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ABSTRACT

In topics such as the thermodynamic formalism of linear cocycles, the di-

mension theory of self-affine sets, and the theory of random matrix prod-

ucts, it has often been found useful to assume positivity of the matrix

entries in order to simplify or make feasible certain types of calculation.

It is natural to ask how positivity may be relaxed or generalised in a way

which enables similar calculations to be made in more general contexts.

On the one hand one may generalise by considering almost additive or

asymptotically additive potentials which mimic the properties enjoyed by

the logarithm of the norm of a positive matrix cocycle; on the other hand

one may consider matrix cocycles which are dominated, a condition which

includes positive matrix cocycles but is more general. In this article we

explore the relationship between almost additivity and domination for pla-

nar cocycles. We show in particular that a locally constant linear cocycle

in the plane is almost additive if and only if it is either conjugate to a co-

cycle of isometries, or satisfies a property slightly weaker than domination

which is introduced in this paper. Applications to matrix thermodynamic

formalism are presented.

1. Introduction

For the purposes of this article a linear cocycle over a dynamical system

T : X → X will be a skew-product

F : X × Rd → X × Rd, (x, p) �→ (Tx,A(x)p),

where A : X → GLd(R) is continuous and X is a compact metric space. Writing

An
T (x) = A(T n−1x) · · ·A(x), we thus have Fn(x, p) = (T nx,An

T (x)p) for all

n ∈ N and

(1.1) Am+n
T (x) = Am

T (T nx)An
T (x)

for all m,n ∈ N. In numerous contexts it has been found useful to consider

cocycles in which all of the matrices A(x) are positive: we note for example

such diverse articles as [18, 19, 22, 30]. Under this assumption the cocycle

satisfies the inequality∣∣log ‖Am+n
T (x)‖ − log ‖Am

T (T nx)‖ − log ‖An
T (x)‖

∣∣ � C

for some constant C > 0 depending only on A. This has led some authors

to extend results for positive linear cocycles by considering, instead of a linear
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cocycle, a sequence of continuous functions fn : X → R satisfying the inequality

|fn+m(x) − fm(T nx)− fn(x)| � C

for all x ∈ X and n,m � 1. Such sequences of functions are referred to in

the literature as almost additive and have been investigated in [4, 6, 10,

20, 32]. The condition of almost additivity implies trivially a further property,

asymptotic additivity (see, for example, Feng and Huang [15, Proposition A.5]),

which has been applied in [13, 15, 21]. In another category of works, positivity

is replaced by the more general hypothesis of domination: under this hypothesis

there exists a continuous splitting Rd = U(x)⊕V(x), which is preserved by the

cocycle, such that

‖An
T (x)u‖ � Cenε‖An

T (x)v‖
for all unit vectors u ∈ U(x) and v ∈ V(x), for some constants C, ε > 0 (see [7]

and references therein). For linear cocycles the hypothesis of domination im-

plies the hypothesis of almost additivity, but the converse is false, as can be

seen trivially for the case of cocycles where all of the linear maps are isome-

tries, or where all are equal to the identity. The purpose of this article is to

explore precisely the relationship between domination and almost additivity in

the context of locally constant two-dimensional linear cocycles over the shift. In

this project we are motivated principally by applications to the topics of matrix

thermodynamic formalism and the geometry of self-affine fractals.

We consider cocycles in the simplest non-commutative setting, namely in the

case of planar matrices. A cocycle is dominated if and only if there is a uni-

form exponential gap between singular values of its iterates. This is equivalent

to the existence of a strongly invariant multicone in the projective space; see

[1, 7]. Domination originates from [27, 28] and it is an important concept in

differentiable dynamical systems; see [9, 11]. Our contribution in this article to

this line of research is to show that a planar matrix cocycle is dominated if and

only if matrices are proximal and the norms in the generated sub-semigroup

satisfy a certain multiplicativity property; see Corollary 2.4. Higher dimensions

are more difficult: [7, §4] show that the connected components of the multicone

need not be convex.

Of the several motivations for studying almost additive potentials, this arti-

cle is concerned principally with thermodynamic formalism. In Theorem 2.9 we

will show that almost additive potentials arising from the norm potential of a

two-dimensional locally-constant linear cocycle over the full shift can in almost
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all cases be studied simply by using the classical thermodynamic formalism. In

fact, in our results, we are able to characterise all the properties of equilibrium

states for these norm potentials by means of the properties of matrices. The-

orem 2.8 gives a positive answer to [2, Question 7.4] in the two-dimensional

case. Furthermore, in Example 2.10, answering a folklore question, we show the

existence of a quasi-Bernoulli equilibrium state which is not a Gibbs measure

for any Hölder continuous potential.

2. Preliminaries and statements of results

For the remainder of this article we specialise to cocycles whose values are

invertible two-dimensional real matrices. We take A ⊂ GL2(R), set X = AN,

denote the left shift on X by T , and let A(x) be the first matrix in the infinite

sequence x ∈ X . Let

F : X × Rd → X × Rd, (x, p) �→ (Tx,A(x)p)

be a linear cocycle over T . We see that An
T (x) is the product of n first matrices

in x ∈ X , and the cocycle identity (1.1) clearly holds. Let S(A) denote the

sub-semigroup generated by A, that is,

S(A) = {A1 · · ·An : n ∈ N and Ai ∈ A for all i ∈ {1, . . . , n}}.
So in particular, An

T (x) ∈ S(A) for all x = (A1, A2, . . .) ∈ X and n ∈ N.

2.1. Domination. Following [7] we say that a compact and nonempty subset

A ⊂ GL2(R) is dominated if there exist constants C > 0 and 0 < τ < 1 such

that
| det(A1 · · ·An)|
‖A1 · · ·An‖2 � Cτn

for all A1, . . . , An ∈ A. We let RP1 denote the real projective line, which is

the set of all lines through the origin in R2. We call a proper subset C ⊂ RP1

a multicone if it is a finite union of closed projective intervals. We say that

C ⊂ RP1 is a strongly invariant multicone for A ⊂ GL2(R) if it is a multicone

and AC ⊂ Co for all A ∈ A. Here Co is the interior of C. By [7, Theorem B], a

compact set A ⊂ GL2(R) has a strongly invariant multicone if and only if A is

dominated. We say that C ⊂ RP1 is an invariant multicone for A ⊂ GL2(R)

if it is a multicone and AC ⊂ C for all A ∈ A.
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Recall that a matrix A is proximal if it has two real eigenvalues with un-

equal absolute values, parabolic if it has only one eigenspace, i.e., the single

eigenvalue has geometric multiplicity one, and conformal if it has two eigen-

values with the same absolute values. In other words, a matrix A is conformal

if and only if there exists an invertible matrix M , which we call a conjugation

matrix of A, such that | det(A)|−1/2MAM−1 ∈ O(2), where O(2) is the group

of 2 × 2 orthogonal matrices. Furthermore, we say that a set A ⊂ GL2(R) is

strongly conformal if all the elements of A are conformal with respect to the

same conjugation matrix. Strongly conformality is equivalent to the fact that

all the elements in the generated semigroup are conformal.

For a proximal matrix A, let λu(A) and λs(A) be the largest and

smallest eigenvalues of A in absolute value, respectively. If the eigenvalues

are equal in absolute value, then the choice of λu(A) and λs(A) is arbitrary.

Note that if A is diagonalisable, then there exist linearly independent subspaces

u(A), s(A) ∈ RP1 such that |λu(A)| = ‖A|u(A)‖ and |λs(A)| = ‖A|s(A)‖. We

call u(A) ∈ RP1 the eigenspace of A corresponding to λu(A) and s(A) ∈ RP1

the eigenspace corresponding to λs(A). If A ⊂ GL2(R), then we define Xu(A)

and Xs(A) to be the closures of the sets of all unstable and stable directions of

proximal elements of S(A), i.e., the sets

Xu(A) = {u(A) : A ∈ S(A) is proximal},
Xs(A) = {s(A) : A ∈ S(A) is proximal},

respectively. Recall that S(A) is the sub-semigroup of GL2(R) generated by A,

i.e. the set of all finite products formed by the elements of A. We say that

A ⊂ GL2(R) has an unstable multicone C if S(A) contains at least one

proximal element and

(1) C ∩Xs(A) = ∅,
(2) ∂C ∩Xu(A) = ∅,
(3) each connected component of C intersects Xu(A).

Finally, we say that a semigroup S ⊂ GL2(R) is almost multiplicative if

there exists a constant κ > 0 such that ‖AB‖ � κ‖A‖‖B‖ for all A,B ∈ S.
We note that since clearly ‖AB‖ � ‖A‖‖B‖ for all A,B ∈ S(A) for every

A ⊂ GL2(R), the condition ‖AB‖ � κ‖A‖‖B‖ for all A,B ∈ S(A) is equivalent
to the statement that every cocycle taking values in S(A) is almost additive in

the sense defined in the introduction.
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Our main result for matrix cocycles is the following theorem.

Theorem 2.1: Let A ⊂ GL2(R). If the sub-semigroup S(A) is almost multi-

plicative, then exactly one of the two following conditions hold:

(1) A is strongly conformal,

(2) A has an invariant unstable multicone and S(A) does not contain par-

abolic elements.

The next two propositions show that if the proximal elements of A form a

compact set, then the converse claim holds in Theorem 2.1.

Proposition 2.2: Let A ⊂ GL2(R) be such that A has an invariant unsta-

ble multicone and S(A) does not contain parabolic elements. Let Ae be the

collection of all conformal elements of A. Then

(1) A \ Ae is nonempty and contains only proximal elements,

(2) Ae is strongly conformal and S({| det(A)|−1/2A : A ∈ Ae}) is finite.
Moreover, if A \Ae is compact, then A \Ae has a strongly invariant multicone C
such that AC = C for all A ∈ Ae.

Proposition 2.3: Let Ae,Ah ⊂ GL2(R) be such that

(1) Ah is nonempty, compact, and has a strongly invariant multicone C,
(2) Ae is strongly conformal and AC = C for all A ∈ Ae.

Then S(Ae ∪ Ah) is almost multiplicative.

The previous three statements have two immediate corollaries. The first one

studies the case where A contains only proximal elements. The second one is

for finite collections.

Corollary 2.4: If A ⊂ GL2(R) is compact, then the following two statements

are equivalent:

(1) A has a strongly invariant multicone,

(2) A contains only proximal elements and S(A) is almost multiplicative.

Corollary 2.5: If A ⊂ GL2(R) is finite, then the following two statements

are equivalent:

(1) the sub-semigroup S(A) is almost multiplicative,

(2) A can be decomposed into two sets Ae and Ah such that Ae is strongly

conformal and if Ah �= ∅, then Ah has a strongly invariant multicone C
such that AC = C for all A ∈ Ae.
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2.2. Thermodynamic formalism. If the set A ⊂ GL2(R) is finite, then it

makes sense to consider thermodynamic formalism for matrix cocycles. In this

context, it is rather standard practise to use separate alphabet to index the

elements in the sub-semigroup.

Let N � 2 be an integer and Σ = {1, . . . , N}N be the collection of all infinite

words obtained from integers {1, . . . , N}. We denote the left shift operator by

σ and equip Σ with the product discrete topology. The shift space Σ is clearly

compact. If i = i1i2 · · · ∈ Σ, then we define i|n = i1 · · · in for all n ∈ N. The

empty word i|0 is denoted by ∅. Define

Σn = {i|n : i ∈ Σ}
for all n ∈ N and

Σ∗ =
⋃
n∈N

Σn ∪ {∅}.

Thus Σ∗ is the collection of all finite words. The length of i ∈ Σ∗∪Σ is denoted

by |i|. If i ∈ Σn for some n, then we set

[i] = {j ∈ Σ : j|n = i}.
The set [i] is called a cylinder set. Cylinder sets are open and closed and they

generate the Borel σ-algebra.

The longest common prefix of i, j ∈ Σ∗∪Σ is denoted by i∧j. The concatena-
tion of two words i ∈ Σ∗ and j ∈ Σ∗∪Σ is denoted by ij. If A ⊂ Σ and i ∈ Σ∗,
then iA = {ij : j ∈ A}. For example, if i, j ∈ Σ∗, then [ij] = i[j] = ijΣ.

If i ∈ Σ∗ and n ∈ N, then by in we mean the concatenation i · · · i where i

is repeated n times. Finally, denote by �ki the number of appearances of the

symbol k ∈ {1, . . . , N} in i ∈ Σ∗, i.e.,

�ki = �{n : in = k for n ∈ {1, . . . |i|}}.
We say that the sequence Φ = (φn)n∈N of functions φn : Σ → R is sub-

additive if there exists C1 � 0 such that

φn+m(i) � φn(i) + φm(σni) + C1

for all n,m ∈ N and i ∈ Σ. A sub-additive sequence Φ = (φn)n∈N is almost-

additive if there exists C2 � 0 such that

φn+m(i) � φn(i) + φm(σni)− C2
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for all n,m ∈ N and i ∈ Σ. Finally, we say that an almost-additive sequence Φ

is additive if the constants C1 and C2 in the above inequalities can be chosen

to be 0. For example, if φ : Σ → R is a function, then( n−1∑
k=0

φ ◦ σk

)
n∈N

is additive. In this context, the function φ is called a potential. We say that

a potential φ is Hölder continuous, if there exist C > 0 and 0 < τ < 1 such

that

|φ(i)− φ(j)| � Cτ |i∧j|

for all i, j ∈ Σ.

If Φ = (φn)n∈N is sub-additive, then the pressure of Φ is defined by

(2.1) P (Φ) = lim
n→∞

1

n
log

∑
i∈Σn

expmax
j∈[i]

φn(j).

The limit above exists by the standard properties of sub-additive sequences. Let

μ be a σ-invariant probability measure on Σ and recall that the Kolmogorov–

Sinai entropy of μ is

hμ = − lim
n→∞

1

n

∑
i∈Σn

μ([i]) logμ([i]).

In addition, if Φ = (φn)n∈N is a sub-additive sequence, then we set

Λμ(Φ) = lim
n→∞

1

n

∫
Σ

φn(i) dμ(i).

It is easy to see that

P (Φ) � hμ + Λμ(Φ)

for all σ-invariant probability measures μ. The variational principle

P (Φ) = sup {hμ + Λμ(Φ) : μ is σ-invariant and Λμ(Φ) �= −∞}
is proved in [14]. For matrix cocycles this was obtained earlier in [23]. A

σ-invariant measure μ satisfying

P (Φ) = hμ + Λμ(Φ)

is called an equilibrium state for Φ. Such a measure always exists in the

context of matrix cocycles, but it is not known if a general sub-additive sequence

has an equilibrium state; see [5].
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We say that a probability measure μ on Σ is quasi-Bernoulli if there exists

a constant C � 1 such that

C−1μ([i])μ([j]) � μ([ij]) � Cμ([i])μ([j])

for all i, j ∈ Σ∗. If the constant C above can be chosen to be 1, then μ is

a Bernoulli measure. In other words, a probability measure μ is Bernoulli if

there exists a probability vector (p1, . . . , pN ) such that

μ([i]) = pi1 · · · pin
for all i = i1 · · · in ∈ Σn and n ∈ N.

Let φ : Σ → R be a continuous potential and

Φ =

( n−1∑
k=0

φ ◦ σk

)
n∈N

.

We say that a Borel probability measure μ on Σ is a Gibbs measure for φ if

there exists a constant C � 1 such that

(2.2)

C−1 exp

(
−nP (Φ)+

n−1∑
k=0

φ(σk(j))

)
�μ([i])

�C exp

(
−nP (Φ)+

n−1∑
k=0

φ(σk(j))

)

for all i ∈ Σn, j ∈ [i], and n ∈ N. For example, the Bernoulli measure obtained

from a probability vector (p1, . . . , pN) is a Gibbs measure for the potential

i �→ log pi|1 . If φ is Hölder continuous, then there is a unique σ-invariant Gibbs

measure which also is a unique equilibrium state; see [12, Theorems 1.4 and

1.22].

Similarly, if Φ = (φn)n∈N is sub-additive, then a Borel probability measure

μ on Σ is a Gibbs-type measure for Φ if there exists a constant C � 1 such

that

(2.3) C−1 exp(−nP (Φ) + φn(j)) � μ([i]) � C exp(−nP (Φ) + φn(j))

for all i ∈ Σn, j ∈ [i], and n ∈ N. It is easy to see that a σ-invariant Gibbs-

type measure is ergodic and hence the unique equilibrium state; see [25, §3.2].

If Φ is almost-additive, then, similarly as with continuous potentials, there exist

conditions to guarantee the existence of a σ-invariant Gibbs-type; see [5, §4.2].
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Our main objective is to study thermodynamic formalism in the setting of ma-

trix cocycles. Let A = (A1, . . . , AN ) ∈ GL2(R)
N , s > 0, and define φsn : Σ → R

for all n ∈ N by setting

φsn(i) = log ‖Ai|n‖s,
where Ai = Ai1 · · ·Ain for all i = i1 · · · in ∈ Σn and n ∈ N. Then the sequence

Φs = (φsn)n∈N parametrised by s > 0 is sub-additive. By [23, Theorems 2.6 and

4.1], for every choice of the matrix tuple A, there exists an ergodic equilibrium

state for Φs. The structure of the set of all equilibrium states for Φs is well

known. We say that A = (A1, . . . , AN ) ∈ GL2(R)
N is irreducible if there

does not exist a 1-dimensional linear subspace V such that AiV = V for all

i ∈ {1, . . . , N}; otherwise A is reducible. In a reducible tuple A, all the

matrices are simultaneously upper triangular in some basis. If A is irreducible,

then there is a unique equilibrium state which is a Gibbs-type measure for Φs;

see [16, Proposition 1.2]. It is worthwhile to remark that irreducibility does

not imply that Φs is almost-additive. In the reducible case, there can be two

distinct ergodic equilibrium states; see [16, Theorem 1.7]. Recall also that the

set

{A ∈ GL2(R)
N : A is irreducible}

is open, dense, and of full Lebesgue measure in GL2(R)
N . In fact, the comple-

ment of the set is a finite union of (4N − 1)-dimensional algebraic varieties; see

[24, Propositions 3.4 and 3.6].

The following four results characterise different kind of properties equilibrium

states for Φs can have by means of the matrix tuple.

Proposition 2.6: If A = (A1, . . . , AN ) ∈ GL2(R)
N and μ is an ergodic equi-

librium state for Φs, then the following two statements are equivalent:

(1) μ is a Gibbs-type measure for Φs,

(2) at least one of the following three conditions hold:

(a) A is irreducible,

(b) A is strongly conformal,

(c) A is reducible with a common invariant subspace V and there exists

ε > 0 such that either the closed ε-neighbourhood of V or the

closure of its complement is an invariant unstable multicone.

Note that A can be both irreducible and strongly conformal and that neither

condition imply each other.
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Proposition 2.7: If A = (A1, . . . , AN ) ∈ GL2(R)
N and μ is an ergodic equi-

librium state for Φs, then the following two statements are equivalent:

(1) μ is a Bernoulli measure,

(2) A is reducible or A is strongly conformal.

In the previous two propositions, one has to assume that the equilibrium

measure is ergodic; see [26, Example 6.2] for a counter-example. We remark that

the Bernoulli property has been studied earlier in [29, Theorem 13]. Since the

propositions give a complete characterisation of the properties in the reducible

case, we can restrict our attention to irreducible matrix tuples.

Theorem 2.8: If A = (A1, . . . , AN ) ∈ GL2(R)
N is irreducible and μ is an

equilibrium state for Φs, then the following four statements are equivalent:

(1) μ is a quasi-Bernoulli measure,

(2) S(A) is almost multiplicative,

(3) A can be decomposed into two sets Ae and Ah such that Ae is strongly

conformal and if Ah �= ∅, then Ah has a strongly invariant multicone C
such that AC = C for all A ∈ Ae,

(4) there exist a constant C > 0 and a μ-almost everywhere continuous

potential f ∈ L1(μ) such that

(2.4)

∣∣∣∣
n−1∑
k=0

f(σki)− log ‖Ai|n‖
∣∣∣∣ � C

for all i ∈ Σ and n ∈ N.

The previous theorem gives a positive answer to [2, Question 7.4] in the two-

dimensional case.

Theorem 2.9: If A = (A1, . . . , AN ) ∈ GL2(R)
N is irreducible and μ is an

equilibrium state for Φs, then the following three statements are equivalent:

(1) μ is a Gibbs measure for some Hölder continuous potential,

(2) A has a strongly invariant multicone or A is strongly conformal,

(3) there exist a constant C > 0 and a Hölder-continuous potential f such

that ∣∣∣∣
n−1∑
k=0

f(σki)− log ‖Ai|n‖
∣∣∣∣ � C

for all i ∈ Σ and n ∈ N.
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Bernoulli (A is reducible

but does not have an

invariant multicone)

Bernoulli (other cases)

Gibbs

quasi-Bernoulli

Gibbs-type

Figure 1. Classification of equilibrium states for Φs.

Figure 1 illustrates how different properties of equilibrium states for Φs are

related. The following example shows that the inclusions depicted in the figure

are strict.

Example 2.10: (1) It can happen that an equilibrium state for Φs is a Gibbs

measure for some Hölder-continuous potential, but is not a Bernoulli measure:

Choose two positive matrices

A1 =

(
2 1

1 1

)
and A2 =

(
2 1

1 2

)
.

Then (A1, A2) is irreducible and has a strongly invariant multicone (i.e., the

union of the first and third quadrants). The claim follows now from Theorem

2.9 and Proposition 2.7.

(2) It can happen that an equilibrium state for Φs is a quasi-Bernoulli mea-

sure, but is not a Gibbs measure for any Hölder-continuous potential: Let A1

and A2 be as above. Then (A1, A2, I) is irreducible and has an invariant mul-

ticone (i.e., the union of the first and third quadrants). The claim follows now

from Theorems 2.8 and 2.9.
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(3) It can happen that an equilibrium state for Φs is a Gibbs-type measure

for Φs, but is not a quasi-Bernoulli measure: Choose two matrices

A3 =

(
1 0

0 2

)
and A4 =

(
0 1

1 0

)
.

Then (A3, A4) is irreducible, has no invariant multicone, and does not contain

only conformal matrices. The claim follows now from Proposition 2.6 and The-

orem 2.8. We remark that this phenomenon has been observed earlier in [17,

§1.4]. Another way to see the claim is to consider two conformal irreducible

matrices not sharing a conjugation matrix.

3. Characterization of domination

In this section, we prove Theorem 2.1 and Propositions 2.2 and 2.3. Let

A ⊂ GL2(R) and recall that S(A) is the sub-semigroup of GL2(R) generated

by A. Let S (A) = RS(A) ⊂ M2(R) and note that S (A) is a sub-semigroup

of M2(R). Define

R(A) = {A ∈ S (A) : rank(A) = 1}.
Lemma 3.1: If A⊂GL2(R), then R(A)=∅ if and only if A is strongly conformal.

Proof. If A is strongly conformal, then by definition there exists a conjugation

matrix M ∈ GL2(R) such that | det(A)|−1/2MAM−1 ∈ O(2) for all A ∈ A,

which implies that

| det(A)|−1/2MAM−1 ∈ O(2)

for all nonzero A ∈ S (A) = RS(A). In particular, all nonzero elements of S (A)

have rank 2 and therefore R(A) = ∅.
Suppose conversely that R(A) = ∅. We claim that set

S ′(A) ={| det(A)|−1/2A : A ∈ S (A) \ {0}}
=S (A) ∩ {A ∈M2(R) : | det(A)| = 1}

is compact. It is obviously closed, being the intersection of S (A) with the closed

set {A ∈ M2(R) : | det(A)| = 1}. If it contains a sequence of elements (An)

such that ‖An‖ → ∞, then this sequence can without loss of generality be taken

to be a sequence of elements of RS(A). The sequence of normalised matrices

‖An‖−1An has an accumulation point which necessarily has determinant zero
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and norm one and belongs to S (A); this limit point is thus an element of R(A),

which is a contradiction, and we conclude that

{| det(A)|−1/2A : A ∈ S (A) \ {0}}
is bounded. It is therefore compact as claimed.

The set S ′(A) is thus a compact sub-semigroup of GL2(R). We claim that

it is a group. To show this it is sufficient to show that the inverse of every

A ∈ S (A) with | det(A)| = 1 belongs to S (A). If A ∈ S (A) is arbitrary,

take a convergent subsequence (Ank)∞k=1 of the sequence (An)∞n=1 with limit

B ∈ S (A) ⊂ GL2(R), say. The sequence (A−nk)∞k=1 clearly converges to B−1

and therefore Ank+1−nk−1 → A−1 as k → ∞. Thus A−1 is the accumulation

point of a sequence of elements of S (A), hence an element of S (A).

The set S ′(A) is therefore a compact subgroup of GL2(R). If m is Haar

measure on S ′(A) and 〈·, ·〉 is the standard inner product on R2 it is easy to

see that

〈u, v〉′ :=
∫
〈Au,Av〉dm(A)

defines an inner product on R2 which is invariant under every element of S ′(A).
Every inner product on R2 is related to the standard one by a change of basis,

so there exists X ∈ GL2(R) such that 〈u, v〉′ = 〈Xu,Xv〉 for all u, v ∈ R2. In

particular,

〈XAX−1u,XAX−1v〉 = 〈AX−1u,AX−1v〉′ = 〈X−1u,X−1v〉′ = 〈u, v〉
for all u, v ∈ R2 and A ∈ S ′(A) which yields S ′(A) ⊂ XO(2)X−1. Thus S (A)

is strongly conformal and therefore A is strongly conformal as required.

We note that according to the previous lemma, R(A) �= ∅ if and only if S(A)
contains at least one proximal or parabolic element. In the next lemma, we

exclude parabolic elements.

Lemma 3.2: Let A ⊂ GL2(R) with R(A) �= ∅ be such that S(A) is almost

multiplicative. Then S(A) does not contain parabolic elements and R(A) does

not contain nilpotent elements.

Proof. Suppose that S(A) contains a parabolic element. This means that, after

a suitable change of basis, there exists A ∈ S(A) such that

A =

(
a 0

b a

)
,
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where b �= 0. It follows that there exists c > 0 such that

c−1n|an−1b| � ‖An‖ � cn|an−1b|
for all n ∈ N. It follows directly that limn→∞ ‖A2n‖/‖An‖2 = 0 which contra-

dicts the condition ‖AB‖ � κ‖A‖‖B‖.
Observe that the relation ‖AB‖ � κ‖A‖‖B‖ holds for all A,B ∈ S (A) by

continuity. So similarly, if there exists a nilpotent A ∈ R(A), then

0 = ‖An‖ � κn−1‖A‖n > 0

for some n ∈ N, which is again a contradiction.

Assuming R(A) �= ∅, we define the set Xu of all unstable directions of

proximal elements of S(A) to be

Xu = Xu(A) = {V ∈ RP1 : V = AR2 for some A ∈ R(A)}
and the set Xs of all stable directions to be

Xs = Xs(A) = {ker(A) ∈ RP1 : A ∈ R(A)}.
Lemma 3.3: Let A ⊂ GL2(R) with R(A) �= ∅ be such that S(A) is almost

multiplicative. Then the sets Xu and Xs are nonempty, compact, and disjoint.

Furthermore,

AXu ⊂ Xu

for all A ∈ S (A).

Proof. First, we note again that the relation ‖AB‖ � κ‖A‖‖B‖ holds for

all A,B ∈ S (A). To see that Xu and Xs are disjoint, note that if V ∈ Xu ∩Xs

then there exist nonzero B1, B2 ∈ R(A) such that B2R
2 = V and B1V = {0}.

Hence B1B2 is the zero matrix but B1 and B2 are not, which contradicts

‖B1B2‖ � κ‖B1‖‖B2‖ > 0. It follows that Xu∩Xs is empty. The nonempty set

R1(A) = {B ∈ R(A) : ‖B‖ = 1} = {B ∈ S (A) : det(B) = 0 and ‖B‖ = 1}
is clearly a closed bounded subset of S (A), and in particular is compact. It

follows that Xu and Xs are the images of continuous functions R1(A) → RP1

and hence are compact and nonempty.

To see the last claim, consider a subspace U such that U = AV for some

V ∈ Xu and A ∈ S (A). We have V = BR2 for some B ∈ R(A). Clearly AB

has rank at most 1 and is nonzero since ‖AB‖ � κ‖A‖‖B‖ > 0, so AB ∈ R(A)

and U ∈ Xu.
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The following lemma shows that the definitions of unstable and stable direc-

tions agree with the ones given in §2.1.

Lemma 3.4: Let A ⊂ GL2(R) with R(A) �= ∅ be such that S(A) is almost

multiplicative. Then

Xu = {u(A) : A ∈ S(A) is proximal},
Xs = {s(A) : A ∈ S(A) is proximal}.

Proof. Let us first demonstrate the inclusions

Xu ⊂ {u(A) : A ∈ S(A) is proximal},(3.1)

Xs ⊂ {s(A) : A ∈ S(A) is proximal}.(3.2)

Before doing so, we show that for every A ∈ R(A) with ‖A‖ = 1 and any

sequence (Bn)
∞
n=1 of elements of S(A) such that ‖Bn‖−1Bn → A as n → ∞,

the sequence Bn contains only proximal elements for all sufficiently large n. By

Lemma 3.2, no Bn may be a parabolic matrix. Let us contrarily assume that,

after passing to a suitable subsequence, every Bn is conformal. Write

B′
n := ‖Bn‖−1Bn

for all n ∈ N. Since A has rank one we have det(A) = 0 and therefore

det(B′
n) → 0. Since every B′

n is conformal it satisfies (trB′
n)

2 � 4| det(B′
n)|

and therefore trB′
n → 0. By the Cayley–Hamilton theorem, we have

(B′
n)

2 − (trB′
n)B

′
n + (det(B′

n))I = 0

and since B′
n → A we deduce that (B′

n)
2 → 0. Since ‖B′

n‖ = 1 for all n ∈ N

we get ‖B2
n‖/‖Bn‖2 = ‖(B′

n)
2‖/‖B′

n‖2 = ‖(B′
n)

2‖ → 0,, but this contradicts

‖B2
n‖ � κ‖Bn‖2. We conclude that (Bn)

∞
n=1 is proximal for all sufficiently

large n as claimed.

It is well known that the maps u(·) and s(·) are continuous on proximal

matrices. Moreover, by Lemma 3.2, every A ∈ R(A) is proximal. Hence,

if V ∈ Xu, then there exists a proximal A ∈ R(A) with ‖A‖ = 1 such that

V = AR2 = u(A).

Moreover, there exists a sequence of proximal matrices Bn ∈ S(A) such that

‖Bn‖−1Bn → A and thus, by the continuity of u,

u(Bn) = u(‖Bn‖−1Bn) → u(A) = V,
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which shows (3.1). Similarly, if V ∈ Xs, then there exists a proximal A ∈ R(A)

with ‖A‖ = 1 such that V = ker(A) = s(A), and there exists a sequence of

proximal matrices Bn ∈ S(A) such that ‖Bn‖−1Bn → A. Applying now the

continuity of s, we get

s(Bn) = s(‖Bn‖−1Bn) → s(A) = V

showing (3.2).

To finish the characterization of Xu it is sufficient to show that

Xu ⊃ {u(A) : A ∈ S(A) is proximal},(3.3)

Xs ⊃ {s(A) : A ∈ S(A) is proximal},(3.4)

since we may then appeal to Lemma 3.3 and the fact that the sets Xu and Xs

are closed. If V = u(A) for some proximal A ∈ S(A), then ‖An‖−1An → B

as n → ∞, where B ∈ R(A) is such that BR2 = u(B) = V . This shows (3.3).

Similarly, if V = s(A) for some proximal A ∈ S(A), then ‖An‖−1An → B

as n → ∞, where B ∈ R(A) is such that ker(B) = V . This shows (3.4) and

completes the proof.

Let d be the metric on RP1 defined by taking d(U, V ) to be the angle between

the subspaces U and V . If A ⊂ GL2(R) is such that R(A) �= ∅, then we define

Vn =
{
U ∈ RP1 : d(U, V ) <

1

n
for some V ∈ Xu

}
and

Un =
⋃

A∈S(A)

AVn

for all n ∈ N.

Lemma 3.5: Let A ⊂ GL2(R) with R(A) �= ∅ be such that S(A) is almost

multiplicative. Then there is n0 ∈ N such that Un as defined above is an

invariant unstable multicone for all n � n0.

Proof. Note that for all n ∈ N the invariance of Un and the property (2) in the

definition of the unstable multicone (see §2.1) follow immediately from the def-

inition of the set Un and the continuity of each A ∈ S(A) as an action on RP1.

Let us prove the property (3) for all n ∈ N. Obviously Vn is open, and since each

A ∈ S(A) is invertible and therefore induces a homeomorphism of RP1, each Un

is open too. It is clear from the definition that every connected component

of Vn intersects Xu. If U ∈ Un, then U = AU ′ for some A ∈ S(A) and U ′ ∈ Vn.



190 B. BÁRÁNY, A. KÄENMÄKI AND I. D. MORRIS Isr. J. Math.

Let I ⊂ Vn be an open connected set which contains U ′ and which also inter-

sects Xu. The set AI then contains U , is connected, and intersects AXu. Since

AXu ⊂ Xu by Lemma 3.3, we conclude that each connected component of Un

intersects Xu.

To show that the property (1) holds for all large enough n, let us suppose the

contrary. In this case Un ∩ Xs must be nonempty for infinitely many n ∈ N.

This implies that in any prescribed neighbourhoods of Xu and Xs we may

find a subspace U in the neighbourhood of Xu and a matrix A ∈ S(A) such

that AU belongs to the neighbourhood of Xs. It follows that we may choose a

sequence of subspaces (Un) converging to a limit U ∈ Xu and a sequence (An)

of elements of S(A) such that AnUn converges to a limit V ∈ Xs. Define

Bn := ‖An‖−1An ∈ S (A) for every n ∈N, and by passing to a subsequence if

necessary we may suppose that (Bn) converges to a limit B∈S (A) with norm 1.

We claim that BU = V . Let (un) be a sequence of unit vectors such that

un ∈ Un for every n ∈ N and such that (un) converges to a unit vector u ∈ U .

It is enough to show that (Bnun) converges to Bu and that Bu is nonzero,

since we have then shown that V = limn→∞BnUn = BU . To see that Bu is

nonzero we note that u ∈ U ∈ Xu and B ∈ S (A) with B �= 0, so if Bu = 0

then u ∈ kerB ∈ Xs and we have U ∈ Xs ∩Xu, contradicting Lemma 3.3. On

the other hand, since

0 �‖Bnun −Bu‖ � ‖Bnun −Bnu‖+ ‖Bnu−Bu‖
�‖un − u‖+ ‖Bn −B‖ → 0

we have Bnun → Bu as n → ∞ as required. But the equation BU = V

is impossible since BU ∈ Xu by Lemma 3.3 and therefore V ∈ Xs ∩ Xu,

contradicting Lemma 3.3. We conclude that Un ∩ Xs must be empty for all

large enough n and therefore property (1) holds for all n sufficiently large.

We are left to show that Un is a multicone. To that end, it suffices to

show that ∂Un contains only finitely many points. To see this, suppose for

a contradiction that U ∈ RP1 is an accumulation point of a sequence (Uk)
∞
k=1

of distinct elements of ∂Un. We will find it convenient to identify a small open

neighbourhood I of U with a bounded open interval (a, b) ⊂ R. By passing to a

subsequence if necessary we may assume that (Uk)
∞
k=1 is monotone with respect

to the natural order on I, and without loss of generality we assume (Uk)
∞
k=1 to

be strictly increasing.
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We assert that every interval (Uk, Uk+2) contains a point of Xu. Since Uk+1

is in the closure of Un, there exists a point of Un in the interval (Uk, Uk+2).

Since neither Uk nor Uk+2 can belong to Un, it follows that some connected

component of Un is contained wholly within the interval (Uk, Uk+2). By (3),

this implies that a point of Xu must lie in the interval (Uk, Uk+2). Since this

is true for every k ∈ N, it follows that U is an accumulation point of Xu and

hence, by Lemma 3.3, U belongs to Xu. But Xu is a subset of Un and therefore

U ∈ Un, which implies that Uk ∈ Un for all sufficiently large k. This is clearly

impossible since no element of ∂Un can be an element of Un. This contradiction

proves that ∂Un must be finite.

The above lemmas prove Theorem 2.1:

Proof of Theorem 2.1. If R(A) = ∅, then, by Lemma 3.1, the set A is strongly

conformal. If R(A) �= ∅, then the claim follows from Lemmas 3.2 and 3.5.

Let us next turn to the proof of the propositions.

Lemma 3.6: Let A ∈ GL2(R) and let C be a multicone such that AC ⊂ C. If A
is conformal, then AC = C.
Proof. By a suitable change of basis, we may assume that A ∈ O(2). In this

case A, preserves Lebesgue measure on RP1. If AC � C, then, since C is a finite

union of closed projective intervals and A is a homeomorphism, AC must have

smaller Lebesgue measure than C, which is a contradiction.

We remark that the converse statement is false: if A is proximal and C is

a closed projective interval with one endpoint equal to u(A) and the other

endpoint equal to s(A), then AC = C but A is not conformal.

If A ⊂ GL2(R) and Ae is the collection of all conformal elements of A, then

we write

F(A) := S({| det(A)|−1/2A : A ∈ Ae}).
Lemma 3.7: Let A ⊂ GL2(R) be such that R(A) �= ∅ and Ae be the collection

of all conformal elements of A. If C is an invariant unstable multicone of A, then

Ae = {A ∈ A : AC = C}

is strongly conformal and F(A) is finite.



192 B. BÁRÁNY, A. KÄENMÄKI AND I. D. MORRIS Isr. J. Math.

Proof. Since A has an invariant multicone C, it follows from Lemma 3.6 that

AC = C for all A ∈ Ae. Hence Ae ⊂ {A ∈ A : AC = C}.
Write

A′
e = {| det(A)|−1/2A : A ∈ A and AC = C}.

Let us first assume that #∂C > 2. Let B1, B2 ∈ S(A′
e) and suppose that B1

and B2 induce the same permutation of ∂C. Then B−1
1 B2 fixes every point of ∂C

and therefore has more than 2 invariant subspaces and is necessarily equal to

±I. It follows that in this case S(A′
e) has at most 2(#∂C)! distinct elements.

Let us now assume that #∂C = 2. Write ∂C = {U1, U2}, and let u1 ∈ U1

and u2 ∈ U2 be so that {u1, u2} is a basis for R2. Every element of S(A′
e)

preserves ∂C and hence is either diagonal or antidiagonal in this basis (where

by an antidiagonal matrix we mean a 2 × 2 matrix with both main diagonal

entries equal to zero and both other entries nonzero). Let D be the matrix with

Du1 = u1 and Du2 = −u2.
A diagonal element of S(A′

e) cannot be proximal since then either U1 or U2

would be the stable space of that matrix contradicting the property Xs ∩C = ∅
of the unstable multicone C. It follows that every diagonal element of S(A′

e)

must belong to {±I,±D}. Let A1, . . . , A� be the anti-diagonal elements of A′
e

and define

S = {±I,±D} ∪ {±A1, . . . ,±A�} ∪ {±DA1, . . . ,±DA�}.
The set S is a semigroup since AiD = −DAi and since eachAiAj is diagonal and

hence equal to ±I or±D. In particular, S(A′
e) is contained in a finite semigroup.

Thus, A′
e is strongly conformal, which implies that {A∈A :AC=C}⊂Ae.

Lemma 3.8: Let A ⊂ GL2(R) be such that A has an invariant unstable multi-

cone C and S(A) does not contain parabolic elements. Let Ae be the collection

of all conformal elements of A. Then

A1F1 · · ·AnFnC ⊂ Co

for all n � (#∂C)2 + 1, A1, . . . , An ∈ A \ Ae, and F1, . . . , Fn ∈ F(A).

Proof. It is sufficient to show that every point of ∂C is mapped into C◦ by

A1F1 · · ·AnFn.

Clearly, if there exists 
 ∈ {1, . . . , n} such that A�F� · · ·AnFnC ⊂ Co, then our

claim follows.



Vol. 239, 2020 DOMINATION AND THERMODYNAMIC FORMALISM 193

Suppose for a contradiction that there exist n�(#∂C)2+1, A1, . . . , An∈A\Ae,

and F1, . . . , Fn ∈ F(A) such that for every 
 ∈ {1, . . . , n} there exist V�,W� ∈ ∂C
for which

A�F� · · ·AnFnV� =W�.

Since n � (#∂C)2 + 1, there exist 
1 < 
2 such that V�1 = V�2 and W�1 =W�2 .

Hence,

A�1F�1 · · ·A�2−1F�2−1W�2 =W�2 .

Thus, if A�1F�1 · · ·A�2−1F�2−1 is proximal, then W�2 ∈ Xu ∪Xs. This is impos-

sible, since ∂C ∩ (Xs ∪Xu) = ∅. If A�1F�1 · · ·A�2−1F�2−1 is conformal, then

A�1F�1 · · ·A�2−1F�2−1C = C
by Lemma 3.6. This is also impossible, since C � A�1C ⊃ A�1F�1 · · ·A�2−1F�2−1C
by Lemma 3.7.

Lemma 3.9: Let A ⊂ GL2(R) be such that A has an invariant unstable multi-

cone C and S(A) does not contain parabolic elements. Let Ae be the collection

of all conformal elements of A. If A \ Ae is compact, then

B = {A1A2 : A1 ∈ A \ Ae and A2 ∈ F(A)}
has a strongly invariant multicone.

Proof. Write m = (#∂C)2+1 and note that, by Lemma 3.8, Bm has a strongly

invariant multicone. Since A\Ae is compact by the assumption and F(A) is finite

by Lemma 3.7, Bm is compact. Hence, by [7, Theorem B], Bm is dominated,

i.e., there exist constants C > 0 and τ > 1 such that

‖B1 · · ·Bn‖
‖(B1 · · ·Bn)−1‖−1

� Cτn

for all B1, . . . , Bn ∈ Bm and all n ∈ N. Choose k ∈ N and let AiFi ∈ B for all

i ∈ {1, . . . , k}. Write k = qm + p, where q ∈ N ∪ {0} and p ∈ {0, . . . ,m − 1}.
Then

‖A1F1 · · ·AkFk‖
‖(A1F1 · · ·AkFk)−1‖−1

=
‖B1 · · ·Bq ·Ak−pFk−p · · ·AkFk‖

‖(B1 · · ·Bq ·Ak−pFk−p · · ·AkFk)−1‖−1

� ‖B1 · · ·Bq‖‖(Ak−pFk−p · · ·AkFk)
−1‖−1

‖(B1 · · ·Bq)−1‖−1‖Ak−pFk−p · · ·AkFk‖

� Cτq
‖(Ak−pFk−p · · ·AkFk)

−1‖−1

‖Ak−pFk−p · · ·AkFk‖ .
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By choosing

C′ = Cτ−1 min
�∈{1,...,m−1}

‖(A1F1 · · ·A�F�)
−1‖−1/‖A1F1 · · ·A�F�‖

and

τ ′ = τ1/m,

it follows again from [7, Theorem B] thatBhas a strongly invariant multicone.

The following lemma is [8, Lemma 2.2].

Lemma 3.10: Let C0, C ⊂ RP1 be multicones such that C0 ⊂ Co. Then there

exists a constant κ0 > 0 such that

‖A|V ‖ � κ0‖A‖

for all V ∈ C0 and for every matrix A ∈ GL2(R) with AC ⊂ C0.
We are now ready to prove the propositions:

Proof of Proposition 2.2. The assertion (2) follows immediately from

Lemma 3.7. Let us verify (1). If Ae = A, then S(A) is strongly conformal

since A is. This means that S(A) does not contain a proximal matrix and

thus, A cannot have an unstable multicone by definition. Therefore, (1) holds.

To prove the final claim, it is sufficient to show that, by assuming A \ Ae to

be compact, there exists an invariant multicone C such that AC ⊂ Co for all

A ∈ A \ Ae and AC = C for all A ∈ Ae. By Lemma 3.7, the set F(A) is finite.

Therefore, the set

B = {A1A2 : A1 ∈ A \ Ae and A2 ∈ F(A)}

is compact and, by Lemma 3.9, it has a strongly invariant multicone C0. Defining

C =
⋃

F∈F(A)

FC0,

we have

AC =
⋃

F∈F(A)

AFC0 ⊂ Co
0 ⊂ Co

for all A ∈ A \ Ae. We have finished the proof since for any A ∈ Ae, AC = C
holds trivially.
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Proof of Proposition 2.3. Let ε > 0 and define

C0 =
⋃

F∈F(A)

F

({
U ∈ RP1 : d(U, V ) � ε for some V ∈

⋃
A∈Ah

AC
})

.

Recall that F(A) is finite by Lemma 3.7. By compactness of Ah, we may choose

ε > 0 small enough so that C0 ⊂ Co, AC ⊂ C0 for all A ∈ Ah, and AC0 = C0 for

all A ∈ Ae. Observe that every element A ∈ S(Ah ∪ Ae) can be written in the

form

(c0c1 · · · ck)F0

k∏
i=1

AiFi,

where ci ∈ R \ {0}, k ∈ N ∪ {0}, Ai ∈ Ah, and Fi ∈ F(A). Therefore, AC ⊂ C0
for all A ∈ S(Ah ∪ Ae) \ S(Ae).

By Lemma 3.10, there exists a constant κ0 = κ0(C0, C) such that

‖A|V ‖ � κ0‖A‖
for all V ∈ C0 and for every matrix A ∈ GL2(R) with AC ⊂ C0. Hence,

‖AB‖ � ‖AB|V ‖ = ‖A|BV ‖‖B|V ‖ � κ20‖A‖‖B‖
for all A,B ∈ S(Ah ∪ Ae) \ S(Ae). If A ∈ S(Ae) or B ∈ S(Ae), then

‖AB‖ � κ′‖A‖‖B‖
holds trivially for some κ′ > 0 by the finiteness of F(A).

4. Classification of equilibrium states

This section is devoted to the proofs of Propositions 2.6 and 2.7, and Theorems

2.8 and 2.9. In order to keep the proof of Theorem 2.9 as readable as possible,

we have postponed the proof of a key technical lemma, Lemma 4.6, until §5.

Before we start with the proof of the propositions, we state a couple of auxiliary

lemmas.

We recall that λu(A) is the eigenvalue of A with the largest absolute value,

and similarly, λs(A) is the eigenvalue ofA with the smallest absolute value. Note

that |λu(A)| = ‖A|u(A)‖ and |λs(A)| = ‖A|s(A)‖, where u(A) is the eigenspace
corresponding to λu(A) and s(A) the eigenspace corresponding to λs(A).

The following two lemmas are special cases of the result of Protasov and

Voynov; see [31, Theorem 2]. In order to keep the paper as self-contained as

possible, we give here alternative proofs.
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Lemma 4.1: Let A = (A1, . . . , AN ) ∈ GL2(R)
N be such that all the elements

of A are proximal. Then the following two statements are equivalent:

(1) λu(AiAj) = λu(Ai)λu(Aj) for all i, j,

(2) u(Ai) = u(Aj) for all i, j or s(Ai) = s(Aj) for all i, j.

Proof. It is easy to see that (2) implies (1). Let us show that (1) implies (2).

By the assumption and the multiplicativity of the determinant, we have

λs(AiAj) = λs(Ai)λs(Aj)

for all i, j. First note that s(Ai) �= u(Aj), for any i �= j. Indeed, s(Ai) = u(Aj)

would imply that the matrix AiAj has eigenvalue λs(Ai)λu(Aj). Thus, either

λs(Ai)λu(Aj) = λu(Ai)λu(Aj) or λs(Ai)λu(Aj) = λs(Ai)λs(Aj), which implies

that either λs(Ai) = λu(Ai) or λu(Aj) = λs(Aj), which contradicts the proxi-

mality.

We prove the statement by induction. Since s(A1) �= u(A2), after a suitable

change of basis, the matrices A1 and A2 have the form

A1 =

(
λu(A1) 0

a λs(A1)

)
and A1 =

(
λu(A1) b

0 λs(A1)

)
.

Hence, tr(A1A2) = λu(A1A2)+λs(A1A2) = λu(A1)λu(A2)+λs(A1)λs(A2)+ab.

So ab = 0, which implies that if b = 0 then s(A1) = s(A2) or if a = 0 then

u(A1) = u(A2).

Let us then assume that the first N − 1 matrices have the property that

either u(Ai) = u(Aj) for all i, j ∈ {1, . . . , N − 1} or s(Ai) = s(Aj) for all

i, j∈{1, . . . , N−1}.We may assume without loss of generality that u(Ai)=u(Aj)

for all i, j ∈ {1, . . . , N − 1}. For a fixed i ∈ {1, . . . , N − 1} the equation

λu(Ai)λu(AN ) = λu(AiAN ) holds only if u(Ai) = u(AN ) or s(Ai) = s(AN ). If

u(Ai) = u(AN ) for some i ∈ {1, . . . , N − 1}, then the proof is complete; other-

wise s(Ai) = s(AN ) must hold for all i ∈ {1, . . . , N − 1}, which again implies

the claimed property.

Lemma 4.2: Let A = (A1, . . . , AN ) ∈ GL2(R)
N be such that all the elements

of A are proximal. The following two statements are equivalent:

(1) |λu(AB)| = |λu(A)λu(B)| for all A,B ∈ S(A),
(2) u(Ai) = u(Aj) for all i, j or s(Ai) = s(Aj) for all i, j.
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Proof. It is again easy to see that (2) implies (1). Therefore, we

assume that (1) holds. Let us first show that λu(AiAj) = λu(Ai)λu(Aj) or

λu(AiA
2
j ) = λu(Ai)λu(Aj)

2 for every i �= j. Suppose for a contradiction that

there exist i �= j such that

λu(AiAj) = −λu(Ai)λu(Aj) and λu(AiA
2
j) = −λu(Ai)λu(Aj)

2.

Hence,

λu(AiAj)λu(Aj) = −λu(Ai)λu(Aj)
2 = λu(AiA

2
j)

and, by Lemma 4.1 applied to the matrix pair (AiAj , Aj), we have

u(AiAj)=u(Aj) or s(AiAj)=s(Aj). Assuming u(AiAj) = u(Aj), we have

−λu(Ai)λu(Aj)
2v(Aj) = AjA

2
jv(Aj) = λu(Aj)

2Aiv(Aj),

where v(Aj) ∈ u(Aj) is a unit vector. But this is a contradiction since this

would imply that λu(Ai) = 0 or λs(Ai) = −λu(Ai). The case s(AiAj) = s(Aj)

is similar.

If λu(AiAj) = λu(Ai)λu(Aj), then (2) follows from Lemma 4.1. Similarly, if

λu(AiA
2
j ) = λu(Ai)λu(Aj)

2, then again by Lemma 4.1, u(Aj) = u(A2
j) = u(Ai)

or s(Aj) = s(A2
j ) = s(Ai). The proof can be finished by induction similarly to

the proof of Lemma 4.1.

The following lemma is a simple application of [16, Theorem 1.7(ii)–(iii)].

Lemma 4.3: Let A = (A1, . . . , AN ) ∈ GL2(R)
N be such that

Ai =

(
ai bi

0 ci

)

for all i ∈ {1, . . . , N}, where ai, bi, ci ∈ R, and let μa and μc be the Bernoulli

measures obtained from the probability vectors( N∑
i=1

|ai|s
)−1

(|a1|s, . . . , |aN |s) and

( N∑
i=1

|ci|s
)−1

(|c1|s, . . . , |cN |s),

respectively. If μ is an ergodic equilibrium state for Φs, then

μ ∈

⎧⎪⎪⎨
⎪⎪⎩
{μa}, if

∑N
i=1 |ai|s >

∑N
i=1 |ci|s,

{μc}, if
∑N

i=1 |ai|s <
∑N

i=1 |ci|s,
{μa, μc}, if

∑N
i=1 |ai|s =

∑N
i=1 |ci|s.

The following lemma is [16, Proposition 1.2].
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Lemma 4.4: If A ∈ GL2(R)
N is irreducible, then there is a unique equilibrium

state which is a Gibbs-type measure for Φs.

We are now ready to prove the propositions.

Proof of Proposition 2.6. Let us first show that (2) implies (1). Lemma 4.4

shows that if A is irreducible, then the equilibrium state is a Gibbs-type measure

for Φs. Also, if A is strongly conformal, the conclusion is straightforward. We

may thus assume that A is reducible with a common invariant subspace V and

that there exists ε > 0 such that either the closed ε-neighbourhood of V or the

closure of its complement is an invariant unstable multicone. Note that S(A)
cannot contain any parabolic elements, since in this case the neighbourhood (or

its complement) cannot be invariant.

We may, by Proposition 2.2, assume that for some M ∈ N the tuple

Ah = (A1, . . . , AM ) has a strongly invariant multicone C and

Ae = (AM+1, . . . , AN )

is such that AiC = C for all i ∈ {M +1, . . . , N}. Thus, either V ∈ Co or V /∈ C.
If V ∈ Co, then u(Ai) = V for all i ∈ {1, . . . ,M} and if V /∈ C, then s(Ai) = V

for all i ∈ {1, . . . ,M}. By the invariance of V and since S(A) does not contain
a parabolic element, every A ∈ S(A) is diagonalisable. So in the first case, for

any Ai1 , . . . , Ain ∈ A,

|λu(Ai1 · · ·Ain)| = ‖Ai1 · · ·Ain |V ‖ =

n∏
�=1

‖Ai� |V ‖ =

n∏
�=1

|λu(Ai�)|.

In the second case similarly, |λs(Ai1 · · ·Ain)| =
∏n

�=1 |λs(Ai�)|, but by the mul-

tiplicity of the determinant |λu(Ai1 · · ·Ain)| =
∏n

�=1 |λu(Ai�)|. Moreover, by

Lemma 3.10, there exists a constant C > 0 such that for every A ∈ S(A)\S(Ae)

|λu(A)| � ‖A‖ � C|λu(A)|,
and

|λu(A)| = ‖A‖
for A ∈ S(Ae) trivially. Hence, the Bernoulli measure λ obtained from the

probability vector ( |λu(A1)|s∑N
i=1 |λu(Ai)|s

, . . . ,
|λu(AN )|s∑N
i=1 |λu(Ai)|s

)

is a σ-invariant Gibbs-type measure for Φs. Therefore, μ = λ.
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Let us then show that (1) implies (2). We may assume without loss of gen-

erality that A is reducible with common subspace V . Moreover, let us assume

that neither any ε-neighbourhood of V nor the closures of the complements are

an invariant unstable multicone. Our goal is to show that the only remaining

possibility, A is strongly conformal, holds.

By reducibility, after a change of basis, every Ai ∈ S(A) has the form

Ai =

(
ai bi

0 ci

)
,

where ai=
∏|i|

k=1 aik and ci=
∏|i|

k=1 cik with some ai, bi, ci ∈ R for i∈{1, . . . , N}.
Then, by Lemma 4.3, μ = μa or μ = μc, where μa and μc are defined in the

formulation of Lemma 4.3. If one of the matrices, say Ai ∈ S(A), is para-

bolic, then ai = ci and bi �= 0. It follows that there exists c > 0 such that

c−1nan−1
i bi � ‖An

i ‖ � cnan−1
i bi for all n ∈ N. By [16, Theorem 1.7(ii)], we

may assume that P (Φs) = log
∑N

i=1 |ai|s and that μ = μa. The definition of μa

thus implies that

C−1 |ai|ns
ns|ai|s(n−1)|bi|s � μ([in])

‖An
i ‖s exp(−nP (Φs))

� C
|ai|ns

ns|ai|s(n−1)|bi|s

for all n ∈ N. This is a contradiction since μ was assumed to be a Gibbs-type

measure for Φs. Thus, S(A) does not contain any parabolic element.

The common subspace V and the fact that S(A) does not contain a parabolic

element implies that all the matrices in A are diagonalisable. Since neither

any ε-neighbourhood of V nor the closures of the complements are invariant

unstable multicones, then either |ak| = |ck| and bk = 0 for every k ∈ {1, . . . , N}
(which implies that A is strongly conformal) or there exist i �= j such that

|ai| < |ci| and |aj | > |cj |. If μ = μa, then

C−1 <
μ([in])

‖An
i ‖s exp(−nP (Φs))

� C′ |ai|sn
|ci|sn

for all n ∈ N, and similarly, if μ = μc, then

C−1 <
μ([jn])

‖An
j ‖s exp(−nP (Φs))

� C′ |cj |sn
|aj |sn

for all n ∈ N. Since both inequalities lead to a contradiction, it follows that A

must be strongly conformal.
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Proof of Proposition 2.7. Let us first show that (2) implies (1). If A is reducible,

then the statement follows directly from Lemma 4.3. If A is strongly conformal,

then the statement is straightforward.

Let us then show that (1) implies (2). Let us contrarily assume that μ is a

Bernoulli measure, A is irreducible, and not strongly conformal. By Lemma 4.4,

μ is a Gibbs-type measure for Φs, that is, there exists a constant C > 0 such that

(4.1) C−1 � μ([i])

‖Ai‖s exp(−nP (Φs))
� C

for all i ∈ Σn and n ∈ N. Since μ is a Bernoulli measure and A is not strongly

conformal, Theorem 2.1 implies that A has an invariant unstable multicone C
and S(A) does not contain any parabolic element. We may, by Proposition 2.2,

assume that for some M ∈ N the tuple Ah = (A1, . . . , AM ) has a strongly

invariant multicone C and Ae = (AM+1, . . . , AN ) is strongly conformal with

AiC = C for all i ∈ {M + 1, . . . , N}.
By (4.1) and the Bernoulli property of μ,

C−1/n � μ([i])

‖An
i ‖s/n exp(−|i|P (Φs))

� C1/n

for all i ∈ Σ∗ and n ∈ N. Thus, by letting n→ ∞, we see that

|λu(Ai)| = μ([i])1/s exp(|i|P/s)
for all i ∈ Σ∗ \

⋃
k∈N

{M + 1, . . . , N}k. Since μ is a Bernoulli measure, we see

that |λu(Aij)| = |λu(Ai)λu(Aj)| for any two i, j ∈ Σ∗
⋃

k∈N
\{M +1, . . . , N}k.

Thus Lemma 4.2 implies that there exists a subspace V such that

u(Ai) = V

for all i ∈ Σ∗ \
⋃

k∈N
{M + 1, . . . , N}k or

s(Ai) = V

for all i ∈ Σ∗ \ ⋃k∈N
{M + 1, . . . , N}k. Without loss of generality, we may

assume that we are in the first case.

Since |λu(A2
iAj)| = |λu(Ai)λu(AiAj)| and |λu(A3

iAj)| = |λu(Ai)
2λu(AiAj)|,

for every j ∈ {M + 1, . . . , N}, we have by Lemma 4.1 that u(Ak
iAj) = u(Ai),

where k = 1 or k = 2. Therefore Ak
iAju(A

k
iAj) = Ak

iu(Ai), which implies

that AjV = V . Thus, V is an invariant subspace for A. This contradicts the

irreducibility assumption.
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Let us next prove the theorems. For the existence of the function in the

statement (4) of Theorem 2.8 we need the following lemma.

Lemma 4.5: Let A ⊂ GL2(R) be a finite set such that A = Ah∪Ae, where Ae is

strongly conformal and Ah �= ∅ has a strongly invariant multicone C such that

AC = C for all A ∈ Ae. Let m be the Haar measure generated by Ae normalised

on C. Then for every i ∈ Σ there exists a probability measure νi on C such that

νi = lim
n→∞(Ai|n)∗m.

In particular, (Aj)∗νi = νji.

Proof. Write Ah = {A1, . . . , AM} and Ae = {AM+1, . . . , AN}. Let us divide Σ

into two disjoint sets

Σ̂ = {i1i2 · · · ∈ Σ : in ∈ {1, . . . ,M} for infinitely many n ∈ N},
(4.2)

Υ = {i1i2 · · ·∈Σ : there is n0∈N such that in∈{M+1, . . . , N} for all n > n0}.
(4.3)

Fix i ∈ Σ̂. By the definition, i ∈ Σ̂ can be written as i = i1j1i2j2 · · · , where
ik ∈

⋃
n∈N

{M + 1, . . . , N}n ∪ {∅}

and ik ∈ {1, . . . ,M} for all k ∈ N. Thus, AikjkC ⊂ Co for every k ∈ N, and

there exists a unique V = V (i) ∈ RP1 such that

V =

∞⋂
n=0

Ai1j1 · · ·Ainjn(C).

Let g : RP1 → R be a continuous function. Since RP1 is compact, for ev-

ery ε > 0 there exists r > 0 such that for every V,W ∈ with d(V,W ) < r,

|g(V )− g(W )| < ε. Thus, by choosing n sufficiently large so that

diam(Ai1j1 · · ·Ainjn(C)) < r,

we have ∣∣∣∣
∫
g(V ) d(Ai|n)∗m(V )− g(V (i))

∣∣∣∣ � ε.

Hence, limn→∞(Ai|n)∗m exists and equals δV (i).

On the other hand, if i ∈ Υ, then clearly limn→∞(Ai|n)∗m = (Ai|k)∗m,

where k is the smallest n0 satisfying the condition in (4.3).
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Proof of Theorem 2.8. The equivalence of (2) and (3) follows directly from

Corollary 2.5. By Lemma 4.4, the equilibrium state μ is unique and a Gibbs-

type measure for Φs. Thus, also (1) and (2) can be immediately seen to be

equivalent.

Let us show that (4) implies (1). Plugging (4) into (2.3), we see that

C−1 exp

(
−nP (Φ)+s

n−1∑
k=0

f(σki)

)
� μ([i|n]) � C exp

(
−nP (Φ)+s

n−1∑
k=0

f(σki)

)

holds for every i ∈ Σ, from which the quasi-Bernoulli property clearly follows.

It remains to show that (3) implies (4). By Lemma 4.5, νi = limn→∞(Ai|n)∗m
exists for every i ∈ Σ. Define f : Σ → R by setting

f(i) =

∫
log ‖Ai|1 |V ‖ dνσi(V )

for all i ∈ Σ. Clearly,∫
|f(i)| dμ(i) �

∫∫
| log ‖Ai0 |V ‖| dνσi(V ) dμ(i) �

∫∫
C dνσi(V ) dμ(i) = C,

where C = logmax{maxi{‖Ai‖},maxi{‖A−1
i ‖}}. Let Σ̂ and Υ be as in (4.2)

and (4.3), respectively. Since μ is fully supported, μ(Υ) = 0 and Σ̂ has full μ

measure. Furthermore, every i ∈ Σ̂ satisfies

diam(Ai|n(C)) � Cτ �1i|n+···+�Mi|n → 0

as n → ∞. Therefore, for μ-almost every i and for any sequence (jn)n∈N

converging to i and sufficiently large n,

|f(i)− f(jn)| =
∣∣∣∣
∫

log ‖Ai|1 |V ‖ dνσi(V )−
∫

log ‖Ajn|1 |V ‖ dνσjn(V )

∣∣∣∣
=

∣∣∣∣log ‖Ai|1 |V (σi)‖ −
∫

log ‖Ai|1 |V ‖ dνσjn(V )

∣∣∣∣
� C dist(δV (σi), νσjn) � C′ diam(Aσi∧σjn(C)),

which converges to 0 as n→ ∞. Note that

n−1∑
k=0

f(σki) =

∫
log ‖Ai|n |V ‖ dνσni(V )

for every n ∈ N and i ∈ Σ. By Lemma 3.10, there exists κ > 0 such that

‖Ai|n‖ � ‖Ai|n |V ‖ � κ‖Ai|n‖ for all V ∈ C. Therefore, (4) follows.



Vol. 239, 2020 DOMINATION AND THERMODYNAMIC FORMALISM 203

The following lemma, which we refer to as the three matrices lemma, is the

key observation in the proof of Theorem 2.9.

Lemma 4.6: If A = (A1, A2, A3) ∈ GL2(R)
3 is such that A3 = cI for some

c ∈ R\{0} and (A1, A2) is irreducible and dominated, then for every Hölder con-

tinuous potential f : {1, 2, 3}N → R and every C > 0 there exists i ∈ {1, 2, 3}N
and n ∈ N such that ∣∣∣∣

n−1∑
k=0

f(σki)− log ‖Ai|n‖
∣∣∣∣ > C.

The proof of the lemma takes several pages. Trying not to disrupt the flow

of the proofs in this section, we have postponed it to §5.

Proof of Theorem 2.9. By Lemma 4.4, the equilibrium state μ is unique and a

Gibbs-type measure for Φs. Taking the potential f in (3), it is clear that μ is

Gibbs for the potential sf . On the other hand, if μ is Gibbs for the potential g

then 1
sg clearly satisfies (3).

Let us show that (2) implies (3). If A has a strongly invariant multicone C,
then, by e.g. [3, Lemma 2.4], there exist Hölder-continuous functions V : Σ→RP1

and f : Σ → R such that

(4.4) V (i) =

∞⋂
n=1

Ai|n(C) and f(i) = log ‖Ai|1 |V (σi)‖

for all i ∈ Σ. Moreover, by Lemma 3.10, there is a constant C > 0 such that∣∣∣∣
m−1∑
k=0

f(σki)− log ‖Ai|m‖
∣∣∣∣ � C

for all i ∈ Σ and m ∈ N. On the other hand, if A is strongly conformal then,

by choosing

f(i) =
1

2
log | det(Ai|1)|,

the claimed properties follow.

It remains to show that (3) implies (2). Let us assume contrarily that there

exist a constant C > 0 and a Hölder-continuous function f such that

(4.5)

∣∣∣∣
n−1∑
k=0

f(σki)− log ‖Ai|n‖
∣∣∣∣ � C,
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for all i ∈ Σ, A does not have strongly invariant multicone, and A is not

strongly conformal. Thus, by Theorem 2.8, A can be decomposed into Ah �= ∅
and strongly conformal set Ae �= ∅ such that Ah has strongly invariant multi-

cone C and AC = C for every A ∈ Ae. As usual, let Ah = {A1, . . . , AM} and

Ae = {AM+1, . . . , AN}. The equilibrium state μ is a quasi-Bernoulli measure.

Recall that, by Proposition 2.2,

{| det(A)|−1/2A : A ∈ S(Ae)}

is finite. Hence, there exists Aj ∈ S(Ae) such that Aj = cI.

Since Ah is nonempty and A is irreducible, Xu(A) and Xs(A) contain

at least two points each. Then there exist four proximal matrices

Ai1 , Ai2 , Ai3 , Ai4 ∈ S(A) such that u(Ai1) �= u(Ai2) and s(Ai3) �= s(Ai4).

Taking q > 0 sufficiently large we have that

Aq
i1
C ∩ Aq

i2
C = ∅ and A−q

i3
(Co)c ∩ A−q

i4
(Co)c = ∅.

Clearly, u(Aq
i1
Aq

i3
)∈Aq

i1
C and u(Aq

i2
Aq

i4
)∈Aq

i2
C and so

u(Aq
i1
Aq

i3
) �= u(Aq

i2
Aq

i4
).

Similarly, s(Aq
i1
Aq

i3
) ∈ A−q

i3
(Co)c and s(Aq

i2
Aq

i4
) ∈ A−q

i4
(Co)c and so

s(Aq
i1
Aq

i3
) �= s(Aq

i2
Aq

i4
).

Thus, (Aq
i1
Aq

i3
, Aq

i2
Aq

i4
) is dominated and irreducible.

There exist n1, n2, n3 � 1 such that


 := n3|j| = n1q(|i1|+ |i3|) = n2q(|i2|+ |i4|).

Let us define

Γ = {(iq1iq3)n1 , (iq2i
q
4)

n1 , jn3}N.
By (4.5), the Hölder continuous potential h =

∑�−1
j=0 f ◦ σj satisfies

∣∣∣∣
m−1∑
k=0

h(σki)− log ‖Ai|m‖
∣∣∣∣ � C

for all m ∈ N and i ∈ Γ, where σ denotes the left-shift operator on Γ. Since

this contradicts Lemma 4.6, we have finished the proof.
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5. The three matrices lemma

In this section we prove Lemma 4.6. Throughout the section, we assume that

A = (A1, A2, A3) ∈ GL2(R)
3 is such that A3 = cI for some c ∈ R \ {0}, and

(A1, A2) is irreducible and has a strongly invariant multicone C. Note that

there exists a multicone C0 ⊂ Co such that AiC ⊂ C0 for i = 1, 2. Without loss

of generality, by multiplying the matrix triple A by c−1, we may assume that

c = 1. This does not affect the existence of a Hölder continuous potential.

For simplicity, let us denote Σ = {1, 2, 3}N and Γ = {1, 2}N. Let the Borel

σ-algebras of Σ and Γ be BΣ and BΓ, respectively. As in (4.3), let

Υ =

∞⋃
n=0

⋃
i∈Σn

{i3∞} ⊂ Σ

be the countable set of infinite words whose tail consists of only 3’s, and define

Σ̂ = Σ\Υ. Notice that each i ∈ Σ̂ can be written in the form i = 3k1 i13
k2 i2 · · · ,

where ki ∈ N∪{0} and ik ∈ {1, 2} for all k ∈ N. Relying on this representation,

let us define a function κ : Σ̂ → Γ by setting

κ(3k1 i13
k2i2 · · · ) = i1i2 · · ·

for all i ∈ Σ̂. The definition of κ can be naturally extended to Σ∗ by

κ(3k1i13
k2 , . . . , in3

kn+1) = (i1, . . . , in) and κ(3k) = ∅,
where ki ∈ N ∪ {0}.
Observe that κ−1(C) is a countable union of cylinder sets in Σ for every

cylinder set C in Γ. Thus κ : (Σ,BΣ) → (Γ,BΓ) is measurable. With a slight

abuse of notation, we denote both left-shift operators on Σ and Γ by σ. Finally,

let us observe that

(5.1) κ(σi) =

⎧⎨
⎩κ(i), if i|1 = 3,

σκ(i), if i|1 �= 3.

Let μh be the unique ergodic Gibbs measure on Γ for the Hölder continuous

potential h : Γ → R defined by

h(i) = log ‖Ai|1 |V (σi)‖,
where V (i) =

⋂∞
n=1Ai|n(C). Since

m−1∑
k=0

h(σki) = log ‖Ai|m |V (σmi)‖,
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Lemma 3.10 implies ∣∣∣∣
m−1∑
k=0

h(σki)− log ‖Ai|m‖
∣∣∣∣ � C

for all i ∈ Γ and m ∈ N.

Let us assume contrarily that the statement of Lemma 4.6 fails. This means

that there is a Hölder continuous potential f : Σ → R and a constant C > 0

such that

(5.2)

∣∣∣∣
n−1∑
k=0

f(σki)− log ‖Ai|n‖
∣∣∣∣ � C

for all n ∈ N and i ∈ Σ. Our goal is to show that in this case the Gibbs

measure μh is a Bernoulli measure. By Proposition 2.7, as the tuple (A1, A2)

is irreducible and contains only proximal matrices, this is a contradiction. We

will show this after some auxiliary lemmas.

The proof of the following lemma follows easily from the definition of κ and

the domination of the tuple (A1, A2), and we leave it to the reader.

Lemma 5.1: There exists C > 0 such that∣∣∣∣ log ‖Ai|n‖ −
n−1−�3i|n∑

k=0

h(σkκ(i))

∣∣∣∣ � C

for all i ∈ Σ̂ and n ∈ N.

Let f be the Hölder continuous potential in (5.2) and let μf be the unique

ergodic Gibbs measure for the potential f on Σ. By the definition of the pressure

and (5.2), we have

P

((n−1∑
k=0

f ◦ σk

)
n

)
= P ((i �→ log ‖Ai|n‖)n) = lim

n→∞
1

n
log

∑
i∈Σn

‖Ai‖.

Let us denote the common quantity by Q. Then by the definition of Gibbs

measures (2.2), there exists a constant C > 0 such that

C−1 exp

(n−1∑
k=0

f(σki)− nQ

)
� μf ([i|n]) � C exp

(n−1∑
k=0

f(σki)− nQ

)
,

for every i ∈ Σ. Let us write

R = lim
n→∞

1

n
log

∑
i∈Γn

‖Ai‖.
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By a simple calculation, recalling that A3 = I, we see that

Q = lim
n→∞

1

n
log

∑
i∈Σn

‖Ai‖ = lim
n→∞

1

n
log

n∑
�=0

(
n




)∑
i∈Γ�

‖Ai‖.

Since for every ε > 0 there exists a constant K > 0 such that

K−1e(R−ε)� �
∑
i∈Γ�

‖Ai‖ � Ke(R+ε)�

for every 
 ∈ N, we see that log(1 + eR−ε) � Q � log(1 + eR+ε). Since ε > 0

was arbitrary, we get

(5.3) Q = log(1 + eR).

Let us define the Perron–Frobenius operators Lf and Lh on Σ and on Γ,

respectively, for the Hölder-continuous potentials f and h as

(Lf (ψ))(i) =

3∑
i=1

ef(ii)ψ(ii) and (Lh(φ))(i) =

2∑
i=1

eh(ii)φ(ii).

By [12, Theorem 1.7 and the proof of Theorem 1.16], there exist unique func-

tions ψf : Σ → R and φh : Γ → R (i.e., eigenfunctions) and unique probability

measures νf on Σ and νh on Γ (i.e., eigenmeasures) such that

Lf (ψf ) = eQψf , Lh(φh) = eRφh, L∗
fνf = eQνf , L∗

h(νh) = eRνh,

and ∫
ψf dνf = 1 =

∫
φh dνh.

Moreover, by [12, Lemmas 1.8 and 1.10], the potentials logψf and logφh are

Hölder continuous. By induction, it is easy to see that for any function ϕ

(Ln
f (ϕ))(i) =

∑
j1

ef(j1i)(Ln−1
f (ϕ))(j1i)

=
∑
j1,j2

ef(j1i)ef(j2j1i)(Ln−2
f (ϕ))(j2j1i)

=
∑

j1,...,jn

ef(j1i)+···+f(jn...j1i)ϕ(jn . . . j1i)

=
∑
k∈Σn

e
∑n−1

k=0 f(σkki)ϕ(ki).
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By [12, Proposition 1.14] and the uniqueness of the ergodic Gibbs measure,

(5.4) μf (B) =

∫
B

ψf dνf and μh(B
′) =

∫
B′
φh dνh

for every B ∈ BΣ and B′ ∈ BΓ. Thus, for any j ∈ Σn and every B ∈ BΣ,

(5.5)

μf ([j] ∩ σ−|j|(B))

=

∫
ψf (i)1[j]∩σ−|j|(B)(i) dνf (i)

=

∫
ψf (i)1[j]∩σ−|j|(B)(i)e

−nQ d(L∗
f )

n(νf )(i)

=

∫
Ln
f (ψf1[j]∩σ−|j|(B))(i)e

−nQ dνf (i)

=

∫ ∑
k∈Σn

exp

(n−1∑
k=0

f(σkki)− nQ

)
ψf (ki)1[j]∩σ−|j|(B)(ki) dνf (i)

=

∫
B

exp

(n−1∑
k=0

f(σkji)− nQ

)
ψf (ji) dνf (i)

=

∫
B

exp

(n−1∑
k=0

f(σkji)− nQ

)
ψf (ji)

ψf (i)
dμf (i).

Let

f̂(i) = f(i) + logψf (i)− logψf (σi).

Since logψf is Hölder continuous, and thus uniformly bounded over Σ, there

exists C > 0 such that

∣∣∣∣
n−1∑
k=0

f̂(σki)− log ‖Ai|n‖
∣∣∣∣ � C

for all n ∈ N and i ∈ Σn. By (5.5),

(5.6) μf ([i] ∩ σ−|i|(B)) =

∫
B

exp

( |i|−1∑
k=0

f̂(σkji)− |i|Q
)
dμf (i)

for all i ∈ Σ∗ and B ∈ BΣ.
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Let us denote the ratio (1 + eR)−1 by q. Define

η([i]) = q�3i(1− q)|i|−�3iμh([κ(i)])

for all i ∈ Σ∗ and notice that

(5.7)

3∑
i=1

η([ii])

=

2∑
i=1

q�3i(1− q)|i|+1−�3iμh([κ(ii)]) + q�3i+1(1 − q)|i|−�3iμh([κ(i)])

= q�3i(1− q)|i|+1−�3i
2∑

i=1

μh([κ(i)i]) + q�3i+1(1− q)|i|−�3iμh([κ(i)])

= q�3i(1− q)|i|−�3iμh([κ(i)])(1 − q + q) = η([i])

for all i ∈ Σ∗. Thus, by Kolmogorov’s extension theorem, η can be extended

to a probability measure on (Σ,BΣ). We shall denote the extension by η too.

The following lemma shows that η is ergodic.

Lemma 5.2: The measure η is σ-invariant and mixing on Σ.

Proof. Since μh is σ-invariant, the proof of σ-invariance of η is similar to (5.7),

and therefore we omit it. To prove that η is mixing, it is sufficient to show that

lim
n→∞ η([i] ∩ σ−n[j]) = η([i])η([j])

for all i, j ∈ Σ∗. Let n > |i| and observe that

η([i] ∩ σ−n[j]) =
∑

h∈Σn−|i|

η([ihj])

=
∑

h∈Σn−|i|

q�3i+�3j+�3h(1− q)|i|−�3i+|j|−�3j+|h|−�3hμh([κ(ihj)])

=q�3i+�3j(1− q)|i|−�3i+|j|−�3j

×
∑

h∈Σn−|i|

q�3h(1− q)|h|−�3hμh([κ(i)κ(h)κ(j)])

=q�3i+�3j(1− q)|i|−�3i+|j|−�3j

×
n−|i|∑
�=0

(
n− |i|



)
qn−|i|−�(1− q)�

∑
k∈Γ�

μh([κ(i)kκ(j)]).
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Hence,

(5.8)
η([i]∩σ−n[j])

η([i])η([j])
=

n−|i|∑
�=0

(
n− |i|



)
qn−|i|−�(1−q)�μh([κ(i) ∩ σ−�−|κ(i)|κ(j)])

μh([κ(i)])μh([κ(j)])
.

By [12, Proposition 1.14] the measure μh is mixing. Thus, for every ε > 0

there exists N such that if 
 � N , then

e−ε � μh([κ(i)] ∩ σ−�−|κ(i)|[κ(j)])
μh([κ(i)])μh([κ(j)])

� eε.

Hence, for n > N + |i| we get

n−|i|∑
�=0

(
n− |i|



)
qn−|i|−�(1− q)�

μh([κ(i) ∩ σ−�−|κ(i)|κ(j)])
μh([κ(i)])μh([κ(j)])

�eε
n−|i|∑
�=N

(
n− |i|



)
qn−|i|−�(1− q)� + μh([κ(j)])

−1

×
N−1∑
�=0

(
n− |i|



)
qn−|i|−�(1− q)�

�eε + μh([κ(j)])
−1N(n− |i|)N (1 − q)n−|i|−N ,

where in the last inequality we used
(
n
k

)
� nk. By a similar argument,

n−|i|∑
�=0

(
n− |i|



)
qn−|i|−�(1− q)�

μh([κ(i) ∩ σ−�−|κ(i)|κ(j)])
μh([κ(i)])μh([κ(j)])

�e−ε

n−|i|∑
�=N

(
n− |i|



)
qn−|i|−�(1− q)�

�e−ε −N(n− |i|)N (1 − q)n−|i|−N .

By (5.8) and letting n→ ∞, we see that for every ε > 0

e−ε � lim
n→∞

η([i] ∩ σ−n[j])

η([i])η([j])
� eε.

Since ε > 0 was arbitrary, the definition of η finishes the proof.

Proposition 5.3: If η and μf are as above, then η = μf .
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Proof. Since both η and μf are ergodic measures, it suffices to show that they

are equivalent. By Lemma 5.1 and our assumption (5.2) on f ,

η([i]) = q�3i(1 − q)|i|−�3iμh([κ(i)])

� Cq�3i(1− q)|i|−�3i exp

(|κ(i)|−1∑
k=0

h(σkκ(i)j)− |κ(i)|R
)

� C′(1 − q)|i|−�3i‖Ai‖ exp
(− (|i| − �3i)R− �3i log(1 + eR)

)
= C′‖Ai‖ exp(−|i| log(1 + eR))

� C′′ exp
(|i|−1∑

k=0

f(σkij′)− |i| log(1 + eR)

)
� C′′′μf ([i])

for all i ∈ Σ∗. The other inequality follows by a similar argument. Since for

every cylinder set [i], the ratio η([i])/μf ([i]) is bounded away from 0 and ∞
uniformly, the statement follows.

By (5.6) and (5.3),

μf ([i] ∩ σ−1(B)) =

∫
B

exp(f̂(ii)−Q) dμf (i) =
1

1 + eR

∫
B

exp(f̂(ii)) dμf (i)

for all i ∈ {1, 2, 3} and B ∈ BΣ. By Proposition 5.3 and recalling the definition

of η, we have

μf ([3] ∩ σ−1(B)) = η([3] ∩ σ−1(B)) =
1

1 + eR
η(B) =

1

1 + eR
μf (B).

Since f̂ is Hölder continuous and the above two equations hold for every B ∈ BΣ,

we conclude that

(5.9) f̂(i) = 0

for all i ∈ [3]. By (5.6), we have

μf ([i13
k1 · · · in3kn ])

=

∫
exp

(k1+···+kn+n−1∑
�=0

f̂(σ�i13
k1 · · · in3knj)− (k1 + · · ·+ kn + n)Q

)
dμf (j)

=qk1+···+kn

∫
exp(f̂(i13

k1 · · ·j) + · · ·+ f̂(in3
knj)− nQ) dμf (i)
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for every k1, . . . , kn ∈ N, i1, . . . , in ∈ {1, 2}, and n ∈ N. Since f̂ is Hölder

continuous, we have

lim
k1,...,kn→∞

f̂(i�3
k� · · · in3knj) = f̂(i�3

∞)

uniformly for all 
 ∈ {1, . . . , n} and j ∈ Σ. Hence by the dominated convergence

theorem

lim
k1,...,kn→∞

μf ([i13
k1 · · · in3kn ])

qk1+···+kn
=

n∏
�=1

ef̂(i�3
∞)−Q.

On the other hand, by the definition of η and Proposition 5.3,

μf ([i13
k1 · · · in3kn ])

qk1+···+kn
= (1− q)nμh([i1 · · · in]).

It follows that

μh([i1 · · · in]) =
n∏

�=1

ef̂(i�3
∞)−R

and hence μh is a Bernoulli measure. This contradicts Proposition 2.7 and

finishes the proof of Lemma 4.6.
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Mathématiques Pures et Appliquées 92 (2009), 1–17.

[7] J. Bochi and N. Gourmelon, Some characterizations of domination, Mathematische

Zeitschrift 263 (2009), 221–231.

[8] J. Bochi and I. D. Morris, Continuity properties of the lower spectral radius, Proceedings

of the London Mathematical Society 110 (2015), 477–509.

[9] J. Bochi and M. Viana, The Lyapunov exponents of generic volume-preserving and sym-

plectic maps, Annals of Mathematics 161 (2005), 1423–1485.

[10] T. Bomfim and P. Varandas, Multifractal analysis of the irregular set for almost-additive

sequences via large deviations, Nonlinearity 28 (2015), 3563–3585.

[11] C. Bonatti, L. J. Dı́az and E. R. Pujals, A C1-generic dichotomy for diffeomorphisms:

weak forms of hyperbolicity or infinitely many sinks or sources, Annals of Mathematics

158 (2003), 355–418.

[12] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lec-

ture Notes in Mathematics, Vol. 470, Springer, Berlin, 2008.

[13] Y. Cao, Dimension spectrum of asymptotically additive potentials for C1 average con-

formal repellers, Nonlinearity 26 (2013), 2441–2468.

[14] Y. Cao, D.-J. Feng and W. Huang, The thermodynamic formalism for sub-additive po-

tentials, Discrete and Continuous Dynamical Systems 20 (2008), 639–657.

[15] D.-J. Feng and W. Huang, Lyapunov spectrum of asymptotically sub-additive potentials,

Communications in Mathematical Physics 297 (2010), 1–43.
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