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ABSTRACT

We prove a counting theorem concerning the number of lattice points

for the dual lattices of weakly admissible lattices in an inhomogeneously

expanding box. The error term is expressed in terms of a certain function

ν(Γ⊥, ·) of the dual lattice Γ⊥, and we carefully analyse the relation of this

quantity with ν(Γ, ·). In particular, we show that ν(Γ⊥, ·) = ν(Γ, ·) for

any unimodular lattice of rank 2, but that for higher ranks it is in general

not possible to bound one function in terms of the other. This result relies

on Beresnevich’s recent breakthrough on Davenport’s problem regarding

badly approximable points on submanifolds of Rn. Finally, we apply our

counting theorem to establish asymptotics for the number of Diophantine

approximations with bounded denominator as the denominator bound gets

large.
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Introduction

In the present article, we are mainly concerned with three objectives. Firstly,

we prove a counting result for lattice points of unimodular weakly admissible

lattices in inhomogeneously expanding, aligned boxes. A similar result for ho-

mogeneously expanding boxes was proven by Skriganov [22, Thm. 6.1] in 1998.

Secondly, we carefully investigate the relation between ν(Γ, ·) (see (0.1) for the

definition) and ν(Γ⊥, ·) of the dual lattice Γ⊥ which captures the dependency

on the lattice in these error terms. And thirdly, we apply our counting result

to count Diophantine approximations.

To state our first result, we need to introduce some notation. By writing

f � g (or f � g) for functions f, g, we mean that there is a constant c > 0

such that f(x) ≤ cg(x) (or cf(x) ≥ g(x)) holds for all admissible values of x; if

the implied constant depends on certain parameters, then this dependency will

be indicated by an appropriate subscript. Let Γ ⊆ Rn be a unimodular lattice,

and let

Γ⊥ := {w ∈ Rn : 〈v, w〉 ∈ Z ∀v∈Γ}

be its dual lattice with respect to the standard inner product 〈·, ·〉. Let γn

denote the Hermite constant, and for ρ > γ
1/2
n set

ν(Γ, ρ) := min{|x1 · · ·xn| : x := (x1, . . . , xn)
T ∈ Γ, 0 < ‖x‖2 < ρ}(0.1)

where ‖ · ‖2 denotes the Euclidean norm. We say Γ is weakly admissible

if ν(Γ, ρ) > 0 for all ρ > γ
1/2
n . Note that this happens if and only if Γ has

trivial intersection with every coordinate subspace. It is also worthwhile men-

tioning that the function ν(Γ, ρ) controls the rate of escape of the lattice Γ

under the action of the diagonal subgroup of SLn(R) (cf. (1.6)).

Furthermore, let T := diag(t1, . . . , tn) for ti > 0 be the diagonal matrix with

diagonal entries t1, . . . , tn, and let y ∈ Rn. We set

B := T [0, 1]n + y,

and we call such a set an aligned box. Moreover, we define

T := (det T )
1/n · ‖T −1‖2 =

(t1 · · · tn)1/n
min{t1, . . . , tn}

≥ 1

where ‖ · ‖2 denotes the operator norm induced by the Euclidean norm.
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Theorem 1: Let n ≥ 2, let Γ ⊆ Rn be a unimodular lattice, and let B ⊆ Rn

be as above. Suppose Γ⊥ is weakly admissible, and ρ > γ
1/2
n . Then

(0.2) |#(Γ ∩B)− vol(B)| �
n

1

ν(Γ⊥, T �)

((vol(B))1−1/n

√
ρ

+
Rn−1

ν(Γ⊥, 2RT )

)

where x� := max{γn, x}, and R := n2 + log ρn

ν(Γ⊥,ρT )
.

Note that ρn/ν(Γ⊥, ρ) ≥ nn/2 by the inequality between arithmetic and geo-

metric mean. Since T ≥ 1 and (cf. [15, Theorem 2.1.1])

γn ≤ (4/3)(n−1)/2,(0.3)

we have (2RT )� = 2RT , and hence the far right-hand side in (0.2) is well-defined.

The lattice Γ is called admissible if

Nm (Γ) := lim
ρ→∞ ν(Γ, ρ) > 0.

It is easy to show that if Γ is admissible then also Γ⊥ is admissible (see [21,

Lemma 3.1]). In this case we can choose ρ = (volB)2−2/n, provided the latter

is greater than γ
1/2
n , to recover the following impressive result of Skriganov ([21,

Theorem 1.1 (1.11)]):

(0.4) |#(Γ ∩B)− vol(B)| �
n,Nm(Γ⊥)

(log(vol(B))n−1.

However, if Γ is only weakly admissible, then it can happen that Γ⊥ is not

weakly admissible; see Example 4. But this is a rather special situation and

typically, e.g., if the entries of A are algebraically independent, see Lemma 4,

then Γ = AZn and its dual are both weakly admissible. This raises the question

whether, or under which conditions, one can control ν(Γ⊥, ·) by ν(Γ, ·). We have

the following result where we use the convention that for an integral domain I

the group of all matrices in In×n with inverse in In×n is denoted by GLn(I).

Proposition 1: Let Γ = AZn, and suppose there exist S,W both in GLn(Z)

such that

ATSA =W,

and suppose S has exactly one non-zero entry in each column and in each row.

Then we have

(0.5) ν(Γ⊥, ·) = ν(Γ, ·).
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A special case of Proposition 1 shows that ν(Γ⊥, ·)=ν(Γ, ·) whenever Γ = AZn

with a symplectic matrix A, in particular, whenever1 Γ is a unimodular lattice

in R2. In these cases, one can directly compare Theorem 1 with a recent re-

sult [24, Theorem 1.1] of the second author, and we refer to [24] for more on

that. On the other hand, our next result shows that in general ν(Γ, ·) can decay

arbitrarily quickly even if we control ν(Γ⊥, ·).

Theorem 2: Let n ≥ 3 and let ψ : (0,∞) → (0, 1) be non-increasing. Then

there exists a unimodular, weakly admissible lattice Γ ⊆ Rn, and a sequence

{ρl} ⊆ (γ
1/2
n ,∞) tending to ∞, as l → ∞, such that

ν(Γ⊥, ρ) � ρ−n2

and

ν(Γ, ρl) ≤ ψ(ρl)

for all l ∈ N = {1, 2, 3, . . .} and for all ρ > γ
1/2
n .

In the case where exactly one of the functions ν(Γ, ·), and ν(Γ⊥, ·) is control-
lable while the other one decays very quickly, either Theorem 1 or [24, Theorem

1.1] provides a reasonable error term, but certainly not both. This highlights

the complementary aspects of Theorem 1 and [24, Theorem 1.1]. Theorem 2

is deeper than Proposition 1, and relies on Beresnevich’s recent breakthrough

on Davenport’s longstanding question about the distribution of badly approx-

imable points on certain submanifolds of Rn. Going even beyond Davenport’s

original question, Beresnevich proved that the sets of these points have full

Hausdorff-dimension, and it is the full power of this result that we require to

prove Theorem 2.

Recently, German [14] considered the so-called lattice exponent ω(Γ) which is

a coarse measure for the rate of decay of the function ν(Γ, ρ); it can be expressed

as

ω(Γ) = lim sup
ρ→∞

− log ν(Γ, ρ)

n log ρ
,(0.6)

where for non-weakly admissible lattices this is interpreted as ω(Γ) = ∞. Ger-

man proposes the problem of studying the spectrum of the pairs (ω(Γ), ω(Γ⊥))

1 Let us write Sp2m(R) for the symplectic subgroup of GL2m(R) and SLn(R) for the

special linear subgroup of GLn(R). The fact Sp2(R) = SL2(R) can be checked directly.
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as Γ runs over all unimodular lattices in Rn. He constructs a non-weakly ad-

missible lattice Γ with ω(Γ⊥) = 1/(n(n− 2)) and hence

(ω(Γ), ω(Γ⊥)) = (∞, 1/(n(n− 2)).

If we insist that Γ be also weakly admissible, then we can use Theorem 2 but

at the expense that we have only an estimate for ω(Γ⊥). More precisely, there

exists a weakly admissible lattice Γ such that (ω(Γ), ω(Γ⊥)) ∈ {∞}× [0, n].

Next, we apply Theorem 1 to deduce counting results for Diophantine ap-

proximations. We start with a bit of historical background on this and re-

lated problems. Let α ∈ R, let ι : [1,∞) → (0, 1] be a positive decreas-

ing function, and let N loc
α (ι, t) be the number of integer pairs (p, q) satisfying

|p + qα| < ι(q), 1 ≤ q ≤ t. In a series of papers, starting in 1959, Erdős [13],

Schmidt [19, 20], Lang [9, 17, 18], Adams [1, 2, 3, 4, 5, 6, 7, 8], Sweet [23], and

others considered the problem of finding the asymptotics for N loc
α (ι, t) as t gets

large.

Schmidt [19] has shown that for almost every2 α ∈ R the asymptotics are

given by the volume of the corresponding subset of R2, provided the latter

tends to infinity. This is false for quadratic α; there with ι(q) = 1/q the volume

is 2 log(t) + O(1), and by Lang’s result N loc
α (1/q, t) ∼ cα log(t) but Adams [5]

has shown that cα �= 2.

Opposed to the above “non-uniform” setting, where the bound on |p + qα|
is expressed as a function of q, we consider the “uniform” situation, where

the bound is expressed as a function of t. Furthermore, we shall consider the

more general asymmetric inhomogeneous setting. Let α ∈ (0, 1) be irrational,

ε, t ∈ (0,∞), and let y ∈ R. We define the counting function

(0.7) Nα,y(ε, t) = #{(p, q) ∈ Z× N : 0 ≤ p+ qα− y ≤ ε, 0 ≤ q ≤ t}.

If the underlying set is not too stretched, then Nα,y(ε, t) is roughly the vol-

ume εt of the set in which we are counting lattice points. If we let ε = ε(t) be

a function of t with t = o(tε) we have, by simple standard estimates,

Nα,y(ε, t) ∼ εt(0.8)

for any pair (α, y) ∈ ((0, 1) \ Q) × R whatsoever. To get non-trivial estimates

for our counting function, we need information on the Diophantine properties

2 Here “almost every” refers always to the Lebesgue measure.
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of α. Let φ : (0,∞) → (0, 1) be a non-increasing function such that

(0.9) q|p+ qα| ≥ φ(q)

holds for all (p, q) ∈ Z× N. Then [24, Theorem 1.1] implies that

|Nα,y(ε, t)− εt| �α

√
εt

φ(t)
.(0.10)

Hence, unlike in the non-uniform setting, for badly approximable α the asymp-

totics are given by the volume as long as the volume tends to infinity.

Our next result significantly improves the error term in (0.10), provided α is

“sufficiently” badly approximable, i.e., provided φ(t) decays slowly enough. We

assume that

(0.11) εt > 4 and 0 < ε <
√
α.

Corollary 1: Put E := εt
φ(4t

√
εt)

and E′ := 168
√
εt3E. Then we have

(0.12) |Nα,y(ε, t)− εt| �
α

logE

φ2(E′)
.

In particular, if α is badly approximable then

(0.13) |Nα,y(ε, t)− εt| �
α

log(εt).

The latter should be compared to a classical result of Ostrowski, cf. [16, p. 125,

Thm. 3.4] which bounds the discrepancy of the sequence (〈qα〉)q of fractional

parts3 of qα from above in terms of the continued fraction expansion

of α ∈ (0, 1) \Q. Thus for y ∈ Z Ostrowski’s result implies that

(0.14) |Nα,y(ε, t)− εt| �
α

log t

for each badly approximable α ∈ (0, 1) and all ε ∈ (0, 1). If, on the other hand,

y /∈ Z and ε < 〈−y〉, then it is easy to check that 〈qα − y〉 ∈ [0, ε] if and only

if 〈qα〉 ∈ [1 − 〈−y〉, 1− 〈−y〉+ ε]. Thus, Ostrowski’s result implies that (0.14)

remains valid for any non-integral y ∈ R, provided ε ∈ (0, 〈−y〉).

3 For x ∈ R we write 〈x〉 = x− �x� for the fractional part of x.
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1. Proof of Theorem 1 and Corollary 1

In the proof of Theorem 1, it is crucial for us to estimate the error in the

lattice point counting problem for homogeneously expanding boxes such that

the dependence on the Diophantine properties of the lattice is explicitly stated.

To this end, we use an explicit version of Skriganov’s result which is described

in the next subsection.

1.1. An explicit version of Skriganov’s counting theorem. Let Γ⊆Rn

be a lattice, and let λi(Γ) denote the i-th successive minimum of Γ with respect

to the Euclidean norm (1 ≤ i ≤ n). For r > 0 we introduce a special set of

diagonal matrices

Δr :={δ :=diag(2m1 , . . . , 2mn) : m = (m1, . . . ,mn)
T ∈Zn, ‖m‖2 < r, det δ=1},

and we put

S(Γ, r) :=
∑
δ∈Δr

(λ1(δΓ))
−n.

Now we can state Skriganov’s result. In fact, his result is more general and

applies to any convex, compact polyhedron. On the other hand, the dependency

on B and Γ in the error term is not explicitly stated in his counting result [22,

Thm. 6.1]. By carefully following his reasoning we find the following explicit

version of his result. Recall that γn denotes the Hermite constant.

Theorem 3 (Skriganov, 1998): Let n ≥ 2 be an integer, let Γ ⊆ Rn be a

unimodular lattice, and let B ⊆ Rn be an aligned box of volume 1. Suppose

Γ⊥ is weakly admissible and ρ > γ
1/2
n . Then, for t > 0,

(1.1) |#(Γ ∩ tB)− tn| �
n

(|∂B|λn(Γ))n · (tn−1ρ−1/2 + S(Γ⊥, r))

where r := n2 + log ρn

ν(Γ⊥,ρ)
and |∂B| denotes the surface area of B.

1.2. Proof of Theorem 1. For proving Theorem 1, we want to exploit The-

orem 3. To this end let t := (det T )
1/n and let

(1.2) U := tT −1.

Thus

#(Γ ∩B) = #(UΓ ∩ U(T [0, 1]n + y)) = #(Λ ∩ t([0, 1]n + T −1(y)))
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where Λ := UΓ. Moreover, we conclude by Theorem 3 that

(1.3) |#(Γ ∩B)− vol(B)| �
n
λnn(Λ)

( tn−1

√
ρ

+ S(Λ⊥, r)
)
.

For controlling the quantities on the right-hand side in terms of Γ, t, ρ,

and ν(Γ⊥, ·), we need two lemmata. Their proofs use, in parts, arguments

which are contained in the proof of [22, Lem. 4.1]; however, unlike in [22], we

require to bound ν(Λ, ·) in terms of ν(Γ, ·). We will frequently use the fact

that if Γ = AZn is unimodular then Γ⊥ = (A−1)TZn. As usual, we let SLn(R)

denote the group of all Rn×n matrices with determinant 1.

Lemma 1: Let D := diag(d1, . . . , dn) be in SLn(R) and ρ > γ
1/2
n . Then

(1.4) ν((DΓ)⊥, ρ) ≥ ν(Γ⊥, ‖D‖2ρ)

and

(1.5) λn1 (DΓ) �
n
ν(Γ, ‖D−1‖�2).

Proof. For v := (v1, . . . , vn)
T ∈ Rn define Nm(v) := |v1 · · · vn|. We remark that

ν((DΓ)⊥, ρ) = ν(D−1Γ⊥, ρ)

= min{Nm(D−1v) : v ∈ Γ⊥, 0 < ‖D−1v‖2 < ρ}

= min{Nm(v) : v ∈ Γ⊥, 0 < ‖D−1v‖2 < ρ}.

If ‖D−1v‖2 < ρ, then ‖v‖2 < ‖D‖2ρ. Thus (1.4) follows. Now let Q > 0, and

v ∈ Γ with 0 < ‖v‖2 ≤ Q. By the inequality of the arithmetic and geometric

mean we have

‖Dv‖n2 ≥ n
n/2 · Nm(Dv) �

n
ν(Γ, Q�).

Now suppose ‖v‖2 > Q. Since ‖v‖2 = ‖D−1Dv‖2 ≤ ‖D−1‖2‖Dv‖2 we conclude

that

‖Dv‖2 > ‖D−1‖−1
2 Q.

Hence we have

‖Dv‖2 �
n

min{(ν(Γ, Q�))
1/n, ‖D−1‖−1

2 Q}.

Specialising Q := ‖D−1‖2, and noticing that by the inequality of the arithmetic

and geometric mean ν(Γ, γn) �
n

1, we get (1.5).
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Note that ‖D−1‖2 ≤ ‖D‖n−1
2 , and hence by Lemma 1 that

(1.6) λn1 (DΓ) �
n
ν(Γ, ‖D‖n−1

2 ),

at least if ‖D‖n−1
2 > γ

1/2
n . Therefore, the function ν(Γ, ρ) controls the rate of

escape of the lattice Γ under the action of the diagonal subgroup of SLn(R).

Lemma 2: Let U be as in (1.2) and let s ≥ 1. Then we have

S(Λ⊥, s) �
n

sn−1

ν(Γ⊥, (2s‖U‖2)�)
.

Proof. Since Λ⊥ = U−1Γ⊥, we conclude by (1.5) that

S(Λ⊥, s) =
∑
δ∈Δs

1

λn1 (δU
−1Γ⊥)

�
n

∑
δ∈Δs

1

ν(Γ⊥, ‖Uδ−1‖�2)
.

Since #Δs �
n
sn−1 and since ν(Γ⊥, ·) is non-increasing, we get

S(Λ⊥, s) �
n

sn−1

ν(Γ⊥, (2s‖U‖2)�)
.

We can now easily complete the proof of Theorem 1. By (1.4), we conclude

that

r = n2 + log
ρn

ν(Λ⊥, ρ)
≤ n2 + log

ρn

ν(Γ⊥, ‖U‖2ρ)
= R.

Since ν(Λ⊥, ·) is non-increasing and since (2R‖U‖2)� = 2R‖U‖2, Lemma 2 yields

(1.7) S(Λ⊥, r) �
n

Rn−1

ν(Γ⊥, 2R‖U‖2)
.

By using Mahler’s relation 1 ≤ λi(Γ
⊥)λn+1−i(Γ) ≤ n!, where i = 1, . . . , n, and

Lemma 1, we obtain

(1.8) λnn(Λ) �
n

1

λn1 (U
−1Γ⊥)

�
n

1

ν(Γ⊥, ‖U‖�2)
.

Taking (1.7) and (1.8) in (1.3) into account, it follows that

|#(Γ ∩B)− vol(B)| �
n

1

ν(Γ⊥, ‖U‖�2)
( tn−1

√
ρ

+
Rn−1

ν(Γ⊥, 2R‖U‖2)
)

which is (0.2).
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1.3. An Application—Proof of Corollary 1. Throughout this subsec-

tion we fix the unimodular lattice Γ = AZ2 where

A :=
1√
α

(
1 α

1 2α

)
,

and we consider the aligned box

(1.9) B :=
1√
α
([y, y + ε]× [y, y + αt]).

Then the following relation holds:

#(B ∩ Γ) = #{(p, q) ∈ Z2 : 0 ≤ p+ αq − y ≤ ε, 0 ≤ p+ 2αq − y ≤ αt}.

Because of (0.11), we conclude that

(1.10) |Nα,y(ε, t)−#(B ∩ Γ)| �
α

1.

In order to use Theorem 1, we need to control the characteristic quan-

tity ν(Γ, ·) of the lattice Γ. This is where the Diophantine properties of α

come into play.

Lemma 3: Let φ be as in (0.9), and suppose ρ > γ
1/2
2 . Then we have

ν(Γ⊥, ρ) = ν(Γ, ρ) ≥ φ(4ρ/
√
α)

4
.

Proof. The claimed equality follows immediately from Proposition 1 and the

remark thereafter. A vector v ∈ Γ is of the shape

v =
1√
α

(
z

z′

)

where z := p + qα, z′ := z + qα, and p, q denote integers. Assume that

‖v‖2 ∈ (0, ρ). Observe that q = 0 implies Nm(v) ≥ 1 > 4−1φ(4ρ/
√
α). There-

fore, we may assume q �= 0. Since z′ − z = qα, one of the numbers |z|, |z′| is at
least 1

2α|q|, and both are bounded from below by 1
2|q|φ(2|q|). Hence

Nm (v) ≥ α|q|
2
√
α
· φ(2|q|)
2|q|

√
α

≥ φ(4ρ/
√
α)

4

where in the last step we used that 1
2

√
α|q| ≤ 1√

α
min{|z|, |z′|} ≤ ‖v‖2 < ρ.
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Proof of Corollary 1. Let B be given by (1.9). Thus B has sidelengths

t1 = α−1/2ε, and t2 =
√
αt. By (0.3) and (0.11), we are entitled to take

ρ := εt > γ
1/2
2 in Theorem 1. Moreover, (0.11) implies t1 < 1 < t2, and thus

T =

√
α
t

ε
>

√
εt > 2 > γ2.

Hence T � = T . By combining relation (1.10) and Theorem 1 with these speci-

fications, it follows that

(1.11) |Nα,y(ε, t)− εt| �
α

1

ν(Γ⊥, T )

(
1 +

R

ν(Γ⊥, 2RT )

)
.

By Lemma 3, the right-hand side above is � R(φ(4T/
√
α)φ(2R+2T/

√
α))−1.

The first factor in the round brackets is larger than the second one, since φ is

non-increasing. Hence we conclude that the right-hand side of (1.11) is bounded

by

(1.12) � R(φ(2R+2T/
√
α))−2.

Furthermore, Lemma 3 yields

(1.13) R ≤ 4 + log
4(εt)2

φ(4t
√
εt)

� log
εt

φ(4t
√
εt)

.

By using the first estimate from (1.13) we get

2R ≤ 24
( 4(εt)2

φ(4t
√
εt)

)log 2

< 24+2 log 2 (εt)2

φ(4t
√
εt)

.

Hence (1.12) is bounded from above by

�
log εt

φ(4t
√
εt)

φ2
(
26+2 log 2 (εt)2

φ(4t
√
εt)

√
t
ε

) ≤ logE

φ2(E′)
.

This completes the proof of Corollary 1.

2. Proof of Theorem 2 and Proposition 1

2.1. Comparing ν(Γ, ·) and ν(Γ⊥, ·) and Proof of Proposition 1. A nat-

ural question is whether one can state Theorem 1 in a way that is intrinsic

in Γ, i.e., expressing ν(Γ⊥, ·) in terms of ν(Γ, ·). However, for n > 2 there are

weakly admissible lattices Γ ⊆ Rn such that Γ⊥ is not weakly admissible as the

following example shows.



110 N. TECHNAU AND M. WIDMER Isr. J. Math.

Example 4: Let n ≥ 3, and let A′
0 ∈ GLn−1(R) be such that the elements of each

row of A′
0 are Q-linearly independent. Choose real x1, . . . , xn−1, y outside of the

Q-span of the entries of A′
0, and suppose y �= xn−1. Let x = (x1, . . . , xn−1)

T

and let rn−1 be the last row of A′
0. Then the matrix

A0 :=

(
A′

0 x

rn−1 y

)

satisfies

(i) A0 ∈ GLn(R), and

(ii) the elements in each row of A0 are Q-linearly independent.

The second assertion is clear, and for the first suppose a linear combination of

the rows vanishes. Using that the rows ofA′
0 are linearly independent overR and

that y �= xn−1, the first claim follows at once. We now let A be the matrix we

get from A0 by swapping the first and the last row, and scaling each entry with

| detA0|−1/n. Clearly, (i) and (ii) remain valid for A, and the (n, n)-minor of A

vanishes. We conclude that Γ := AZn is a unimodular, and weakly admissible

lattice; moreover, Cramer’s rule implies that

(A−1)T =

⎛
⎜⎜⎜⎜⎜⎝

� � . . . �

�
. . .

. . .
...

...
. . . � �

� . . . � 0

⎞
⎟⎟⎟⎟⎟⎠

where an asterisk denotes some arbitrary real number, possibly a different num-

ber each time. Hence Γ⊥ contains a non-zero lattice point with a zero coordinate

and thus is not weakly admissible.

Keeping Example 4 in mind, we now concern ourselves with finding large

subclasses of lattices Γ ⊆ Rn such that

(1) Γ and Γ⊥ are both weakly admissible,

(2) ν(Γ⊥, ·) = ν(Γ, ·).
It is easy to see that the first item holds for almost all lattices in the sense of

the Haar-measure on the space

Ln = SLn(R)/SLn(Z)

of unimodular lattices in Rn. Moreover, we have the following criterion.



Vol. 240, 2020 COUNTING LATTICE POINTS 111

Lemma 4: Suppose A ∈ SLn(R), and suppose that the entries of A are al-

gebraically independent (over Q). Then Γ := AZn and Γ⊥ are both weakly

admissible.

Proof. First note that if K is a field and X1, . . . , XN are algebraically inde-

pendent over K, then any non-empty collection of pairwise distinct monomials

Xa1
1 · · ·XaN

N is linearly independent over K. Next note that by Cramer’s rule,

each entry of (A−1)T is a sum of pairwise distinct monomials (up to sign) in

the entries of A, and none of these monomials occurs in more than one entry of

(A−1)T . This shows that the entries of (A−1)T are linearly independent over Q,

in particular, the entries of any fixed row of (A−1)T are linearly independent

over Q. Thus Γ⊥ is weakly admissible.

Next, we prove Proposition 1.

Proof of Proposition 1. Notice that S and S−1 are, up to signs of the entries,

permutation matrices, and thus for every w ∈ Rn

Nm(w) =Nm (Sw) = Nm(S−1w),(2.1)

‖w‖2 =‖Sw‖2 = ‖S−1w‖2.(2.2)

Now let Aw be an arbitrary lattice point in Γ = AZn. Then, since W ∈ Zn×n,

we get (A−1)TWw ∈ Γ⊥. Since by hypothesis A = S−1((A−1)TW ), we conclude

from (2.1) that Nm (Aw) = Nm ((A−1)TWw), and from (2.2) that

‖Aw‖2 = ‖(A−1)TWw‖2.

This shows that

ν(Γ⊥, ·) ≤ ν(Γ, ·).
Similarly, if (A−1)Tw∈Γ⊥ then, sinceW−1∈ Zn×n, we find that AW−1w∈Γ,

and using that (A−1)T = SAW−1 we conclude as above that

ν(Γ, ·) ≤ ν(Γ⊥, ·).

This proves Proposition 1.

Reamrk 1: Let Im := diag(1, . . . , 1) be the identity matrix and 0m the null

matrix in Rm×m. Specialising

S =W =

(
0m Im

−Im 0m

)
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in Proposition 1, we conclude that if Γ = AZn with a symplectic matrix A, then

(2.3) ν(Γ⊥, ·) = ν(Γ, ·).

Moreover, it is easy to see that Sp2(R) = SL2(R), and hence (2.3) holds for any

unimodular lattice Γ ⊆ R2.

2.2. Proof of Theorem 2. Recall that α := (α1, . . . , αn)
T ∈ Rn is called

badly approximable, if there is a constant C = C(α) > 0 such that for any

integer q ≥ 1 the inequality

(2.4) max{‖qα1‖, . . . , ‖qαn‖} ≥ C

q1/n

holds where ‖ · ‖ denotes the distance to the nearest integer. By a well-known

transference principle, cf. [12], assertion (2.4) is equivalent to saying that for all

non-zero vectors q := (q1, . . . , qn)
T ∈ Zn the inequality

(2.5) ‖〈α, q〉‖ ≥ C̃

‖q‖n2
holds, where C̃ = C̃(α) > 0 is a constant. Let Bad(n) denote the set of all

badly approximable vectors in Rn. The crucial step for constructing matrices

generating the lattices announced in Theorem 2 is done by the following lemma.

Lemma 5: Let n ≥ 3 be an integer. Fix algebraically independent real numbers

ci,j where i, j = 1, . . . , n and i �= j. Then there exist λ1, . . . , λn ∈ R such that

the entries of each row of

(2.6) A :=

⎛
⎜⎜⎜⎜⎜⎝

λ1 c1,2 . . . c1,n

c2,1 λ2
. . .

...
...

. . .
. . . cn−1,n

cn,1 . . . cn,n−1 λn

⎞
⎟⎟⎟⎟⎟⎠

are algebraically independent, A is invertible, and each row-vector of (A−1)T is

badly approximable.

For proving this lemma, we shall use the following special case of a recent

theorem of Beresnevich concerning badly approximable vectors. We say that

the map F := (f1, . . . , fn)
T : B → Rn, where B � Rm is a non-empty ball and

m,n ∈ N, is non-degenerate, if 1, f1, . . . , fn are linearly independent functions

(over R).



Vol. 240, 2020 COUNTING LATTICE POINTS 113

Theorem 5 ([10, Thm. 1]): Let n,m, k be positive integers. For each j=1, . . . , k

suppose that Fj : B → Rn is a non-degenerate, analytic map defined on a non-

empty ball B � Rm. Then

dimHaus

k⋂
j=1

F−1
j (Bad(n)) = m.

Proof of Lemma 5. We work in two steps. First, we set the scene to make use

of Theorem 5.

(i) Let M ∈ Rn×n, and denote by (M)i,j the entry in the i-th row and j-th

column of M . Moreover, we define a map F̃ : Rn → Rn×n by

λ := (λ1, . . . , λn)
T �→

⎛
⎜⎜⎜⎜⎜⎝

λ1 c1,2 . . . c1,n

c2,1 λ2
. . .

...
...

. . .
. . . cn−1,n

c1,n . . . cn,n−1 λn

⎞
⎟⎟⎟⎟⎟⎠ .

On a sufficiently small non-empty ball B � Rn, centred at the origin, F̃ (λ) is

invertible for every λ ∈ B.4 On this ball B, we define Fj , for j = 1, . . . , n,

by mapping λ to the j-th row of ((F̃ (λ))−1)T . We claim that Fj is a non-

degenerate, and analytic map. By Cramer’s rule, every entry of ((F̃ (λ))−1)T is

the quotient of polynomials in λ1, . . . , λn whereas the polynomial in the denom-

inator does not vanish on B. Hence, each Fj is an analytic function. Now we

show that F1 is non-degenerate, the argument for the other Fj being similar.

The j-th component of F1 is ((F̃ (λ))−1)j,1 and, using Cramer’s rule, is hence

of the shape

(det F̃ (λ))−1

(
Rj + (−1)1+j

n∏
k=2, k �=j

λk

)

4 To see this, it suffices to show det F̃ ((0, . . . , 0)T ) �= 0. However, by the Leibniz formula,

det F̃ (0, . . . , 0) =
∑

σ

sgn(σ)
n∏

i=1

ci,σ(i)

where the sum runs through all fixpoint-free permutations of {1, . . . , n}. Since

{ci,j : i, j = 1, . . . , n, i �= j} is algebraically independent, the evaluation of the polyno-

mial on the right hand side above cannot vanish, cf. proof of Lemma 4.
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where the polynomial Rj ∈ R[λ2, . . . , λn] is of (total) degree < n− 1, if j = 1,

and of (total) degree < n − 2, if j = 2, . . . , n. Therefore, if a linear combi-

nation k0 +
∑n

j=1 kj((F̃ (λ))
−1)j,1 with scalars k0, . . . , kn ∈ R equals the zero-

function 0 : B → R, then

0 = k0 · (det F̃ (λ)) +
n∑

j=1

kj(−1)1+j
n∏

k=2, k �=j

λk +

n∑
j=1

kjRj .

Comparing coefficients, we conclude that k0 = 0 and thereafter we have

k1 = k2 = · · · = kn = 0. Hence, F1 is non-degenerate.

(ii) By part (i), Theorem 5 implies that the set M of all λ ∈ B such that

F1(λ), . . . , Fn(λ) are all badly approximable, has full Hausdorff dimension.

Moreover, we claim that there is a set M (1) ⊆ M of full Hausdorff dimension

such that for every λ ∈M (1) the entries of the first row of F̃ (λ) are algebraically

independent. LetM1 be the subset ofM of all elements λ := (λ1, . . . , λn)
T ∈M

satisfying that {λ1, c1,j : j = 2, . . . , n} is algebraically dependent; observe that

the possible values for λ1 are countable, since Z[c1,2, . . . , c1,n, x] is countable

and every complex, non-zero, univariate polynomial has only finitely many

roots. Therefore, M1 is contained in a countable union of hyperplanes. It

is well-known that if a sequence of sets {Ei} ⊆ Rn is given, then

dimHaus

⋃
i≥1

Ei = sup
i≥1

{dimHausEi},

cf. [11, p. 65]. Consequently,

n = dimHausM = max{dimHaus(M \M1), dimHausM1} = dimHaus(M \M1),

and we define M (1) := M \M1. Using the same argument, we conclude that

there is a set M (2) ⊆ M (1) of full Hausdorff dimension such that each of the

first two rows of F̃ (λ) has algebraically independent entries for every λ ∈M (2).

Iterating this construction, we infer that there is a subset

M (n) ⊆M (n−1) ⊆ · · · ⊆M

of full Hausdorff dimension such that for every λ ∈ M (n) each row of the

matrix A := F̃ (λ) has algebraically independent entries, and (A−1)T has badly

approximable row vectors. Moreover, λ∈M (n)⊆B implies that A is invertible.

We also need the following easy fact whose proof is left as an exercise.
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Lemma 6: Let m ∈ N, and let α ∈ R be transcendental. Then there are real

numbers β1, . . . , βm such that β1, αβ1, β2, . . . , βm are algebraically independent.

We are now in position to prove Theorem 2. First, we set ψ̃(x) = ψ(x2)

such that for every c > 0 and x ≥ c we have ψ̃(x) ≤ ψ(cx). We may as-

sume that ψ̃(q) � exp(−q). By writing down a suitable decimal expansion, we

conclude that there exists a number α ∈ (0, 1) such that

(2.7)
∣∣∣α− p

q

∣∣∣ < ψ̃(q)

qn+1

has infinitely many coprime integer solutions p, q ∈ Z; observe that such an α

is necessarily transcendental. We apply Lemma 6 with m = n2 − n − 1 and

set c1,2 := β1, c1,3 := αβ1, and we choose exactly one value βk (k ≥ 2) for

each of the remaining ci,j (i �= j). Thus, the real numbers ci,j are alge-

braically independent. We use Lemma 5 with these specifications to find A

as in (2.6). For l ∈ N let pl, ql denote distinct solutions to (2.7), and put

vl := (0,−pl, ql, 0, . . . , 0)T ∈ Zn. Set Ã := | detA|−1/nA, and let us consider

the unimodular, weakly admissible lattice Γ := ÃZn. Then the first coordinate

of Ãvl equals

| detA|−1/n| − plc1,2 + qlc1,3| = | detA|−1/n|c1,2||qlα− pl| �
A

ψ̃(ql)

qnl
.

Since α ∈ (0, 1), we may assume, by choosing l large enough, that pl ≤ ql. Hence

the j-th coordinate for j = 2, . . . , n of Ãvl is �
A
ql. Thus, for l sufficiently large,

Nm(Ãvl) �
A

ψ̃(ql)

qnl
· qn−1

l =
ψ̃(ql)

ql
≤ ψ(2‖Ã‖2ql)

ql
≤ ψ(‖Ãvl‖2)

ql
.

Choosing ρl = ‖Ãvl‖2, we conclude that ν(Γ, ρl) ≤ ψ(ρl) for all l sufficiently

large.

Because the rows of (A−1)T are badly approximable vectors by construction,

Γ⊥ is weakly admissible. Moreover, by (2.5), we conclude that

Nm((A−1)T v) �
A

‖v‖−n2

2

for every non-zero v∈Zn. Also note that ‖(A−1)T v‖2<ρ implies ‖v‖2<‖AT ‖2ρ.
This implies that ν(Γ⊥, ρ) �

A
ρ−n2

. Hence Γ has the desired properties.
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