (M)

n

~(H, 5 047, g4,

However, (H(m) p(™M & m)) = (pr(m))*(H(m),p(m), #(™). By uniqueness again,

we have priy™ = pr™ o 4 = 4™ This implies that I'yim acts trivially on

Ry /mpt! and [y] mod mp = p(™) oy =1 o (p(m) =1
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The R,,-module Lie(H(™)®* is complete and Hausdorff for the mp, -adic
topology because it is free of finite rank. By the semi-linearity of the I'-
action, the R,,-submodules m}?imLie(]HI(m))‘?95 are I'-stable for any non-negative

integer n.

THEOREM 2.2.7: Let s, n, m be integers with n > 0 and m > 0. The induced
action of Doy ym41 on Lie(H™)®s /m%  Lie(H(™)®* is trivial. Thus the map

((7,8) = 7(8)) : T x Lie(H™)®* — Lie(H(™)®*
is continuous where the left-hand side carries the product topology.

Proof. If we assume the assertion to be true for s = 1, then by the definition of
the action, it is easy to see that it holds for all positive s. On the other hand, let
¢ € Lie(H™)®~ /m  Lie(H™)®~! and v € T'ap4m+1. Then by assumption,
v(6) — 6 € m  Lie(H™). Write

YO =5+ Y aum
=1

with «; € m’}g;l and 7; € Lie(H(™)). Then

(0 = 7(9))(8) = (6) — () (8) = w(6) — v(e(v(5)))
=p(6) - ”y<<p(5 + Zan))

= ¢(6) = 7((6)) — Z v(ai)v(e(m:).

Since 2n + m + 1 > n + m, by Theorem 2.2.6, we have ©(0) — v(¢(0)) € m%jrnl.
Also (o) € m?;;l. Therefore (p—~(p))(d) € m;’zfnl. If 8y is a basis of Lie(H(™))

over R,,, and 1 € Lie(H(™)®~1 is defined by
1/}(50) = 17
then
P =(9) = (¢ = 7())(00)¢ € mp" Lie(EH™)® 1.
Thus ¢ = v(¢). A similar argument like this can be used to show that the

assertion is true for all higher negative s. Hence it is sufficient to prove the

theorem for s = 1.
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Let v € I'gpyym+1. By identifying
Lie(H™) /m’;* ' Lie(H™) = Lie(H{™),
Theorem 2.2.6 and its proof show that the map
~v mod m’];;l : Lie(H(™)) — Lie(H{™)
is given by Lie(p(™ o y~1 o (p(™))~1) where
p™ oq~lo (pM)=1 €14 @2t ERd(H™) C 14 @™+ End(H™).
Therefore it suffices to show that the natural action of
1+ " End(H™) ¢ End(H™)
on Lie(H ™) is trivial. However, if ¢ € End(H™) and § € Lie(H{™), then

(Lie(1 + @™ p)(8))(X) =

because w"T™t! € m%“.

m

Remark 2.2.8: The T-action on Lie(H("™))® gives rise to an action of the
group ring 8[| on Lie(H(™)®s, By Theorem 2.2.7, the induced action of oI
on Lie(H(™)®* /mpH Lie(H(™))®* factors through (8/@"8)[I'/T'2p1m-1] such
that the following diagram with the horizontal action maps and the vertical re-
duction maps commutes for all n:

o [ T ] Lie(H("™))®® - Lie(H(™))®*
(@™ ) I T2npmy1 mt Lie(H(m) )®s m T Lie(H(m) ) ®s
4 4
] [ r ] Lie(H(™)®* - Lie(H(™))®>
(@™) L2 (n—1)4m+1 mEmLic(H(m))Q?S mgmLic(H(m))QZ’s

Taking projective limits over n, we obtain an action of the Iwasawa algebra
6[[T)] on Lie(H(™))®* that extends the action of T.
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2.3. RIGIDIFICATION AND THE EQUIVARIANT VECTOR BUNDLES. Berthelot’s
rigidification functor associates to every locally Noetherian adic formal 6-scheme
whose reduction is a scheme locally of finite type over Spec(k), a rigid K -analytic
space (cf. [Jong95], Section 7). For an affine formal 8-scheme Spf(A), there is
a bijection between the closed points of its generic fibre Spec(A4 ®; K ) and
the points of the associated rigid analytic space. Let us denote by X! the
rigidification of the affine formal 6-scheme X,,, = Spf(R,,) under Berthelot’s
functor, and by RIS := O i (XIie) the K-algebra of the global rigid analytic
functions on X!,

By functoriality, X[# and R carry commuting (left) actions of I and Gy,
thus an action of the product group I' x G, and the Gy-action factors through
Go/Gp. For m’ > m >0, let

. rig Ti
Tmtom @ X, 7 —> X8

m’
denote the morphism of rigid analytic spaces induced by Part 2, Theorem 2.1.3
and by functoriality. It follows from the properties of the rigidification functor
that the morphism m,, ,, is a finite étale Galois covering with Galois group
G /Gy (cf. [Jong95], Section 7). Consequently, the ring extension R2%|R£f§ is
finite Galois with Galois group G,,,/G.. We note that all covering morphisms
are (I' x Go)-equivariant.

It follows from the isomorphism Ro 2 8[[uy, . . ., us_1]] that X;'® is isomorphic
to the (h — 1)-dimensional rigid analytic open unit polydisc over K , and the
isomorphism Ry 2 0[[u1,...,un—1]] extends to an isomorphism

(2.3.1) Rgig%{ > cau®|ca€K and lim |ca|r°‘|:OforaHO<r<1}
|| =00

a6N371

of K—algebras. This allows us to view Rgig as a topological K-Fréchet algebra

whose topology is defined by the family of norms || - ||;, given by
H Y cau®| = sup {leallw| V'
l aeNp !

aEN371

for any positive integer [. Let RS% be the completion of Rgig with respect to
the norm || - [|;. Then

Ry = { S caulleq €K, |a1\iinoo lea||11/t = 0}

aeN371
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is the K-Banach algebra of rigid analytic functions on the affinoid subdomain
B, := {z € X0® | |ui(x)] < || forall 1 <i<h—1}
of Xéig. Further,
Ry® = gl Ry®

is the topological projective limit of the K-Banach algebras RB%’%.

Since Ry is a local ring, the finite flat Ro-module R, is free by [Mat87],
Theorem 7.10, and has rank r = |Go/Gp,|. Let R:fl denote the affinoid K-
algebra of the rigid analytic functions on the affinoid subdomain

B 1 —ﬂ' (Bl)

of X8, Then by [Jong95], Lemma 7.2.2, we have

(2.3.2) RS, = R, @R, Ry§
as R,,|Ro is finite. Let us fix a basis {e1,...,e,} of R,, over Ry and view it

as an Ry 5-basis of R}, = Ry, ®g, Ry]. The next lemma shows that R 2, is a

K-Banach algebra with respect to the norm
[(frex + -+ fren)lls = g%xr{ﬂfiﬂl},
where f; € R“g for all ¢, by showing that it is indeed an algebra norm.
LEmMMA 2.3.3: Let f = fie1 + -+ frer, g=gie1 + -+ gre, € Rf:ffl. Then
1fglle < £ 1ellglle-

Proof. Let e;e; =Y agrey for all 1 <i,j <r. Note that
Qijk S Ro = 5[[u1, Ceey uh_l]]

and thus [a;kll; <1 for all 1 <i,j,k <r. Also || - ||; is multiplicative on Rgi’cf.

)

max {|[fillullg;ll} < Wl fllellgl:

1<

Therefore

I £l = max {

1<k<r

Z flg]a’l]k?

1<,5<r

< et e, Mgsauedd
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It then follows from [BGRS84], (6.1.3), Proposition 2 that the affinoid topology
on R, * coincides With Banach topglogy given by the aforemention(?d norm ||-||;.
The natural maps R® , — R¥ induced from Ry}, — Ry§ endow the
projective limit

rig ~v 1: rig
Rm - mRm,l
l

with the structure of a K-Fréchet algebra. Indeed, this projective limit is iso-
morphic to the K -algebra of global rigid analytic functions on X'& by [Jong95],
Lemma 7.2.2. Thus we have

(2.3.4) R& =~ R, @, RY®

as R,, is a finite free Rp-module, and R:Tifl can be viewed as the Banach
completion of R with respect to the norm || - |; defined as before by
[(frer + -+ fren)lli := maxicicr{l| filli}, with f; € Rp®.

The T-action on X;'® stabilizes the affinoid subdomains B, for all positive
integers [. Indeed, since v(u;) belongs to the maximal ideal (ww,u,...,up—1)
of Ry, || (ui)|l; < |w|"/* for all 1 < i < h — 1. This implies that ||v(f)|l: < || £]l:
for all f € Ry®. Thus the M-action on R§® extends to its completion R(r)if for all
positive integers [. As a consequence, the affinoid subdomains B,, ; of X% are
stable under the (I' x Gg)-action for all m and I, and the isomorphism (2.3.2) is
(T x Go)-equivariant for the diagonal (" x Gg)-action on the right. Similarly the
isomorphism (2.3.4) is also (I" x Go)-equivariant for the diagonal (I x Gy)-action
on the right.

Remark 2.3.5: By [BGR84], (6.1.3), Theorem 1, the K-algebra automorphism
of an affinoid K -algebra Rfjlg,l corresponding to (v, g) € I' x Gy is automatically
continuous for its K-Banach topology defined by the norm || - ||;. Since the K-
Fréchet topology of R'8 is given by the family of norms || - ||;, I € N, the group
I' x Gy acts on R by continuous K -algebra automorphisms for all m > 0.

Now recall from [GH94], Section 15 that a I'-equivariant vector bundle M on
the formal scheme X, is a locally free Ox, -module M of finite rank equipped
with a (left) I'-action that is compatible with the I'-action on X,,. Since X,
is formally affine, a I'-equivariant vector bundle M on X, is completely deter-
mined by its global sections M(X,,). Hence, for all s € Z and m > 0, the free

Ry,-module Lie(H(™)®% of rank 1 equipped with a semilinear I-action gives
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rise to a I'-equivariant line bundle
M3, = Lie(H™)®s

on X,,. Its rigidification (M3, )" is a locally free O yris-module of rank 1 by
[Jong95], 7.1.11. Let

My, = (M5,)"8(X8)

denote its global sections. Because of the fact that X, is affine, the natural

map
(2.3.6) R @p  Lie(H™)®s — M3,

is an isomorphism. By functoriality, I' acts on (M3,)"® in such a way that the
map (2.3.6) is I'-equivariant for the diagonal I'-action on the left and for the T'-
action induced by functoriality on the right. In particular, the I'-action on M},
is semilinear for its action on R® and thus (M3, )"8 is a rigid I'-equivariant
line bundle on X', In a similar fashion, it can be seen that (MS,)"® is a
rigid Gy-equivariant line bundle on X!, and the actions of I' and Gy commute
(cf. Remark 2.2.2). By functoriality again, the Gg-action on (M?)"8 factors
through the quotient group Go/Gp.
For all s, m and [, set

ot = (M) (Br,p).

Then M7 , is a free R:lgl-module of rank 1 for which the natural Rfjlgl—linear
map

(23.7) R ®p,, Lie(H™)®* — M,

is an isomorphism (cf. [Jong95], 7.1.11), and is (I" x Go)-equivariant for the
diagonal (I' x Gp)-action on the left. Endowing M;, and M,;, ; with the natural
topologies of finitely generated modules over R and Rfjlg,l respectively, makes
them a K-Fréchet space and a K-Banach space respectively. One then has a
topological isomorphism

M;, = Jim M,
l

for the projective limit topology on the right, and the group I' x Gy acts on M,
by continuous K-vector space automorphisms for all s and m.
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3. Locally analytic representations at higher levels

We saw in the previous section that the group I' = Aut(Hj) acts on the Fréchet
space M, of the global sections of the rigid I'-equivariant line bundle (M3, )*ie
over X! by continuous vector space automorphisms. The goal of this section
is to show that the strong topological K-linear dual (M2); of M?, with the
induced T'-action is a locally K-analytic representation of I' for all s € Z and
levels m > 0.2 Recall from [ST02ii], Section 3 that a locally K-analytic rep-
resentation V of ' (over K) is a barrelled Hausdorff locally convex K-vector
space equipped with a I'-action by continuous linear endomorphisms such that
for each v € V, the orbit map p, = (g — g(v)) € C**(I,V), ie., p, is a
V-valued locally K-analytic function on I'.

As stated in the introduction, to show the local K-analyticity, we are going
to make use of the Gross—Hopkins’ period morphism ® and of the fundamental
domain D. The next subsection is intended to give a brief overview of these
two technical tools.

3.1. THE PERIOD MORPHISM AND THE GROSS-HOPKINS FUNDAMENTAL
DOMAIN. Let E(™ denote the universal additive extension of the universal
formal o-module H(™ . It sits in the exact sequence
. alm gom

(3.1.1) 0 — Lie((H™)") =— Lie(E™) Z— Lie(H™)) — 0
where

(H™) =G, @g,, Homg,, (Ext(H™,G,), R,»)
is the additive formal o-module of dimension h — 1 associated with the free
R,,-module dual to the module Ext(H(m),Ga) of extensions of H(™) by G,
(cf. [GH94], Section 11). The universality induces commuting semi-linear ac-
tions of T' and G on Lie((H(™)’) and on Lie(E(™)) for which the maps a(™
and B(™) are equivariant, and the Gg-action factors through Go/G,,. By rigid-
ification, the short exact sequence (3.1.1) gives rise to an exact sequence

0 — (Lie((H™))®*)E — (Lie(E™)®*)E — (M5,)"E — 0
of the corresponding rigid (I x Gg)-equivariant line bundles on X} for all non-
negative s, and for negative s in the opposite direction. Since X, is an affine

2 In the notation (M)}, the superscript ’ indicates the continuous linear dual of the
topological vector space M., , while the subscript b stands for bounded and implies that
(M;;);) is equipped with the topology of bounded convergence, i.e., the strong topology.
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formal scheme, by taking global sections, we get an exact sequence
(3.12) 0— R @p Lie((H™))®* — R @p  Lie(E™)®* — M3 —0

of K-linear (I x G)-representations for s > 0, and in the opposite direction for
5 < 0.

PROPOSITION 3.1.3: The I'-equivariant line bundle Lie(E(?)) is generically flat,
i.e., there exists a basis {co, 1, . .., cn_1} of Ry5@ g, Lie(E(©) over Ry such that
the K-subspace of Ry® @, Lie(E()) spanned by ¢;’s is T-stable. Let B, @k, K
be the h-dimensional K-linear I'-representation where the action of I' & ogh is
given by left multiplication. Then we have an isomorphism

(3.1.4) Ry® @, Lie(E®) = Ri® @ . (B), @, K)
of Ry&[['l-modules with T' acting diagonally on both sides.
Proof. See [GH94], Proposition 21.8 and Proposition 22.4.

COROLLARY 3.1.5: The (I' x Go)-equivariant line bundle Lie(E("™))®* is gener-
ically flat for allm > 0 and s € Z.

Proof. Since H(™ = HO g Ry R, it follows from the universality of E(™) that
E™ — R ®Ry Rm.

The isomorphism Lie(E(™)) = R,, @g, Lie(E®) of R,,[I’ x Go]-modules gives
rise to an isomorphism

R @p  Lie(E™) = RS @5 Lie(E(®)
of RM&[I" x Gp]-modules. Then using (2.3.4) and (3.1.4), we have an isomorphism
(3.1.6) R @p, Lie(E™) = R @ . (B), @k, K)

of RHe[I" x Ggl-modules, where I' and G act diagonally on both sides. The
action of Gy on By, ®k,, K by convention is trivial. The corollary follows after
taking tensor powers on both sides.

Let v; denote the images of the basis elements ¢; under the map
RIE @p, Lie(E®) — M.

According to [GH94], Proposition 23.2, the global sections {v; }o<i<n—1 of the
line bundle (M})"8 have no common zeros on X', and are linearly independent
over K. If V denotes the IV(—subspace of M3 spanned by them, then V is



Vol. 239, 2020 LOCALLY ANALYTIC REPRESENTATIONS 391

I'-stable, and is isomorphic to Bj ®k, K as a I-representation. Let P(V) be
the projective space of all hyperplanes in V. Then the map

d:X[E — P(V)
x+— {v € V|v(z) =0}

is an étale surjective morphism of rigid analytic spaces, if P(V) is identified
with the (h — 1)-dimensional rigid analytic projective space ]P’}}(_1 (cf. [GHY94],
Proposition 23.5). The morphism ¢ : Xéig — ]P’};{l is called the period
morphism. In homogeneous projective coordinates, it is given by

() = [pole) : ... : na (@)

where ¢q,...,pp-1 € Rf)ig are certain global rigid analytic functions without
any common zero. These functions can be constructed from the logarithm

go(X) = Z aann

n>0

of the universal formal o-module H(® over Ry as the limits

wo := lim @w"anp
3.1.7 nree
( ) p; := lim w"Jrlanhﬂ-, H1<i<h-1

n—oo

in the Fréchet topology of RG® (cf. [GH94], (21.6) and (21.13)).

An important property of the period morphism ® is that it is I'-equivariant
for the I'-action on P’;{l by fractional linear transformations via the following
injective group homomorphism (cf. [Koh13], Remark 1.4):

j - ‘%GLh(Kh)

Ao AL wAy - A1
7 Y A\ A .. o
Z;l 22 ;2 ZZ—2
(3.1.8) hil _ AN o wA, AN - e PLan
)\in — .
=0
;1—1 ) h—1 h1 ;171

] wAg W)‘Z:l A
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The Gross—Hopkins fundamental domain D is the affinoid subdomain of Xéig
defined as follows:

(3.1.9) D= {z e X\ ®||ui(z)| < || #) forall 1 <i<h—1}.

According to [GH94|, Lemma 23.14, the function ¢ does not have any zeroes
on D, hence is a unit in Oxéag (D). Setting w; := g; for 1 <i<h—1, [GH94],
Lemma 23.14 implies that the affinoid K-algebra O xzie (D) is isomorphic to the
generalized Tate algebra:

~ K (=i ,...,w_(l_hgl)w _
(3.1.10) < ! n1)

=1 X cow e lwr,wn ]| lim |ca||w|2?fai<1i>o}
o |— 00

aeNy ™!

It follows from [FGLO8|, Remarque 1.3.2 that D is stable under the I'-action
on Xéig . Also, the I'-equivariant period morphism ® restricts to an isomorphism
®: D = (D) over D (cf. [GH94], Corollary 23.15). As a result, we have an
explicit formula for the I'-action on OX(TE (D) similar to the one of Devinatz—
Hopkins (cf. [Koh13], Proposition 1.3):

PROPOSITION 3.1.11: Fix i with 1 <i < h— 1, and let v = _0—) A1V € T.
Then

Z AJ] w] + z_] i+1 WAthz J

3.1.12 w;) =
( ) ¥(w;) /\0+Zh 1)\01

The group T acts on O xzis (D) by continuous K -algebra endomorphisms ex-

tending its action on R“g.

Proof. This is straightforward since v acts on the projective homogeneous co-
ordinates [pg : ... : @p_1] through right multiplication with the matrix j(v)
n (3.1.8). By [BGR84], (6.1.3), Theorem 1, the induced K-algebra endomor-
phism v of the affinoid K-algebra O Xz (D) is automatically continuous.

Remark 3.1.13: A rigidified extension (E,s) of H(® by G, is an exten-
sion E of H(® by G, together with a section s : Lie(H(®)) — Lie(E). The
set RigExt(H(®,G,) of isomorphism classes of rigidified extensions of H(®)
by G, is a free Rp-module of rank h, and has a basis {go, g1, .., gn—1} where
go € Ro[[X]] is the logarithm of H(® and g; := gfg for 1 <i < h-1
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(cf. [GH94], Proposition 9.8). Moreover, the Ro-module w(E(®)) of invariant dif-
ferentials on the universal additive extension is isomorphic to RigExt(H(®), G,)
(cf. [GH94], (11.4)). Thus,

R{® ®p, Lie(E) = Homp, (RigExt(H®, G,), RS®).

The functions ; in (3.1.7) are precisely ¢;(go), and the basis dgo of w(H(®)
is mapped to go under the natural map w(H®) — w(E®). As a result,
the global sections v; and v; of the line bundle (M})"8 (see paragraph after
Corollary 3.1.5) are related by the relation ¢ v; = p;v; forall 0 <i,5 <h —1.
Consequently, we have @jv; = @ivi in Mg. Let U; C Xéig be the non-vanishing
locus of ¢;; then on U; NU;, we get v] = :Zg vj and v = ::g v;. The U;’s cover
X('® as the functions ¢;’s do not vanish simultaneously at any point on Xg .
This means that

(Mg)righ]i =~ OXSig

vp; forall0<i<h—1.
In particular, for ¢ = 0, we have an isomorphism

Mj, = (M§)"8(D) = O s (D)}

0

of O y+ix(D)-modules which is also I'-equivariant. The I'-action on M} is semi-
0
linear for its action on O s (D).
0

Remark 3.1.14: The discussion in Remark 3.1.13 shows that the generating
global sections v;’s of the line bundle (M})"8 are the pullbacks ®*(;) of ¢;’s
along the period morphism ¢ for all 0 <i < h—1. As a consequence, it follows
that

(M(l))rig = @*Ophfl(l).
K
By the general properties of the inverse image functor, we then have
(M) =2 &*Opn1(s) for all s € Z.
K

3.2. LOCAL ANALYTICITY OF THE I'-ACTION ON M3 In this subsection, we
show that the orbit map (y — v(f¢f)) : I' — M} explicitly given by Propo-
sition 3.1.11 and Remark 3.1.13 is locally K-analytic for all fof € M},.

Let M},(K},) denote the ring of h x h matrices with entries from Kj,. It carries
an induced topology from the identification with K ,};2, which endows it with a
structure of a locally analytic Kj-manifold. The subset GLj,(K}) of invertible
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matrices is open and forms a locally Kp-analytic group. Consider the subgroup
P of GLy(K},) defined as follows:

P .= {a = (aij)ogi,jgh_l S GLh(Oh) |aij,a0k € woy

forall 1 <i,j,k <h—1withi> j}

It is conjugate to a standard Iwahori subgroup of GLy(K},). The conditions on
the entries of a matrix in P force all of its diagonal entries to lie in o, . Since P
contains the ball of radius |w?| around a for any a € P, P is open in GL(K}).
Thus, P is a locally Kp-analytic subgroup of GL,(K}). The inclusion map
j: T <= GLy(K}p) mentioned in (3.1.8) has image in P.

LEMMA 3.2.1: The inclusion map j : T' — P in (3.1.8) is locally K-analytic.

Proof. The global chart for P induced from that for My (K}) sends a in P to

(aoo, aot, - - -AQ(h—1),A10, Q115 - - -, A(h—1)(h—2), a(h71)(h71))

in K,’f. Recall the global chart ¢ for T' from (2.2.3). Using the global charts
for both groups, it is easy to see that the corresponding map from the open
subset (') in K to K ,’;2 is locally K-analytic since each component of this
map is either a linear polynomial or a K-linear Frobenius automorphism o
or a composition of both, all being locally K-analytic. As before, we remark
that j is generally not locally Kj-analytic because o : 0, — o0, is not locally
Kp-analytic unless h = 1.

The algebra O X1 (D) is a K-Banach algebra with respect to the multiplica-

tive norm || - || p defined as follows: for f = ZaeNg—l Caw® € Oy (D),
I£llp =" sup_|eallew =it @ti=i)
aGN{ffl

(cf. [BGR84], Section 6.1.5, Proposition 1 and 2). Let P act on Oyxi(D) by
9]
K-linear ring automorphisms by defining
h—1
ap; + 1 QW5
(3.2.2) a(w;) = 23;_11 7
aoo + D1 ajow;

for a € P and for 1 < i < h — 1. This gives an action of P on O xi(D)
0

by continuous K-linear ring automorphisms which, when restricted to I via j,
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coincides with the I'-action on Oy (D) (cf. Proposition 3.1.11). Indeed, note
0
that
h—1 h—1
apo + Z ajow; = ago (1 + Z aoolajowj) S (OX[l;ig (D))X
j=1 j=1
is a unit of norm 1, and

= |lwillp
D

h—1
ap; + E aj;W;
=1

by the strict triangle inequality. Altogether, ||a(w;)||p = ||w;i||p which ensures
that P acts on O iz (D) via
0

Z CqW® —> Z caa(wy)® - a(wp—1)*" 1

aeNé"il aeNé"il

in a well-defined way.
We now show that the above action is locally K-analytic.

LEMMA 3.2.3: The map t : P — P, (aij)0§i7j§h71 — (L(a)ij)ogiﬁjghfl
defined by

1 op - .
_Jay, ifi=5=0;
Ua)iy = ,

a;j, otherwise

is locally Kp-analytic, and thus locally K-analytic.
Proof. This follows from [Sch11], Proposition 13.6, and the fact that K, is a

locally Kp-analytic group. The local K-analyticity of « follows due to restriction
of scalars.

PROPOSITION 3.2.4: The action of P on O yxie(D) is locally Kp-analytic, and
0
thus locally K-analytic, i.e., the orbit maps of the action are locally K-analytic.

Proof. By Lemma 3.2.3, it is enough to show that, for each f € OXéig (D), the
map i(a) — a(f) from P to O xris (D) is locally Kp-analytic. Consider the
open neighbourhood U of 0 in K ,’f defined as follows:
U:={x=(x1,22,...,2p2) € OZZ |zi, Zgh+r € wop, for all 2 < i <h
and for all ¢ > r with ¢,r > 1}.

Let T = (T1,Ts,...,Ty2), and let fU(K,}ZZ,Ong(D)) denote the set of
power series in T' with coefficients from Oyxie(D) which converge on U.
0
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Like Oy g( ), fU(KZZ,OXng(D)) is also a K-Banach algebra with respect
0
to the multlplicative norm

P

aeNp?

‘= sup Hfa||D|w|(042+0¢3+“‘+0¢h+042h+2+043h+2+043h+3+‘“+0¢(h—1)h+h—1)

aeN{f

(cf. [Sch1l], Proposition 5.3). Under the global chart of P in the proof of Lemma
3.2.1, we now show that, for a monomial w® € (’)ngg (D), the map ¢(a) — a(w®)
belongs to ]-'U(K,’f, (’)ngg (D)) for every a € Ny~

By (3.2.2), we have

0‘ :a,(wl al a(’whfl)ahfl

_ (CLOl + Z -1 aﬂw]) . (ao(h 1) + zh_ll aj(hl)wj)ahl

ago + Z =1 @joWy ago + Z =1 Ajowy

(3.2.5) ( (aoﬁzaﬂwj) > _01>'a<1+a601;aj0wj)'a
(H(aoﬁz aﬂwj) ) ao&)l&(; (%0 Zamw])l)la.

Thus the expression of a(w®) is a product of (agy)!*l and two big brackets.

The first big bracket in (3.2.5) is a product of polynomials in a;;’s with co-

efficients from O (D), and hence is the evaluation at ¢(a) of an element in
0

]-“U(K,}f, O xrie (D)). Similarly, (agy)!®! is the evaluation at t(a) of the mono-
mial T| *l Wwhich belongs to Fur (K,}Zz, Oxéag (D)). The second big bracket is the

|a|-th power of a certain geometric series The [-th term in that series is the
evaluation of the polynomial (=T} Z L Tjniaw;)! at u(a), and

! 1
) :|w|h_
U

Hence, the series Y2 (=T Z T]h+1wj)l converges in ]-'U(K,’f, OX(t;ig(D)),
and the map t(a) — a(w®) € .FU(Kh ,OX[l;ig (D)) for every a € Ni—1,

(-r )],

-(-n




Vol. 239, 2020 LOCALLY ANALYTIC REPRESENTATIONS 397

Let us calculate the norms || - ||y of the above power series corresponding
to the terms in the expression (3.2.5) or find an upper bound for them. First,
|7 = 1. Since

o0 h—1 !
Z ( -1 Z Tjh+1wj)

1=0 j=1

= sup|w|ill =1,
U >0

< sup
U >0

h—1 1
< - T1 Z Tjh+1wj>

j=1

the power series corresponding to the second big bracket in (3.2.5) has the norm
< 1. The first big bracket is obtained by evaluating

h—1 h—1 o
1T (Tz‘+1 +> Tjh+i+1wj)
i=1 =1

at ¢(a), and
h

1

- h—1
H <Ti+1 + Z Tjh+i+1wj>
=1 =1

( i+1 + Z TthrlJrle)
H w'al(l—b

Therefore, the power series corresponding to the first big bracket has the norm

(677

U

|w|2?:711 @i(1=1) . So, for every a € NA~! the map t(a) — a(w®) is given by an
element in Fys (K,’f, O 1z (D)) whose norm is bounded above by |w|2?:711 @i(l=4),
9
Now given f = ZaeNg—l Cow™ € O yria (D),

a(f)= Y cala(w®)),

a€N8’71

and for every a € NJ ™!, the map t(a) — cq(a(w®)) is represented by a power
series in }“U(K,’f, O iz (D)) having norm < |ca||w|2?;1 ai(1=7)  Since
0
Jim ool ] 0= = o,
we see that the map t(a) — a(f) from P to Oy (D) is given by a convergent
0
power series in }“U(K;ZZ),OXT;E (D)). As a is arbitrary, this implies that the
0

action of P on OXéig (D) is locally Kp-analytic, and thus locally K-analytic by
the restriction of scalars.

PROPOSITION 3.2.6: The K-Banach space O yix(D) is a locally K-analytic
0
representation of T'.
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Proof. This follows from Lemma 3.2.1 and Proposition 3.2.4.

THEOREM 3.2.7: Let s be any integer. Then the K-Banach space M} is a
locally K-analytic representation of I.

Proof. Due to Remark 3.1.13, we have a I'-equivariant, O y.is(D)-linear iso-
0
morphism M}, = OXé;g (D).p§ of free OX(r)ig (D)-modules of rank 1. Then M3

obtains a structure of a K-Banach space with respect to the norm defined as

£ e6ling, = 11flIp-

Since the I'-action on M}, is semilinear for its action on OX(r)ig (D), we have

Y(feg) =v(f)v(gf) for all y € T and f € Oy (D). Now, as mentioned in the
0

proof of Proposition 3.1.11,

h—1
Y(#5) =7(90)* = (Moo + A7 11+ -+ AT pn_1)’
(Ao + A _qwi 4+ A w0

So the orbit map from I' to M}, is given by sending v to

h—1
Y(fe5) = () Ao+ Ap_qwi + -+ AT wh-1)°gp.

The map v — ~(f) is locally K-analytic by Proposition 3.2.6, and the map
v (Ao + AL _qwr + -+ X{hilwh_l)sgog is also locally K-analytic since it is
given by a linear polynomial in the coordinates of y. Thus, the orbit map, being
a product of these two maps, is locally K-analytic. Therefore, M}, is a locally
analytic I'-representation for all integers s.

3.3. LOCAL ANALYTICITY OF THE I'-ACTION ON M§. Let D(I") denote the al-
gebra of K-valued locally K-analytic distributions on T' (cf. [ST02ii], Section 2).
The strong topological duality induces an anti-equivalence between the category
of locally K-analytic representations of I' on the K-vector spaces of compact
type and the category of continuous D(I')-modules on the nuclear K-Fréchet
spaces (cf. [ST02ii], Corollary 3.4). Using the local K-analyticity of the T'-
action on M7}, obtained in the previous subsection, we now show that, at level
m = 0, the induced T'-action on the vector space (M); of compact type is lo-
cally K-analytic by showing that its strong topological dual M is a continuous
D(T')-module.
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The continuity of the I'-action on the universal deformation ring Ry (cf. The-
orem 2.2.6) leads to a continuous I-action on Ry*®. This is implied by the next
proposition.

ProposiTION 3.3.1: Let n and l be integers withn > 0 and [ > 1. If v € T,
and if f € Ry®, then

V() = flle < " £le
Proof. Note that R&% is a generalized Tate algebra over K in the variables
(@ "u;)1<i<n—1. Then by [BGR84], (6.1.5), Proposition 5, we have
lgll: = sup{|g(2)llz € By(K)}or anyg € Ry,
where
Bi(K) = {z € (K)" |z;| < |w|"/ forall 1 <i < h—1}.

Let us first prove the assertion for f = u; forsome 1 <i< h—1. If z € IB%Z(IV()
and y = (y;) := (y(u;)(z)), then we need to show that |z; — y;| < |o|+D/!

because ||u;|; = |=|'/!. Consider the commutating diagram
> RO
of homomorphisms of 8-algebras. Choosing z € & with |z| = |w|'/!, we have

xj € zo for all j. Further, @w € 20 because I > 1. As a consequence, the right
oblique arrow of the above diagram maps mpg, = (@, u1,...,un—1) to 26. Note
that v(u;) € mp, so we obtain y; € zo as well. Therefore, also the left oblique
arrow maps mpg, to z0. Now consider the induced diagram

R /mn—i-l v - Ro/mn—i-l

\ /
0/(z"*)

According to Theorem 2.2.6, the upper horizontal arrow is the identity. It
follows that z; —y; € 216, i.e.,

|z; — yi| < |W|(n+1)/l-
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We now prove the assertion for f = u® by induction on |a|. The case |a| =0
is trivial. Let |a| > 0. Choose an index ¢ with a; > 0. Define 5, := a; if j # 4,

9

and f3; := a; — 1. Then for z € B;(K),

Iy (u) () — u®(z)] =[y* — 2*| = lyiy” — 22"
<max{|yi||y’ — 2°|, ly; — @] |2"|}.

Now [yilly? — 2| < |w|"!|[y(u”) = «’|li < || "D/ [’y = || [u]; by
the induction hypothesis and |y; — x;||2?| < |w| Y/ |8/ = ||/ ju®|; as
seen above. Thus we obtain |y(u®)(z) —u®(x)| < |@|™!||u®||; for all z € By(K)
as required.

Therefore if f = ZO(EN[);—I cau® € RYE, then by continuity of 7, we get

v (f) = £l

| > bt -

aEN371

l

< sup eallly(w®) —u
aEN371

< sup el || lu s
aEN371

=[eo[*/"]1fl1

We write I'g, for I' when viewed as a locally Q,-analytic group, and gq, for its
Lie algebra g when considered as a Q,-vector space. Let d := [K : Q). Since I'g,
is a compact locally Qp-analytic group of dimension ¢ := dh?, it contains an
open subgroup I', which is a uniform pro-p group of rank ¢ (cf. [DDMS03],
Theorem 8.32). The subgroups in its lower p-series P;(I',) (i > 1) form a basis
of open neighbourhoods of the identity in I', and are also uniform pro-p groups
of rank ¢ (cf. [DDMSO03], Proposition 1.7, Proposition 1.11 (i), Theorem 3.6 (i)
and Proposition 4.4). Let n be a positive integer such that I',, C T',. As T, is
open in T',,, it contains I'y := P;(T,) for some ¢ > 1. In what follows, we view ',
as a locally Qp-analytic group.

Let us denote by A(T'.) := 6[[['x]] the Iwasawa algebra of I, over 4. Set

bi:=v—1€Al,) and b*:=5b]"---bj

for any o € Nf where {71,...,7%} is a minimal topological generating set of
.. By [DDMSO03], Theorem 7.20, any element u € A(T'y) admits a unique
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expansion of the form

p= Y dib* with d, € 8Va € Nj.

aeNf
For any | > 1, this allows us to define the K-norm || - [|; on the algebra
A(T.) i = A(T\) ®3 K through
(3.3.2) > da b“ = sup {|dq||w|*1/'}.
aeN aeNf
By [ST03], Proposition 4.2, the norm || - [|; on A(I',)z is submultiplicative. As

a consequence, the completion
AT g { > dab® | da € K, . 11m |de |||/t = o}
a€eNf

of A(T); with respect to || - ||; is a K-Banach algebra. The natural inclusions
A(Ts) g 11 = A(ls) ¢, endow the projective limit

D(T,) = limA(T.) ¢,
l

with the structure of a K-Fréchet algebra. By Amice’s theorem, the above
projective limit is indeed equal to the algebra of K-valued locally Q,-analytic
distributions on I', (cf. [ST03], Section 4). By fixing coset representatives
{7 =1,7,...,7:} of 'y in I'g,, the natural topological isomorphism

Can FQ , Hcan ’)/IF K
of locally convex K-vector spaces induces a topological isomorphism

(3.3.3) D(Tq,) @ 6, D(I'x)  (04,’s are Dirac distributions)

by dualizing (cf. [Fé99], Korollar 2.2.4). This defines a K-Fréchet algebra struc-
ture on D(I'g,) given by the family of norms

10y a1 =+ -+ -+ Sy sl = ?EF{HMHI} with [ > 1

(cf. [ST03], Theorem 5.1).

Note that D(I'g,) is not the same as the distribution algebra D(I) of K-
valued locally K-analytic distributions on I'. In fact, the natural embedding
Co (I, K) — C“"(FQP,K’) induces a map D(I'g,) — D(I') which is a strict
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surjection and a homomorphism of K -algebras by [Koh07], Lemma 1.3.1. Ac-
cording to [Koh07], Lemma 1.3.2 and Lemma 1.3.3, the kernel I of the surjection
D(T'g,) — D(I') is the closure of the ideal generated by all elements of the form
i(Ar) — Ai(r) with ¢ € gg,, A € K and i : gg, < D(I'g,) denoting the natural
inclusion as explained on page 450 of [ST02ii].

THEOREM 3.3.4: The action of I'g, on Rgig extends to a continuous action of
the K-Fréchet algebra D(T'g,), which then factors through a continuous action
of D(T") on Rgig. Hence the action of I' on the strong continuous K -linear dual
(Rf)ig)g of Rf)ig is locally K -analytic.

Proof. First, we show that Rgi,% is a topological Banach module over the K-
Banach algebra A(I'y) , for all I > 1. To show this, let us prove by induction
on |af that [[6*(f)|l; < [|b*]l:]|f]l; for any f € RY®. This is clear if || = 0. Let
|l > 0 and let ¢ be the minimal index such that a; > 0. Define §; := «; if
j # i, and B; := a; — 1. Since I'y C T',,, Proposition 3.3.1 and the induction
hypothesis imply

6% ()l =1 (i = D))l = (v = DO H)Ie < ™10 ()]
<@V B8l £l < el e PV £l
=[ao| PVl = 110l 1l

as required.
By Remark 2.2.8, we then have

(O < allall £
for all p € A(I'); and f € Ro[l] = Ro ®; K. Hence the map

A(T.) g X Ro {;} — Ro[;} (s £) = p(f))

is continuous if A(I'.); and Ro[l] are endowed with the respective || - ||;-
topologies, and if the left-hand side carries the product topology. Since RO[;]
is dense in Rf)i,%’ we obtain a map A(T') ;¢ ; % R“g Rgigl; by passing to comple-
tions. By continuity, it gives Rgt’cf the structure of a topological Banach module
over the K-Banach algebra A(T,) oL Taking projective limits over [, we obtain
a continuous map D(I',) x Ry® — R{® giving Ry® the structure of a contin-
uous module over D(T',). Because of the topological isomorphism (3.3.3), Ry®
becomes a continuous module over D(T'g, ).
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To see that the D(I'g,)-action on Rgig factors through a continuous ac-
tion of D(T'), it suffices to check that i(Ar)(f) = Ai(r)(f) for all A € K,
r€gg, CD(g,) and f € Ry®. Here we make use of Theorem 3.2.7.
Being a locally K-analytic I'-representation, Oxéag (D) is a D(T")-module and
thus carries an action of the Lie algebra g (cf. [ST02ii], Proposition 3.2).
Thus, i(Ar)(f) = Mi(x)(f) holds for all f € OX(r)ig(D). As the K-linear inclu-
sion Rgig — OX(l;ig (D) is continuous, it is gg,-equivariant. Hence the equality
i(Ax)(f) = Xi(x)(f) is also true for all f € RS®.

Now it follows from [Sch02], Proposition 19.9 and the arguments proving
the claim on page 98, that the K-Fréchet space Rgig is nuclear. Therefore,
[ST02ii], Corollary 3.4 implies that the locally convex K-vector space (Ry2),
is of compact type and that the action of I' obtained by dualizing is locally
K-analytic.

The preceding theorem can be generalized as follows. Let I'y be a uniform
pro-p group contained in I'y, 41 for some positive integer n.

THEOREM 3.3.5: The action of I'g, on M§ extends to a continuous action of
the K-Fréchet algebra D(T'g,), which then factors through a continuous action
of D(T") on M§. Hence the action of I on the strong continuous K-linear dual
(M§);, of Mg is locally K -analytic for any s € Z.

Proof. Choose a generator & of the Rg-module Lie(H(®))®s. Then by (2.3.6)
and (2.3.7), M§ = R{25 and Mg, = Rgi,%é. The topology on Mg, is defined
by the norm || fdl|; := ||f|l;- Let v(§) = fod; then by I'-equivariance, we have
Y(f0) = v(f)v(8) = 7(f) fod for all f§ € M. Hence

Y(f6) = fo=((N)fo—£)o=(fo—ffo+ ffo—f)d
=((v(f) = HHfo+ f(fo—1))d.
Now if v € I'y C T'9,41 and if f§ € M, then

(3.3.6)

2n+1

V() = flle < el v (£l
by Proposition 3.3.1 and

Y(8) = 6 = (fo— 1)6 € m}H Lie(H®)®*
by Theorem 2.2.7, i.e.,

1
fo*lem%;r .
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Since [ly[; < ||/ for any y € mp, = (@, u1,...,un-1), [lfo = 1 < || T
and || foll; < max{||fo — 1|l;,1} = 1. Thus by the multiplicativity of the norm
|- |l on Ry® and by (3.3.6), we have

7 (f6) = foll = (v (f) = F)fo+ f(fo = Dlls
< max{||(v(f) = Allell folle; 111 (fo = D2}

2n+1 n+1

< max{lw|  [fll;, =] " [[f]}
n41 n41
=@l  (Iflle=1=l * 1 f]l

The rest of the proof now proceeds along the same lines as in the proof of
Theorem 3.3.4.

3.4. LOCAL ANALYTICITY OF THE I'-ACTION ON M, WITH m > 0. In this sub-
section, as the title indicates, we extend the theorems of the previous subsection
to higher levels m > 0. The following observation together with the continuity
of the I'-action on R,, and on Réig (cf. Theorem 2.2.6 and Proposition 3.3.1
respectively) allows us to show the continuity of the I'-action on R for m > 0.

LEMMA 3.4.1: For every m > 0, there exists a positive integer k,, such that
m%m < mRoRm for all n > k,,.

Proof. Since R,, is a finite free module over Ry, R,,/mpg,Rym is a finite-di-
mensional vector space over Rp/mp, = k. Moreover, R,,/mpg,R,, is still
a Noetherian local ring with the maximal ideal mg, /mpg,R,,. The powers
(mg,, /mr,Rm)™, n € N, of the ideal mpg, /mp, R, form a descending se-
quence of finite-dimensional subspaces which eventually must become station-
ary. Let k,, be a positive integer such that

(mRWL /mRORm)nJ’_l = (mRWL /mRU Rm)n

for all n > k,,. Then by Nakayama’s lemma, for all n > k,,,
(mRm/mRoRm)n =0,
in other words, m’ém Cmp,Rm.

PropoOSITION 3.4.2: Let m, n and | be integers with m > 1, 1 > 1 and
n > ky, — 1 where k,, is as stated in Lemma 3.4.1. If v € 'y, and if f € Rfflg,
then

V() = Fll < [V -
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Proof. Write f = fie; + -+ fre, where {ej,...,e,} is a basis of R,, over Ry
and f; € Rgig for all 1 < ¢ < r. Let z; := y(e;) —e;. Then z; € m?;rl
for all 1 < ¢ < r by Theorem 2.2.6 and thus by Lemma 3.4.1, z; € mp,R,,
for all 1 < i < 7. Since |yl|; < |@w|'/* for any y € mp, = (@, u1,...,up_1),
llzill; < |w|** for all 1 < i < r. Now note that

V(f) = fllv = max {{ly(fie:) — fieili} = max {{lv(fi)y(e:) — fieilli}

1<i<

max {[|v(fi)y(e:) — fiv(e:) + fiv(e:) — fielli}

1<ilr

max { || (v(fi) — fi)v(ei) + (v(e:) — ei) filli}

1<:i<r

= max {||(v(fi) — fi)(ei + i) + @i flli}-

1<ilr

Then Lemma 2.3.3 and Proposition 3.3.1 imply that for every 1 < ¢ <r,

1(V(fi) = fi)ei + @) + i fille < max{[[(v(fi) — fi)(ei + @i)llu, [l fill 1}
< max{[|(v(fi) = fo)llu, ll@illall filli}

< max{|e| " fill, leol 1 fill )
= @V £ill

where we use that e; + x; = v(e;) € Ry, has || - ||;-norm less than or equal to 1.
Therefore, [v(f) = fli < maxi<i<i{l@|"" || fill:} = [@]"/"]| £l

We now arbitrarily fix a level m > 1. As before, we have a uniform pro-p
group I', of rank ¢ as an open subgroup of I'g,. We also fix a positive inte-
ger n > ky,, — 1 such that ', y,,, € T'y. Then I,y contains I'y := B;(T,) for
some 7 > 1 which is also a uniform pro-p group of rank t.

Let {71,...,7} be an ordered basis of T'x and let b; := v, — 1 € A(T.).
Then as before, we equip the Iv{-algebra A(T',)z with the sub-multiplicative
norm || - ||; defined in (3.3.2) for every positive integer . The natural inclu-
sions A(T )f{ 41 < A( )iy of K-Banach completions endow the projective
limit D(T L : K , with the structure of a K-Fréchet algebra which is
equal to the algebra of K-valued locally K-analytic distributions on T',.

PROPOSITION 3.4.3: For any integer | > 1, the action of T'y on RS extends
to Rrlg and makes Rn‘l , a topological Banach module over the K-Banach al-
gebra A( «) - The action of I'g, on RI& extends to a continuous action of
the K-Fréchet algebra D(I'g,).
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Proof. The proof is similar to that of Theorem 3.3.4. First, we prove by induc-
tion on |a| that [|b*(f)|l; < [|b%||:]|f]l; for any f € RFS. This is clear if |a| = 0.
Let |a| > 0 and let ¢ be the minimal index such that «; > 0. Define 3; := «;
if j #4 and B; := a; — 1. Then Proposition 3.4.2 and the induction hypothesis

imply

6% (Nl =1 (G = D))l = (v = DO )i < el /167 ()l
<l VB8l flle < el e PV £

=[ao| PVl = 116 £l

as required. By Remark 2.2.8, this immediately gives ||u(f)]l; < ||gllillf|l; for
all p€ A(T);z and f € R[] = Rin ®5 K. Hence the map

AT B[ L] = B[ L] (o) s ()

is continuous if A(T.); and Ry,[!] are endowed with the respective || - ||;-
topologies and if the left hand side carries the product topology. Since Rm[;]
rig

. . rig . 5
is dense in R _*, we obtain a map A(I'.);, X R,

( — Rfjlg,l by passing to
completions. By continuity, it gives R, ¥, the structure of a topological Banach
module over the K-Banach algebra ATy,

Taking projective limits over [, we obtain a continuous map
D(T.) x Rl — RUe

giving RIS the structure of a continuous module over D(T',). As D(I'g,) is
topologically isomorphic to the locally convex direct sum P 1 erg, /T d,D(T',),
«€Dlg, /T

R}i8 is a continuous module over D(I'g, ).

We want to show that the D(I'g, )-action on RN factors through a continuous
D(T')-action. As mentioned in the introduction, the idea is to use the local K-
analyticity of the I'-action at level m = 0 obtained in Theorem 3.3.4 and the
étaleness property of the extension Rfflg|RBig.

For a ring homomorphism A — B of commutative unital rings, let Der 4 (B, B)
denote the B-module of A-linear derivations from B to B, and let Q2,4 denote

the B-module of differentials of B over A.

LEMMA 3.4.4: Any K-linear derivation from Ry to Ry® extends uniquely to
a K-linear derivation from RIs to RUe,



Vol. 239, 2020 LOCALLY ANALYTIC REPRESENTATIONS 407

Proof. Since R,,[!] is étale over Ro[ 1] (cf. Theorem 2.1.2 (i), [Str08ii]),
1

Rrig Rm{
w

} ®Ror 1] Ro®

is étale over Ry® by [Sta, Tag 00U0], and so is formally étale by [Sta, Tag 00UR].
Then, using [Sta, Tag 031K] and [Sta, Tag 00UQO], we get that

Qe i = Qe ¢ Oge Bt
Therefore
Der ;. (Ry®, RY®) = Hom pris (Q s 7, Ry®)
> Hom pria (Q iz 7 RpE)
=~ HOmR:YiLg (QRf)ig/f( ®R5ig Rfj«bgv Rfrizg)
= Hom s (Vg - )
o Derf((R;ilg, R'ie),
THEOREM 3.4.5: The action of D(I'g,) on RI& factors through a continuous

action of D(T') on R!e. Hence the action of I' on the strong continuous K-linear
dual (R&8); of R js locally K-analytic.

Proof. Recall the inclusion map i : gg, < D(I'g,) from the discussion before
Theorem 3.3.4. For every r € gg,. i(r) € D(I'g,) acts on RLE as a K-linear
derivation from R'& to R'S. Let A € K and t € gg, be arbitrary, and consider
the distribution

i) — Ai(y) € D(T'g, ).

It gives rise to a zero derivation on Rgig by Theorem 3.3.4 and thus by Lemma
3.4.4, it is also zero on RpS. This means that the action of D(I'g,) on Rp#
factors through a continuous action of D(T') on RIS,

As the K-Fréchet space RIS is topologically isomorphic to bD._, Rgig, it
follows from [Sch02], Proposition 19.7, that RIS is nuclear. Therefore, [ST02ii],
Corollary 3.4 implies that the locally convex K-vector space (RUg); is of
compact type and that the action of I' obtained by dualizing is locally
K-analytic.

Similar to the above, Theorem 3.4.5 can be generalized as follows. Fix m > 1,
n > ky—1 and a uniform pro-p group I'x C I'gyy 441 with k,, as in Lemma 3.4.1.
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THEOREM 3.4.6: The action of I'g, on M}, extends to a continuous action of
the K-Fréchet algebra D(T'q, ), which then factors through a continuous action
of D(T') on M£,. Hence the action of T on the strong continuous K-linear dual
(M), of M}, is locally K-analytic for any s € Z.

Proof. Using Theorem 2.2.7, Lemma 3.4.1 and Proposition 3.4.2, the proof of
the first part of the assertion is similar to that of Theorem 3.3.5.

Observe that the isomorphism Lie(H(™)) = Lie(H®)) ® g, R, is I'-equivariant
for the diagonal T'-action on the right. Therefore, we have the following
I'-equivariant isomorphisms by (2.3.6):

Mg, = RU8 @p  Lie(H™)
=~ RUE @ p Lie(H©)
2 RE ® s RY® ®@p, Lie(H®)
2 R ®puie Mg

with T'-acting diagonally on all the tensor products. As a consequence,
the gg,-action on f ® § € M, is given by

Hf@d) =u(f)®@d+ f o)

However, by Theorem 3.3.5 and Theorem 3.4.5, M§ and R'& are not
only gg,-modules but also g-modules. Thus, it follows that the D(I'g,)-action
on M3, factors through a continuous D(T')-action as required.

Remark 3.4.7: The method described above can also be used to show the lo-
cal analyticity of the I'-action on the dual space of the global sections of a
large class of Drinfeld bundles over the Lubin-Tate moduli space (cf. [Koh11],
Section 3). If V is a finite-dimensional K-linear smooth representation of T
then, for any m > 0, the free RI8-module R%¢ @ ;. V with the diagonal I'-action
induces a ['-equivariant vector bundle over X8 whose Fréchet space of global
sections is RM€® .V (cf. [Koh11], Theorem 1.2 and Corollary A.3). By choosing
a basis {b1,ba,...,bq} of V over K, the Fréchet topology of R's ®r V can be
given by the family of the norms || f1b1 + foba + - - - + faballi :== maxi<;<a{ll fill:}
with [ € N, where the [-norms on R!® are as defined in Section 2.3. It then

follows from Proposition 3.3.1 and Proposition 3.4.2 that if v belongs to a small
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enough open subgroup of I' (C intersection of stabilizers of b;’s) then

[v(f1b1 + faba + -+ + faba) — (fib1 + faba + -+ + faba) |
= (v(f1) = f1)b1 + (v(f2) — f2)ba + -+ + (v(fa) — fa)balls
= max {[|v(f:) — filli}

1<i<d

IN

1/1 _
@l max 1 £il}

= |@| Y| fiby + faba + - + faball-

Therefore, similar to the the proof of Theorem 3.3.4, the I'-action on R!i& ®rV
extends to a continuous action of the Fréchet algebra D(I'g,). Since RUS is a
g-module and V' is annihilated by g, the D(I'g, )-action on Ris © i V factors
through a continuous action of D(T") making its strong topological dual a locally
K-analytic I'-representation.

4. Locally finite vectors in the global sections of equivariant vector
bundles

This section is devoted to studying representation-theoretic aspects of the I'-
representations M, which include a complete description of the I'-locally finite
(algebraic) vectors in M, for all s € Z and m > 0.

4.1. LOCALLY FINITE VECTORS IN THE I'-REPRESENTATIONS M.

Definition 4.1.1: Let G be a topological group and V' be a vector space over
a field F' equipped with an F-linear G-action. We say that a vector v € V is
locally finite (or G-locally finite) if there is an open subgroup H of G and
a finite-dimensional H-stable subspace W of V containing v.? It follows easily
that the set Vif of all locally finite vectors of V' forms a G-stable subspace. We
call V' a locally finite representation of G if Vi = V. If V and W are F-linear
G-representations, and if f : V — W is an F-linear G-equivariant map, then
clearly f(Vir) C Wis.

31n [Emel7], Proposition-Definition 4.1.8, the notion of a locally finite vector is defined
for the vector spaces over a complete non-archimedean field F', and requires locally fi-
nite vector v to be contained in a continuous finite-dimensional H-representation W for
its natural Hausdorff topology as a finite-dimensional F'-vector space. Since all the I'-
representations we are concerned with in this section are continuous representations on

K-Fréchet spaces, the continuity condition is automatically satisfied.
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To calculate locally finite vectors, we make extensive use of the Lie alge-
bra action. Let U(g) be the universal enveloping algebra of the Lie algebra g
of I over K. Note that g is isomorphic to the Lie algebra associated with the
associative K-algebra Bj. Thus,

0= g®K K =gl (Kp).

Denote by r;; € gl,(K},) the matrix with entry 1 at the place (4,j) and zero
everywhere else. By Theorem 3.2.7, the I'-representation

Mp = O s (D)
carries a continuous linear action of
U(g) @k K = U(gl,(Kn)) @k, K = D(T).

Since GLp(K}) acts on the projective coordinates o, ..., pp—1 by fractional
linear transformations, one can explicitly determine this Lie algebra action using
the formula

r(f) = jt

LEMMA 4.1.2: Let i, j and s be integers with 0 <i,j < h—1. Put wg :=1. If
f € Oyxig(D) then
0

exp(te) (f)li=0-

wi g soa, if j # 0;
(4.1.3) tii(fed) =< (sf — 31, lawl <p0, ifi=j=0;
w;(sf — Zz 1w aw )(po, ifi>j=0.

Proof. This is exactly the same as [Koh14], Lemma 4.1, which treats the case
K =Q,.

Given a Lie subalgebra h Cgl, (K}), and a K-linear gl (Kp,)-representation W,
the K -subspace of h-invariants of W is the subspace

{w e Wr(w) =0 for all ¢ € b}

of W. Let us denote by n the Lie subalgebra of gl, (K}) consisting of strictly
upper triangular matrices. For later use, we calculate the g-invariants and the
n-invariants of O yxix (D) in the next lemma using the formulae (4.1.3).

0

v

LEMMA 4.1.4: O yuie(D )9=0 = O 4uie (D)0 = K.

0
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Proof. Since K C O (D)0 C Oynie (D)=, it suffices to show that the
0 0
latter is K. Now if f € O e (D)"=°, then applying the formulae (4.1.3) we get
0

of

=0
8wj

ro;(f) =
for all 1 < j < h — 1. Therefore, f must be a constant power series.

We now compute the space (M3 )ir of locally finite vectors in the I'-represen-
tation M},. The key step is the following lemma based on Lemma 4.1.2:

LEMMA 4.1.5: The subspace Iu([wl,...,wh,l]gog of M3, is contained in
(U(g) @k K)(fpg) for any non-zero homogeneous polynomial

9

fEK[wl,...,wh_l]

of total degree d > s.

Proof. Using (4.1.3), we have for all 0 < i,j <h —1

o _ O
?03(f900) = aw_(pOa
J

tio(fp) = (s — d)ywi fep.

To obtain gy with a monomial g of total degree < s, first reduce fy§ to ¢f
by applying suitable ro; (j # 0) to it iteratively and then apply appropriate rio
(7 > 0) to ¢f to get the desired element g¢f. To obtain ge§ with a monomial g of
total degree > s, reverse the procedure, i.e., first apply appropriate ;o (¢ > 0)
to fef and then reduce the result to gy by applying suitable ro; (j # 0)
to it.

For any s € Z, we define the K -subspace of M}, by

Vs = Z K wpg.
loe| <s
Note that we have V; = 0 if s < 0. For s > 0, it is easy to see that V; is stable
under the action of I'. To see this, it is sufficient to prove that v(w®ef) € Vi
for any w*¢§ with || < s and for any v = Z?;()l NI € T. In this case, using
the action of the matrix (3.1.8) on the projective coordinates [¢g : ... : @r_1],
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we find
(e%1 Qp—1 s)

Y(weg) =y(wit ... w, " ep

a s—|al

=v(pt" - opt T e )

aq s—|af

=v(p1)*" ..y (@r—1)"""v(¢0)
h—1 he1
:(w/\lgp0+ ...+w>\g ‘Ph—l)al "'(w>\h71500+ ...+>\8 @hfl)ah'71
h—1
X ()‘0900 + -+ )\ir (,Dh_l)si‘od
h-t h—1
—(@A 4+ @A W)™ (@At AL g )
X (AO + -+ A‘ljhilwhfl)sim‘spg c V.
THEOREM 4.1.6: The I'-representation M7}, is topologically irreducible if s < 0,

and if s > 0 then Vj is a topologically irreducible sub-representation of M}, with
topologically irreducible quotient M3,/ V5.

Proof. CASE s < 0: Let V be a non-zero closed I'-stable subspace of M7,. Let
fopl € V where

Jo= Z caw® # 0

aEN871

and d (> 0) be the smallest natural number such that ¢, # 0 for some a € Ng -t
with |a| = d. Thus,

fowy = < Z Cawa+z Z cawa>¢8 ev

|oo|=d i=1 |a|=d+i

Z cow® # 0.

loo|=d

where

For n > 0, define a sequence of elements of M7}, inductively as follows:

fn == ((d+n_S)fn—l‘pg‘f'FOO(fn—l(P(sJ))'

1
n
Since V is closed and I'-stable, V is stable under the action of the Lie algebra
and thus f, € V for all n € Ny.

We prove by induction on n that

(4.1.7) fnigl = ( > caw® +§: > =r (igl)cawa)wg.

la|=d i=1 |a|=d+i
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Here the generalized binomial coefficients are defined by
r\  wx(x—1)---(r—n+1)
n) n!

for any x € Z and n € Ny. The case n = 0 is true by definition. Assuming
that (4.1.7) holds for n — 1, we compute using Lemma 4.1.2 that

Fuh = (@4 1= 5)fa 168 + Koo fu-160))

i<(d+ns)< 3 caw“+§: 3 (1)"_1<;_11>Cawa><ﬁ8

|a|=d i=1 |a|=d+i

rrl(Z e sy ¥ <1>n1<;_i)0aw“>w8)>

la|=d i=1 |a|=d+i

(= ( T e+ ¥ et (1 et o

la|=d =1 |a|=d+i

+( Z(s—d)caw“—ki > (s—(d+i))(—1)"_1(2_11)Cawa) 903)

o =d i=1|a|=d+i

(T ¥ maen ) (7] et )

loe|=d i=1 |a|=d+i
- i—1
(s 3 () et
|a|=d =1 |a|=d+i
We now claim that the sequence f,¢{ converges to
(3w )es
|| =d

as n tends to oo with respect to the norm ||| sz defined in the proof of Theorem
3.2.7. As fo € Oyis(D), we know that given ¢ > 0, there exists N. € N such
0

that for all o € Ni ™! with || > N., we have
e

Therefore,

sup |Ca||w|z?;ll ai(l—}

Ja|>N.

) < e.
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Now for all n > N, — d, using (4.1.7), we have

‘fn¢8<z cou® )it = (i > (T e )os

|a|=d Mp, i=1 |o|=d+i

> v () e

i=1|a|=d+i

1y = () e

i=n+1 |a|=d+i

E Caw®

|| >d+n

Mp

D

D

IN

D

= sup |callw|Zi @0
|a|>d+n
< sup eallow[Zi =0 < ¢
|| >N,
Hence, fnpj converges to (3, _q Caw™)pj as n — 0o and (3,)—g Caw®)p €V
because V is closed. Since Z|a\: 4 Caw® is a non-zero homogeneous polynomial
of total degree d > 0 > s, Lemma 4.1.5 implies that Iv([wl, o wp1]el C VL
Since K[wy, ..., wn_1]p is dense in M3, = O e (D)@ and V is closed, it fol-
0
lows that V = M7},. Hence, M}, is topologically irreducible for all s < 0.

CASE s > 0: Let V be a non-zero closed I'-stable subspace of V;. Then V
is stable under the action of the Lie algebra g and thus it becomes a module
over U(g) @k K. As mentioned in the proof of Lemma 4.1.5, any non-zero
element fo§ of V' can be reduced to ¢f by applying suitable ro; (j # 0) to it
iteratively and then ¢f can be converted into any monomial of total degree < s
multiplied with ¢§ by applying appropriate r;o (¢ > 0) to it. Therefore V = V;
and V; is topologically irreducible.

Now let ¢: M3, — M§,/ Vs be the canonical surjective map and let WC M3, /V;
be a non-zero, closed I'-stable subspace. Then ¢~ (W) is a non-zero, closed I'-
stable subspace of M3 not equal to V. Let (ZaeN(})z—l coW®)ps + Vs be a
non-zero element of W. Then

fowd == ( Z cawa)tpg £0¢€ ¢ H(W).

|a|>s
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Let d > s be the smallest natural number such that ¢, # 0 for some « € Nf)“l
with |a| = d. Thus,

R PILES v IR R RIS
o] =d i=1 |o|=d+i
where Z|a\:d caw® # 0.
As in the case of s < 0, we define a sequence of elements in ¢~ (W) induc-
tively for n > 0 as follows:

fugh = | (d+ = 9)fa-16h + ool n-10).

Using exactly the same proof in the previous case of s < 0, it can be shown that
fnipl converges to (32— Caw®) g as n — 0o and (32, _q CaW®) P € (W)
because ¢~ (W) is closed. Since Z|a\: 4 Caw® is a non-zero homogeneous poly-
nomial of total degree d > s, it follows from Lemma 4.1.5 that

9

K[wl, .. ,wh_l].gog - (b_l(W)

Since K|wy, ..., w,_1)@§ is dense in M, = O s (D)gg and ¢~ (W) is closed,
it follows that ¢=*(W) = M3,. Hence W = ¢(M3,) = M3, /Vy. Thus M3, /Vy is
topologically irreducible.

COROLLARY 4.1.8: For all s € Z, we have
(Mphe = V.

Thus, (M§)) is zero if s < 0 and is a finite-dimensional irreducible representa-
tion of I" if s > 0.

Proof. Since I is compact, any v € (M})) is contained in a finite-dimensional I'-
subrepresentation of M},. Now the corollary immediately follows from Theorem
4.1.6 and the fact that M}, is not a finite-dimensional K-vector space.

Remark 4.1.9: For s > 0, the finite-dimensional I'-representation Vj is also
a gl(Kp)-module. Let t C sl (K}) be the Cartan subalgebra of slj, (K}) consist-
ing of diagonal matrices, and let {e1,...,e,_1} be the basis of the root system
(slp(K4r), t) given by e;(diag(to, ..., th—1)) := ti—1 —t;. Define the fundamental
dominant weight
| ht
X0 i= (h—1i)e; €t
i=1
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Then, by the same proof as in [Koh14], Proposition 4.3, it follows that Vj is
an irreducible sl (K})-representation of highest weight syo. Although this is
stronger than saying that V is an irreducible I-representation, our result (The-
orem 4.1.6) also gives information about the I'-representation M7 when s < 0,
and about the quotient M}, /V, when s > 0.

Corollary 4.1.8 leads us to calculate locally finite vectors in the global
sections Mg over Xj%. Recall from [BGR84], (9.3.4), Example 3, that the
rigid analytic projective space ]P’};{l has a finite admissible covering by the
(h — 1)-dimensional closed unit polydiscs

w::sp(f{<‘p0,...,‘ph‘1>), 0<i<h-—1.

Pi Pi
It .
Vi = sp(f(<“"°,..., Pr—1 (%) >) for 0 <i,j<h—1,
Pi Pi Pi
then gluing the V;’s along the identification V;; = Vj; of affinoid subdomains
via K(20,..., 70 (0)71) = K2 “’;;1 (8 )~1) gives the rigid analytic

projective space ]P’}}(_l. The affinoid covering {V;}o<i<n—1 allows us to describe
the construction of the line bundles Opr-1(s) on the rigid analytic projective
K
space in a way analogous to the classical construction. For s > 0, define its
sections over the affinoid space V;
2/ POo $Ph—1
Opr-1(s)(V; ::K< ey >g0§
s (9)0) = K70

to be a free module of rank 1 generated by ¢f over Opr—1 (Vi) = K(¥° proty
K

@' @ D
and the transition functions 1;; : V;; == Vj; induced by the homomorphisms

of affinoid K -algebras

. N —1 multiply by‘pz . =1
RO (9) g DI e (o)
¥i i ¥i ®i Pi Pi
for all 0 < 4,57 < h — 1. The above datum gives rise to a locally free Opn-1-
k
module Opn-1(s) of rank 1. For s < 0, Opn-1(s) turns out to be the Opn-1-linear
K k
dual of Opn-1(—s). It then follows easily from the above description that the
K
global sections of Opn-1(s) are the K-vector space of homogeneous polynomials
K
of degree s in the variables ¢;’s if s > 0, and are 0 otherwise. The line bundles
Opn-1(s) carry a canonical action of I induced by its action on the projective
K

h—1
space ]P’f( .
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Now for any O yrie-module F and Opn-1-module G, there is a canonical bi-
0 K
jection
Homoxrigfmod(q)*gv f) = Homoph,l —mod (g7 (I)*-F),
0 K

where @ : X(r)ig — ]P’};{l is the Gross—Hopkins’ period morphism. The mor-

phism idg+g corresponds to the adjunction morphism ad : G — ®,P*G. Let

G = Opn-1(s) with s € Z. The period morphism @ is constructed in such a way
K

that

@O () = (M)
(cf. Remark 3.1.14). This gives us a map ad : Opr-1(s) — @, (M) of Opn-1-
K K
modules. Taking global sections, we get a homomorphism of I'-representations
adpn—1 : Opgl(s)@’gl) — O (M)E(PET) = (Mg)E (@ (PL)

— (M) (X;%)

= M;.
LEMMA 4.1.10: The map adpr-1 is injective.

K

Proof. The period morphism ®, when restricted to the affinoid subdomain D,
is an isomorphism. Thus

(M5)"4(D) = @ Opns (s)(D) = Oprs (s)(@(D)).
Also we have

(MG)"E(D) = O (D) = Opris ((D)) 55

As a result, it follows from the preceding discussion on the line bundles that
OP%—I(S)(P};&_l) maps bijectively onto Vi C Opn-1(s)(®(D)) under the restric-
tion map. The lemma now follows from the ff)llowing commutative diagram
with vertical restriction maps:

ad p_1

Opi—1(5) (P ) > &, (M§) (P = My

1R

g1 (5)(®(D)) ~ @, (Mp)E(®(D)) = M,

adg(p)
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COROLLARY 4.1.11: Forall s € Z, we have an isomorphism of I'-representations
h—1Y ~
(Mg )it = Ops () (P 2 Vi

Thus, (M§)is is zero if s < 0 and is a finite-dimensional irreducible representa-
tion of T" if s > 0.

Proof. The inclusion Rf)ig — O yis(D) gives rise to a I'-equivariant inclusion
0

M§ — M} = Oxg;g(D) @R, Lie(H®)®* using (2.3.6) and the freeness of

Lie(H®)®% as an Ro-module. As OPE—I(S)(P};&_l) is a finite-dimensional K-
K

vector space, we have for s > 0, OP%—I(S)(]P}}(_l) C (M € (M = Vs,
K

where the first and the last K-vector spaces are isomorphic as mentioned in the

proof of the previous lemma.

Remark 4.1.12: From now on, we identify the subrepresentation OP)}(—I (s)(]P’}};l)
of My with V5. For s = 1, the I'-locally finite subrepresentation V; of MO1 is
the representation V mentioned in the construction of the period morphism ®
(cf. the paragraph after Corollary 3.1.5), and thus is isomorphic to the h-
dimensional T-representation Bj, @, K. Since Opr};l (s) (]Pf}(*l) is same as the
s-th symmetric power SymS(OP;;;l (1)(]P’;3;1)) of OP)}(—I (1)(1?”;{1), we obtain the

isomorphism

9

(Mg e = Vs = Sym®(By, ®k, K)
of I'-representations for all s > 0.

4.2. LOCALLY FINITE VECTORS IN THE ['-REPRESENTATIONS M WITH m > 0.
We compute the locally finite vectors in two parts: s < 0 and s > 0. The idea
here is to use the commuting actions of I and the finite group Go/G, on Mg,.

PART I:s5<0

LEMMA 4.2.1: Let G be a finite group acting on an integral domain R by ring
automorphisms such that the subring of G-invariants RC is a perfect field F.
Then R is a field and the extension R/F is finite.

Proof. If a € R then [] . (t — o(c)) is a monic polynomial of degree |G| with
coefficients in R = F, and has « as a root. This implies that every nonzero o
has a unique inverse, since R is an integral domain. The second assertion now
follows from [Lang02], Chapter VI, Lemma 1.7.
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Let Iu{m denote the m-th Lubin-Tate extension of K. This is a finite Galois
extension of K obtained by adjoining w™-torsion points of any Lubin-Tate
formal o-module over o to it. It is a non-trivial result of M. Strauch (cf. [Str08i],
Corollary 3.4 (ii)) that K,, C RS, In fact, K,, is stable under the actions of
Go/Gpm and T on R, For g € Go/Gum, vy €T and « € K, these actions are
given by

g(a) =det(g)"'(a) and ~(a)=Nrd(y)(a)
viewing K as a left 0*-module via the map 0% — (0/@w™0)* = Gal(K,,/K)
(cf. [Str08i], Theorem 4.4).

THEOREM 4.2.2: For all m >0, (M9)ir = (R'))s = K,,.

Proof. The kernel of the composition map I' % 0% — (0/w™0)* is an open

subgroup of I' which acts trivially on Iu(m. Thus lu(m C (R!)). Notice that
(Rr#)y; is a subring of RIS and is stable under the action of Go/G,,. To see
the stability, let f € (R!2);; and V be a finite-dimensional H-subrepresentation
of R!& containing f for some open subgroup H of I'. Let g € Gy/G,,. Then
the K-vector space gV is H-stable since the actions of H and Go/Gy on V
commute. Thus gV is a finite-dimensional H-subrepresentation of RI$ contain-
ing gf implying that gf is locally finite. Now it follows from [Koh11] Theorem
1.4(i) and Corollary 4.1.11 that

(B O = () D/ O = (R = K.

As (Rr8)y is an integral domain due to [Koh11], Theorem 1.2 (i) and Go/Gn
is finite, (RY&)y is a finite field extension of K by Lemma 4.2.1. So it is also
finite over K,,. However, Strauch’s result that X8 is geometrically connected
over K, implies that K, is separably closed in R (cf. [Koh11], Theorem 1.4).
Therefore (R'&); = K,,.

Remark 4.2.3: By Theorem 3.4.5, we have a g-action on R'2. The subspace of
g-invariants (R!8)9=0 forms a subring of R'&, and is stable under the action of
Go/Gm because the Go/Gp-action on RN is continuous and commutes with
that of I'.  As mentioned in the proof of Theorem 4.2.2, the kernel of the

. Nrd
composition map I' — 0% — (0/w™0)*

is an open subgroup of I" which acts
trivially on K,,. Thus, K,, C (Rr2)8=9. Proceeding similarly to the above, we
have ((R!ig)9=0)Go/Gm — ((Rrig)Go/Gm)e=0 — (RI&)9=0 — K (cf. Lemma 4.1.4).

Then by the same arguments as above, we get (R!2)9=0 = K.
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For all integers s, the I'-equivariant isomorphism
My, = RyE @ gris Mg

(cf. proof of Theorem 3.4.6) and the freeness of the Rgig—module Mg give rise
to a I'-equivariant inclusion M5 C M, of K-vector spaces. Consequently, we
have (M§)s C (M3, )1r. Using the above theorem, we see that (M3, )¢ is a module
over (R'2)); = K,,, and thus we obtain a natural map

K @ (M{ne — (M3

of K-vector spaces. Our objective is to show that this map is an isomorphism
of K[I'-modules for all s.

LEMMA 4.2.4: Suppose V and W are two representations of a topological
group G over a field F such that one of them, say W, is finite-dimensional.
Consider the representation V ®p W with diagonal G-action. Then

(VorWht=Vii@r W.

Proof. We omit the subscript F' in ®p, as all the tensor products are over F.
The inclusion Vif @ W C (V @ W)y is clear. Let W* be the F-linear dual of
W equipped with the contragredient G-action, i.e., (¢f)(w) = f(g~'w) for all
g € Giw € W and f € W*. Choose an F-basis {w1,...,wq} of W, and let
{f1,..., fa} be the dual basis of W* (i.e., fi(w;) = 6;;). Then the natural
evaluation map
WeW*—F (we®f— f(w)

is G-equivariant for the diagonal G-action on the left and for the trivial G-
action on the right. Tensoring both sides with V', we get a G-equivariant map
¢:VeoWW* — V for the diagonal G-action on the left, sending v ® w ® f
to f(w)v. Because of its G-equivariance, ¢ maps locally finite vectors to locally
finite vectors. Now let = € (V @ W)j;. Then  can be uniquely written as

d
xr = le X w;
i=1
for some x1,...,x4 € V. Since W* is finite-dimensional,
2R fie VW) (W) C (VoW W)

for all 1 < i < d. Hence, ¢(z ® f;) = z; € Vif for all 1 < ¢ < d. Therefore,
reVr@W.
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THEOREM 4.2.5: For all s < 0 and for all m > 0, (M2)1s =~ K, Qi (Mghe = 0.
Proof. Recall from Corollary 3.1.5 that we have an isomorphism
R’f"rllg ®R7n Lle(E(m))®s = R%g ®f( (Bh ®Kh, ’[\iv)@S

of I'-representations. As a result, using Lemma 4.2.4 together with Theorem
4.2.2, we obtain locally finite vectors in the global sections of Lie(E(™))®s,

(R @5 Lie(E™)®%) =~ K, ®x (Br ®x, K)®s.
Then, since s < 0, the (I' X (Go/G,))-equivariant inclusion
C Rj# ®p,, Lie(E™)®*
from (3.1.2) gives rise to a (I' x (Go/Gm))-equivariant inclusion
(M )it € K @ (Bn ®x, K)®°

of K-vector spaces. As the action of SLy,(0/w™0) C Go/Gm on the right-hand
side above is trivial, we get

(an)lf _ (MS )SLh(o/m o) _ ((an)SLh(v/wmv))lf,

where the latter equality is due to the fact that both group actions on M;),
commute. Therefore,

(M)t

(M3 SEr /=) o2 (R3S @ e M) 0o/ =)
((ReySEno/="0) o M)
(
(K

I

I

(Iu( S R61g> ®erg Mo)lf
m @p M3t = K @ (M)t =0

HZ

where the second isomorphism holds because M is free over Rf)ig with trivial
Go/Gm-action, and the third isomorphism holds because (RLg)SEn(e/=™0) jg

rig

Galois over R;® with the Galois group isomorphic to

GO/Gm

SLn(ojmmo) — @"o) 2 Gal(Kn/K)

and K,, C Rr&. For the second last equality in the above, we use Lemma 4.2.4
again. The final result then follows from Corollary 4.1.11.
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PARTIT : s >0
To compute the locally finite vectors in M}, for s > 0, we make use of the
action of the group

G®:={g € GLy(K)| det(g) € 0™}

on the Lubin-Tate tower (Xi),, .y, described in [Str08ii], Section 2.2.2. Given
g € GY and m > 0, for every m’ > m sufficiently large (depending on g), there
is a morphism gy ., @ X5 — XZI& of rigid analytic spaces satisfying the

following properties:

(1) For all g € G° and for all n > m/” > m’ > m, we have

Inym = Tm/;m © gm/" m’ © T m’,

where recall that mp,/ »m : X 25 — X'i& denotes the covering morphism.
In particular, if g = e, and if m = m’ = m”, then we get e, m = Tnm
for all n > m because e, = id ynis by definition (cf. [Str08ii], Section
2.2.2).

(2) (gh)m . m = Gm’.m © hyrr m for all g, h € GY and for all m” > m/ > m.

(3) Set @y, i= @0 Mo+ X136 — Pt Then @y = @y © gy for all
g€ GY m' >m.

(4) All gy are I'-equivariant morphisms.

(5) For g € GLy(0) and m > 0, g m is defined. The gives an action of
GLy(0) on X! which factors through GLjy(0/@w™0) = Go/Gm. The
induced Go/Gp-action coincides with the Gp/G,-action introduced in
Section 2.2.

Let D,, = w;}O(D) where D is the Gross-Hopkins fundamental domain D
in Xéig . The admissible open D,, is a I'-stable affinoid subdomain because 7, o
is a finite, I'-equivariant morphism, and D is I'-stable. For every ¢ € G° and
m >0, we define a g-translate of D,, as gDy, :=gm’ m (D) by choosing m' >m
large enough. Note that this definition is independent of the choice of m’, since
by property (1), for m” >m’ > m,

gm//7m(Dm//) :gm’,m(ﬂm”,m’ (Dm//))
:gm’,m(wm”,m/(W;L}/,o(D)))
:gm’,m(wm”,m/(w;ﬁ/,m/ (7";1/1,0 (D)) = gm',m (D),

using that 7, . is surjective.
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PROPOSITION 4.2.6: The set {gD, }geqo forms an admissible affinoid covering
of ®L(®(D)) consisting of I'-stable affinoid subdomains.

Proof. This is a part of the cellular decomposition of the Lubin-Tate tower in
[FGLO08], Proposition 1.7.1 relying on [GH94], Corollary 23.26. The I'-stability
of gD, follows from (iv) and that of D,,.

LEMMA 4.2.7: For all g € G° and m’ > m, the maps
OP}}(—I (@(D)) — OX;ilg (gDm) — OXrig (Dm/)

m/’

Im’,m D,

of affinoid K -algebras induced by the morphisms D,,, — ¢gD,, — ®(D)

are injective.
Proof. By property (3), the composition

D0 gmim = Py = Pomp o
is flat because ® and 7, ¢ are flat. Hence the composition map

OP’;;I(‘I)(D)) — OX:% (D)
of affinoid K -algebras is flat. Since

O+ (2(D)) = 0, (D)
is an integral domain (cf. [BGR84], (6.1.5), Proposition 2), we have that the map
Opn-1(®(D)) — O yris (D) is injective.
{’(0 show that the otnlller map O ysie(9Dm) — O grie (D) is injective, choose

g

; is defined. Using

ri
m'’ m

m/ > m' large enough so that g;,l,ym, D XUe X
properties (1) and (2), we have

g;z’l’,m’ (gDmr) = 9;«;',771’ (gn,m” (Dn)) = en,m’(Dn) = Tn,m’ (Dn) = Dy
and thus
9D = g (Dimr) = gm’,m(!];}f,mf(gDm”)):em’ﬂm(gDm”) = Tm/t,m (9 D).
In other words,

(gm’,m © g;L}f,mf”gDm// = Tm" ,m-

Hence the induced composition O y+ix(9Dy,) — O yrig (Dipr ) — O yris (9Diprr)

of the maps of affinoid [?—algebras is flat. Now it is not clear if the alge-
bra O yis(gDy,) is an integral domain. However, we can decompose gD,
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into its finitely many disjoint connected components gD,, = | |;_, U; so that
each Oynie(U;) is an integral domain (cf. discussion after [BGR84], (9.1.4),
Proposition 8 as well as [Con99], Lemma 2.1.4). This decomposition also gives
a decomposition gD = ||;_y (7w mlgp, ) "1 (Us) of gDy into disjoint ad-
missible open subsets. By the same argument as in the first paragraph, each
map O s (U;) — OXng (T mlgp,, )1 (U;)) is injective. As a consequence,
the composition O yris (gD ) — Oxie (9D ) is injective since it is the finite

direct product of all these maps.

Remark 4.2.8: The affinoid subdomain D,,, by definition, is the same as the
fibre product X!& x rie D for the maps
0

Tmo: X508 — X5® and D < Xj®.
Thus, we have an isomorphism
. ~ prig . .
OXﬁg(Dm) = R ® pris Oxé.g (D)

because RUE|RGE is finite. The Galois group Go/G,, = Gal(RM|RH2) acts on
Oxrie (D) via

Y Lol gf)ef
=1 =1

for g € Go/Gy, which gives an action on O yrie (Din) by O xrie (D)-linear auto-
morphisms. Hence the extension O yric (D )|O x5 (D) is finite Galois with the
Galois group Go/G,. Consequently, for all m > 0, the extension of coordinate
rings O yris (Dm)|(9p;;1 (®(D)) induced by the map ®,, is finite Galois with the

same Galois group.

Remark 4.2.9: As both RI& and O rlg( ) are g-modules (cf. Proposition 3.2.6,
Theorem 3.4.5), we have a g-action on Oyric(D,,) = RNE ® s OXéig (D).
Namely, if ¢ € g then on simple tensors,

tfef)=uf)ef + ferf).

The g-action on OXng (D) restricts to the subalgebra O yric(9Dm), because
by Remark 4.2.8, OXrlg (9D,) is a T-stable submodule of the finitely gen-
erated Opn—1(®(D))-module O g( m’) and hence is closed in O (D)
by [BGRSZ], (3.7.3), Proposmon 1. Denoting by Ad, the adjoint automor-
phism of g corresponding to v € I', we remark that the actions of I' and g
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on Oyrie(9Dpm) are compatible in the sense that y(x(f)) = Ad,(r)(v(f)), since
the Lie algebra action comes from the action of the distribution algebra D(T")
on RU$ and O xzis (D). Using the isomorphism

(an)rig(gDm) = Oxfjf (9Dm) © prie Mg,
and Theorem 3.4.6, one obtains that (M3, )"8(gD,,) carries compatible actions
of I" and g for all s € Z.

PROPOSITION 4.2.10: For all g € G° and for all m > 0,
OX,T,;E (gDm)lf = Ox;;& (gDm)g:O = OX;iLg (gDm)“:O.
All these K-vector spaces are finite-dimensional.

Proof. Let g € G°, m > 0 be arbitrary, and m’ > m so that gm/,m is defined.
As seen in the proof of Lemma 4.2.7, the composition

Op=1(®(D)) = Oxs(9Dn) = O (Din)

is induced by ®,,-. The I'-equivariance of g,/ , and of @, yields the inclusions

Opn-1(®(D))if = Oyrie(gDm )1 = O yrie (D )1 of K-algebras. The Galois
K m m/

action on O yrie (D) commutes with the I'-action. As a result, O yrie (D )it

is stable under the Galois action and
(O i (Do )15) 70/ G =(O v (D) 50/ G 15
:OP’I&;I (@(D)he = Oxsig(D)lf =K

(cf. Corollary 4.1.8). Since Go/Gyy is finite, O yrig (D )i¢ is integral over K,

and thus OX;;g (¢Dm )i is integral over K. As before, we write gDy, = | |._, U;
where U;s are the connected components of gD,,. Let I'; be the stabilizer of U;
in I'; then each I'; has a finite index in I'. Let I', C I" be an open subgroup
which is a uniform pro-p group. Then for every i, the intersection I'; N T', has
a finite index in T, and thus is open in T, by [DDMS03], Theorem 1.17. As a
result, I'; NI, is open in ', and
ri= |J ~mint,)
y€T;/T;NT,
implies that I'; is open in I" for all 4. Hence their intersection

T

is again an open subgroup of I'.
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Now the decomposition O yric(gDy) = []i_; Oyrie(U;) of K-algebras is I"-
equivariant for the componentwise I'V-action on the right. Thus the compactness
of I' gives the decomposition

O xris (9D e = O xrie (9D )11 = HO nig (U )1
i=1
of locally finite vectors. Denote by K; the integral closure of K in the in-
tegral domain O s (U;) for each i. It then follows that Kj is a field exten-
sion of K. Since every projection OX;;g (gDm )it — OX;iLg(Ul-)p/,lf is a surjec-
tive K -algebra homomorphism, the integrality of OXr;g (gDm )it over K implies
that O g( )/ —1f 18 integral over K for all i. Therefore, © ng(UZ-)p/,lf CK;
for all . On the other hand, for each i, K; is I["-stable as I" acts K -linearly
on Oy g( ;). Now for any classical point = € U;, the composition map

K; = Oxne(U;) - k(z)

is injective, and because x(z)|K is finite, K;|K is a finite extension. This gives
the other inclusion K; C (’) g( i )1t for all 4. Thus we have

Oxris (9D 1t = H K;

i=1
with each K a finite field extension of K.
We now claim that
Oxg;g (9Dm)*=" = Ox Xlie (9Dm)"" = HKz

Note that O yrie(U;) is g-stable for all i because the projection map
Ox;i;% (9Dm) — Oxfjf (Us)

of affinoid IV(—algebras is surjective, continuous and I'-equivariant. Then all
arguments in the last two paragraphs carry over to these cases since

Opr—1 (®(D))*~ =0 = Opi- L(®(D)"0 = K
(cf. Lemma 4.1.4). The only thing that remains to be shown is K; CO ng( 1)8= 0
for all i : Write K; = K[oy]. Then the set {7(a;)}er is finite as I takes o; to
its conjugates. Therefore, the stabilizer I'} of «; in I has a finite index in I",
and thus we obtain the open subgroup I'} of I' which acts trivially on K.
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The embedding T' < GLp(Kp) in (3.1.8) extends to an embedding
B) < GLj(K}) of locally K-analytic groups via the same map. This yields an
action of B} on ]P’}};l. The I-action on X[# is extended to the full group B, by
letting b € B, act by the action of (1,b, 5 vaMNd®)) ¢ GL,(K) x By x Wi
given on page 20 of [Car90]. Here & denotes a lift of the Frobenius in the
Weil group Wxk and val is the normalized valuation of K. The maps ®,, are
equivariant for the extended B; -action for all m.

LEMMA 4.2.11: The set {II'®(D) }o<;<n—1 forms an admissible covering of P}}(_l.
Thus, X!# has an admissible covering {II!®,}(®(D))}o<i<n_1 for all m > 0.

Proof. This is proved as a part of [GH94], Corollary 23.21.
For0<i<h-1,s5>0, m>0, define
Ny, (i) :=(M;,) 8 (112, ((D)))
and
A (i) =Ny (i) = O s (D, (2(D))).
Note that each II'®, 1 (®(D)) is I-stable because the conjugation by
I (y = IAID)

is an automorphism of I'. Therefore, all A,, (i) and N3, (i) are I'-representations.
Moreover, they are also g-modules as explained below.
Because of Proposition 4.2.6, we have the exact diagram

r ™
A (0) s ngGU OXﬁ,‘lg (9Dm) o - Hg,g’eGU Oxf,{g (9Dm N g' D)

with maps given by r(f) = (flgp,.)geco, 11((fg)geco) = (folgDmng Do) g.greco;
and r2((fg)geco) = (fo'lgDmng' Dy )g.g7cco- The continuity of the restriction
maps O yrig(9Dm) — Oxrie(9Dm N g’ Din) between affinoid K-algebras implies
that the maps r; and r5 are continuous for the product topology on their source
and target. Remark 4.2.9 allows us to view [ c 50 Oxris(9Dp) as a g-module
with the componentwise g-action. Now, A,,(0) can be identified with the kernel
of the continuous map

L —Ty: H O x1e(9Dm) — H O yrie (9D N ' D)
geG 9.9'€G°

(f9)geao = 11((fg)geco) = r2((fo)geao)-
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Hence, A,,(0) is a closed I'-stable subspace of [ cgo0 Oxris(9Dm) as 7 is I'-
equivariant. Consequently, A,,(0) is stable under the induced g-action.
Observe that the isomorphism

(an)rig(gDm N g/Dm) = Oxfjf (9Dm N g/Dm) ®R§j§ My,

yields a g-action on (M3,)"8(gD,, N ¢'Dy,) (cf. Theorem 3.4.6 and Remark
4.2.9). The restriction maps (M3,)"8(gD,,) — (M3)"8(gD,, N ¢'Dyy,) are
continuous for the topology of finitely generated Banach modules. Then by the
similar argument as in the last paragraph, NS, (0) carries a g-module structure.
The g-action and the I'-action on A,,(0) and on N3 (0) are compatible with
each other (cf. Remark 4.2.9). The action of II* on ®,!(®(D)) induces an
isomorphism II* : N2 (i) == N2, (0) of the sections of (M3 )18, The g-action
on N3 (i) is then given by r(n) = 117 (Ad: (x) (I (n))) for r € g,n € N2, (i) and
1<i<h—-1.

Now since M, is generated over R by Vi (cf. (3.1.2), Proposition 3.1.3),
N (i) is generated by V; as an A, (i)-module for all 0 <i<h—1. Let A, (i)9=°V;
and A,,(1)9=%% denote the A,,(i)%=°-submodules of N (i) generated by Vi
and f respectively.

PROPOSITION 4.2.12: Forall0 <i<h—1,s>0, m > 0, we have
Ny (i)t © A (1)*=°Vs and (N, ()1e)"™° € A (1)* 5.
Proof. We first show that N2, (0);r C A,,,(0)9=°V;. Noticing
0 € Ops (D) A4, (0)*

implies that ¢ alone generates N3 (0) as a free A,,(0)-module of rank one.
Now let W C N5, (0) be a finite-dimensional I'-stable subspace. As an sly (Kp,)-
representation, W decomposes as a direct sum of simple s, (K} )-modules by
Weyl’s complete reducibility theorem. From highest weight theory, we know
that each simple module in the decomposition is generated by an element an-
nihilated by the subalgebra n of strictly upper triangular matrices. Now

W0 € N3 (00" = (A (0)28)"™" = 4, (0)"
because np§ = 0 (cf. Lemma 4.1.2). Let f € A,,(0)"=%; then

flgp,, € Oxrie (gD =0 = O yrie (9Dy,)%=% for all g € G°
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by Proposition 4.2.10. The g-linear injection A (0) < [ cgo Oxrie(9Dm)

of K -algebras induces an equality
A (00970 = A4, (0) N [ Onis(9D)*=°.
geGo
Therefore, f € A,,(0)9=°, and hence
A (0)9=° = A,,(0)"=°.
This gives us (N2, (0)1r)"=° C A4,,(0)9=%p5. As explained earlier, N2 (0) is
generated as an sl (K} )-module by its n-invariants (N2, (0)1¢)"=°. Thus
Ny (0)16 = sl (K). (N3, (0)16)"=" C sl (Kn).(Am (0)7="95) = A (0)*=VL.

The last equality follows from the fact that ¢ is a highest weight vector in Vj
(cf. Remark 4.1.9).

If the I-action on ®;,1(®(D)) is changed via the automorphism v s IT=iIT¢,
then the map II* : & Y(®(D)) = II'®, 1(®(D)) is a [-equivariant isomor-
phism. We note that the new I'-action does not change the locally finite vectors
in N3, (0). Writing ¢, := ¢o formally, we have an induced isomorphism

IT" o (NS (i) == (N5 (0))e

mapping ¢§ to ¢} _,, and the n-invariants onto the n; := Adyy: (n)-invariants for
all 0 <i < h — 1. Therefore,

As before, this also implies N2, (i) C Ay, (1)97V; for all 0 <i < h — 1.
THEOREM 4.2.13: For all s > 0, m > 0, we have an isomorphism
(an)lf %’Km Qx Ve & Km Qx OP?{1(S)(P}}{_1)
~K,, ® Sym® (B, @k, Iv()

of T'-representations for the diagonal I'-action on the tensor products. The
representation (M?$)ir is a finite-dimensional semi-simple locally algebraic rep-
resentation of T.
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Proof. As before, (M?)s is generated as an sl (K} )-module by its n-invariants.
Let z € ((M2)1)"=". Then, using the preceding proposition,

g (@(p)) € (NS ()"0 C A (4)9=5 forall0 <i<h—1.

Let V; := '@, 1(®(D)), and write z|y, = fip5 with f; € A,,(1)9=°.

For all 0 <i4,5 < h—1, we have

(filviny; = filviny;)@5 = zlviny; — 2lviny; = 0.

Now M3, is free over the integral domain RI$, and contains o5 # 0. Hence the
map (r — r¢f) from RIS to MF, is injective and remains injective after any flat
base change. In particular, the map

(r = 1¢g) : Oxns(YiNY) — (M;)"E(YiNY))

is injective, and thus fi|ly,ny; = fjlviny; for all 0 < 4,5 < h — 1. There-
fore, by the sheaf axioms, the functions (f;); glue together to a global sec-
tion f € R!® and = fyf. Since fly, = fi € An(i)®=° for all 4, and the
map RUg < H?;Ol A (i) is g-equivariant, f € (R'£)9=0 = K, (cf. Remark
4.2.3). Hence z € Kppf. As a result, (M5)ir C sly(Kp).(Kngs) = K V.
The other inclusion K,,V, C (M2t is easy to see as (M2)s is a module over
(RiE)i = K, and Vy = (M) © (M)

Now to justify the isomorphism lu(m ®p Vs = lu(mVS, it is enough to show
that the natural map

Z ca(1 @ W) — Z Caw® @l

0<al<s 0<]al<s
is injective. Here the set {1 ® w*¢{}o<|a|<s forms a K,n-basis of K, R Vs.
By Lemma 4.1.2, we have
roo(w*¢p) = (s — laf)wpg and  ri(w®ef) = aiw®eg
for all 1 <1i < h — 1. Since g annihilates Iu(m, if
Y cawpp =0,
0<|al<s

one can use the above actions of the diagonal matrices iteratively to deduce
that each summand c,w®¢f is zero, and therefore ¢, = 0 for all 0 < |a < s.
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Unlike (Mg§)ir = Vs, the space of locally finite vectors (M3, )i & Iu(m ®p Vs
at level m > 0 is not an irreducible I'-representation as it properly contains the
representation V. However, it is semi-simple and this can be seen as follows.
The action of I' on K, factors through a finite group. As a result, K,, decom-
poses into a direct sum K, = @._, W; of irreducible representations. This

gives us a decomposition

(4.2.14) K@ Va2 PW; 0 V).
=1

Now we note that

9

Vs & Sym®(Bj, ®k, K)

is an irreducible algebraic representation of I' = ogh (cf. Theorem 4.1.6 and
[Koh14], Remark 4.4), and K,, is a smooth representation of I' by Remark
4.2.3. Thus every direct summand in (4.2.14) is a tensor product of a smooth
irreducible representation and an irreducible algebraic representation of I'. Such
a product is an irreducible locally algebraic representation by [ST01], Appendix
by Dipendra Prasad, Theorem 1. As a consequence, (M} )i is a semi-simple
locally algebraic representation of I' and exhausts all locally algebraic vectors
in M}, as every locally algebraic vector is locally finite by definition (cf. [Emel7],
paragraph after Definition 4.2.1).
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